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Abstract. The Schouten-Nijenhuis bracket on smooth infinite-dimensional
manifolds M is developed in two steps: For summable multivector fields whose

pointwise dual are all differential form, and in an extended form for multivector
fields which are sections of L•

skew(T
∗M,R). We need to either assume that

C∞(M) separates points on TM , or consider sheaves of local sections; see 1.1.

Introduction

We develop the Schouten-Nijenhuis bracket for skew multivector fields on infinite
dimensional smooth manifolds. The initial point of view in Sections 1 and 2 is that
the space of multivector fields is predual to the only space of differential forms
admitting exterior derivative, general pullbacks, and insertion operators; see [7,
33.21]. We use the bornological tensor product for that. We first give a direct
definition of the Schouten-Nijenhuis bracket for summable multivector fields (see
1.4) whose pointwise dual consists of differential forms in Section 1. Then we use the
duality between summable multivector fields and differential forms to derive another
formula for the Schouten-Nijenhuis bracket (2.3.7) which in finite dimensions and
using slightly different conventions is due to Tulczyjew [15]. In Section 3 we turn
this around and use Tulczyjew’s formula to extend the Schouten-Nijenhuis bracket
for multivector fields which are sections of the bundle L•

skew(T
∗M,R).

The main use of the Schouten-Nijenhuis bracket is to recognise Poisson structures
(see 3.6) and their formal deformations. The general Schouten-Nijenhuis bracket
for general multivector fields as presented in Section 3 is needed because there
exist quite general Poisson structure in infinite dimensions; see [13], [12], [16] and
the overview in [3]. In [1] one finds even ‘queer’ Poisson structures where the
bracket is a bidifferential operator of order higher than one. One can adapt the
Schouten-Nijenhuis bracket as developed in Section 3 to catch also this situation by
adapting the bundle of differential forms accordingly choosing from [7, 33.21 and
32.5]. This is not done here since there are no serious applications of such Poisson
structures available yet. Moreover, many Poisson structures are only defined on
duals of subbundles of T ∗M . The results of this paper can maybe adapted to these
situations.
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Weak symplectic structures in infinite dimensions in the convenient setting and
their Poisson brackets have been treated in [7, Section 48]. Poissons structures in
infinite dimensions are treated in [10], [2], and an overview is given by [3]. This
paper finally aswers a question posed by Tudor Ratiu in 2013. I thank Alice Barbora
Tumpach and Praful Rahangdale for discussions and hints. The work on this paper
was supported by the thematic program ”Infinite-dimensional Geometry: Theory
and Applications”, Jan.13 – Feb.14, at the Erwin Schrödinger Institute in Vienna.

1. The Schouten bracket for summable skew multivector fields

1.1. What manifolds do we use? We shall use smooth (C∞) calculus as de-
scribed in [7]. Let M be a smooth manifold modelled on a convenient vector space
E. Thus we have a smooth atlas M ⊃ Uα −uα→ uα(Uα) ⊂ E and all chart chang-
ings uαβ : uβ(Uα ∩ Uβ) → uα(Uα ∩ Uβ) are smooth. Let πM : TM → M be its

(kinematic) tangent bundle which is described by induced charts TM ⊃ TUα−Tuα

u→
(Uα)× E ⊂ E × E. The Lie algebra of vector fields X(M) is the space of sections
of TM → M . We shall use the graded differential algebra of differential forms
consisting of smooth sections of the bundle of bounded skew symmetric multilinear
forms L∗

skew(TM,R) on the tangent bundle, see [7, Section 33]:

Ω(M) =

∞⊕
k=0

Ωk(M) =

∞⊕
k=0

C∞(M ← Lk
skew(TM,R)).

This algebra admits all desired operations LX , d, f
∗; see [7, 33.21].

In this paper we consider only manifolds M having the following property: For
each covector α ∈ T ∗M there exists a function f ∈ C∞(M) with dfπ(α) = α. The
following classes of manifolds have this property:

• Smoothly paracompact manifolds (having smoothly paracompact modelling
spaces), see [7, Section 33].
• Each manifold M such that C∞(M,R) separates points on TM .
• Manifolds smoothly immersed into a convenient vector space, i.e., admitting
a smooth mapping F : M → E such that dFx : TxM → E is injective for
each x ∈M ; then bounded linear functionals on E do the job.

One can drop this property if one considers sheaves of local sections of all relevant
bundles below. For simplicity’s sake we stick with global sections.

1.2. The completed bornological tensor product. For a convenient vector
space E, let E⊗̄βE be the c∞-completed (see [7, 4.29]) bornological tensor product
which linearizes bounded bilinear mappings; see [7, 5.7 and 5.19]. If E is a Banach or
Fréchet or (DF) space then each bounded bilinear mapping is jointly continuous and
thus E⊗̄βE agrees with the completed projective tensor product of Grothendieck
[5]; see [7, 5.8].

Let
∧n

E be the (Mackey-) closed linear subspace of all alternating tensors
in

⊗̄n
βE, see [7, Section 5]. It is the universal solution for convenient vector

spaces F of the linearization problem L(
∧n

E,F ) ∼= Ln
alt(E;F ), where Ln

alt(E;F )
is the space of all bounded n-linear alternating mappings E × . . . × E → F ,
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a direct summand of Ln(E;F ) := L(E, . . . , E;F ). By [7, 5.9.5] the mapping∧n
: L(E,F )→ L(

∧n
E,

∧n
F ) is bounded multilinear and thus smooth.

1.3. Summable multivector fields. We apply the smooth mapping

n∧
: L(E,F )→ L(

n∧
E,

n∧
F )

to the chart change mappings for the tangent bundle TM → M to obtain the
smooth vector bundle πM :

∧n
TM →M of summable n-multivectors on M . Note

that the space linearly generated by X1 ∧ · · · ∧ Xn for Xi ∈ TxM is dense in
the fiber

∧n
TxM . The space Γ(

∧n
TM) of smooth sections of this bundle is the

space of summable multivector fields on M . We write Γ(
∧0

TM) = C∞(M,R) and
Γ(

∧
TM) =

⊕
n≥0 Γ(

∧n
TM) which is a graded commutative algebra for the usual

wedge-product (see [7, 33.8] for the convention) of multivector fields for the grading
(Γ(

∧
TM), ∧ )n = Γ(

∧n
TM). The wedge product is a bounded bilinear operation

on the convenient space Γ(
∧
TM), by the universal property of the bornological

tensor product.

1.4. Theorem. Let M be a smooth manifold modeled on a convenient vector space
M . Then the following bracket (where Xi and Yj are vectorfields) is well defined
and bounded and extends to Γ(

∧
TM).

[1, U ] = 0 for all U ∈ Γ(
∧
TM)

[f, U ] = −ῑ(df)U for f ∈ C∞(M) and U ∈ Γ(
∧
TM)

where ῑ(df)(X1 ∧ · · · ∧Xk) =
∑
i

(−1)i−1df(Xi) ·X1 ∧ · · · X̂i · · · ∧Xk

[X1∧ · · · ∧Xk, Y1 ∧ · · · ∧ Yl] =

=
∑
i,j

(−1)k−i+j−1X1 ∧ · · · X̂i · · · ∧Xk ∧ [Xi, Yj ] ∧ Y1 ∧ · · · Ŷj · · · ∧ Yl

=
∑
i,j

(−1)i+j [Xi, Yj ] ∧X1 ∧ · · · X̂i · · · ∧Xk ∧ Y1 ∧ · · · Ŷj · · · ∧ Yl

For the grading (Γ(
∧
TM), [ , ])n = Γ(

∧n+1
TM) we get a convenient graded Lie

algebra which is compatible with the wedge product. Namely, for U ∈ Γ(
∧u

TM)
and V ∈ Γ(

∧v
TM) we have:

[U, V ] = −(−1)(u−1)(v−1)[V,U ]

[U, [V,W ]] = [[U, V ],W ] + (−1)(u−1)(v−1)[V, [U,W ]]

[U, V ∧W ] = [U, V ] ∧W + (−1)(u−1)vV ∧ [U,W ] .

This is the infinite dimensional version of the Schouten-Nijenhuis bracket, which
was found by [14]; that it satisfies the graded Jacobi identity is due to [11]. The
approach given here is the infinite dimensional version of [9, Theorem 1.2].
Note on conventions. The reason for the convention (which agrees with the one
used by Koszul [6]) used in Theorem 1.4 and later is as follows: It fits into the
following universal property: For any Lie algebra g and N≥0-graded Lie algebra A
any degree 0 Lie algebra homomorphism φ extends uniquely to a homomorphism
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of graded Lie algebas φ̃ as in the diagram below, where one should shift the degree
by -1 in the top row: ∧1

g
� � // ∧•

g

g

∼=

OO

φ // A =
⊕∞

k=0A
k

φ̃

OO

A different approach is by Tulczyjew [15]; We shall use it below to extend the
bracket to far larger spaces of multivector fields. Other conventions are as follows:

• Tulczyjew [15] uses −(−1)(u−1)(v−1)[U, V ] = −[V,U ]. This version has a
more natural relation to the Lie derivative than (2.3.6).
• Vaisman [17] and Lichnerowicz [8] use (−1)u−1[U, V ] = (−1)uv(−1)v−1[V,U ];
this choice shifts the signs for the graded skew symmetry as indicated and
for the graded Jacobi identity.

Proof. For f ∈ C∞(M,R) it is easily checked that

[X1 ∧ · · · ∧Xk, Y1 ∧ · · · ∧ f.Yj ∧ · · · ∧ Yl] = f.[X1 ∧ · · · ∧Xk, Y1 ∧ · · · ∧ Yl]+

+ (−1)k−1ῑ(df)(X1 ∧ · · · ∧Xk) ∧ Y1 ∧ · · · ∧ Yl .
Thus the bracket, which a priori is defined on (the dense algebraic tensor products)∧k

Γ(TM)×
∧l

Γ(TM)→
∧k+l−1

Γ(TM) factors to∧k

C∞(M)
Γ(TM)×

∧l

C∞(M)
Γ(TM)→

∧k+l−1

C∞(M)
Γ(TM)

which equals

Γ(
∧k

TM)× Γ(
∧l

TM)→ Γ(
∧k+l−1

TM) .

So it is well defined for manifold where the Serre-Swan result holds. For others one
has to check in a local chart that it is in fact a section of

∧•
TM ; this is done below

in (3.4.4) in a more general setting. Since the bracket is clearly bounded, it extends
to the Mackey closure. Finally we have to check the graded Jacobi identity. This
is an elementary but tedious computation. The graded derivation property with
respect to the wedge product is easily checked. □

2. Using the duality between summable skew multivector fields and
differential forms

Having established the Schouten-Nijenhuis bracket for summable skew multivec-
tor fields in Section 1, we now make full use use of the duality between summable
multivector fields and differential forms.

2.1. The duality between multivector fields and differential forms. Let M
be a smooth manifold modeled on a convenient vector space E. By the universal
property of the bornological tensor product described in 1.2, the dual space of

∧n
E

is the space Ln
skew(E;R). Using and extending the conventions of [4, 5.30], see also

[7, Section 33], we start from the duality

⟨ , ⟩ :
∧n

E∗ ×
∧n

E → R
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⟨φ1 ∧ · · · ∧ φn, X1 ∧ · · · ∧Xn⟩ = det(⟨φi, Xj⟩i,j)

which is 1/n! of the restriction of the duality ⟨ , ⟩ : ⊗nE∗ ×⊗nE → R, we get the
complete fiberwise duality

⟨ , ⟩ : Ωn(M)× Γ(
∧n

TM)→ C∞(M) ,

⟨ω,X1 ∧ · · · ∧Xn⟩ = ω(X1, . . . , Xn)

We have the following dual pairs of operators: For ω ∈ Ωp(M) the linear map
µ(ω) : Ωk(M)→ Ωk+p(M) given by µ(ω)ψ := ω ∧ ψ is the fiberwise dual operator

to ῑ(ω) : Γ(
∧k+p

TM)→ Γ(
∧k

TM), where

ῑ(ω)(X1 ∧ · · · ∧Xk+p) =

=
1

p!k!

∑
σ∈Sk+p

sign(σ)ω(Xσ(1), . . . , Xσ(p))Xσ(p+1) ∧ · · · ∧Xσ(p+k) .

since for φ ∈ Ωk(M) we have

⟨φ, ῑ(ω)(X1 ∧ · · · ∧Xk+p)⟩ = ⟨ω ∧ φ,X1 ∧ · · · ∧Xk+p⟩ = (ω ∧ φ)(X1, . . . , Xk+p)

=
1

p!k!

∑
σ∈Sk+p

sign(σ)ω(Xσ(1), . . . , Xσ(p))φ(Xσ(p+1), . . . , Xσ(k+p)) .

Likewise, for U ∈ Γ(
∧p

TM) the fiberwise linear mapping µ̄(U) : Γ(
∧k

TM) →
Γ(

∧k+p
TM) given by µ̄(U)V = U ∧ V is the fiberwise dual of the ‘insertion oper-

ator’ i(U) : Ωk+p(M)→ Ωk(M).

2.2. Lemma. Let U be in Γ(
∧u

TM). Then we have:

(1) i(U) : Ω(M) → Ω(M) is a homogeneous bounded module homomorphism
of degree −u. It is a graded derivation of Ω(M) if and only if p = 1. For
f ∈ C∞(M) we have i(f)ω = f.ω.

(2) i(U ∧ V ) = i(V ) ◦ i(U), thus the graded commutator vanishes:

[i(U), i(V )] = i(U)i(V )− (−1)uvi(V )i(U) = 0.

(3) i(U)(ω∧ψ) = i(ῑ(ω)U)ψ+(−1)uω∧ i(U)ψ for ω ∈ Ω1(M) and ψ ∈ Ω(M).

Proof. (1) follows from the definition. (2) is the dual of µ̄(U ∧V )W = U ∧V ∧W =
µ̄(U)µ̄(V )W . (3) For vector fields Xj and decomposable U = X1∧· · ·∧Xu we have

i(X1 ∧ · · · ∧Xu)µ(ω) = i(Xu) . . . i(X1)µ(ω)

= i(Xu) . . . i(X2)
(
− µ(ω)i(X1) + µ(i(X1)ω)

)
= ω(X1).i(Xu) . . . i(X2)− i(Xu) . . . i(X3)

(
µ(ω)i(X2) + µ(i(X2)ω)

)
=

u∑
j=1

(−1)j−1ω(Xj).i(Xu) . . . î(Xj) . . . i(X1) + (−1)uµ(ω)i(Xu) . . . i(X1)

= i
( u∑

j=1

(−1)j−1Xu ∧ · · · ∧ ῑ(ω)Xj ∧ · · · ∧X1

)
+ (−1)uµ(ω)i(X1 ∧ · · · ∧Xu)

=⇒ [i(U), µ(ω)] = i(ῑ(ω)U) □
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2.3. The Lie differential operator. For U ∈ Γ(
∧u

TM) we define the Lie deriva-
tion L(U) : Ωk(M)→ Ωk−u+1(M) by

(1) L(U) := [i(U), d] = i(U) ◦ d− (−1)pd ◦ i(U)

which is homogeneous of degree 1− u and is called the Lie differential operator.
It is a derivation if and only if U is a vector field. We have [L(U), d] = 0 by the
graded Jacobi identity of the graded commutator.

Theorem. Let U ∈ Γ(
∧u

TM), V ∈ Γ(
∧v

TM), and f ∈ C∞(M). Then we have:

L(U ∧ V ) = i(V ) ◦ L(U) + (−1)uL(V ) ◦ i(U)(2)

L(X1 ∧ · · · ∧Xu) =
∑
j

(−1)j−1i(Xu) · · · i(Xj+1)L(Xj)i(Xj−1) · · · i(X1)(3)

L(f) = [i(f), d] = [µ(f), d] = −µ(df)(4)

[L(U), i(V )] = (−1)(u−1)(v−1)i([U, V ]) = −i([V,U ])(5)

[L(U),L(V )] = (−1)(u−1)(v−1)L([U, V ]) = −L([V,U ])(6)

⟨dω,−[V,U ]⟩ = ⟨di(V )dω, U⟩ − (−1)(u−1)(v−1)⟨di(U)dω, V ⟩(7)

Formula (7) suffices to compute [U, V ] in a local chart, and it remains valid if
we insert any closed form instead of dω since (7) is a local formula, and locally any
closed form is exact by the Poincaré lemma [7, 33.20]. Formula (7) was the starting
point of the treatment of the Schouten-Nijenhuis bracket in [15].

Proof.

L(U ∧ V ) = [i(U ∧ V ), d] = [i(V )i(U), d] = i(V )i(U)d− (−1)u+vdi(V )i(U)(2)

= i(V )
(
i(U)d− (−1)udi(U)

)
+ (−1)u

(
i(V )d− (−1)vdi(V )

)
i(U)

= i(V ) ◦ L(U) + (−1)uL(V ) ◦ i(U)

(3) Use induction on u, using (2):

L(X1 ∧ · · · ∧Xu) = i(Xu)L(X1 ∧ · · · ∧Xu−1)− (−1)uL(Xu)i(X1 ∧ · · · ∧Xu−1)

=

u−1∑
j=1

(−1)j−1i(Xu) . . .L(Xj) . . . i(X1) + (−1)u−1L(Xu)i(Xu−1) . . . i(X1)

=

u∑
j=1

(−1)j−1i(Xu) . . .L(Xj) . . . i(X1)

d(f.ω) = df ∧ ω + f.dω =⇒ d ◦ µ(f) = µ(df) + µ(f) ◦ d =⇒(4)

L(f) = [i(f), d] = [µ(f), d] = −µ(df)

(5) We start with

[L(U), i(V )] = [[i(U), d], i(V )] = [i(U), [d, i(V )]]− (−1)u[d, [i(U), i(V )]](a)

= (−1)v−1[i(U),L(V )] + 0.

We use induction on u+ v. For u+ v = 0 we have

[L(f), i(g)] = [−µ(df), µ(g)] = 0 = −i([f, g]).
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For u+ v = 1, by (a) it suffices to check

[L(X), i(f)] = L(X)µ(f)− µ(f)L(X) = i(df(X)).

By (a) again, for the induction step it suffices to check

[L(X ∧ U), i(V )] = [i(U)L(X)− L(U)i(X), i(V )] by (2)

= i(U)L(X)i(V )− (−1)uvi(V )i(U)L(X)

− L(U)i(X)i(V ) + (−1)uvi(V )L(U)i(X)

= i(U)[L(X), i(V )]− (−1)v[L(U), i(V )]i(X)

= i(U)i(−[V,X])− (−1)vi(−[V,U ])i(X) by induction

= −i
(
[V,X] ∧ U + (−1)v−1X ∧ [V,U ]

)
by (2.2.2)

= −i([V,X ∧ U ]) by Theorem 1.4.

(6) We use again induction on u+ v. For u+ v = 0 we have by (4)

[L(f),L(g)] = [−µ(df),−µ(dg)] = µ(df)µ(dg) + µ(dg)µ(df) = 0 = L(−[g, f ]).

For u+ v = 1 we have

[L(X),L(f)] = −[L(X), µ(df)] = −µ(L(X)df)

L(−[f,X]) = L(ῑ(df)X) = L(df(X)) = −µ(d(df(X))) = −µ(L(X)df).

The induction step:

[L(X ∧ U),L(V )] = [i(U)L(X)− L(U)i(X),L(V )] by (1)

= i(U)L(X)L(V )− (−1)u(v−1)L(V )i(U)L(X)

− L(U)i(X)L(V ) + (−1)u(v−1)L(V )L(U)i(X)

= i(U)[L(X),L(V )]− (−1)u(v−1)[L(V ), i(U)]L(X)

− L(U)[i(X),L(V )] + (−1)u(v−1)[L(V ),L(U ])i(X)

= i(U)L(−[V,X]) + (−1)u(v−1)i([U, V ])L(X) by induction and (4)

+ (−1)(v−1)L(U)i([X,V ]) + (−1)u(v−1)L([U, V ])i(X)

L(− [V,X ∧ U ]) = L(−[V,X] ∧ U − (−1)v−1X ∧ [V,U ]) by Theorem 1.4

= i(U)L(−[V,X])− (−1)vL(U)i([X,V ]) by (2)

− (−1)vi([V,U ])L(X) + (−1)u(v−1)L([U, V ])i(X) which proves (6).

(7) For ω ∈ Ωu+v−3(M) we have i(−[V,U ])ω = 0 by degree, thus

L(−[V,U ])ω = i(−[V,U ])dω + 0 = ⟨dω,−[V,U ]⟩
L(U)L(V )ω = [i(U), d]i[(V ), d]ω = i(U)di(V )dω + 0 + 0 + 0 = ⟨di(V )dω, U, ⟩
L(V )L(U)ω = ⟨di(U)dω, V ⟩

L(−[V,U ])ω = [L(U),L(V )]ω = ⟨di(V )dω,U, ⟩ − (−1)(u−1)(v−1)⟨di(U)dω, V ⟩ □

2.4. Naturality of the Schouten Nijenhuis bracket. Let f : M → N be a
smooth mapping between convenient manifolds. We say that U ∈ Γ(

∧u
TM) and
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U ′ ∈ Γ(
∧u

TN) are f -related, if
∧u

Tf.U = U ′ ◦ f holds:∧u
TM

∧u Tf // ∧u
TN

M

U

OO

f // N

U ′

OO

2.5. Proposition. (1) Two multivector fields U and U ′ as above are f-related
if and only if i(U) ◦ f∗ = f∗ ◦ i(U ′) : Ω(N)→ Ω(M).

(2) U and U ′ as above are f -related if and only if L(U) ◦ f∗ = f∗ ◦ L(U ′) :
Ω(N)→ Ω(M) holds.

(3) If Uj and U ′
j are f -related for j = 1, 2 then also their Schouten brackets

[U1, U2] and [U ′
1, U

′
2] are f -related. □

2.6. Lemma. Let X ∈ X(M) be a smooth vector field admitting a local flow FlXt ;
see [7, 32.13–32.17]. Then we have

LXU = ∂t|0(FlXt )∗U = [X,U ]. □

3. The general Schouten bracket

3.1. General multivector fields and summable differential forms. For a
convenient manifold the general multivector fields of order k are the smooth sections
of the vector bundle Lk

skew(T
∗M,R)→M . We denote these as follows:

MV(M) =

∞∑
k=0

MVk(M) :=

∞∑
k=0

Γ(Lk
skew(T

∗M,R))

A summable differential form ω on M is a smooth section of the bundle of skew

symmetric tensors
∧k

sumT
∗M ⊂ ⊗̄k

βT
∗M = T ∗M⊗̄βT

∗M⊗̄β . . . ⊗̄βT
∗M → M ,

where ⊗̄β denotes the c∞-completed bornological tensor product which linearizes
bounded bilinear mappings as used in 1.3.

Let us denote by Ωk
sum(M) the graded algebra of all summable differential forms.

Note that exterior derivative d : Ωk(M) → Ωk+1(M) does not map Ωk
sum(M) into

Ωk+1
sum(M); this fails even for k = 1. Summability of a form is destroyed by the

exterior derivative: For example, on a real Hilbert space for a bounded operator
A the 1-form ωx(X) = ⟨Ax,X⟩ has exterior derivative dω(X,Y )x = ⟨AX,Y ⟩ −
⟨AY,X⟩−⟨Ax, [X,Y ]⟩ is not summable if the operator A−A⊤ is not of trace class.

Therefore we let Ωk
sum,d(M) be the graded differential subalgebra of all summable

forms ω such that dω is again summable. Note that the latter condition is a linear
partial differential relation. By the condition in 1.1 for the manifold M we have:
For each α ∈ T ∗M there exists f ∈ C∞(M) with dfπ(α) = α. Consequently,

(1) evx ◦ d : Ωk
sum,d(M)→

k+1∧
T ∗
xM is surjective for all x ∈M

The vector bundle Lk
skew(T

∗M,R)→ M is the dual bundle of
∧k

sumT
∗M → M ;

we will denote the duality by (the dual space is always on the left hand side)

⟨ , ⟩ : Lk
skew(T

∗M,R)×M

∧k
sum,βT

∗M → R
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⟨U,φ1 ∧ · · · ∧ φk⟩ = U(φ1, . . . , φk)

as well as its extension to spaces of sections.

For ω ∈ Ωk
sum(M) we consider the pointwise linear (i.e., vector bundle push-

forward) mapping

µ(ω) : Ωℓ
sum(M)→ Ωℓ+k

sum(M), µ(ω)φ = ω ∧ φ
and its pointwise dual

ῑ(ω) = µ(ω)∗ : MVℓ+k(M)→ MVℓ(M),

⟨U, µ(ω)φ⟩ = ⟨U, ω ∧ φ⟩ = ⟨ῑ(ω)U,φ⟩
For a decomposable k-form ω = φ1 ∧ · · · ∧ φk we have

⟨ῑ(φ1 ∧ · · · ∧ φk)U,φk+1 ∧ · · · ∧ φk+ℓ⟩ = ⟨U,φ1 ∧ · · · ∧ φk ∧ φk+1, . . . , φk+ℓ)(2)

= U(φ1, . . . , φk+ℓ)

Similarly, for U ∈ MVu(M) we consider

µ̄(U) : MVℓ(M)→ MVu+ℓ(M), µ̄(U)V = U ∧ V
which is the dual of i(U) : Ωℓ+u

sum(M)→ Ωℓ
sum(M) which on decomposable u+ℓ-forms

is given by

i(U)(φ1 ∧ · · · ∧ φu+ℓ) =

=
1

u!ℓ!

∑
σ∈Sk+ℓ

sign(σ)U(φσ(1), . . . , φσ(u))φσ(u+1) ∧ · · · ∧ φσ(k+ℓ) ,(3)

since we have

⟨V , i(U)(φ1 ∧ · · · ∧ φu+v)⟩ = ⟨U ∧ V, φ1 ∧ · · · ∧ φu+v⟩
= (U ∧ V )(φ1, . . . , φu+v)

=
1

u! v!

∑
σ∈Su+v

sign(σ)U(φσ(1), . . . , φσ(u))V (φσ(u+1), . . . , φσ(u+v))

= ⟨V, 1

u! v!

∑
σ∈Su+v

sign(σ)U(φσ(1), . . . , φσ(u))φσ(u+1) ∧ · · · ∧ φσ(u+v)

〉
.

(4) Formula (3) implies that i(U) respects the d-stable subalgebra Ωk
sum,d(M) so that

i(U) : Ωℓ+u
sum,d(M)→ Ωℓ

sum,d(M)

We first have to redo Lemma 2.2

3.2. Lemma. Let U be in MVu(M) and V ∈ MVv(M). Then we have:

(1) i(U) : Ωsum(M)→ Ωsum(M) is a homogeneous bounded module homomor-
phism of degree −u. It is a graded derivation of Ωsum(M) if and only if
u = 1. For f ∈ C∞(M) we have i(f)ω = f.ω.

(2) i(U ∧ V ) = i(V ) ◦ i(U), thus the graded commutator vanishes:

[i(U), i(V )] = i(U)i(V )− (−1)uvi(V )i(U) = 0.

(3) For ω ∈ Ω1(M) and ψ ∈ Ωsum(M) we have

i(U)(ω ∧ ψ) = i(ῑ(ω)U)ψ + (−1)uω ∧ i(U)ψ, [i(U), µ(ω)] = i(ῑ(ω)U)
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Proof. (1) follows from the definition. (2) is the dual of µ̄(U ∧V )W = U ∧V ∧W =
µ̄(U)µ̄(V )W . (3) For 1-forms φj we have

[i(U), µ(φ1)](φ2 ∧ · · · ∧ φk) = i(U)(φ1 ∧ · · · ∧ φk)−
− (−1)uφ1 ∧ i(U)(φ2 ∧ · · · ∧ φk)

= 1
u!(k−u)!

∑
σ∈Sk

sign(σ)U(φσ(1), . . . , φσ(u))φσ(u+1) ∧ · · · ∧ φσ(k)

− (−1)uφ1 ∧ 1
u!(k−u−1)!

∑
σ∈Sk−1

sign(σ)U(φσ(2), . . . , φσ(u+1))φσ(u+2) ∧ · · · ∧ φσ(k)

i(ῑ(φ1)U)(φ2 ∧ · · · ∧ φk) =

= 1
(u−1)!(k−u)!

∑
σ∈Sk−1

sign(σ)(ῑ(φ1)U)(φσ(2), . . . , φσ(u))φσ(u+1) ∧ · · · ∧ φσ(k)

= 1
(u−1)!(k−u)!

∑
σ∈Sk−1

sign(σ)U(φ1, φσ(2), . . . , φσ(u))φσ(u+1) ∧ · · · ∧ φσ(k)

=⇒ [i(U), µ(ω)] = i(ῑ(ω)U) □

3.3. Naturality. Let f :M → N be a smooth mapping between convenient man-
ifolds. Then we have a well defined pullback operation

f∗ : Ωk
sum(N)→ Ωk

sum(M) , (f∗ω)x =
( k∧

(Txf)
∗)ωf(x)

which intertwines via the ‘insertions’ (which might not be injective in general)
Ωk

sum(M)→ Ωk(M) with the usual pullback operations.

We say that U ∈ MVu(M) and U ′ ∈ MVu(N) are f -related, if for each x ∈ M
we have Lu

skew(T
∗
xf,R).Ux = U ′

f(x):

Lu
skew(T

∗M,R)
Lu

skew(T∗f,R) // Lu
skew(T

∗N,R)

M

U

OO

f // N

U ′

OO

Like in Proposition 2.5 we have:
Two multivector fields U and U ′ as above are f -related if and only if

i(U) ◦ f∗ = f∗ ◦ i(U ′) : Ωsum(N)→ Ωsum(M).

3.4. The Schouten-Nijenhuis bracket for general multivector fields: Tul-
czyjew’s Approach [15]. We turn Theorem 2.3 around and use (2.3.7) as defini-
tion. For ω ∈ Ωu+v−2

sum,d (M) we put

(1) ⟨[U, V ], dω⟩ = −⟨V, di(U)dω⟩+ (−1)(u−1)(v−1)⟨U, di(V )dω⟩ .

This remains valid if we insert a closed form in Ωu+v−1
sum,d (M) instead of dω, since (1)

is a local formula and locally each closed form is exact by the Lemma of Poincaré
[7, 33.20]; the proof given there restricts to the subalgebra Ω•

sum(M). The right
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hand side of (1) is bounded linear in the variable dω, hence (1) is uniquely defined,
and it readily extend as follows: Let fdω = f ′dω′, then by (3.2.3) we get

f⟨U, di(V )dω⟩ − (−1)(u−1)(v−1)f⟨V, di(U)dω⟩ =

= ⟨U, di(V )(fdω)⟩ − (−1)(u−1)(v−1)
(
⟨V, di(U)(fdω)⟩

− (−1)(u−1)v⟨U ∧ V, d(fdω)⟩

= ⟨U, di(V )(f ′dω′)⟩ − (−1)(u−1)(v−1)
(
⟨V, di(U)(f ′dω′)⟩

− (−1)(u−1)v⟨U ∧ V, d(f ′dω′)⟩

= f ′⟨U, di(V )dω′⟩ − (−1)(u−1)(v−1)f ′⟨V, di(U)dω′⟩.

Therefore we also have

(2) ⟨[U, V ], fdω⟩ = −f⟨V, di(U)dω⟩+ (−1)(u−1)(v−1)f⟨U, di(V )dω⟩ .

Even on a smoothly paracompact manifoldM it is not obvious that (2) implies that
[U, V ] is multivector field of order u+v−1. But (1) suffices for that. By naturality
3.3 we assume that we are in a chart, or that M is c∞-open in a convenient vector
space: Then for constant 1-forms φi we compute (1):

⟨[U, V ], φ1 ∧ . . . φu+v−1⟩ = −⟨V, di(U)(φ1 ∧ . . . φu+v−1)⟩+

+ (−1)(u−1)(v−1)⟨U, di(V )(φ1 ∧ . . . φu+v−1)⟩

= −
〈
V, d

( 1

u!(v − 1)!

∑
σ∈Su+v−1

U(φσ(1), . . . , φσ(u))φσ(u+1) ∧ . . . φσ(u+v−1)

)〉
+ · · ·

= − 1

u!(v − 1)!

∑
σ∈Su+v−1

V
(
d(U(φσ(1), . . . , φσ(u))) ∧ φσ(u+1) ∧ . . . φσ(u+v−1)

)
+ · · ·

which is visibly a multivector field, since the φi are constant 1-forms; one may view
the U(φσ(1), . . . , φσ(u)) as coefficient functions. Therefore

(3) [ , ] : MVu(M)×MVv(M)→ MVu+v−1(M)

is a smooth (bounded) bilinear operator satisfying [U, V ] = −(−1)(u−1)(v−1)[V,U ].
It also satisfies

(4) ῑ(df)[U, V ] = [ῑ(df)U, V ] + (−1)u−1[U, ῑ(df)V ]

since by (3.2.3) we have for ω ∈ Ωu+v−3
sum,d (M)

⟨ῑ(df)[U, V ], dω⟩ = ⟨[U, V ], (df ∧ dω)⟩

= −⟨V, di(U)(df ∧ dω)⟩+ (−1)(u−1)(v−1)⟨U, di(V )(df ∧ dω)⟩
= −⟨V, di(ῑ(df)U)dω⟩+ (−1)u⟨V, df ∧ di(U)dω⟩

+ (−1)(u−1)(v−1)⟨U, di(ῑ(df)V )dω⟩+ (−1)u(v−1)⟨U, df ∧ di(V )dω⟩〈
[ῑ(df)U, V ] + (−1)u−1[U, ῑ(df)V ], dω

〉
= −⟨V, di(ῑ(df)U)dω⟩+ (−1)u(v−1)⟨ῑ(df)U, di(V )dω⟩

+ (−1)u−1
(
− ⟨ῑ(df)V, di(U)dω⟩+ (−1)(u−1)v⟨U, di(ῑ(df)V )dω⟩

)
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3.5. The general Schouten-Nijenhuis bracket, using Lie differentials. By
(3.1.3) for U ∈ MVu(M) the Lie differential operator

(1) L(U) := [i(U), d] = i(U) ◦ d− (−1)ud ◦ i(U) : Ωk
sum,d(M)→ Ωk−u+1

sum,d (M)

is well defined. It is a derivation if and only if U is a vector field. We have
[L(U), d] = 0 by the graded Jacobi identity of the graded commutator. We now
generalise Theorem 2.3 to this new situation:

Theorem. Let U ∈ MVu(M), V ∈ MVv(M), f ∈ C∞(M) and ω ∈ Ωk
sum,d(M).

Then we have:

L(U ∧ V ) = i(V ) ◦ L(U) + (−1)uL(V ) ◦ i(U)(2)

L(X1 ∧ · · · ∧Xu) =
∑
j

(−1)j−1i(Xu) · · · i(Xj+1)L(Xj)i(Xj−1) · · · i(X1)(3)

[L(U), i(V )] = (−1)(u−1)(v−1)i([U, V ]) = −i([V,U ])(4)

[L(U),L(V )] = (−1)(u−1)(v−1)L([U, V ]) = −L([V,U ])(5)

i([U, V ]) = −i(V )di(U) + (−1)(u−1)(v−1)i(U)di(V )

+ (−1)vdi(U ∧ V ) + (−1)ui(U ∧ V )d(6)

The graded Jacobi identity(7)

[U, [V,W ]] = [[U, V ],W ] + (−1)u(v−1)[V, [U,W ]]

[U, V ∧W ] = [U, V ] ∧W + (−1)(u−1)(v−1)v ∧ [U,W ](8)

Property (6) extends the definition (3.4.1) to the more general situation. It
corresponds to [15, 3.3].

Proof. (2) has the same proof as (2.3.2). From it we see that also (3) is true, so
the Schouten-Nijenhuis bracket restricts to one treated in Section 2 for summable
multivector fields.
(4) We prove that [L(U), i(V )]ω = −i([V,U ])ω is valid for ω ∈ Ωk

sum,d(M) by
induction on k. For this it suffices to show that

[[L(U), i(V )] + i([V,U ]), µ(df)] = 0

By the graded Jacobi identiy for the graded commutator and by using (3.2.3) and
[d, µ(df)] = 0 we have first

[L(U), µ(df)] = [[i(U), d], µ(df)] = [i(U), [d, µ(df)]]− (−1)u[d, [i(U), µ(df)]](a)

= 0− (−1)u[d, i(ῑ(df)U)] = −L(ῑ(df)U)

and then

[[L(U), i(V )], µ(df)] = [L(U), [i(V ), µ(df)]]− (−1)(u−1)v[i(V ), [L(U), µ(df)]]

= [L(U), i(ῑ(df)V )] + (−1)v−1[L(ῑ(df)U), i(V )]

[i([V,U ]), µ(df)] = i
(
ῑ(df)[V,U ]

)
= i

(
[ῑ(df)V,U ] + (−1)v−1[V, ῑ(df)U ]

)
by (3.4.4)

[[L(U), i(V )] + i([V,U ]), µ(df)] = [L(U), i(ῑ(df)V )] + i
(
[ῑ(df)V,U ]

)
+ (−1)v−1

(
[L(ῑ(df)U), i(V )] + i([V, ῑ(df)U ])

)
= 0
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by induction on u+ v.
(5) We prove that

(
[L(U),L(V )] + L([V,U ])

)
ω = 0 for all ω ∈ Ωk

sum,d(M) by

induction on u+ v + k. If suffices to show [[L(U),L(V )] + L([V,U ], µ(df)] = 0 for
all f .

[[L(U),L(V )], µ(df)] = [L(U), [L(V ), µ(df)]]− (−1)(u−1)(v−1)[L(V ), [L(U), µ(df)]]

= [L(U),−L(ῑ(df)V )]− (−1)(u−1)(v−1)[L(V ),−L(ῑ(df)U)] by (a)

= L([ῑ(df)V,U ])− (−1)(u−1)(v−1)[L([ῑ(df)U, V ]) by induction on u+ v

= L
(
[ῑ(df)V,U ]− (−1)v[V, ῑ(df)U ]

)
= L

(
ῑ(df)[V,U ]

)
by (3.4.4)

= [−L([V,U ]), µ(df)]

(6) follows from (4), the graded Jacobi identity for the graded commutator, and
(3.2.2) as follows:

i([U, V ]) = −[L(V ), i(U)] = −[[i(V ), d], i(U)]

= −i(V )di(U) + (−1)(u−1)(v−1)i(U)di(V )

+ (−1)vdi(V )i(U) + (−1)(v−1)ui(U)i(V )d

(7) Since U 7→ L(U) is injective by the assumptions 1.1 on M , this follows from (5)
and the graded Jacobi identity for the graded commutator:

L([U, [V,W ]]) = −[L([V,W ]),L(U)] = [[L(W ),L(V )],L(U)]

= [L(W ), [L(V ),L(U)]]− (−1)(w−1)(v−1)[L(V ), [L(W ),L(U)]]

= −[L(W ),L([U, V ])] + (−1)(w−1)(v−1)[L(V ),L([U,W ])]

= +L([[U, V ],W ])− (−1)(w−1)(v−1)L([[U,W ], V ])

= +L([[U, V ],W ]) + (−1)u(v−1)L([V, [U,W ]])

□

3.6. Theorem. Let P ∈ MV2(M) or in Γ(
∧2

TM). Then the skew symmetric
product {f, g} := ⟨P, df ∧ dg⟩ ∈ C∞(M,R) (where f, g ∈ C∞(M,R)) satisfies the
Jacobi identity if and only if [P, P ] = 0

This well known result is the infinite dimensional version of [9, 1.4].

Proof. For f, g ∈ C∞(M,R) we have

{f, g} := ⟨P, df ∧ dg⟩ = ⟨ῑ(df)P, dg⟩ = ⟨−ῑ(dg)[f, P ], 1⟩ = [g, [f, P ]] .

Now a straightforward computation using the graded Jacobi identity and skew
symmetry of the Schouten-Nijenhuis bracket gives:

[h, [g, [f, [P, P ]]]] = −2
(
{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}

)
.

Since [h, [g, [f, [P, P ]]]] = ⟨df ∧ dg ∧ dh, [P, P ]⟩, the result follows. □
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