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Abstract. In this article we investigate a first order reparametrization-
invariant Sobolev metric on the space of immersed curves. Motivated
by applications in shape analysis where discretizations of this infinite-
dimensional space are needed, we extend this metric to the space of
Lipschitz curves, establish the wellposedness of the geodesic equation
thereon, and show that the space of piecewise linear curves is a totally
geodesic submanifold. Thus, piecewise linear curves are natural finite
elements for the discretization of the geodesic equation. Interestingly,
geodesics in this space can be seen as soliton solutions of the geodesic
equation, which were not known to exist for reparametrization-invariant
Sobolev metrics on spaces of curves.
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1. Introduction

Geometric shapes can be studied mathematically by viewing them as
elements of a Riemannian manifold, which is typically infinite-dimensional.
The geodesic distance between shapes is then used as a measure of their
dissimilarity. For numerical purposes, shapes need to have a representation
in a finite-dimensional space, and a particularly favorable situation arises if
this space is a totally geodesic submanifold. In this case geodesics, geodesic
distances, and Riemannian curvature in the submanifold coincide (locally)
with the corresponding objects in the infinite-dimensional space; there is no
discretization error. In this work we show the following result.
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Main Theorem. The reparametrization-invariant H1-metric

Gc(h, k) =
1

`c

∫
S1

〈Dsh,Dsk〉 ds =
1

`c

∫
S1

1

|cθ|
〈hθ, kθ〉 dθ , (1)

on the space of immersed closed Lipschitz curves modulo translations pos-
sesses finite-dimensional totally geodesic submanifolds, which correspond to
finite-element discretizations. The geodesics on these submanifolds turn out
to be solitons in the sense that their momenta are sums of delta distributions,
which are carried along with the flow.

The result is established in Theorem 4.1 and Corollary 4.7 below. The
notation is explained in Section 2, and the metric is defined rigorously in
Definition 2.4. An introduction to shape analysis and further references for
Sobolev metrics can be found in [4].

Totally geodesic submanifolds. The existence of totally geodesic sub-
manifolds is surprising; it seems to be the exception rather than the rule, at
least in the context of shape spaces of immersions and reparametrization-
invariant Sobolev metrics. We now explain this in more details.

We are not aware of any reparametrization-invariant metric of order other
than one which admits non-trivial totally geodesic subspaces, cf. Remark 4.2.
We believe, however, that the result does extend to some first-order metrics
closely related to (1). Examples in this direction are the non scale-invariant
H1-metric

Gc(h, k) =

∫
S1

〈Dsh,Dsk〉 ds

and the elastic metric on planar curves

Gc(h, k) =

∫
S1

(
a2〈Dsh, v〉〈Dsk, v〉+ b2〈Dsh, n〉〈Dsk, n〉

)
ds .

In the last equation, a, b ∈ R are constants and v, n are the velocity and
normal vector fields to the planar curve c. Many of these metrics have in
common that there exist isometries to well-known spaces such as spheres,
Stiefel manifolds, or submanifolds thereof [3, 16, 23, 26], where the existence
of totally geodesic subspaces can be studied from an alternative perspective.

Reparametrization-invariance. The result is trivial for the flat L2-metric,
which does not use the arc-length measure, and variations of it; these are not
invariant with respect to reparametrizations. We are, however, not inter-
ested in these metrics because they do not induce meaningful (or even well-
defined) metrics on the quotient space of immersions modulo reparametriza-
tions. This quotient space is the natural setting for applications in shape
analysis, and reparametrization-invariant Sobolev metrics thereon have been
used successfully in many applications [2, 10, 14, 15, 24, 25].

Solitons. Soliton solutions were investigated in various contexts. In the
context of wave equations, solitons are isolated waves which maintain their
shape while traveling at constant speed [7, 28].

An alternative notion of solitons arises in geometric mechanics, where
solutions of a Hamiltonian system are called solitons if their momenta are
sums of delta distributions [21]. This is the notion we use in this work; we
refer to [18, 20] for a Hamiltonian description of shape analysis. Solitons in
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the sense of geometric mechanics were found for metrics induced by repro-
ducing kernels on diffeomorphism groups [12, 17, 27], but not yet on spaces
of immersions as in this work. We describe a connection of our approach to
soliton solutions on diffeomorphism groups in Section 6.

Structure of the article. The paper is structured as follows. In Section 2
we introduce a first-order Sobolev metric on the space of Lipschitz curves
and prove that the geodesic equation is well-posed using a geometric method
which goes back to Ebin and Marsden [9]. In Section 3 we study the subspace
of piecewise linear curves and equip it with the induced metric of Section 2.
Section 4 contains our main results: we show that the manifold of piecewise
linear curves is totally geodesic and illustrate the soliton-like behavior of
geodesics. Sections 5 and 6 give a Hamiltonian perspective and establish
some relations to LDDMM metrics on landmark spaces.

2. A first order metric on Lipschitz curves

In this section we define a reparametrization-invariant smooth weak Rie-
mannian metric on the space of closed Lipschitz curves modulo translations
and establish the well-posedness of the geodesic equation.

2.1 Definition. Let S1 = R/(2πZ) be the unit circle and d ∈ N\{0, 1}. Let
W 1,∞ be the Banach space of Lipschitz continuous functions c : S1 → Rd,
endowed with the norm ‖c‖W 1,∞ = ‖c‖L∞ + ‖cθ‖L∞ , where the subscript θ
denotes a derivative. The Banach spaceW 1,∞ contains the space of Lipschitz
continuous immersions

I1,∞ :=
{
c ∈W 1,∞ : essinfθ |cθ| > 0

}
.

Let Tra ∼= Rd be the translation group acting on W 1,∞ and I1,∞. We will
always identify the corresponding quotient spaces as follows:

I1,∞/Tra ∼= I1,∞
0 :=

{
c ∈ I1,∞ :

∫
S1

c(θ) dθ = 0

}
,

W 1,∞/Tra ∼= W 1,∞
0 :=

{
c ∈W 1,∞ :

∫
S1

c(θ) dθ = 0

}
.

Moreover, we make the convention that all function spaces consist of func-
tions from S1 to Rd, unless another domain or range is specified explicitly.

2.2 Theorem. The spaces I1,∞ and I1,∞/Tra are open subsets of the Ba-
nach spaces W 1,∞ and W 1,∞/Tra and therefore Banach manifolds with tan-

gent bundles I1,∞ ×W 1,∞ and I1,∞
0 ×W 1,∞

0 , respectively.

Proof. The expression ess infθ |cθ| is continuous in c ∈W 1,∞. To see this let
c, c̃ ∈W 1,∞ and θ ∈ S1. Then

|c̃θ(θ)| ≥ |cθ(θ)| − |c̃θ(θ)− cθ(θ)| ≥ |cθ(θ)| − ‖c̃− c‖W 1,∞

and consequently

ess inf
θ
|c̃θ(θ)| ≥ ess inf

θ
|cθ(θ)| − ‖c̃− c‖W 1,∞ .

Interchanging the roles of c and c̃ leads to∣∣∣∣ess inf
θ
|c̃θ(θ)| − ess inf

θ
|cθ(θ)|

∣∣∣∣ ≤ ‖c̃− c‖W 1,∞ .
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This proves that the mapping c 7→ ess inf |cθ| is Lipschitz on W 1,∞. Thus,
I1,∞ is an open subset of W 1,∞, and therefore a Banach manifold. The
quotient W 1,∞/Tra is Banach because Tra is a closed subspace of the Banach

space W 1,∞. As a topological space it is isomorphic to W 1,∞
0 . Similarly,

I1,∞/Tra can be identified with I1,∞
0 , which is an open subset of W 1,∞

0 . �

2.3 Remark. Besides I1,∞
0 , several other spaces could be used as alterna-

tive representations of the quotient space I1,∞/Tra. For example, one could
consider all immersions that fix some point θ0, or all immersions whose
center of mass is zero, yielding the spaces

I1,∞
1 :=

{
c ∈ I1,∞ : c(θ0) = 0

}
, I1,∞

2 :=

{
c ∈ I1,∞ :

∫
c(θ)|cθ|dθ = 0

}
.

The particular choice of I1,∞
0 is useful in the Hamiltonian description in

Section 5. Another possibility is to consider the image L∞0 of either of these
spaces under the mapping c 7→ cθ, i.e.,

L∞0 :=

{
q ∈ L∞ : ess inf

θ∈S1
|q(θ)| > 0,

∫
q(θ) dθ = 0

}
.

Note, that the second condition ensures that each element of L∞0 corresponds
to a closed curve.

2.4 Definition. For each c ∈ I1,∞ and h, k ∈ W 1,∞ we define the bilinear
form

Gc(h, k) =
1

`c

∫
S1

〈Dsh,Dsk〉 ds =
1

`c

∫
S1

1

|cθ|
〈hθ, kθ〉 dθ ,

where ds = |cθ|dθ and Ds = 1
|cθ|∂θ denote differentiation and integration

with respect to arc length and `c =
∫
S1 ds is the length of c.

Note that the bilinear form Gc is degenerate because Gc(h, h) = 0 for
each constant h : S1 → Rd. It is, however, non-degenerate if translations
are factored out, as the following theorem shows.

2.5 Lemma. G is a smooth weak Riemannian metric on I1,∞
0 .

Proof. If Gc(h, h) = 0 for some c ∈ I1,∞
0 and h ∈W 1,∞

0 , then hθ = 0 almost
everywhere. It follows that h = 0 because

∫
S1 h(θ) dθ = 0 by assumption.

Therefore, G is non-degenerate. The smoothness of G is a consequence of
Corollary A.4. �

2.6 Remark. Note that the metric G is invariant under the action of the
diffeomorphism group Diff(S1) on I1,∞:

Gc◦ϕ(h ◦ ϕ, k ◦ ϕ) =
1

`c◦ϕ

∫
S1

1

|cθ ◦ ϕ.ϕθ|
〈hθ ◦ ϕ.ϕθ, kθ ◦ ϕ.ϕθ〉dθ

=
1

`c

∫
S1

1

|cθ|
〈hθ, kθ〉dθ = Gc(h, k) .

Moreover, note that G is invariant under scalings x 7→ λx, λ > 0, x ∈ Rd.
To formulate the geodesic equation, which is our next goal, we need to

invert the operator Ds on a suitably restricted domain. This is achieved by
the following lemma.
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2.7 Lemma. For each c ∈ I1,∞
0 the following diagram is commutative,

W 1,∞ π1 // //

Ds
��

W 1,∞
0 :=

{
h ∈W 1,∞ :

∫
hdθ = 0

} � � ι1 //

Ds
��

W 1,∞

Ds
��

W 0,∞ π0 // // W 0,∞
0 :=

{
h ∈W 0,∞ :

∫
hds = 0

} � � ι0 //D−1
s

OO

W 0,∞,

where π0 is the L2(ds)-orthogonal projection, π1 is the L2(dθ)-orthogonal

projection, ι0 and ι1 are inclusions. Note: the space W 0,∞
0 depends on c.

Proof. The commutativity of the diagram, including the existence of D−1
s ,

can be verified using the explicit formulas

(Dsh)(θ) = hθ(θ)|cθ(θ)|−1 ,

(D−1
s k)(θ) =

∫ θ

0
k(η)|cθ(η)| dη − 1

2π

∫
S1

∫ ζ

0
k(η)|cθ(η)|dη dζ ,

(π1h)(θ) = h(θ)− 1

2π

∫
S1

h(η) dη ,

(π0h)(θ) = h(θ)− 1

2π

∫
S1

h(η)|cθ(η)|dη ,

where θ ∈ [0, 2π). �

We recall that geodesics are critical points of the energy functional. Under
general weak Riemannian metrics the geodesic equation might not exist, i.e.,
it might not be possible to express the first-order condition for critical points
as a differential equation of second order in time. This is not the case for
the metric G, as we will show now. Our proof avoids second derivatives
and therefore allows us to work on the space of Lipschitz immersions. The
theorem is consistent with the geodesic equation derived in [26, App. I] for
smooth immersions. This can be seen from the relation D−2

s (κn) = c.

2.8 Theorem. The geodesic equation of the weak Riemannian metric G on
I1,∞

0 exists and is given by

ctt = Gc(c, ct)ct −
1

2
Gc(ct, ct)c

+D−1
s π0

(
〈Dsc,Dsct〉Dsct −

1

2
|Dsct|2Dsc

)
, (2)

where D−1
s and π0 are defined in Lemma 2.7.

Proof. The Riemannian energy of a path c = c(t, θ) is

E(c) =
1

2

∫ 1

0
Gc(ct, ct) dt =

1

2

∫ 1

0

1

`c

∫
S1

〈ctθ, ctθ〉
1

|cθ|
dθ dt .

Varying c in the direction h = h(t, θ) with h(0) = h(1) = 0 yields

dE(c).h =
1

2

∫ 1

0

(
− 1

`2c

∫
S1

〈cθ, hθ〉
|cθ|

dθ

∫
S1

〈ctθ, ctθ〉
|cθ|

dθ

+
2

`c

∫
S1

〈ctθ, htθ〉
|cθ|

dθ − 1

`c

∫
S1

〈ctθ, ctθ〉
〈cθ, hθ〉
|cθ|3

dθ

)
dt .
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In the second integral, integration by parts with respect to t can be used to
eliminate the time-derivative of h:∫ 1

0

2

`c

∫
S1

〈ctθ, htθ〉
|cθ|

dθ dt =

∫ 1

0

(
2

`2c

∫
S1

〈cθ, ctθ〉
|cθ|

dθ

∫
S1

〈ctθ, hθ〉
|cθ|

dθ

− 2

`c

∫
S1

〈cttθ, hθ〉
|cθ|

dθ +
2

`c

∫
S1

〈ctθ, hθ〉
〈cθ, ctθ〉
|cθ|3

dθ

)
dt

Note that the boundary terms vanish because h(1) = h(0) = 0. Thus,

dE(c).h =
1

2

∫ 1

0

(
− 1

`2c

∫
S1

〈cθ, hθ〉
|cθ|

dθ

∫
S1

〈ctθ, ctθ〉
|cθ|

dθ

+
2

`2c

∫
S1

〈cθ, ctθ〉
|cθ|

dθ

∫
S1

〈ctθ, hθ〉
|cθ|

dθ − 2

`c

∫
S1

〈cttθ, hθ〉
|cθ|

dθ

+
2

`c

∫
S1

〈ctθ, hθ〉
〈cθ, ctθ〉
|cθ|3

dθ − 1

`c

∫
S1

〈ctθ, ctθ〉
〈cθ, hθ〉
|cθ|3

dθ

)
dt .

In terms of Ds and ds this reads as

dE(c).h =
1

2

∫ 1

0

(
− 1

`2c

∫
S1

〈Dsc,Dsh〉ds
∫
S1

〈Dsct, Dsct〉 ds

+
2

`2c

∫
S1

〈Dsc,Dsct〉 ds
∫
S1

〈Dsct, Dsh〉ds−
2

`c

∫
S1

〈Dsctt, Dsh〉 ds

+
2

`c

∫
S1

〈Dsct, Dsh〉〈Dsc,Dsct〉 ds

− 1

`c

∫
S1

〈Dsct, Dsct〉〈Dsc,Dsh〉 ds
)

dt .

For the last two summands we will use the following relation, which follows
from the definition of the metric G and of the mappings D−1

s and π0 of
Lemma 2.7: it holds for all k ∈W 1,∞ that

1

`c

∫
S1

〈k,Dsh〉ds =
1

`c

∫
S1

〈π0k,Dsh〉ds

=
1

`c

∫
S1

〈DsD
−1
s π0k,Dsh〉 ds = Gc(D

−1
s π0k, h) .

This allows us to rewrite dE(c).h as

dE(c).h =
1

2

∫ 1

0

(
−Gc(c, h)Gc(ct, ct) + 2Gc(c, ct)Gc(ct, h)− 2Gc(ctt, h)

+Gc

(
D−1
s π0

(
2〈Dsc,Dsct〉Dsct − 〈Dsct, Dsct〉Dsc

)
, h
))

dt .

Therefore dE(c).h = 0 if and only if (2) is satisfied. �

The well-posedness of the geodesic equation in the smooth category and
on Sobolev immersions of order k > 5/2 has been shown in [26]. Here we
extend this result to Lipschitz immersions. Our proof also carries over to
the space of Sobolev immersions of order k > 3

2 .

2.9 Theorem. The initial value problem for the geodesic equation (2) has

unique local solutions in the Banach manifold I1,∞
0 . The solutions depend

smoothly on t and on the initial conditions c(0, ·) and ct(0, ·). Moreover, the
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Riemannian exponential mapping exp exists and is smooth on a neighborhood
of the zero section in the tangent bundle, and the map (c, h) 7→ (c, expc(h))
is a local diffeomorphism from a (possibly smaller) neighborhood of the zero

section to a neighborhood of the diagonal in the product I1,∞
0 × I1,∞

0 .

Proof. We interpret the geodesic equation as an ODE on the Banach mani-
fold TI1,∞

0 , {
ct = u ,

ut = Γc(u, u) ,

where the Christoffel symbol Γc(h, h) is given by

Γc(u, u) = Gc(c, u)u− 1

2
Gc(u, u)c+D−1

s π0

(
〈Dsc,Dsu〉Dsu−

1

2
|Dsu|2Dsc

)
.

The map (c, u) 7→ Γc(u, u) is smooth because all spaces and mappings in
the diagram in Lemma 2.7 depend smoothly on c in the following sense:
the spaces in the diagram are fibers of smooth vector bundles over I1,∞

0 ,
and the mappings in the diagram are smooth bundle homomorphisms. This
follows from Corollary A.4 using the global vector bundle chart (c, h) 7→
(c, h|cθ|) for W 0,∞

0 . Hence we obtain short time existence of solutions of
the geodesic equation by the theorem of Picard-Lindelöf. Furthermore, the
solutions depend smoothly on the initial values. The local invertibility of the
exponential map follows by standard arguments and the implicit function
theorem. �

3. The submanifold of piecewise linear curves

3.1 Definition. Let n ∈ N>0 and 0 = θ1 < . . . < θn+1 = 2π be fixed such
that |θi+1 − θi| = 2π/n for all i ∈ {1, . . . , n}. Then θ1 and θn+1 are equal
as elements of S1 = R/(2πZ). We write [θi, θi+1] for the interval in both R
and S1, and we use the word “piecewise” to mean piecewise with respect to
the grid θi. We let P0 denote the set of piecewise constant left-continuous
functions in W 0,∞, P1 the set of piecewise linear functions in W 1,∞, and
PI1 the set of piecewise linear immersions in I1,∞. We use subscripts 0
to denote intersections with W 0,∞

0 , W 1,∞
0 , and I1,∞

0 , respectively. For each
curve c ∈ P1 we set

`i = |c(θi+1)− c(θi)| , λi =
n∑
j=i

`j .

We now present a discrete counterpart of Lemma 2.7, describing the op-
erators Ds and D−1

s on the discretized spaces of curves.

3.2 Lemma. For each c ∈ PI1 the following diagram is commutative,

P1 π1 // //

Ds
��

P1
0 :=

{
h ∈ P1 :

∫
hdθ = 0

} � � ι1 //

Ds
��

P1

Ds
��

P0 π0 // // P0
0 :=

{
k ∈ P0 :

∫
k ds = 0

} � � ι0 //D−1
s

OO

P0,

where π0 is the L2(ds)-orthogonal projection, π1 is the L2(dθ)-orthogonal
projection, ι0 and ι1 are inclusions. Note that the space P0

0 depends on c.
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Proof. It is straight-forward to verify that the operators in Lemma 2.7 re-
strict to the spaces above. �

We will use the following natural identifications with Euclidean spaces.

3.3 Definition. The spaces P1 and P0 are naturally isomorphic to Rn×d
via the identification of h ∈ P1 and k ∈ P0 with(

h(θ1), . . . , h(θn)
)
∈ Rn×d ,

(
k(θ1), . . . , k(θn)

)
∈ Rn×d .

By duality we get identifications of (P1)∗ and (P0)∗ with Rn×d such that the
pairing of dual elements is given by the Euclidean scalar product on Rn×d.
Under these identifications the spaces P1

0 , P0
0 , (P1

0 )∗, and (P0
0 )∗, which can

be viewed as subspaces using the inclusion mappings ι1, ι0, π∗1, and π∗0,
correspond to the following subspaces of Rn×d:{

h ∈ P1
0 with vertices (hi)i=1,...,n

}
∼=−→

{
h ∈ Rn×d :

n∑
i=1

hi = 0

}
,{

k ∈ P0
0 with edges (ki)i=1,...,n

}
∼=−→

{
k ∈ Rn×d :

n∑
i=1

ki`i = 0

}
,{

α =
n∑
i=1

αiδθi ∈ (P1
0 )∗

}
∼=−→

{
α ∈ Rn×d :

n∑
i=1

αi = 0

}
,{

β =
n∑
i=1

βi/`i1[θi,θi+1) ds ∈ (P0
0 )∗

}
∼=−→

{
β ∈ Rn×d :

n∑
i=1

βi = 0

}
.

Note that the pairing of dual elements is still given by Euclidean scalar
products. (Formally this follows from the relations π0◦ι0 = Id, π1◦ι1 = Id.)

The following lemma provides explicit expressions of various operators in
the Euclidean coordinates of Definition 3.3.

3.4 Lemma. Under the identifications of Definition 3.3, the following re-
lations hold for each h ∈ P1

0 , k ∈ P0
0 , β ∈ (P0

0 )∗, α ∈ (P1
0 )∗, and i ∈

{1, . . . , n}:

(π1h)i = hi − 1

n

n∑
j=1

hj , (π0k)i = ki − 1

`c

n∑
j=1

kj`j ,

(Dsh)i =
hi+1 − hi

`i
, (D−1

s k)i =
i−1∑
j=1

kj`j − 1

n

n∑
m=1

m−1∑
j=1

kj`j ,

(k ds)i = ki`i , (β/ds)i = βi/`i ,

(D∗sβ)i = βi−1/`i−1 − βi/`i ((D∗s)
−1α)i =

(
1

`c

n∑
j=1

αjλj −
i∑

j=1

αj

)
`i .

Proof. The formulas for π1, π0, Ds, ds, and D∗s follow from Lemma 3.2 and
Definition 3.3. The formula for D−1

s can be seen as follows. The relation

ki = (hi+1 − hi)/`i implies that hi = ξ +
∑i−1

j=1 k
j`j for some ξ ∈ Rd.

The vector ξ is determined by the condition
∑n

i=1 h
i = 0 and given by ξ =
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− 1
n

∑n
m=1

∑m−1
j=1 kj`j . Similar calculations establish the remaining formulas.

�

The weak Riemannian metric G of Definition 2.4 can be pulled back to
the manifold PI1

0 = P1∩I1,∞
0 . This turns PI1

0 into a Riemannian manifold,
which we describe next.

3.5 Theorem. Under the identifications of Definition 3.3 the metric, mo-
mentum mapping, and cometric on PI1

0 ⊂ I
1,∞
0 are given by

Gc(h, k) =
1

`c

n∑
i=1

1

`i
〈hi+1 − hi, ki+1 − ki〉 ,

(
Ǧc(h)

)i
=

1

`c

(
hi − hi−1

`i−1
− hi+1 − hi

`i

)
,

G−1
c (α, β) =

n∑
i,j=1

(
λ1λmax(i,j) − λiλj

)
〈αi, βj〉 ,

where c ∈ PI1
0 , h, k ∈ TcPI1

0 , and α, β ∈ T ∗PI1
0 .

Proof. By Lemma 3.4 we have

(Dsh)i =
hi+1 − hi

`i
, (Dshds)i = hi+1 − hi ,

(D∗s(Dshds))i =
hi − hi−1

`i−1
− hi+1 − hi

`i
,

(
(D∗s)

−1α
)i

=

(
1

`c

n∑
j=1

αjλj −
i∑

j=1

αj

)
`i ,

(
(D∗s)

−1α

ds

)i
=

1

`c

n∑
j=1

αjλj −
i∑

j=1

αj =
n∑
j=1

αj
(
λj/`c − 1j≤i

)
.

Then the formula for the metric follows from

Gc(h, k) =
1

`c

∫
S1

〈Dsh,Dsk〉 ds =
1

`c

n∑
i=1

`i
〈
(Dsh)i, (Dsk)i

〉
,

and the formula for the momentum mapping from Lemma B.1. Using
Lemma B.2 the cometric is given by

G−1
c (α, β) = `c

n∑
k=1

`k

〈(
(D∗s)

−1α

ds

)k
,

(
(D∗s)

−1β

ds

)k〉

=
1

`c

n∑
k=1

`k

〈
n∑
i=1

αi
(
λi − `c1i≤k

)
,
n∑
j=1

βj
(
λj − `c1j≤k

)〉

=
n∑
i=1

n∑
j=1

〈αi, βj〉 1

`c

n∑
k=1

`k
(
λi − `c1i≤k

)(
λj − `c1j≤k

)
=

n∑
i=1

n∑
j=1

〈αi, βj〉

(
λiλj − λiλj − λiλj + `c

n∑
k=max(i,j)

`k

)
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=
n∑
i=1

n∑
j=1

〈αi, βj〉
(
λ1λmax(i,j) − λiλj

)
. �

4. Soliton solutions of the geodesic equation

In this section we establish our two main results. First, we show that
piecewise linear curves are a totally geodesic subspace of the space of Lips-
chitz curves modulo translations. Second, we prove that the geodesic equa-
tion admits soliton solutions. We establish this result by showing that the
momentum of a curve is a sum of delta distributions if and only if the velocity
is piecewise linear up to a reparametrization.

4.1 Theorem. The space PI1
0 is a totally geodesic submanifold of dimen-

sion (n− 1)× d in the manifold I1,∞
0 with weak Riemannian metric G, for

each n ∈ N\{0}.

Proof. The space P1
0 of piecewise linear functions is a finite-dimensional

linear subspace of W 1,∞
0 , hence complemented. Thus, the open subset PI1

0

is a splitting submanifold of I1,∞
0 . To show that PI1

0 is totally geodesic we
take a tangent vector h ∈ P1

0 with foot point c ∈ PI1
0 and consider the right

hand side of the geodesic equation,

Γc(h, h) = Gc(c, h)h− 1

2
Gc(h, h)c

+D−1
s ◦ π0

(
〈Dsc,Dsh〉Dsh−

1

2
|Dsh|2Dsc

)
.

The operator D−1
s ◦ π0 : P0 → P1

0 maps piecewise constant functions to
piecewise linear ones. Moreover, P0 is an algebra under pointwise multipli-
cation. Thus, we obtain Γc(h, h) ∈ P1

0 . It follows that the geodesic equation
restricts to an ODE on the submanifold TPI1

0 , showing that PI1
0 is totally

geodesic. �

4.2 Remark. The existence of these totally geodesic submanifolds is highly
surprising. We are not aware of any reparametrization-invariant metric of
order other than one which admits similar totally geodesic subspaces. This
is, however, not to say that there are no other totally geodesic subspaces. For
example, every geodesic defines a one-dimensional totally geodesic subspace.
Moreover, the set of concentric circles with common center x ∈ Rd is a totally
geodesic submanifold for many metrics [1, 19, 22]. This is the case whenever
the rotation group acts isometrically on the space of curves, the reason being
that the set of concentric circles is the fixed point set of the rotation group.
Under some metrics the set of all circles with arbitrary radius and center
is also totally geodesic. These spaces are, however, not useful in numerical
applications where one needs discretizations of arbitrary curves.

4.3 Remark. Theorem 4.1 can be reformulated for the space of closed
curves modulo rotations as follows: The metric is invariant under the ro-
tation group and thus it induces a metric on the quotient space such that
the projection is a Riemannian submersion, see [26]. As rotations leave the
space of polygons invariant, our results imply that polygonal curves are also
totally geodesic in the quotient space of curves modulo rotations.
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4.4 Remark. Theorem 4.1 can be reformulated for open instead of closed
curves as follows: if S1 is replaced by [0, 2π], W 0,∞

0 is redefined as W 0,∞, and
π0 and ι0 are redefined as identity mappings, then Theorem 2.2, Lemma 2.5,
Lemma 2.7, Theorem 2.8, and Theorem 2.9 remain valid, the coordinate
expressions of Section 3 take a different form, and Theorem 4.8 remains
valid with (n− 1)× d replaced by n× d.

4.5 Definition. A soliton is a path c in I1,∞
0 whose momentum is at all

times a sum of delta distributions, i.e., one has for each t that

Ǧc(ct) =
1

`c
D∗s(Dshds) = − 1

`c
D2
s(hds) =

n∑
i=1

〈αi(t), δθi(t)〉

with αi(t) ∈ Rd and θi(t) ∈ S1. More details on the momentum as an
element of (W 1,∞)∗ can be found in Appendix B.

The following lemma characterizes all velocities whose momenta are sums
of delta distributions.

4.6 Lemma. For any c ∈ I1,∞
0 and h ∈ W 1,∞

0 , the momentum Ǧc(h) is
a sum of delta distributions if and only if h ◦ ϕ is piecewise linear, where
ϕ ∈W 1,∞(S1, S1) is such that c ◦ ϕ has constant speed.

Proof. Let ϕ ∈W 1,∞(S1, S1) be such that c◦ϕ has constant speed. We claim
that Ǧc(h) is a sum of delta distributions if and only if Ǧc◦ϕ(h ◦ϕ) is a sum

of delta distributions. To see this, assume that Ǧc(h) =
∑n

i=1〈αi, δθi〉Rd
for some αi ∈ Rd, and let k : S1 → Rd be any smooth function. By the
reparametrization-invariance of the metric,

Ǧc◦ϕ(h ◦ ϕ)(k) = Ǧc◦ϕ(h ◦ ϕ)(k ◦ ϕ−1 ◦ ϕ) = Ǧc(h)(k ◦ ϕ−1)

=
n∑
i=1

〈αi, k(ϕ−1(θi))〉Rd =

(
n∑
i=1

〈αi, δϕ−1(θi)〉Rd

)
(k).

Therefore Ǧc◦ϕ(h◦ϕ) is a sum of delta distributions. Reversing the argument
proves the claim.

It remains to prove the lemma in the case where c has constant speed
and ϕ is the identity. Then we have Ds = 2π/`c∂θ and therefore Ǧc(h) =
−2π/`2chθθ. It follows that Ǧc(h) is a sum of delta distributions if and only
if h is piecewise linear. �

If c is a piecewise linear curve, then the map ϕ mediating between c and
the constant speed reparametrization c ◦ ϕ is also piecewise linear. In this
case the second part of Lemma 4.6 simplifies to: the momentum Ǧc(h) is
a sum of delta distributions if and only if h is piecewise linear. Thus, the
tangent space to piecewise linear curves corresponds via Ǧc to momenta
that are sums of delta distributions. It is therefore natural to search for
soliton solutions of the geodesic equation in the submanifold of piecewise
linear curves, which is defined next.

4.7 Corollary. Geodesics c in PI1
0 are soliton solutions of the geodesic

equation, i.e., Ǧc(ct) is a sum of delta distributions.

Proof. This follows from Theorem 4.1 and Lemma 4.6. �
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4.8 Theorem. In the coordinates of Definition 3.3 the geodesic equation on
PI1

0 is given by the following n× d-dimensional system of ODEs,c
1
tt
...
cntt

 =
1

`c

n∑
j=1

〈cj+1
t − cjt , cj+1 − cj〉

`j

c
1
t
...
cnt


− 1

2`c

n∑
j=1

〈cj+1
t − cjt , c

j+1
t − cjt 〉

`j

c
1

...
cn



+D−1
s ◦ π0


1

(`1)3
〈c2 − c1, c2

t − c1
t 〉(c2

t − c1
t )

...
1

(`n)3
〈cn+1 − cn, cn+1

t − cnt 〉(cn+1
t − cnt )



− 1

2
D−1
s ◦ π0


1

(`1)3
〈c2
t − c1

t , c
2
t − c1

t 〉(c2 − c1)
...

1
(`n)3
〈cn+1
t − cnt , cn+1

t − cnt 〉(cn+1 − cn)

 ,

where the operators D−1
s and π0 are given by Lemma 3.4.

Proof. As PI1
0 is totally geodesic by Theorem 4.1, the geodesic equation on

PI1
0 is simply the restriction of the geodesic equation on I1,∞

0 . By Theo-
rem 3.5 one has for c ∈ PI1

0 and ct ∈ P1
0 that

Gc(ct, ct) =
1

`c

n∑
j=1

1

`j
〈cj+1
t − cjt , c

j+1
t − cjt 〉 ,

Gc(c, ct) =
1

`c

n∑
j=1

1

`j
〈cj+1
t − cjt , cj+1 − cj〉 .

These are the first and second term of the geodesic equation (2). The re-
maining term 〈v,Dsct〉Dsct − 1

2〈Dsct, Dsct〉v, to which D−1
s ◦ π0 is applied,

has the coordinate expression

1

(`i)3
〈ci+1−ci, ci+1

t −cit〉(ci+1
t −cit)−

1

2(`i)3
〈ci+1
t −cit, ci+1

t −cit〉(ci+1−ci) . �

4.9 Example. Geodesics in PI1
0 may form self-intersections and may have

non-constant winding number. An example, which is inspired by [26, Fig-
ure 3], is the following curve c in PI1

0 , which is depicted in Figure 1:

c1 = −c3 =

(
sin(t)

0

)
, c2 = −c4 =

(
0

cos(t)

)
.

This curve is a solution of the geodesic equation, as can be verified using
Theorem 4.8. It self-intersects at all multiples of π/2, and its winding num-
ber at all times t without self-intersection equals sgn(sin(2t)).

4.10 Remark. The results of this section provide a powerful framework
for solving the initial value problem for geodesics. One starts with an ini-
tial condition (c, h) ∈ TI1,∞

0 . Assuming some additional smoothness, e.g.



SOLITON SOLUTIONS FOR THE ELASTIC METRIC ON SPACES OF CURVES 13

c2c2c2c2c2c2c2c2

c2

c2c2c2c2c2c2c2

c2c2c2c2
c2

c2c2c2

c3c3c3c3c3c3c3c3

c3c3c3c3c3c3c3c3

c3c3c3c3c3c3c3c3

c4c4c4c4c4c4c4c4

c4

c4
c4c4c4c4c4c4

c4c4c4c4c4

c4c4c4

c1c1c1c1c1c1c1c1

c1c1c1c1c1c1c1c1

c1c1c1c1c1c1c1c1

.5

Figure 1. A closed geodesic in PI1
0 which has self-

intersection and changes its winding number (c.f. Exam-
ple 4.9). See here or here for an animation.

c, h ∈ W 2,∞
0 , one can find for each n ∈ N a piecewise linear approximation

(c(n), h(n)) ∈ TP1
0 built on a grid of n points such that

‖c− c(n)‖
W 1,∞

0
+ ‖h− h(n)‖

W 1,∞
0

= O(1/n) .

The geodesic equation with initial value (c(n), h(n)) is a second order ODE of
dimension (n−1)×d and can be solved by standard methods with accuracy
1/n or better. As the exponential mapping is smooth, it follows that the
W 1,∞-distance between the true and discretized geodesics is of order 1/n.

In dimension d = 2 an alternative method is to solve the geodesic equation
using the basic mapping of [26]; see Section 7 for how this would work in
our setting.

5. A Hamiltonian perspective

The degeneracy of the bilinear form G on P1 does not allow one to for-
mulate the geodesic equation directly on this space, which is why we had
to factor out translations in the first place. Interestingly, this problem does
not occur in the Hamiltonian formulation. We will see below that Hamil-
ton’s equations make sense on all of P1, and that the solutions of Hamilton’s
equations project down to geodesics when translations are factored out.

5.1 Definition. For the purpose of this section we view Gc, c ∈ PI1, as a
degenerate bilinear form Gc : P1 × P1 → R and denote the corresponding
linear operator by Ǧc : P1 → (P1)∗. Note that the relation Gc(h, k) =
Gc(π1h, π1k) can be expressed equivalently as

Ǧc = π∗1 ◦ Ǧc|P1
0
◦ π1 : P1 → (P 1)∗ . (3)

In analogy to this we define

Ǩc = ι1 ◦ (Ǧc|P1
0
)−1 ◦ ι∗1 : (P1)∗ → P1 , (4)

where ι1 is given in Lemma 3.2, and we let Kc : (P1)∗ × (P1)∗ → R be the
corresponding symmetric bilinear form. We call K the extended cometric,

https://arxiv.org/src/1702.04344v3/anc/selfintersection4.mp4
https://www.mat.univie.ac.at/~michor/solitons-selfintersection4.mp4
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c6c6c6c6c6c6c6
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c7c7c7c7c7c7c7

c7c7c7c7c7c7c7

c7

c7c7c7c7c7c7

c7c7c7c7c7c7c7
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c7c7c7c7c7c7
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.5

Figure 2. A closed geodesic in PI1
0 which has self-

intersection and changes its winding number (c.f. Exam-
ple 4.9). See here or here for an animation.

and we define the Hamiltonian

H(c, α) =
1

2
Kc(α, α) .

The meaning of Ǩ is clarified by the following lemma.

5.2 Lemma. Ǩc is the Moore–Penrose pseudo-inverse of Ǧc with respect to
the L2( dθ) scalar product on P1 and the dual scalar product on (P1)∗, i.e.,

ǦcǨcǦc = Ǧc , ǨcǦcǨc = Ǩc (ǨcǦc)
> = ǨcǦc , (ǦcǨc)

> = ǦcǨc .

Proof. Formulas (3) and (4) and the identity π1ι1 = IdP1
0

imply that

ǨǦ = ι1 ◦ (Ǧc|P1
0
)−1 ◦ ι∗1 ◦ π∗1 ◦ Ǧc|P1

0
◦ π1 = ι1π1 ,

ǦǨ = π∗1 ◦ Ǧc|P1
0
◦ π1 ◦ ι1 ◦ (Ǧc|P1

0
)−1 ◦ ι∗1 = π∗1ι

∗
1 .

(5)

Similarly, one obtains in a further similar step that ǦǨǦ = Ǧ and ǨǦǨ =
Ǩ. This establishes the first two equations of the lemma. The remaining
ones are satisfied because the mappings ǨǦ = ι1π1 and ǦǨ = π∗1ι

∗
1 are

symmetric with respect to the L2(dθ) scalar products on P1 and (P1)∗,
respectively. �

We then have:

5.3 Theorem. Let T > 0, and let (c, α) : [0, T )→ P1× (P1)∗ be a solution
of Hamilton’s equations

ct = ∂αH(c, α) , αt = −∂cH(c, α) .

https://arxiv.org/src/1702.04344v3/anc/selfintersection8.mp4
https://www.mat.univie.ac.at/~michor/solitons-selfintersection8.mp4
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Then c is a critical point of the energy functional. If additionally c(0) ∈ P1
0 ,

then c(t) ∈ P1
0 for all t ∈ [0, T ), and c is a geodesic on the Riemannian

space (P1
0 , G). Conversely, if c : [0, T ) → P1

0 is a geodesic and α = Ǧcct,
then (c, α) is a solution of Hamilton’s equations.

Note that the initial momentum α(0) can be arbitrary.

Proof. Letting D(c,h) denote the directional derivative at c ∈ P1 in the

direction h ∈ P1, Hamilton’s equations can be rewritten as

ct = Ǩcα αt = −1

2
(D(c,·)K)(α, α) .

As the range of Ǩc is P1
0 , we see that c(0) ∈ P1

0 implies c(t) ∈ P1
0 for all t.

Hamilton’s first equation and (5) imply that for each h ∈ P1
0 ,

Gc(ct, h) = Gc(Ǩcα, h) = α(ǨcǦch) = α(ι1π1h) = α(h) .

Together with the identity

D(c,h)Ǩ = −Ǩc(D(c,h)Ǧ)Ǩc,

which one obtains by applying D(c,h) to the identities

Ǩc = Ǩcπ
∗
1ι
∗
1 = ι1π1Ǩc, Ǩc = ǨcǦcǨc,

and Hamilton’s second equation this implies that(
Gc(ct, h)

)
t

= αt(h) = −1

2
(D(c,h)K)(α, α) =

1

2
(D(c,h)G)(Ǩcα, Ǩcα)

=
1

2
(D(c,h)G)(ct, ct) .

Thus, for any smooth path h : [0, 1] → P1
0 satisfying h(0) = h(1) = 0, the

derivative of the Riemannian energy (c.f. Theorem 2.8) vanishes,

dE(c).h =
1

2

∫ 1

0
D(c,h) (Gc(ct, ct)) dt

=

∫ 1

0

(
1

2
(D(c,h)G)(ct, ct) +Gc(ct, ht)

)
dt

=

∫ 1

0

(
1

2
(D(c,h)G)(ct, ct)−

(
Gc(ct, ·)

)
t
h

)
dt = 0 ,

and c is a geodesic with respect to the metric G on P1
0 . The converse

statement follows by reversing the argument. �

5.4 Lemma. An explicit formula for K, using the identifications of Defi-
nition 3.3, is given by

Kc(α, β) =

n∑
i,j=1

Ki,j(c)〈αi, αj〉Rd ,

where

Ki,j(c) = λ1λmax(i,j) − λiλj +
κ1

n
(λi + λj)− λ1

n
(κi + κj)

− (κ1)2

n2
+
λ1

n2

n∑
k=1

k2`k ,
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with

λi =
n∑
j=i

`j κi =
n∑
j=i

j`j .

Proof. We have

Kc(α, β) = G−1
c (ι∗1α, ι

∗
1β)

=

n∑
i,j=1

(
λ1λmax(i,j) − λiλj

) 〈
(ι∗1α)i, (ι∗1β)j

〉
,

together with

(ι∗1α)i = αi − 1

n

n∑
j=1

αj .

The calculation proceeds via the following four identities.

Step 1.

n∑
i=1

λi =

n∑
i=1

i`i = κ1. This follows from

n∑
i=1

λi =
n∑
i=1

n∑
j=i

`j =
n∑
j=1

j∑
i=1

`j =
n∑
j=1

j`j = κ1 .

Step 2.
n∑

i=j+1

λi =
n∑

i=j+1

(i− j)`i. This follows from

n∑
i=j+1

λi =

n∑
i=j+1

n∑
k=i

`k =

n∑
k=j+1

k∑
i=j+1

`k =

n∑
k=j+1

(k − j)`k .

Step 3.
n∑

i,j=1

(
λ1λmax(i,j) − λiλj

)
= λ1

n∑
k=1

k2`k − (κ1)2. We start with

n∑
i,j=1

λmax(i,j) =
n∑
i=1

iλi +
n∑

j=i+1

λj

 =
n∑
i=1

n∑
j=i

i`j +
n∑
i=1

n∑
j=i+1

(j − i)`j

=

n∑
i=1

i`i +

n∑
j=1

j−1∑
i=1

j`j =

n∑
i=1

i`i +

n∑
j=1

j(j − 1)`j =

n∑
i=1

i2`i .

Therefore

n∑
i,j=1

(
λ1λmax(i,j) − λiλj

)
= λ1

n∑
i,j=1

λmax(i,j) −

(
n∑
i=1

λi

)2

= λ1
n∑
k=1

k2λk − (κ1)2 .
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Step 4.
n∑
i=1

λ1λmax(i,j) − λiλj = λ1κj − κ1λj . We start with

n∑
i=1

λmax(i,j) =

j∑
i=1

λj +

n∑
i=j+1

λi = jλj +

n∑
i=j+1

(i− j)`i

=
n∑

i=j+1

i`i + jλj − jλj+1 =
n∑
i=j

i`i = κj .

Therefore
n∑
i=1

λ1λmax(i,j) − λiλj = λ1κj − κ1λj .

To complete the proof it remains to combine the formulas for G−1
c and ι∗1

using the formulas derived in steps 3 and 4. �

6. Relation to landmark spaces

In this section we put the space of piecewise linear curves into the con-
text of landmark spaces, which are important in shape analysis [6, 12, 13],
and describe relations to the Large Deformation Diffeomorphic Metric Map-
ping (LDDMM) framework [5], which is a widely used approach for defining
metrics on landmark spaces.

6.1 Definition. An ordered landmark is a tuple of pairwise distinct points
q1, . . . , qn in Rd. The set of all landmarks is denoted by Land; it is an open
subset of Rnd. Ordered landmarks can be seen as piecewise linear curves by
connecting consecutive points via straight lines. Note that for landmarks all
pairs of vertices are distinct, whereas for piecewise linear immersions only
pairs of subsequent vertices are distinct. Thus, landmark space is an open
subset of the space of piecewise linear immersions, i.e., Land ⊂ PI1, and
the H1-metric on Land is a well-defined non-negative (degenerate) bilinear
form. The landmark space modulo translations is then given by

Land0 =

{
(q1, . . . , qn) ∈ Land :

n∑
i=1

qi = 0

}
⊂ PI1

0 .

We now describe the construction of LDDMM metrics on landmark spaces.
The approach is based on the paradigm of Grenander’s pattern theory, where
geometric objects are encoded via transformations acting on them. A metric
on the transformation group then induces a metric on the space of geomet-
ric objects. In the LDDMM framework the transformation group is a group
of diffeomorphisms equipped with a right invariant metric, which usually
comes from a reproducing kernel Hilbert space. We refer to [27] for further
details.

6.2 Definition. Let (H, 〈·, ·〉H) be a reproducing kernel Hilbert space of
vector fields on Rd with kernel kH : Rd × Rd → Rd×d. Provided that H
contains C∞c (Rd,Rd), the inner product 〈·, ·〉H can be extended to a weak
Riemannian metric on Diffc(Rd) via right translation. This metric induces a
unique metric GH and cometric KH on landmark space such that the action
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Figure 3. The kernel of the H1 metric (left) compared to
a Gaussian kernel (middle) at a specific landmark (right) on
the space Land. Dark colors correspond to large values of
the kernel. See Remark 6.4 for an interpretation.

of the diffeomorphism group on a fixed template landmark is a Riemannian
submersion.

The following lemma contrasts LDDMM and H1-cometrics.

6.3 Lemma. For each q ∈ Land the LDDMM cometric KH on Land is
given by

KH
q =

 kH(q1, q1) · · · kH(q1, qn)
...

. . .
...

kH(qn, q1) · · · kH(qn, qn)

 ∈ Rnd×nd ,

and the extended H1-cometric K on Land (see Definition 5.1) is given by

Kq =

 K1,1(q)Id×d · · · K1,n(q)Id×d

...
. . .

...
Kn,1(q)Id×d · · · Kn,n(q)Id×d

 ∈ Rnd×nd ,

where Ki,j(q) ∈ R is given by Lemma 5.4 and Id×d is the identity matrix of
size d.

Proof. The formula for KH
q is due to [17], and the one for Kq can be seen

from Lemma 5.4. �

6.4 Remark. The comparison of the cometrics in Lemma 6.3 reveals several
differences. First, the (i, j)-th entry of the LDDMM cometric KH

q depends

only on qi and qj , whereas the (i, j)-th entry of the extended H1-cometric
Kq depends on all of q = (q1, . . . , qn).

Second, the LDDMM cometric typically depends on the pairwise dis-
tances between all landmark points, whereas the H1-cometric depends only
on the distances between subsequent landmark points. This is illustrated in
Figure 3, where the Gaussian LDDMM cometric with kernel kH(qi, qj) =
exp(−|qi − qj |2/2)Id×d is compared to the extended H1-cometric. The left
and middle plots show the scalar weights which appear in front of the ma-
trices Id×d in the expressions of the kernels Kq and KH

q (cf. Lemma 6.3),
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Figure 4. A geodesic with respect to the LDDMM metric
with the same initial condition as in Figure 2. Note that the
LDDMM metric avoids landmark collisions; the landmarks
never touch. See here or here for an animation.

and the right plot shows the landmark q. Note that there are off-diagonal
dark regions in the plot of the LDDMM kernel, but not in the plot of the
H1-kernel. The reason is that in contrast to the LDDMM kernel, the H1-
kernel disregards that the landmark points marked by a cross in the right
plot have a small distance.

7. Relation to the basic mapping of Younes et al. [26]

The basic mapping Φ of [26] is a locally isometric two-fold covering map
from a certain Stiefel manifold to the manifold of closed unit-length smooth
planar curves. In our setting, i.e., for parametrized closed Lipschitz curves,
the basic mapping takes the following form:

7.1 Lemma. Let d = 2, i =
√
−1, and endow the manifold

S :=

{
(e, f) ∈ L∞ :

∫
S1

e2 − f2 dθ =

∫
S1

ef = 0, ess inf
θ∈S1

e2 + f2 > 0

}
,

with tangent bundle

T(e,f)S =

{
(δe, δf) ∈ L∞ :

∫
S1

(eδe−fδf) dθ =

∫
S1

(eδf+fδe) dθ = 0

}
,

with the Riemannian metric

GS(e,f)

(
(δe, δf), (δe, δf)

)
=

∫
S1

(
δe(θ)2 + δf(θ)2

)
dθ .

https://arxiv.org/src/1702.04344v3/anc/lddmm8.mp4
https://www.mat.univie.ac.at/~michor/solitons-lddmm8.mp4
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Under the identification R2 ∼= C, the mapping

Φ: S → I1,∞
1 , (e, f) 7→ 1

2

∫ ·
0

(
e(θ) + if(θ)

)2
dθ,

is a smooth covering map and a local isometry.

Proof. S is a Banach submanifold of L∞ because the set{
(e, f) ∈ L∞ : ess inf

θ∈S1
|e(θ)|2 + |f(θ)|2 > 0

}
(6)

is open in L∞ (cf. Theorem 2.2) and because the differential of the mapping

L∞ → R2, (e, f) 7→
(∫

S1

(
e(θ)2 − f(θ)2

)
dθ,

∫
S1

e(θ)f(θ)

)
is surjective at any point in S, as can be seen by differentiation at the point
(e, f) ∈ S in the directions (e,−f) and (f, e).

The mapping Φ is well-defined because the conditions∫
S1

(
e(θ)2 − f(θ)2

)
dθ =

∫
S1

e(θ)f(θ) = 0 ,

readily imply that Φ(e, f) is a 2π-periodic function. Moreover, Φ is smooth
because it is a composition of bounded (multi-)linear mappings.

To verify that Φ is a covering map, define for any c ∈ I1,∞
1 and (e, f) ∈ S,

U(e, f) =

{
reiφ(e+ if) : (r, φ) ∈ L∞, 1√

2
<ess inf

θ
r(θ)≤ess sup

θ
r(θ)<

√
2,

−π
2
< ess inf

θ
φ(θ) ≤ ess sup

θ
φ(θ) <

π

2

}
∩ S,

V (c) =

{∫ ·
0
reiφcθ dθ : (r, φ) ∈ L∞, 1

2
< ess inf

θ
r(θ) ≤ ess sup

θ
r(θ) < 2,

−π < ess inf
θ

φ(θ) ≤ ess sup
θ

φ(θ) < π

}
∩W 1,∞

1 .

Then U(e, f) is an open neighbourhood of (e, f) ∈ S, V (c) is an open neigh-

borhood of c ∈ I1,∞
1 , and Φ maps U(e, f) diffeomorphically to V (Φ(e, f)).

Moreover, for any distinct elements (e, f) and (ẽ, f̃) of Φ−1(c), the sets

U(e, f) and U(ẽ, f̃) are disjoint. To see this, note that there is a measurable
function ε : S1 → {−1, 1} such that

(ẽ(θ), f̃(θ)) = ε(θ)(e(θ), f(θ))

holds for Lebesgue almost every θ ∈ S1. The set of all θ ∈ S1 with the
property that ε(θ) = −1 has positive Lebesgue measure because (e, f) 6=
(ẽ, f̃), and for any such θ the half planes{

reiφ
(
e(θ) + if(θ)

)
:

1√
2
< r <

√
2,−π

2
< φ <

π

2

}
and {

reiφ
(
ẽ(θ) + if̃(θ)

)
:

1√
2
< r <

√
2,−π

2
< φ <

π

2

}
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don’t intersect. It follows that U(e, f)∩U(ẽ, f̃) = ∅. Thus, for any c ∈ I1,∞
1

the set Φ−1(V (c)) is a disjoint union of open sets, which are diffeomorphic
to V (c), and we have shown that Φ is a covering map.

To see that Φ is a local isometry, note that the derivative of Φ is given by

T(e,f)Φ(δe, δf) =

∫ ·
0

(e+ if)(δe+ iδf) dθ .

Therefore,

DsT(e,f)Φ(δe, δf) =
(e+ if)(δe+ iδf)

|e+ if |2
.

This implies that Φ is a local isometry:

GΦ(e,f)

(
T(e,f)Φ(δe, δf),T(e,f)Φ(δe, δf)

)
=

∫
S1

∣∣∣∣(e+ if)(δe+ iδf)

|e+ if |2

∣∣∣∣2 |e+ if |2dθ

=

∫
S1

|e+ if |2 dθ = GS(e,f)

(
(δe, δf), (δe, δf)

)
. �

7.2 Corollary. In the setting of Lemma 7.1 the following statements hold:

(i) Under the mapping Φ, geodesics on S project down to geodesics on

I1,∞
1 , and conversely, geodesics on I1,∞

1 can be lifted (uniquely up to
the choice of a measurable function S1 → {−1, 1}) to geodesics on
S.

(ii) Let St denote the Stiefel manifold of L2( dθ)-orthonormal pairs (e, f) ∈
S. Then Φ restricts to a smooth covering map and local isometry

Φ: St→
{
c ∈ I1,∞

1 : `c = 1
}
.

Proof. This follows trivially from Lemma 7.1; cf. [26]. �

7.3 Remark. The space of unit length curves can be considered either as a
submanifold of I1,∞

1 or as a quotient of I1,∞
1 modulo scalings. The submani-

fold and quotient metrics coincide because the scaling momentum ∂t(log `(t))
of the action of the scaling group is invariant. Therefore, geodesics with re-
spect to the submanifold metric, which are studied in [26], are geodesics in
the space of immersions modulo scalings. The submanifold of unit length
curves is, however, not totally geodesic in I1,∞

1 . Therefore, geodesics with

respect to the submanifold metric are not geodesics in I1,∞
1 .

Appendix A. Smoothness of the arc length derivative

The aim of this section is to show that the mappings c 7→ |cθ| and c 7→
|cθ|−1 are smooth, where the subscript denotes the derivative with respect
to θ ∈ S1. This is used in Section 2 to showed that the first order Sobolev
metric is smooth on the space I1,∞

0 (S1,Rd). We present two proofs: one
using convenient calculus and the other one directly using Fréchet derivatives
on Banach spaces. The strategy of the first proof is presented here for the
first time and is of independent interest.
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Proof using convenient calculus.

A.1 Result. [11, 4.1.19] Let c : R → E be a curve in a convenient vector
space E. Let V ⊂ E′ be a subset of bounded linear functionals such that the
bornology of E has a basis of σ(E,V)-closed sets. Then c is smooth if and
only if the following property holds:

• There exist locally bounded curves ck : R → E such that ` ◦ c is
smooth R→ R with (` ◦ c)(k) = ` ◦ ck, for each ` ∈ V.

Moreover, if E is reflexive, then for any point separating subset V ⊂ E′ the
bornology of E has a basis of σ(E,V)-closed subsets, by [11, 4.1.23].

For any path c in some space of Rd-valued functions on S1, we write ĉ for
the corresponding mapping ĉ : R× S1 → Rd.
A.2 Lemma. The space C∞(R,W 1,∞) consists of all mappings ĉ : R×S1 →
Rd with the following property:

• For fixed θ ∈ S1 the function x 7→ ĉ(x, θ) ∈ Rd is smooth and each
derivative x 7→ ∂kx ĉ(x, ) is a locally bounded curve R→W 1,∞.

Proof. The space W 1,∞ is linearly isomorphic to the space L∞ via the iso-
morphism

L∞ →W 1,∞

f 7→
(
θ 7→

∫ θ

0

(
f(α)− 1

2π

∫
S1

f(β)dβ
)

dα+
1

2π

∫
S1

f(β) dβ
) (7)

Thus, W 1,∞ is isomorphic to the dual space of L1. We take V as the set
of directional point evaluations evλθ := 〈λ, δθ(·)〉Rd for θ ∈ S1 and λ ∈ Rd.
Then V can be seen as a subset of L1 using the isomorphism (7). Therefore,
the topology σ(W 1,∞,V) is coarser on the unit ball©W 1,∞ than the weak∗-
star topology, for which ©W 1,∞ is compact. As σ(W 1,∞,V) is Hausdorff,
the unit ball ©W 1,∞ is compact for σ(W 1,∞,V), thus σ(W 1,∞,V)-closed.
So the condition of Result A.1 is satisfied, and the statement of the lemma
follows. �

A.3 Lemma. The space C∞(R, L∞) consists of all sequences of locally
bounded mappings ĉk : R× S1 → Rd such that:

• For fixed f ∈ C∞(S1) each function x 7→
∫
S1 f(θ)ĉk(x, θ) dθ ∈ Rd is

smooth and ∂x
∫
S1 f(θ)ĉk(x, θ) dθ =

∫
S1 f(θ)ĉk+1(x, θ) dθ.

Proof. The topology σ(L∞, C∞) is coarser than σ(L∞, L1) for which the
unit ball ©L∞ is compact. Since σ(L∞, C∞) is Hausdorff, the unit ball
©L∞ is also compact for the topology σ(L∞, C∞) and thus σ(L∞, C∞)-
closed. So the condition of Result A.1 is satisfied, and the statement of the
lemma follows. �

A.4 Corollary. The mappings c 7→ |cθ| and c 7→ |cθ|−1 are smooth from
I1,∞ to L∞(S1).

Proof. We have to check that c 7→ |cθ| and c 7→ |cθ|−1 map smooth curves
to smooth curves. So let c : R → I1,∞(S1,Rd) be a smooth curve. By
Lemma A.2 x 7→ ĉ(x, θ) is smooth for each θ ∈ S1, and each derivative x 7→
∂kx ĉ(x, ·) is a locally bounded curve in W 1,∞(S1,Rd). Then ess supθ |ĉθ(x, θ)|



SOLITON SOLUTIONS FOR THE ELASTIC METRIC ON SPACES OF CURVES 23

and ess supθ
1

|ĉθ(x,θ)| are bounded locally uniformly in x ∈ R. It follows that

for each f ∈ C∞(S1) and k ≥ 0,

∂x

∫
S1

f(θ)∂kx |ĉθ(x, θ)|dθ =

∫
S1

f(θ)∂k+1
x |ĉθ(x, θ)|dθ ,

∂x

∫
S1

f(θ)∂kx

( 1

|ĉθ(x, θ)|

)
dθ =

∫
S1

f(θ)∂k+1
x

( 1

|ĉθ(x, θ)|

)
dθ .

Thus, we have verified the conditions of Lemma A.3, and |cθ| and |cθ|−1 are
smooth curves in L∞(S1). �

Proof using Fréchet derivatives. The following is an Omega lemma on
the space of essentially bounded functions.

A.5 Lemma. Let (Ω,F , µ) be a measure space, let E and F be Euclidean
vector spaces, let U be an open subset of E, and let f ∈ C∞(U,F ) be a
smooth function. Then

f∗ :

{
h ∈ L∞(Ω, E); ess inf

ω∈Ω
inf
x∈Uc

‖h(ω)− x‖E > 0

}
→ L∞(Ω, F ), h 7→ f ◦h,

is a smooth mapping defined on an open subset of L∞(Ω, E).

Proof. Let h be in the domain of f∗. Then the open ball

B(h) :=

{
k ∈ L∞(Ω, E); ‖h− k‖L∞(Ω,E) < ess inf

ω∈Ω
inf
x∈Uc

‖h(ω)− x‖E
}

also belongs to the domain of f∗, and the essential range of h is contained
in the compact set{

x ∈ E; ‖x‖E ≤ ‖h‖L∞(Ω,E), inf
y∈Uc

‖x− y‖E ≥ ess inf
ω∈Ω

inf
y∈Uc

‖h(ω)− y‖E
}
.

As this holds for all h, the domain of f∗ is open, and the range of f∗ is
contained in L∞(Ω, F ).

We will prove by induction on n ∈ N that f∗ is n times Fréchet differen-
tiable with Fréchet derivative

f
(n)
∗ (h0)(h1, . . . , hn) = f (n)(h0)(h1, . . . , hn).

Note that this is well-defined because f (n)(h0) belongs to L∞(Ω, (E∗)⊗n⊗F )
by what we have just shown and because multiplication of L∞ functions is
continuous. For n = 0 there is nothing to prove. Assume the inductive
hypothesis that the statement holds for n, let h0 belong to the domain of
f∗, let h̃0 ∈ B(h0), let K be the compact set given by{

x ∈ E; ‖x‖E ≤ ‖h0‖L∞(Ω,E) + ‖h̃0‖L∞(Ω,E),

inf
y∈Uc

‖x− y‖E ≥ ess inf
ω∈Ω

inf
y∈Uc

‖h(ω)− y‖E − ‖h̃0 − h0‖L∞(Ω,E)

}
,

and let h1, . . . , hn ∈ L∞(Ω, E). Then it holds that∥∥∥∥f (n)
∗ (h̃0)(h1, . . . , hn)− f (n)

∗ (h0)(h1, . . . , hn)
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− f (n+1)(h0)(h̃0 − h0, h1, . . . , hn)

∥∥∥∥
L∞(Ω,F )

=

∥∥∥∥∫ 1

0
f (n+1)

(
(1− t)h0 + th̃0)(h̃0 − h0, h1, . . . , hn) dt

− f (n+1)(h0)(h̃0 − h0, h1, . . . , hn)

∥∥∥∥
L∞(Ω,F )

≤ sup
x,y∈K

∥∥∥f (n+1)(x)− f (n+1)(y)
∥∥∥

(E∗)⊗(n+1)⊗F
‖h̃0 − h0‖L∞(Ω,E)

· ‖h1‖L∞(Ω,E) . . . ‖hn‖L∞(Ω,E).

This proves the statement for n+1. Thus, we have shown by induction that
f∗ is infinitely Fréchet differentiable. �

A.6 Corollary. The mappings c 7→ |cθ| and c 7→ |cθ|−1 are smooth from
I1,∞ to L∞(S1).

Proof. This follows from Lemma A.5 applied to the Lebesgue space Ω = S1,
E = Rd, U = Rd\{0}, F = R, and f(x) = |x| or f(x) = |x|−1, respectively,
using that ∂θ : I1,∞ → L∞ is a bounded linear map. �

Appendix B. The cometric on the space of Lipschitz immersions

In this part we want to describe the momentum associated to a velocity
h ∈ TcI1,∞ and use this to calculate the cometric on the space of Lipschitz
immersions.

B.1 Lemma. For any c ∈ I1,∞
0 and h ∈ W 1,∞

0 , the momentum Ǧc(h) ∈
(W 1,∞

0 )∗ is the Rd-valued distribution on S1 given by

Ǧc(h) =
1

`c
D∗s(Dshds) = − 1

`c
D2
s(hds) .

Proof. The first expression is clear from the definition: as D∗s applied to a
distribution α is defined as α ◦Ds, one has〈

1

`c
D∗s(Dshds), k

〉
(W 1,∞

0 )∗,W 1,∞
0

=
1

`c
〈Dshds,Dsk〉(W 1,∞

0 )∗,W 1,∞
0

=
1

`c

∫
S1

〈Dsh,Dsk〉Rd ds = Gc(h, k).

The second relation is obtained by integration by parts: for each smooth k,

Ǧc(h)(k) = Gc(h, k) =
1

`c

∫
〈Dsh,Dsk〉 ds = − 1

`c

∫
〈h,D2

sk〉 ds .

Note that −Ds is the adjoint of Ds with respect to L2( ds;Rd). Thus,
the statement of the lemma follows from the definition of distributional
derivatives. �

We will now describe the cometric. Recall that (L∞)∗ is isomorphic to the
Banach space ba of Rd-valued finitely additive set functions on the Lebesgue
σ-algebra of S1 which vanish on Lebesgue null sets, endowed with the to-
tal variation norm [8, Theorem IV.8.16]. If an element of ba is countably
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additive, then the Radon-Nikodym derivative with respect to ds is well-
defined. Moreover, recall that the smooth cotangent space is defined as
Ǧc(TcI1,∞

0 ) ⊆ T ∗c I
1,∞
0 .

B.2 Lemma. A covector α ∈ T ∗c I
1,∞
0 belongs to the smooth cotangent space

if and only if the following two properties hold:

(1) The set function (D−1
s )∗α ∈ ba is countably additive, i.e., it is an

absolutely continuous vector measure, and
(2) The Radon-Nikodym derivative of (D−1

s )∗α with respect to the mea-
sure ds is in L∞.

If α and β are in the smooth cotangent space at c, then

G−1
c (α, β) = `c

∫
S1

〈
(D∗s)

−1α

ds
,
(D∗s)

−1β

ds

〉
ds .

Proof. If α is a smooth covector, then α = `−1
c D∗s(Dshds) for some h ∈

W 1,∞
0 . Therefore, (D−1

s )∗α = `−1
c Dshds is a countably additive set function,

and (D−1
s )∗α/ds = `−1

c Dsh ∈ L∞. Conversely, assume that (D−1
s )∗α is

countably additive and k := (D−1
s )∗α/ds ∈ L∞. Then

∫
S1 k ds = 0 by the

definition of range(D−1
s )∗ = (W 0,∞

0 )∗, which means that k = Dsh for some

h ∈ W 1,∞
0 . Thus, α = D∗s(Dsk ds) = `cǦc(h) is in the smooth cotangent

space. This shows the first statement. To show the formula for G−1, let
α = Ǧc(h) and β = Ǧc(k). Then

G−1
c (α, β) = Gc(h, k) =

1

`c

∫
S1

〈Dsh,Dsk〉ds

= `c

∫
S1

〈
(D∗s)

−1α

ds
,
(D∗s)

−1β

ds

〉
ds . �
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