ON THE STABILITY OF b-INCOMPLETENESS
IN THE WHITNEY TOPOLOGY
ON THE SPACE OF CONNECTIONS
ON THE STABILITY OF \textit{b}-INCOMPLETENESS
IN THE WHITNEY TOPOLOGY
ON THE SPACE OF CONNECTIONS

DANIEL CANARUTTO (*), PETER MICHOR (**)

Nota presentata dal s. c. Carlo Cercignani
(Adunanza del 29 ottobre 1987)

\textbf{Sunto.} — Si studia il problema della stabilità del \textit{b}-bordo di una varietà, nel contesto dello spazio delle connessioni principali sul fibrato dei riferimenti. Alcuni nuovi risultati nella geometria degli spazi di connessioni, che generalizzano risultati ottenuti in un articolo precedente [4], permettono di descrivere una situazione generale in cui la \textit{b}-incompleteness è conservata nel cambio della connessione data. Questi risultati sembrano adatti per ottenere vari tipi di teoremi di stabilità. In effetti, una conseguenza è che la stabilità, nella topologia \textit{C}^{\infty} di Whitney, può essere dimostrata in modo piuttosto semplice per punti del cosiddetto "bordo essenziale".

1. - Introduction.

The \textit{b-completion} is usually considered as the main tool for the study of the geometry of space-time singularities. This construction can be done whenever a principal connection on the frame bundle LM of a manifold M is given. In fact, the connection induces a riemannian metric on LM; the metric completion of LM can be quotiented by the group action, and M is dense in this quotient, which is exactly

(*) Istituto di Matematica Applicata "G. Sansone", Via S. Marta, 3 - 50139 Firenze, Italia.
(**) Institut für Mathematik, Strudlhofgasse 4, A-1090 Wien, Österreich.
the b-completion. We say that M is b-complete, with respect to the
given connection, if it coincides with its b-completion. This concept
is a generalization of that of geodesic completeness, and also of that
of metric completeness for riemannian manifolds. If M is b-incomplete,
then the b-completion is the union of M with the b-boundary, which
may be thought of as the set of endpoints of b-bounded curves (i.e.
curves with bounded horizontal lift in LM) with no endpoint in M.

Thus, a space-time singularity can be seen as a point in the
b-boundary generated by the Levi-Civita connection associated to the
Lorentz metric (see [1, 5, 9] for detailed information and discussion).
In other terms, the existence of a singularity is related to the b-incom-
pleteness of M. It is then clear that stability problems concerning b-incom-
pleteness and completeness have great interest in relation to the
very existence of physical singularities, both from classical and quanti-
tistic point of view (for example, see [2, 3, 8, 9]).

The setting of the stability problem requires essentially two things:
first, a decision about what a gravitational field is, that is, of which
space it is a point (or of which bundle it is a section); second, the
assignment of a precise meaning to the idea of "small change" of
it. Though the most usual choice for the field is a Lorentz metric,
also the connection is an important candidate, as it is suggested by
the framework of gauge theories and by that of metric-affine theories
of gravitation [6]. The interest for this approach is stimulated also
from the theory of the systems of connections [10]. This framework
seems promising, and in fact we are able to prove a result which
can be interpreted as a kind of b-incompleteness stability, since it says
that if M is b-incomplete with respect to a connection, then it is also
b-incomplete with respect to a new connection, which approaches the
former in a certain sense. This result, which is an improvement of
a previous version [4], may be not so expressive from an intuitive
point of view, but it is rather general and seems a good startpoint
for the study of the problem, since it may produce various interesting
consequences.

In fact, one such consequence is obtained, in the last section,
in a framework which is quite natural for stability problems, i.e. that
of the Whitney topology on the space of sections of a bundle, in our
case the bundle of principal connections of the frame bundle. We shall
say that any property depending on the connection is stable if the
set of all connections which have the property is open in this topology.
Thus, we are concerned with the study of b-incompleteness stability in this context.

However, only a part of the b-boundary is usually considered as representing the physical singularities, that is the so-called "essential boundary", constituted by limit points of not (partially) trapped curves. Now, the final result of this paper is precisely that stability, in the sense of the Whitney topology, holds at least for these points.

There are still many open problems. For example, note that the choice of a different space of sections (for example Lorentz metrics) as representing the possible gravitational field might give completely different results; in fact the map "riemannian connection" from the space of metrics to that of principal connections is not continuous. It would be important to study which is the largest possible modification of the field which preserves the existence of singularities. This could relate our approach to others in which coarser topologies are used and some kind of instability arises (see [14, 15]). Indeed, many people think that the soundest approach from a physical viewpoint would be the unexplored one based on the space of solutions of a given field equation.

2. - Preliminaries.

This section contains a brief review of basic concepts. For details, see [7, 10, 12].

By $p : E \rightarrow M$ we shall indicate a fibred manifold of finite dimension. Then, p is a differentiable surjection of maximal rank. T, T^*, V and J are respectively the tangent, cotangent, vertical and first-jet functors. We have the fibered structures $T_p : TE \rightarrow TM$, $\pi_E : TE \rightarrow E$, $\rho_E : JE \rightarrow E$.

We shall deal with the fibered product of two fibered manifolds $p : E \rightarrow M$ and $q : F \rightarrow M$. This has three different fibered structures:

$$\pi_1 : E \times_M F \rightarrow E, \quad \pi_2 : E \times_M F \rightarrow F, \quad p \circ \pi_1 = q \circ \pi_2 : E \times_M F \rightarrow M.$$

The reciprocal image of a section $s : M \rightarrow E$ is
A connection on \(E \to M \) is a section \(\Gamma : E \to JE \); the assignment of \(\Gamma \) is equivalent to that of a 1-form on \(TE \) with values in \(VE \), \(\omega_\Gamma : E \to T^*E \otimes_E VE \), called connection form, which is an affine morphism \(TE \to VE \) over \(\pi_1 : E \times_M TM \to E \) and, restricted to \(VE \), is the identity.

The space of all sections \(M \to E \) will be denoted by \(\mathcal{S}_c (E \to M) \). Given a topology on this space, a property depending on the section is called stable if the set of all sections which have the property is open. We shall use the \(W^0 \) topology (or Whitney or wholly open \(C^0 \) topology): a basis of this topology is constituted by the family of subsets:

\[
\mathcal{E} (U) = \{ s \in \mathcal{S}_c (E \to M) : s (M) \subset U \},
\]

where \(U \) is an open submanifold of \(E \).

A system of connections in constituted by a fibered manifold \(\pi : C \to M \), together with a fibered morphism \(\gamma : C \times_M E \to JE \). Any section \(\tilde{\Gamma} : M \to C \) determines a connection \(\Gamma = \gamma \circ (p^*\tilde{\Gamma}) \). We remark that we cannot obtain all possible connections of \(E \to M \) with this procedure, unless we take \(C \) to be infinite-dimensional. However, finite-dimensional systems of connections arise in important situations, like in the case of principal connections. By space of connections we mean the (infinite-dimensional) space \(\mathcal{S}_c (C \to M) \).

Given a system of connections, there is a canonical connection \(\Lambda \) on the fibered manifold \(K = C \times_M E \to C \); its connection form is characterized by the relation

\[
\langle \omega_\Lambda, X \rangle = (\pi_1 (X), (\omega_\Gamma, T\pi_2 (X))) \in C \times_M VE \subset C \times_M TE = VK,
\]

where \(\Gamma \) is any connection such that \(\tilde{\Gamma} (\pi \circ \pi_1 (X)) = \pi_1 (X) \).

Given a principal bundle \((P, p, M; G)\), the action of the group \(G \) on \(P \) can be naturally extended to an action on \(JP \), and a principal connection is exactly a section \(P \to JP \) which is invariant with respect to this action. Thus, principal connections arise from a finite-dimensional system, where \(C = JP / G \). This bundle can be shown to be affine, with
associated vector bundle $T^*M \otimes_M VP/G$. Moreover, if P admits a global section or G is abelian, then VP/G is isomorphic, though in general not canonically, to $M \times \mathcal{G}$, where \mathcal{G} is the Lie algebra of G.

3. - The frame bundle and related structures.

This section is a summary of some further preliminary results; some of these were established in [4], and the others can be found in [1, 5, 9]. Henceforth $K = (JP/G) \times_M P = C \times_M P$ and $P = LM$, the frame bundle with projection p onto M (then $K = JP$). We recall that any principal connection Γ determines a riemannian metric on $TLM \rightarrow LM$ (independently discovered by Schmidt [13] and Marathe [10]), and that the b-completeness of M is equivalent to the metric completeness of LM. This metric is defined by:

$$g_{\Gamma} : TLM \times_{LM} TLM \rightarrow R : (X, Y) \longmapsto \theta(X) \cdot \theta(Y) + \omega_{\Gamma}(X) \cdot \omega_{\Gamma}(Y)$$

where:

$\theta : TLM \rightarrow R^m : X \longmapsto \langle (\pi_{LM}(X))^*, Tp(X) \rangle$ is the canonical 1-form,
$(\pi_{LM}(X))^*$ is the dual basis of $\pi_{LM}(X)$;

$\omega_{\Gamma} : TLM \rightarrow \mathcal{G} = R^{m^2}$ is the connection form, when we take into account the natural isomorphism $VLM = LM \times \mathcal{G}$;

\cdot is the standard inner product in R^m and R^{m^2}.

Now, the canonical 1-form can be extended to a 1-form on $TK \rightarrow K$, denoted by the same symbol, by putting $\theta(W) \equiv \theta \circ T\pi_2(W)$; thus we can define a symmetric bilinear form:

$$f : TK \times_k TK \rightarrow R : (W, Z) \longmapsto \theta(W) \cdot \theta(Z) + \omega_{\Delta}(W) \cdot \omega_{\Delta}(Z).$$

This form vanishes on π_2-vertical vectors, and is then degenerate. It can be proved that the assignment of a connection on $C \rightarrow M$, $\Delta : C \rightarrow JC$, induces naturally a riemannian metric g_{Δ} on $TK \rightarrow K$, whose restriction to π_1-vertical vectors coincides with f.
If $\tilde{\Gamma} : M \rightarrow C = JLM/G$ is a section, then $p^*\tilde{\Gamma} : LM \rightarrow K$ is a section, and the submanifold $S_{\Gamma} = p^*\tilde{\Gamma} (LM) \subset K$ is diffeomorphic to LM. Moreover, the restriction f_{Γ} of f to S_{Γ} is a riemannian metric, and $p^*\tilde{\Gamma}$ is an isometry between (LM, g_{Γ}) and (S_{Γ}, f_{Γ}). Thus, metric completeness of (LM, g_{Γ}), and consequently b-completeness of M with respect to Γ, can be studied on S_{Γ}.

We shall indicate by \overline{LM}_{Γ} the metric completion of LM with respect to g_{Γ}, and we shall put $\partial_{\Gamma}LM = \overline{LM}_{\Gamma} - LM$; then, $\overline{M}_{\Gamma} = \overline{LM}_{\Gamma}/G$ and $\partial_{\Gamma}M = \overline{M}_{\Gamma} - M = \partial_{\Gamma}LM/G$ are the b-completion and the b-boundary of M respectively.

Thus, $\partial_{\Gamma}LM$ can be identified with ∂S_{Γ}, the f_{Γ}-boundary of S_{Γ}. If there exists a connection $\Delta : C \rightarrow JC$ such that the immersion $(S_{\Gamma}, f_{\Gamma}) \hookrightarrow (K, g_\Delta)$ is uniformly continuous, then ∂S_{Γ} can be also identified with a subspace of $\partial_\Delta K$, the g_Δ-boundary of K; for example, this is the case when $\tilde{\Gamma}$ is Δ-horizontal.

Next, we recall that \overline{M}_{Γ} is not, in general, a Hausdorff space, and that this fact is related to the existence of (partially) trapped curves $c : [0, 1) \rightarrow M$ with endpoint in $\partial_{\Gamma}M$. In other terms, if $\hat{c} : [0, 1) \rightarrow LM$ is a curve with endpoint in $\partial_{\Gamma}LM$, its projection $c = p \circ \hat{c} : [0, 1) \rightarrow M$ may have the property that there exists a compact set $H \subset M$ such that, for all $\tilde{\lambda} \in [0, 1)$, there is $\lambda \in (\tilde{\lambda}, 1)$ such that $c(\lambda) \in H$. As a consequence, c is not a proper map.

Then we define the essential boundary of M as the portion of $\partial_{\Gamma}M$ constituted by those points which are endpoints of at least one not trapped curve. Such curve is then proper (however, note that a point of the essential boundary can be also the endpoint of a trapped curve). We shall call essential completeness (incompleteness) the property of a manifold of having empty (not empty) essential boundary.

3. f-bounded open submanifolds of K.

The concept of f-bounded open submanifold of K was used in [4]. In this section we give a more precise definition, and prove the existence of such sets directly by showing one possible construction. This is important for the interpretation of the preliminar result of § 4 as a kind of generalized stability, and also for the proof of the last proposition about Whitney stability.
DEFINITION. - An open submanifold \(V \subset K \) is \(f \)-bounded if \(V \cap S_T \) is \(gr \)-bounded for all \(\tilde{\Gamma} : M \to C \) such that \(\pi_2 (V \cap S_T) = \pi_2 (V) \).

LEMMA. - A connected open submanifold \(V \subset K \) is \(f \)-bounded if the following properties hold:

a) There exists \(R \in R^+ \) such that \(f (u, u) / f (v, v) < R \) for all \(u, v \in TV \) such that \(T \pi_2 (u) = T \pi_2 (v) \).

b) There exists one \(\tilde{\Gamma} : M \to C \) such that \(\pi_2 (S_T \cap V) = \pi_2 (V) \), and \(\pi_2 (V) \) is \(gr \)-bounded.

PROOF. - Since \(\pi_2 (V) \) is \(gr \)-bounded, there exists \(q \in R^+ \) such that, for any two points \(a, b \in \pi_2 (V) \), there is a curve \(c : [0, 1] \to \pi_2 (V) \) of length not greater than \(q \) and such that \(c (0) = a \), \(c (1) = b \).

Let \(\tilde{B} : M \to C \), \(a, b \in \pi_2 (V \cap S_B) = \pi_2 (V) \).
Then \(f_B (dc, dc) < R f_T (dc, dc) \), and then the \(f_B \)-length of \(c \) is lesser then \(R q \).

LEMMA. - Let \(\tilde{\Gamma} : M \to C \) be a connection and \(A \subset LM \) a \(gr \)-bounded open submanifold.
Then, there exists an \(f \)-bounded open submanifold \(V \subset K \) such that \(p^* \tilde{\Gamma} (A) \subset V \).

PROOF. - We shall construct one such \(V \).
For each \(a \in LM \), let \(S (a) = \{ u \in T_a LM : gr_T (u, u) = 1 \} \) be the unit \(gr_T \)-sphere at \(a \), and for any \(\dot{a} \in (\pi_2)^{-1} (a) \) put \(U (\dot{a}) = T_a K \cap T^{(\pi_2)^{-1}} (U (a)) \).
For all \(\dot{u} \in U (\dot{a}) \) we put \(q (\dot{u}) = f (\dot{u}, \dot{u}) / gr_T (u, u) \), where \(u = T \pi_2 \dot{u} \).
Since \(S \) is compact, it is clear that for all \(\dot{a} \in (\pi_2)^{-1} (a) \) there exists \(Q (\dot{a}) = \max \{ q (\dot{u}) : \dot{u} \in U (\dot{a}) \} \); moreover \(Q : \dot{a} \to Q (\dot{a}) \) is a continuous function on \((\pi_2)^{-1} (LM) \), and \(Q (S_T) = [1] \).
Now, let \(1 < R \in R^+ \); we put \(V = [\dot{a} \in (\pi_2)^{-1} (A) : 1/R < Q (\dot{a}) < R] \).
We must show that \(V \) is open and \(f \)-bounded.
First, let \(\dot{a} \in V \). Since \(Q \) is continuous and \(Q (\dot{a}) < R \), there is an open neighbourhood \(W_{\dot{a}} \) of \(\dot{a} \) in \(K \) such that \(Q (W_{\dot{a}}) \subset (R, 1/R) \).
\(W_{\dot{a}} \cap ((\pi_2)^{-1} (A)) \) is then an open neighbourhood of \(\dot{a} \) contained in \(V \).
Thus \(V \) is open.

Now, let \(w, w' \in TV \) be such that \(T \pi_2 (w) = T \pi_2 (w') \), \(\dot{a} = \pi_K (w) \), \(\dot{a}' = \pi_K (w') \). Then, \(w = \lambda \dot{u}, w' = \lambda \dot{u}' \), where \(\lambda \in R \), \(\dot{u}, \dot{u}' \in U (\dot{a}), \dot{u}' \in U (\dot{a}') \).
We then have:
\[f(w, w) = \lambda^2 f(\hat{w}, \hat{w}); \quad f(w', w') = \lambda^2 f(\hat{w}', \hat{w}') . \]

\[f(w, w) / f(w', w') = f(\hat{w}, \hat{w}) / f(\hat{w}', \hat{w}') < R . \]

Since \(A = \pi_2(V) \) is \(g_r \)-bounded, \(V \) is \(f \)-bounded by virtue of the previous lemma.

Corollary. - Let \(\bar{\Gamma} : M \rightarrow C \) be a section. Let \(\bar{\alpha} \in \partial_r LM \). Then, there exist a curve \(c : [0, 1] \rightarrow LM \) with endpoint \(\bar{\alpha} \), and an \(f \)-bounded open submanifold \(V \subset K \) such that \(\left(p^*\bar{\Gamma} \circ c \right)([0, 1]) \subset V \).

Proof. - Since \(\overline{LM} \) is Hausdorff, there exist a \(g_r \)-bounded open submanifold \(A \subset LM \) and a curve \(c : [0, 1] \rightarrow A \) with endpoint \(\bar{\alpha} \); thus we can construct \(V \) as in the proof of the previous lemma.

4. - Stability of \(b \)-boundary points.

Proposition. - Let \(\tilde{\Gamma} : M \rightarrow C \) be a section such that \(M \) is \(b \)-incomplete with respect to \(\Gamma \).

Let \(c : [0, 1] \rightarrow LM \) be a curve with endpoint in \(\partial_r LM \).

Let \(V \subset K \) be an \(f \)-bounded open submanifold, such that \(\left(p^*\tilde{\Gamma} \right) \circ c [0, 1] \subset V \).

Then, \(M \) is \(b \)-incomplete with respect to any connection \(B \) such that \(\left(p^*\bar{B} \right) \circ c [0, 1] \subset V \), since \(c \) has finite \(g_r \)-length.

Proof. - Essentially the same of the first proposition in § 4 of [4].

We observe that, in a sense, the previous proposition may be thought as establishing a stability property for \(b \)-incompleteness, since it says that if \(M \) is \(b \)-incomplete with respect to \(\Gamma \), then it is also \(b \)-incomplete with respect to a new connection \(B \) which approaches \(\Gamma \) sufficiently well in a certain sense. It is also noticeable that the behaviour of \(B \) far away from the singularity has no influence (this statement has meaning at least in \(LM \), whose completion in Hausdorff). In fact, the last corollary of the previous section enables us to construct the manifold \(V \) over any \(g_r \)-bounded neighbourhood of the singularity in \(LM \).
This result seems suitable for obtaining various kinds of stability properties. In fact we shall use it, together with those of the previous section, for establishing a particularly expressive stability theorem: the stability of essential incompleteness in the Whitney topology.

Proposition. Essential incompleteness is a stable property in the C^0 Whitney topology on the space of principal connections of $LM \to M$.

Proof. Let $\tilde{a} \in \partial_r LM$ be such that its projection onto $\partial_r M$ is in the essential boundary. Then, we have a curve $c : [0, 1] \to LM$ with endpoint \tilde{a}, such that $p \circ c : [0, 1] \to M$ is proper. Let $A \subset LM$ be the interior of the ball in \overline{LM} of centre \tilde{a} and radius $\varepsilon \in R$. Then $c(\lambda) \in A$ for λ sufficiently close to 1, and then, after a possible affine reparametrization, we have $c : [0, 1] \to A$.

Let $V \subset K$ be the f-bounded open submanifold constructed as in the second lemma of the previous section.

Since $p \circ c : [0, 1] \to M$ is a proper map, the map

$$
S_\infty (C \to M) \to C^0 ([0, 1], C) : \tilde{B} \mapsto \tilde{B} \circ p \circ c
$$

is W^0-continuous [12]. Thus, also the map

$$
\Phi : S_\infty (C \to M) \to \mathcal{V} \equiv C^0 ([0, 1], V) : \tilde{B} \mapsto (c, \tilde{B} \circ p \circ c) \equiv (p^* \tilde{B}) \circ C
$$

is W^0-continuous. Thus $\Phi^{-1}(\mathcal{V})$ is W^0-open in $S_\infty (C \to M)$.

If $\tilde{B} \in \Phi^{-1}(\mathcal{V})$, then $\Phi(\tilde{B}) \in \mathcal{V}$, which means that

$$(p^* \tilde{B}) \circ c ([0, 1]) \subset V.$$

Then, by virtue of the previous proposition, c has finite g_B-length and, being not partially trapped, defines a point in the essential boundary of M with respect to B. \qed
REFERENCES

