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1. Preface

In this paper we treat two articles concerning orbital theory for (twisted) affine
Lie algebras. In [F] I.B. Frenkel introduced an infinite dimensional analogon of
Kirillov’s character formula for compact Lie groups. In particular, a classification
of coadjoints orbits of the loop group, i.e. the group C∞(S1, G) where G denotes
a compact Lie group, allowed the introduction of Wiener measure on the conti-
nouus closure of such a coadjoint orbit. So the character of an affine Kac Moody
algebra, could be written as integral over a coadjoint orbit with respect to Wiener
measure. In [W1] R. Wendt gave a generalization of Frenkels original program for
twisted affine Lie algebras. Again, an analog of Kirillov’s character formula could
be deduced. In [W2] Wendt introduces a geometric approach to the orbital theory
of affine Kac Moody algebras. There, an infinite dimensional analog of the Duis-
termaat Heckmann exact integration formula is presented and a formal integration
with respect to the ”Riemannian volume form” is introduced. This symplectic ap-
proach has the advantage, that integration is possible on spaces where no measure
theory is yet developed. As an application several functions on coadjoint orbits
of loop groups and double loop groups, i.e. groups of the form C∞(Στ , G), where
Στ is an elliptic curve with modular parameter τ and G denotes a compact Lie
group, are integrated. Furthermore it is shown, that the partition function of the
gauged WZW model is a certain Hamiltonian function, so the formal integration
is applicable. So one has a conceptual calculation of the functional integral repre-
senting this partition function. The contents of this paper is as follows: In the first
chapter (see 2) we collect the most important facts concerning Kac Moody algebras
and loop groups, which are needed in the sequal. For a detailed introduction to
this subject the reader is refered to the books [K], [Wa]. Then we start treating
[W1]. We decided to ommit the treatment of the Weyl character formula for non
conncected Lie groups, since this was the master’s thesis [W4] and the arguments
are very similar to the ones employed in [BtD]. We compare the classification of
coadjoint orbits in the loop group case with the one of double loop groups, intro-
duced in [EF]. Then we treat the Duistermaat Heckmann formula as preperation
for the infinite dimensional analog. There, a symplectic torus action on an infinite
dimensional manifold is introduced. Then a functional on the set of Hamiltonian
functions, corresponding to this action, is presented and a complete analog to the
Duistermaat Heckmann exact integration formula is build. An important ingredi-
ent in Wendt’s geometric approach are zeta reglarized products, we provide a more
conceptual approach to his calculations. In particular we can deduce a stronger
result on the modular invariance of the gauged WZW model. Usually one uses zeta
regularized products to give sense to infinite products over sets of eigenvalues of
a certain differential operator. In [W2] zeta regularization was only admitted for
real numbers because of the analogy with the Wiener measure approach. So to
calculate a zeta regularized product of the form

(1)
∏
ζ

(n+ τm+ z)

with m,n ∈ Z the Epstein zeta function had to be employed. This is a Zeta function
ζ(a, b) in two variables which works only for elements of R/Z. So in [W2] a new
torus operation was introduced to overcome this difficulty. Unfortunately, to deduce
the SL(2Z) invariance of the partition function of the gauged WZW model, one
is restricted to complex numbers. Calculating the zeta regularized product for the
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”original” eigenvalues we get the same result as in [W2], up to a constant factor,
but now the calculations work arbitrary complex numbers and so the full modular
invariance can be deduced. In the end, we present several open questions, two of
them were stated in [W2] and an understanding of these problems was the starting
point of this paper. We state the stochastic problem in a more concrete way then
in [W2] and ask for further generalizations of the symplectic approach.

2. Kac Moody theory

This section follows mainly the introductory parts of [Wa]. As usual g, h denote
Lie Algebras, ∆ is the corresponding root system. To distinguish the affine Kac
Moody algebra from its finite counterpart we denote it by g̃. Let A ∈ MnZ be a
n× n matrix which satisfies the conditions

(2) aii = 2 (i = 1, . . . , n)

(3) aij ≤ 0 i 6= j

(4) aij 6= 0 ⇐⇒ aji 6= 0

then it is called a generalized Cartan matrix (GCM), one sees that the third con-
dition of the usual Cartan matrix is ommited. We call a GCM indecomposable if
it is not of the form

(5) A =
(
∗ 0
0 ∗

)
A GCM is called symmetrizable if it is written as the product

A = DB

with a diagonal matrix D with all of its diagonal entries positive real numbers and
a real symmetric matrix B. Indecomposable generalized Cartan matrices can be
classified in three types, [K] Cor. 4.3
finite type: Av ∈ (R>0)n for some v ∈ (R>)n

affine type: Av = 0 for some v ∈ (R>)n

indefinite type: Av ∈ (R<0)n for some v ∈ (R>)n

The transpose of a GCM is again a GCM and it can be shown that they are of same
type. Like in the finite dimensional theory we can choose a Cartan subalgebra h of
g. The Lie algebra corresponding to a GCM is denoted by g(A). Let h∗ denote the
dual of h as a vector space. We can choose a set of linearly independent elements
α∨i (1 ≤ i ≤ n) from h and αi (1 ≤ i ≤ n) from h∗ which satisfiy the condition

(6) 〈α∨i , αi〉 = aij

To a given GCM A = (aij)i,j=1,...,n one can associate a Dynkin diagram with n
vertices and (oriented) multi lines as follows:
(D1) Put the label α1, . . . , αn on each of these vertices
(D2) Two vertices αi and αj with i 6= j are connected by max{|aij |, |aji|} lines,
and these lines are equipped with an arrow pointing towards i if |aij | ≥ 2.
(D3) Tow vertices αi and αj for i 6= j are not connected if aij = 0
It is known that there exists a non degenerate invariant symmetric bilinear form
on g(A) iff A is symmetrizable. The bilinear form (., .) is called invariant if

(7) ([x, y], z) = (x, [y, z])
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holds. The affine Dynkin diagrams fall in the three tables Aff1, Aff2, Aff3. See [K]
chapter 4. One says a GCM A = (aij)0≤i,j≤l is of type X(r)

N , where r is called the
tier number of A. For example A is of type A(2)

2 or A(2)
2l and so on.

Given a GCM A = (aij)i,j=0,...,l two (l + 1) tuples of positive integers, (a∨i )0≤i≤0

and (ai)0≤i≤0 are uniquely determined by the condition

(8) (a∨0 , . . . , a
∨
l ) ·A = 0 A · (a0, . . . , al)t = 0

and gcd(a∨0 , . . . , a
∨
l ) = gcd(a0, . . . , al) = 0.

The numbers ai and a∨i are called the label resp. the colabel. We define the two
important Coxeter numbers

(9) h :=
l∑
i=1

ai h∨ :=
l∑
i=1

a∨i

One can identify the Cartan subalgebra h with its dual via the non degenerate
bilinear form. One has

a∨i α
∨
i = aiαi 0 ≤ i ≤ l

The element

(10) c :=
l∑
i=0

α∨i a
∨
i

is called the canonical central element. It satisfies

〈c, αi〉 = 0 0 ≤ i ≤ l

so c commutes with all elements in g(A) and Cc is the center of g(A). The dual
element corresponding to c in h∗ is

(11) δ :=
l∑
i=1

aiαi

which is a positive root (i.e. an eigenvalue of the adjoint representation) which
satisfies the following:

(12) (δ, δ) = 0 {α ∈ ∆; (α, α) = 0} = {nδ;n ∈ Z− {0}}
One can choose elements Λ0 ∈ h∗ and d ∈ h such that the following relations are
satisfied:

(13)
{
〈α∨i ,Λ0〉 = δi,0 (0 ≤ i ≤ l) 〈d,Λ0〉 = 0

Under the natural isomorphism h ∼= h∗, a0Λ0 is identified with d and δ is identified
with the canonical central element c. We set

(14) h̄ :=
l∑
i=1

Cα∨i and h̄∗ :=
l∑
i=1

Cαi

which are sometimes called finite part of h and h∗ respectively. We use the following
decompositions

(15) h̃ = Cd⊕ h̄ + Cc and h̃∗ = CΛ0 ⊕ h̄∗ ⊕ Cδ

Next we introduce the notion of real and imaginariy roots of a Kac Moody algebra,
the latter has no counterpart in the finite dimensional theory.

(16) ∆re = {α ∈ ∆; (α, α) > 0} and ∆im = {α ∈ ∆; (α, α) ≤ 0}
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In the case of an affine Kac Moody algebra the imaginary roots are described as

follows:

(17) ∆im = {α ∈ ∆; (α, α) = 0} = {nδ;n ∈ Z− {0}}

and the multiplicitiy mult(nδ) = dim gnδ is given for a GCM A ∈ X(r)
N as follows:

(18) mult(nδ) = l ifr = 1

and

(19)

{
l if n /∈ rZ, and
N−l
r−1 if n ∈ rZ , n > 0 .

when the tier number r ≥ 2.

As in the finite dimensional theory one introduces the Weyl group, for each i, let
τi be the element in GL(h∗) defined by

τi(λ) := λ− 〈λ, α∨i 〉αi λ ∈ h∗

The subgroup of GL(h∗) generated by τi (0 ≤ i ≤ l) is called the Weyl group. An
important set is the so called fundamental alcove

Caf := {λ ∈ h̄∗R; (λ, αi) ≥ 0 (1 ≤ i ≤ l) (λ, θ) ≤ 1}

where θ is the highest root in the finite dimensional positive roots ∆̄+. We denote
the root and coroot lattices by

Q =
l∑
i=0

Zαi and Q∨ =
l∑
i=1

Zα∨i

The finite root lattices are denoted with Q̄ and Q̄∨ respectively. Turning to the
representation theory off affine Kac Moody algebras we introduce

P̃ = {λ ∈ h∗C|〈λ, α∨i 〉 ∈ Z for all i = 0, . . . , n},
P̃+ = {λ ∈ P̃ |〈λ, α∨i 〉 ≥ 0 for all i = 0, . . . , n} and
P̃++ = {λ ∈ P̃+|〈λ, α∨i 〉 > 0 for all i = 0, . . . , n}

where P is called the weight lattice, P+, P++ are the integral resp, dominant integral
weight lattices. Note, that there exists a bijection between the irreducible integrable
highest weight modules of g̃C and the dominant integral weights Λ ∈ P̃+. Similarly
co-weight lattices are denoted by

P∨ = {λ ∈ h∗; 〈λ, αi〉 ∈ Z (0 ≤ i ≤ l)}

We recall (13) and define elements Λi ∈ h∗ by

〈Λi, α∨j 〉 = δij (0 ≤ j ≤ l)

〈Λi, d〉 = 0

and in the same manner for the cointegral forms:

〈Λ∨i , α∨j 〉 = δij

〈Λ∨i , d〉 = 0

The finite weight lattices are denoted by

P̄ =
∑

i = 1lZΛ̄iand P̄∨ =
∑

i = 1lZΛ̄∨i
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For λ ∈ h∗ we define the level of λ by (λ, δ). For a non-ngative integer m we define

Pm := {λ ∈ P ; 〈λ, c〉 = m}
Pm+ := {λ ∈ P+; 〈λ, δ〉 = m}

Pm++ := {λ ∈ Pm+ ; 〈λ, α∨i ∈ N〉 (0 ≤ i ≤ l)}
We now turn to the affine Weyl group.

Definition 2.1. W := W̄ nM

Now we turn to the Kac Weyl Character Formula. If L(Λ) is an integrable
irreducible highest weight module with highest weight Λ ∈ P̃+ then the formal
character of L(Λ) is given by by the formal sum

chL(Λ) =
∑
λ∈h̃∗

dimL(Λ)λe(λ)

Here L(Λ)λ denotes the weight space corresponding to the weight λ and e(λ) is a
formal exponential. The Kac Weyl Character formula now reads:

chL(Λ) =
∑
w∈W̃ ε(w)e(w(Λ + ρ̃))

e(ρ̃)
∏
α∈R(1− e(−α))multα

Here ρ̃ is defined by 〈ρ̃, α∨i 〉 = 1 for i = 0, . . . , n and 〈ρ̃, d〉 = 0 As usual we have
set ε(w) = (−1)l(w). So far the character was considered as a formal sum, involving
the formal exponentials e(λ). Now we set eλ(h) = e〈λ,h〉 for h ∈ g̃C. In this way one
can consider the character of a highest weight g̃C module V as an infinite series.
Let us set Y (V ) = {h ∈ g̃C|chV (h) converges absolutely }. Then chV defines a
holomorphic function on Y (V ) and the following result holds (cf.[K]):

Proposition 2.2. Let V (Λ) be the irreducible highest weight module with highest
weight Λ ∈ P+. Then

Y (V (Λ)) = {h ∈ h̃C|Re〈δ, h〉 > 0}
where δ =

∑n
i=0 aiαi and the ai are the labels of the vertices of the affine Dynkin

diagram. In this setting the Kac Weyl character formula gives an identity of holo-
morphic functions on Y (V (Λ))).

Now we have g̃C = ḡC ⊕ Cc ⊕ Cd with c and d as before. With this notion one
gets:

Y (V (Λ)) = {h+ ac+ bd|h ∈ h̄C, a, b ∈ C, Imb < 0}

3. Classification of coadjoint orbits

Consider the following system of linear differential equations, or left logarithmic
derivative

(20) z′(t) = z(t)x(t)

where z(t), x(t) ∈ Mn(C)∀t ≥ 0 and x(t) is Lipschitz continuous in t. Now a
fundamental result in the theory of differential equations states the existence of
a unique solution of 20 for the initial condition z(0) = In where In denotes the
identity. This solution is usually called the fundamental solution. In [F] the same
system is considered with periodic coefficients, that is x(t+T ) = x(t), but this will
not allow us in the twisted case to classify affine adjoint orbits, Kleinfeld showed
in [Kl] that then the monodromy map, which will be introduced below, is neither
injective, nor surjective. So in [W1] twisted periodic coefficients are introduced.
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Definition 3.1. We call the coefficient x(t) twisted periodic if x(t + 1
r ) = τxτ−1

for an invertible matrix τ with τ r = In for all t ≥ 0.

If z is a fundamental solution of z′ = zx with the above definition it is obvious
that z1(t) = τ−1z(t + 1

r )τ is another solution. To see this, just plug into the
definition 3.1 and one sees z1(t) = τ−1τzτ−1τ = z. This observation yields the
following: There exists a matrix M̃(x) such that z1(t) = M̃(x)z(t). But since we
have chosen our initial condition z(0) = In we get M̃(x) = z1(0) = τ−1z(0 + 1

r )τ .
Now

(21) M(x) := z(
1
r
)

is called the ” 1
r -th monodromy” of the differential equation z′ = zx. We then

obtain

(22) z(t+
1
r
) = M(x)τz(t)τ−1

for all t ≥ 0. For a twisted periodic continuously differentiable g with g(t) ∈
GLn(C) for all t ≥ 0 let us denote

zg(t) = g(0)z(t)g−1(t)(23)

xg(t) = g(t)x(t)g−1(t)− g′(t)g−1(t)(24)

Then the following proposition holds:

Proposition 3.2. Let x be a twisted periodic, continuous, matrixvalued function,
and let z be the fundamental solution of z′ = zx. Then

(a) zg(t) is the fundamental solution of z′g = zgxg
(b) M(xg) = g(0)M(x)τg−1(0)τ−1

(c) If x1 is twisted periodic and there exists a g0 such that

M(x1) = g0M(x)τg−1
0 τ−1,

then there exists a twisted periodic matrix g(t) such that g0 = g(0) and xg(t) = x1(t)
for all t ≥ 0.

Proof. (a) Let z′g(t) = (g(0)z(t)g−1(t))′ =
(z(t)g−1(t))′ =

z′(t)g−1(t)− z(t)g−1(t)g′(t)g−1(t).

But zg(t)xg(t) = (zg(t)g−1)(g(t)x(t)g−1 − g′(t)g−1(t)) =
z(t)g−1(t)g(t)x(t)g−1(t)− z(t)g−1g′(t)g−1(t) =
z(t)x(t)g−1(t)− z(t)g−1g′(t)g−1(t) =

z′(t)g−1(t)− z(t)g−1(t)g′(t)g−1(t)

This is the assertion.
(b) To show M(xg) = g(0)M(x)τg−1(0)τ−1). By (21) M(x) = z( 1

r ) so M(xg) =
zg( 1

r ). But this is g(0)z( 1
r )g

−1( 1
r ) by (22). Now we use the definition of M(x) and

obtain

g(0)z( 1
r )g

−1( 1
r ) = g(0)M(x)g−1( 1

r ) = g(0)M(x)τg−1(0)τ−1
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since g−1(0 + 1
r ) = τg−1(0)τ−1. This proves (b).

(c) Put g(t) = z1(t)−1g0z(t) where z(t), z1(t) are the fundamental solutions of our
differential equation and x(t), x1(t) are the corresponding parameter matrices, then
we obtain g(0) = g0.
Now

xg(t) = z−1
1 g0(zxz−1)g−1

0 z1 − z−1
1 g0(z′z−1)g−1

0 z1 − (z−1
1 )′z1 =(25)

z−1
1 zx︸︷︷︸

z′

z−1z1 − z−1
1 z′z−1z1 − (z−1

1 )′z1 =(26)

−(−z−1
1 z′1z

−1)z1 =(27)

−(−z−1
1 z′1) = z−1

1 z′1 = x1(28)

�

Remark 3.3. In the calculations above we used the general fact

d

dt
c−1(t) = −c(t)−1c(t)′c(t)−1

Before we can use this result to classify affine adjoint orbits, we recall a general
result of differential geometry which is stated as follows in [F]:

Proposition 3.4. Let gC ⊂Mn(C) be a matrix Lie algebra and GC ⊂ GLn(C) the
corresponding Lie group. If z is a solution of the linear differential equation z′ = zx
then z(t) ∈ GC for all t ≥ 0 if and only if x(t) ∈ gC for all t ≥ 0.

Proof. A proof of this statement appears in [Nom] chapter two. �

Now let g̃C be an affine Lie algebra of type X(r)
n and let τ be the corresponding

digaram automorphism of the underlying finite dimensional Lie algebra gC used in
the loop realization of g̃C. In the case of an untwisted affine Lie algebra, τ is just the
identity on gC. Let g̃ and g denote the corresponding compact forms. Now in [W]
an ”affine shell” (in [F] standard paraboloid) is introduced. This is a submanifold
of codimension 2 in g̃C.

Pa,bC = {x(·) + a1C + b1D ∈ g̃C|2a1b1 + (x, x) = a, b1 = b}

where a, b ∈ C and b 6= 0. The zero hyperplane in g̃C is defined to be the subspace

ĝC = {x(·) + aC + bD ∈ g̃C|b = 0}

For the compact case we denote the affine shell by Pa,b with a, b ∈ R, a 6= 0 and the
zero hyperplane with ĝ. Now let OX be the LG(C)-orbit of X in g̃(C), and let Ogτ
be the G(C) orbit of gτ in (Gτ)C. Here Gτ denotes the connected component of
the principal extension G̃ of the compact group G constructed in the first section.
G̃C is the corresponding complexification. Now we can use our Proposition and the
definition of the coadjoint action to obtain a classification of coadjoint orbits:

Theorem 3.5. (a) Each L(GC, τ) (resp.L(G, τ)) orbit in the complex (resp. com-
pact) affine Lie algebra g̃C (resp.g̃) is contained either in one of the affine shells
Pa,bC resp. Pa,b or in the zero hyperplane.
(b) For a fixed affine shell the monodromy map

Ox(·)+aC+bD 7→ OM( 1
bx)τ
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is well defined and injective.
(c) For a fixed affine shell the map defined in (b) gives a bijection between the
L(GC, τ) (resp. L(G, τ)) orbits in g̃C (resp.g̃) which contain a constant loop and
the GC resp. G orbits in GCτ resp. Gτ which contain an element which is invariant
under conjugation with τ .

Proof. (a) The first statement follows from the definition of the coadjoint action
given above. Just look at the formula for the coadjoint representation and the
definition of Pa,b(C).
(b) We look at the map Ox(·)+aC+bD 7→ OM( 1

b )τ
where, as above M( 1

bx) = z( 1
r )

and z is the fundamental solution of z′ = z · 1
b ·x. Now, we use the definition of the

coadjoint action. That is

Ãd(g)(aC + bD + x) = (ãC + dD + gxg−1 − bg′g−1).

where ã = a+ (g−1g′, y)− b
2 (g′g−1, g′g−1) and g′ = dg′(t)

dt .
But using 3.2(a) we see, that OãC+bD+gxg−1−bg′g−1 is being mapped to Ozg( 1

r τ)
,

but reffund(b) yields

zg(
1
r
) = M(

1
b
xg) = g(0)M(

1
b
x)τg(0)−1τ−1,

hence
zg(

1
r
)τ = g(0)z(

1
r
)τg(0)−1 ∈ Oz( 1

r )τ

Here we used again the definition ofM(x). So the map is well defined and injectivity
follows from 3.2.
(c) If sτ ∈ G(C)τ is invariant under conjugation with τ then so is r · b · log(s) and
Oa1+bD+r·b·log(s) is a preimage of Osτ whenever it belongs to Pa,b. This proves the
second direction. On the other hand, if the orbit Oa2C+bD+x(·) contains a constant
loop aC + bD + x0, then clearly x0 has to be invariant under conjugation with τ .
Now the fundamental solution of the differential equation z′ = z · 1

bx0 is given by
z(t) = exp(t 1bx0). Hence z( 1

r ) is invariant under conjugation with τ as well. �

Corollary 3.6. If ord(τ) = 1 or G is compact, then the monodromy map defined
in 2.27(b) is surjective and hence defines a bijection between the LG - orbits in a
fixed affine shell Pa,b and the G orbits in Gτ .

Proof. If τ = id the statement is trivial, if G is compact we use the fact, that every
G orbit in Gτ intersects Sτ , where S is a Cartansubgroup of G̃ which contains
τ . �

This was the classification of LG orbits in a fixed affine shell, the fundamental
observation is, the these orbits live in the affine Lie algebra g̃ and are in one-one
correspondence with conjugacy classes in a connected component of the underlying
finite dimensional Lie group. It is easy to see, that the image under the monodromy
map are the G(C) orbits in G(C)τ for which there exists a C∞ path z : [0, 1] → G(C)

such that z(0) = e and z(t + 1
r ) = z( 1

r )τz(t)τ
−1, which could also be written as

M(x)τz(t)τ−1 for all t ≥ 0. This could be refereed to as ”rolling up the loops”.
In the case of complex groups, the classification of LGC, τ orbits in g̃C remains
open. Here it is no longer true, that every GC orbit in GCτ contains a τ− invariant
element. (cf. [Mo] for an example), so different arguments may have to be applied.
We have also not dealt with the L(G, τ) orbits in the zero hyperplane, which are
basically the orbits of the adjoint representation of L(G, τ) on its Lie algebra. As
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we shall see later, the orbits relevant for representation theory are these in a fixed
affine shell with b 6= 0. Also the classification of L(G, τ) orbits in g̃ is presumably
not manageable, i.e it certainly yields an infinite dimensional ”moduli space”.
Later we will introduce appropriate measures on the path space we obtained now,
through a classification of affine adjoint orbits, to interpret as final goal the numer-
ator of the Kac Weyl character formula as integral over an appropriate closure of
an affine adjoint orbit.

4. Double loop groups

This section follows [EF] and the recent lecture notes [KW]. Let Στ denote the
elliptic curve, that is a two dimensional torus with a complex structure. We can
write this as Σ = C/(Z + τZ) and call τ = τ1 + iτ2 with τ2 > 0 the modular
parameter of the elliptic curve. Let dz denote the canonical (1, 0) form on Σ.

Definition 4.1. Let g be simple finite dimensional complex Lie algebra, then gΣ

denotes the current algebra of g and Σ. A one dimensional central extension of gΣ

is given by
ĝ = gΣ ⊕ C

defined by the following commutator:

[(X(z, z̄), a), (Y (z, z̄), b)] =
(

[X(z, z̄), Y (z, z̄)],
∫

Σ

〈X, dY 〉 ∧ dz
)
.

We decompose the exterior derivative d = ∂+ ∂̄ and write the Lie algebra cocycle
ωΣ as

ωΣ(X,Y ) =
∫

Σ

(X, ∂̄Y ) ∧ dz.

The cocycle can be seen as Lie algebra cocycle on gΣ with values in the dual
space of holomorphic one forms on Σ. Lie group corresponding to the current
algebra gΣ is given by GΣ, where G denotes a simly conncected, complex Lie group,
corresponding to g. As in the loop group case one can define a central extension
for the current group GΣ, which was introduced in [EF].

4.1. Coadjoint orbits.

Proposition 4.2. The smooth part of the dual (gΣ)∗ of the Lie algebra ĝΣ can be
identified with the space gΣ ⊕ C via the pairing

〈(A, λ), (Y, µ)〉 =
∫

Σ

(A, Y )dz ∧ dz̄ + λµ

where (., .) is the Killing form on g. In the coadjoint representation of ĜΣ an
element g ∈ GΣ acts on the space (ĝΣ)∗ via:

g : (A, λ) 7→ (gAg−1 + λ∂̄gg−1, λ)

The center acts trivially in the coadjoint representation, so the this describes the
coadjoint action completely.

Definition 4.3. Let C/Z denote the cylinder and consider the holomorphic loop
group

LholG = {g : C/Z → G|g is holomorphic}
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Definition 4.4. Fix an element τ ∈ C. Then the ”τ twisted” conjugacy classes of
the loop group LholG are the orbits of the following action:

(29) g(z) : h(z) 7→ hg = g(z − τ)h(z)g(z)−1

Proposition 4.5. Let Σ be an elliptic curve, Σ = C/(Z+τZ). Fix some λ 6= 0. As
in the loop group case there is a one-one correspondence between the set of coadjoint
orbits of the group ĜΣ in the hyperplane {(X,λ)|X ∈ gΣ} ⊂ (gΣ)∗ and the set of τ
twisted conjugacy classes in the holomorphic loop group LholG.

Remark 4.6. In the loop group case we considered the left logarithmic derivative

z′ = Az

for an A ∈ Gl(n,C), now we consider a partial differential equation, the eigenvalue
problem for the ∂̄ operator

Proof. Associate to an element (A, λ) ∈ gΣ ⊕ C the partial differential equation

(30) λ∂̄ψ = Aψ

Let ψ be a solution of (30), defined on the cylinder C/Z. Because ψ is periodic in
τ we have another solution ψ(z − τ). The function ν(z) = ψ(z − τ)−1ψ(z) is again
periodic in Z and holomorphic. Therefore it defines an element in the holomorphic
loop group LholG. Now let ψ1(z) be another solution of (30), then it will have the
form ψ1(z) = ψ(z)µ(z) for a G valued function µ, defined on the cylinder C/Z. We
see, that µ satisfies the Cauchy Riemann euquations, since

∂̄(µ) = ∂̄(ψ−1(z)ψ(z)) = 0

So µ is a holomorphic, G valued function on the cylinder and therefore an element
of LholG. Finally this yields

ν(z) = ψ(z − τ)−1ψ(z) = µ(z − τ)−1ψ1(z − τ)−1ψ1(z)µ(z)

so the τ twisted conjugacy class in LholG does not depend on the choice of a
solution of (30). Let g ∈ GΣ and as before ψ a solution of (30). Then the map gψ
is a solution of the equation

∂̄ψ = (gAg−1 + λ∂̄gg−1)ψ

Since g is periodic in τ we get

ψ(z − τ)−1g(z − τ)−1g(z)ψ(z) = ψ(z − τ)−1ψ(z)

which shows that the restricted conjugacy class associated to the element (A, λ) ∈
gΣ ⊕ C is well defined on the level of coadjoint orbits of the central extension ĜΣ.
Thus, we can define a map

{ĜΣ - orbits in the hyperplane {(A, λ)} ⊂ gΣ ⊕C} → {τ twisted conjugacy classes
in LholG}

Injectivity of the map is clear from the above, the map is surjective since for every
element g ∈ LholG we can find a solution of (30), ψ : C/Z → G such that g(z) =
ψ(z−τ)−1ψ(z). Then we set A = 1

λ ∂̄ψψ
−1. Since ψ(z−τ)−1ψ(z) is holomorphic, A

is periodic in τ . So A is a smooth map from the elliptic curve Σ to the Lie algebra g.
The conjugacy class corresponding to the coadjoint orbit through (A, λ) ∈ gΣ ⊕ C
is the τ twisted conjugacy class through the element g ∈ LholG. �
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5. Poisson transformation and the numerator of the character
formula

In this section we will present the first steps to derive an analogue of Frenkel’s
character formula in the twisted case. First we introduce some notions. Let g̃C
be an arbitrary affine Lie algebra of type X(r)

n and let g̃′C be the untwisted affine
Lie algebra of X(1)

n such that g̃C ⊂ g̃′C and let g̃, g̃′ be the corresponding compact
forms. If g̃C is untwisted we have g̃ = g̃′. Furthermore let R be the root system
of the finite dimensional Lie algebra gC used to construct L(gC, τ) in 2.1, and for
a diagram automorphism τ of gC let Rτ be the folded root system introduced in
the first section. If g̃C is a twisted affine Lie algebra with root system R̃, then
Rτ = R◦. Also, let (., .) denote the Killing form on g̃′C and let (., .)τ denote its
restriction to g̃C. Now we turn to the analytic Kac Weyl character formula from
above. Let Λ be a highest weight of g̃C. There is no essential loss of generality
by assuming 〈Λ, d〉 = 0. Then, after identifying h̃C ∼= h̃∗C via (., .)τ we can choose
a ∈ C and H ∈ h◦C such that Λ + ρ̃ = aD + H. The condition Λ ∈ P̃+ implies
a ∈ iR, Im(a) < 0 and H ∈ ih◦. The numerator of the Kac Weyl character formula
evaluated at bD +K now reads:

(31)
∑
w∈W̃

ε(w)e(w(aD+H),bD+K)τ

We now turn to a theorem of [F] which uses the Poisson transformation formula to
give an interesting identity of the numerator of the Kac Weyl character formula.

Proposition 5.1. [F]4.3.4 The following identity is valid

∑
λ∈P+

χλ(eh)χλ(e−k)−
t
2 |λ+ρ|2 =

(
2π
t

) l
2

vol(Q∨)
e

1
2t ||h||

2+ 1
2t ||k||

σ(h)σ(−k)
∑
w∈W

ε(w)e−
1
t 〈w(2πid+h), 2πid+k〉

Proof. Here χλ denotes the finite dimensional irreducible character. Taking the
usual identity for normalized characters in the finite dimensional theoy one can
rewrite the left hand side of the above equality. σ(h) and σ(−k) denotes the de-
nominator of the Weyl character formula and h, k ∈ h. With these definitions we
can rewrite the left hand side of the above equation:∑

w∈W
ε(w)e−

1
t 〈w(2πid+ h), 2πid+ k〉

=
1

σ(h)σ(−k)
∑
λ∈P+

( ∑
w1∈W

ε(w1)e〈w1(λ+ρ),h〉

)( ∑
w2∈W

ε(w2)e〈w2(λ+ρ),−k〉

)
e−

t
2 |λ+ρ|2

=
1

σ(h)σ(−k)
∑
λ∈P+

∑
w1∈W

∑
w∈W

ε(w1)ε(ww1)e〈w1(λ+ρ),h−wk〉e−
t
2 |λ+ρ|2

=
1

σ(h)σ(−k)
∑
p∈P

∑
w∈W

ε(w)e〈µ,h−wk〉e−
t
2 ||µ||

2

As usual ε(w) = (−1)l(w) where l(w) denotes the length of Weyl group element.
The above calculation is valid, since singular weights do not contribute to the sum.
Next one observes that 〈w̃(bd+ h), bd+ k〉 can we rewritten. Here w̃ = w−1 · γ, γ ∈
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Q∨, w ∈W and the action of Q∨ on h̃C is defined by

γ(h+ ac+ bd) = h+ ac+ bd+ bγ −
(
〈h, γ〉+

b

2
〈γ, γ〉

)
c

with γ ∈ Q∨, h ∈ hC a, b ∈ C. So we first insert into this action and get

〈bd+ h+ bγ − 〈h, γ〉c− b

2
, bd+ wk〉

Now we use the bilinearity and that the properties of 〈, ., 〉 which are given by (2.8).
This yields

〈h+ bγ, wk〉 − 〈h, bγ〉 − 1
2
〈bγ, bγ〉

Applying the polarization identity yields

= −1
2
||bγ + h− wk||2 +

1
2
||h||2 +

1
2
||k||2

Now we insert these calculations into the statement of the theorem:

e
1
2t ||h||

2+ 1
2t ||k||

∑
w∈W

ε(w)e−
1
t 〈w(2πid+ h), 2πid+ k〉 =

∑
γ∈2πiQ∨

∑
w∈W

ε(w)e
1
2t ||γ+h−wk||

2

Now we apply the Poisson transformation formula stated below (a proof of the
formula can be found in [Neu]).
Set f(µ) = e〈µ,x〉−

t
2 ||µ||

2
and insert into the definition of the Fourier Transformation

f̂(γ) =
∫
e〈µ,γ〉f(µ)dµ

f̂(γ) =
∫
e〈µ,γ〉−

t
2 ||µ||

2
dµ = e−

t
2 ||x+y||

2
∫
e−

t
2 ||µ−

x+y
t ||2dµ

= e−
t
2 ||x+y||

2
(

2π
t

) l
2

Now we set x = h− wk and obtain∑
p∈P

∑
w∈W

ε(w)e〈µ,h−wk〉e−
t
2 ||µ||

2
=
(

2π
t

) l
2

vol(Q∨)
∑

γ∈2πiQ∨

∑
w∈W

ε(w)e
1
2t ||γ+h−wk||

2

Putting this calculations together yields the assertion. �

Now we deduce a similar theorem for the case of twisted affine Lie algebras. First
remember our identity 31. Let us assume in the following b ∈ iR and K ∈ ih◦. We
then set t = −1

ab , H = H
a and k = K

b yielding t ∈ R+ and h, k ∈ h. With 2πid = D

the sum
∑
w∈W̃ ε(w)e(w(aD+H),bD+K)τ now reads

(32)
∑
w∈W̃

ε(w)e
−1
t (w(2πiD+h),2πiD+k)τ

Let us set c = 2πiC. Then the lattice M operates on h̃C like in the theorem from
[F] above. That is

γ(h+ ac+ bd) = h+ ac+ bd− ((h, γ)τ + ba0
2 ||γ||

2
τ )c

Now the same calculation as above shows for w ∈W ◦, γ ∈M and w−1γ ∈ W̃ :
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(w−1γ(2πid+ h), 2πid+ k)τ = −1
2 ||2πia0γ + h− wk||2τ + 1

2 ||h||
2
τ + 1

2 ||k||
2
τ .

Now we put our calculations together and this yields:

(33)∑
w∈W̃

ε(w)e(w(aD+H),bD+K)τ =
∑
w∈W◦

ε(w)e
−1
t (−1

2 ||2πia0γ+h−wk||2τ+ 1
2 ||h||

2
τ+

1
2 ||k||

2
τ ) =

∑
w∈W◦

ε(w)e
1
2t ||2πia0γ+h−wk||2τ · e

−1
t ·(

1
2 ||h||

2
τ+

1
2 ||k||

2
τ ) =∑

w∈W◦

ε(w)e
1
2t ||2πia0γ+h−wk||2τ · e

−1
2t ·(||h||

2
τ+||k||

2
τ ) =

e
−1
2t ·(||h||

2
τ+||k||

2
τ ) ·

∑
w∈W◦

ε(w)e
1
2t ||2πia0γ+h−wk||2τ =

e
−1
2t ·(||h||

2
τ+||k||

2
τ ) ·

∑
γ∈2πia0M

∑
w∈W◦

ε(w)e
1
2t ||γ+h−wk||

2
τ =

e
−1
2t ·||h||

2
τ− 1

2t ||k||
2
τ ·

∑
γ∈2πia0M

∑
w∈W◦

ε(w)e
1
2t ||γ+h−wk||

2
τ

We now need to apply again the Poisson transformation formula. Recall, that
for a euclidean vector space V , a lattice Q ∈ V and a Schwartz function f : V → C
one has: ∑

µ∈Q∨
f̂(µ) = volQ

∑
γ∈Q

f(γ)

with

f̂(µ) =
∫
V

e2πi(γ,µ)f(γ)dγ.

For a fixed x ∈ h◦ set f(µ) = e(x,µ)τ− t
2 ||µ||

2
τ . Then we get with the same calculation

as in Frenkel’s theorem:

f̂(γ) = (
2π
t

)
l
2 e

1
2t ||x+2πiγ||2τ

with l = dimR h◦. So for x = h − wk with h, k ∈ h◦ and w ∈ W ◦ we obtain the
identity

(34)
∑

γ∈a0M

e
1
2t ||2πγ+h−wk||

2
τ = vol(a0M)−1(

2π
t

)
l
2

∑
µ∈(a0M)∨

e(µ,h−wk)τ−
t
2 ||µ||2τ

Here we just inserted f̂(µ) in the last sum of the above expression. We will now
go on and try to analyse which types of root systems can generate our lattice M .
It will turn out, that we can exploit the root system R1 introduced in the first
section, and this will give us the possibility to use the characters of the underlying
non connected Lie group.
If R̃ is of type Aff1 then θ is a long root in R◦, and if R̃ is of type Aff2 or Aff3,
but not of type A(2)

2n , then θ is a short root in R◦. In case R̃ is of type A(2)
2n then

R◦ is of type BCn, and θ is a root of medium length in R◦. So if R̃ is of type X(r)
n

with r = 2, 3 and R̃ 6= A
(2)
(2n) then θ◦ is a long root in R◦∨ and hence M is the

lattice which is generated by the long roots in R◦∨. If R̃ is of type A(2)
(2n) then θ∨

is of medium length in R◦∨ and in this case we have a0 = 2. Thus in all cases M
is the lattice generated by the root system R1 from the first section. Now for an
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arbitrary root system S let P ◦(S) denote the weight lattice of S. Then the above
implies:

(35)
∑

γ∈a0M

e
1
2t ||2πγ+h−wk||

2
τ = vol(a0M)−1

(
2π
t

) l
2 ∑
µ∈P◦(R1)

e(µ,h−wk)τ−
t
2 ||µ||

2
τ

Putting the above formulas together we get:
(36)∑
w∈W̃

ε(w)e(w(aD+H),bD+K)τ = e
−1
2t ·||h||

2
τ− 1

2t ||k||
2
τ ·

∑
γ∈2πia0M

∑
w∈W◦

ε(w)e
1
2t ||γ+h−wk||

2
τ

Then we get because of the Poisson resummation of the sum, which ranges over
γ ∈ a0M and the above root system considerations:
(37)∑
w∈W̃

ε(w)e(w(aD+H),bD+K)τ =
e
−1
2t ·||h||

2
τ− 1

2t ||k||
2
τ

vol(ZR1)( 2π
t )

l
2

∑
w∈W◦

∑
µ∈P◦(R1)

ε(w)e(µ,h−wk)τ−
t
2 ||µ||

2
τ

Now let W (R1) denote the Weyl group of the root system R1. It is a well known
fact that after the choice of a basis of R1 every weight λ ∈ P ◦(R1) is conjugate
under W (R1) to some dominant weight λ′ ∈ P ◦+(R1). Since the root systems R1

and R◦ are dual to each other, we have W ◦ = W (R1). So we apply this observation
to the double some in the last expression above and get:∑

w∈W◦

∑
µ∈P◦(R1)

ε(w)e(µ,h−wk)τ−
t
2 ||µ||

2
τ =

∑
µ∈P◦+(R1)

∑
w∈W◦

∑
w′∈W◦

ε(ww′)ε(w′)e(w
′µ.h−wk)e

t
2 ||µ||

2
τ

Here we have identified h◦ and h◦∗ via (., .). In the above calculation singular
weights cancel out, so it is enough to some over the strictly dominant weights, or
equivalently to replace λ by λ + ρr with ρr = 1

2

∑
ᾱ∈R1

+
ᾱ as in the introduction.

Hence ∑
w∈W◦

∑
µ∈P◦(R1)

ε(w)e(µ,h−wk)τ−
t
2 ||µ||

2
τ =

∑
λ∈P◦+(R1)

∑
w∈W◦

∑
w′∈W◦

ε(ww′)ε(w′)e〈w
′(λ+ρτ ),h−wk〉e−

t
2 ||λ+ρτ ||2τ

Now the characters of the underlying non connected Lie group come into play. Re-
member the definition of χτλ, A

τ and δτ . We had Aτ (µ) =
∑
w∈W τ ε(w) · e(wµ)

and ρτ where ρτ is the same as above. Furthermore we defined δτ as δτ =
e(ρτ ) ·

∏
ᾱ∈R1

+
(1 − e(−ᾱ)). And we defined χτλ to be Aτ (λ + ρτ )/δτ . So it is

easy to see the our sum above can be written as

∑
λ∈P◦+(R1)

δτ (h)δτ(−k)χτλ(h)χτλ(−k)e−
t
2 ||λ+ρτ ||2τ

As before, let gC be the finite dimensional complex Lie algebra used to construct
L(gC, τ) with root system R and compact form g. Let G be the simply connected
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compact Lie group belonging to g and let Gτ denote the connected component
belonging to the non connected Lie group Go 〈τ〉 containing τ . In the first section
we set χτλ(h) = χ̃λ(ehτ) for h ∈ h◦. Here χ̃ denotes the character of the G o 〈τ〉
belonging to the highest weight λ. Observe that in the notion of the first section
we have h◦ = LS0. So putting everything together, we have the following theorem,
which is the analogue of the theorem proofed in [F]:

Theorem 5.2. For h, k ∈ h◦ one has

e
1
2t ||h||

2
τ e

1
2t ||k||

2
τ

∑
w∈W̃

ε(w)e−
1
t (w(2πid+h),2πid+k)τ =

δτ (h)δτ (−k)
vol(ZR1)( 2π

t )
l
2

∑
λ∈P◦+(R1)

χλ(ehτ)χλ(e−kτ)e−
t
2 ||λ+ρτ ||2τ

Proof. One has:

∑
w∈W̃

ε(w)e(w(aD+H),bD+K)τ =
e
−1
2t ·||h||

2
τ− 1

2t ||k||
2
τ

vol(ZR1)( 2π
t )

l
2

∑
w∈W◦

∑
µ∈P◦(R1)

ε(w)e(µ,h−wk)τ−
t
2 ||µ||

2
τ

But
∑
w∈W◦

∑
µ∈P◦(R1) ε(w)e(µ,h−wk)τ−

t
2 ||µ||

2
τ was deduced to be

∑
λ∈P◦+(R1)

δτ (h)δτ (−k)χτλ(h)χτλ(−k)e−
t
2 ||λ+ρτ ||2τ

and the characters in the above sum are exactly χλ(ehτ) resp. χλ(e−kτ). Inserting
this into the above sum one get

∑
w∈W̃

ε(w)e(w(aD+H),bD+K)τ =

e
−1
2t ·||h||

2
τ− 1

2t ||k||
2
τ

vol(ZR1)( 2π
t )

l
2

∑
λ∈P◦+(R1)

δτ (h)δτ (−k)χλ(ehτ)χλ(e−kτ)e−
t
2 ||λ+ρτ ||2τ .

But this expression is clearly

e
1
2t ||h||

2
τ e

1
2t ||k||

2
τ

∑
w∈W̃

ε(w)e−
1
t (w(2πid+h),2πid+k)τ =

δτ (h)δτ (−k)
vol(ZR1)( 2π

t )
l
2

∑
λ∈P◦+(R1)

χλ(ehτ)χλ(e−kτ)e−
t
2 ||λ+ρτ ||2τ

�
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6. The heat equation on a compact Lie group

Let ∆G denote the Laplacian on the compact simply connected Lie group G with
respect to the Riemannian metric on G induced by the negative of the Killing form
on gC. We can pull back this metric to Gτ such that right multiplication with τ
induces an isometry between the Riemannian manifolds G and Gτ . The Laplacian
on Gτ shall be denoted with ∆Gτ . Now for a fixed parameter T > 0 the heat
equation on Gτ reads

∂f(gτ, t)
∂t

=
sT

2
∆Gτf(gτ, t)

with g ∈ G, s ∈ R, s > 0 and f : Gτ → R is continuous in both variables, C2 in the
first and C1 in the second variable. The fundamental solution of the heat equation
is defined by the initial data

f(gτ, t)|t=+0 = δτ (gτ)

where δτ is the Dirac delta distribution centered at τ ∈ Gτ . For a highest weight
λ ∈ P ◦+(R) of G let d(λ) denote the dimension of the corresponding irreducible
representation of G and χλ its character. Then by results of [Fe] the fundamental
solution of the heat equation is given by

(38) us(g, t) =
∑

λ∈P◦+(r)

d(λ)χλ(g)e−
sT
2 (||λ+ρ||2−||ρ||2)

Now G andGτ are isometric as Riemannian manifolds, so the fundamental solutions
of the corresponding heat equations coincide. That is, the fundamental solution of
the heat equation on Gτ is given by

(39) vs(gτ, t) =
∑

λ∈P◦+(r)

d(λ)χλ(g)e−
sT
2 (||λ+ρ||2−||ρ||2)

There is a well known identity for the characters of a compact group which follow
easily from the orthogonality relations

d(λ)
∫
G

χλ(g1gg−1
2 g−1)dg = χλ(g1)χλ(g−1

2 ),

where dg denotes the normalized Haar measure on G. Now using a version of
the orthogonality relations for non connected groups one can deduce an analogous
formula for the characters of the outer component.

d(g)
∫
G

χλ(g1τgτ−1g−1
2 g−1)dg = χλ(g1τ)χλ(τ−1g−1

2 )

Hence we obtain by theorem 2.17 that χλ(gτ) = 0 if λ is not τ invariant. Further-
more, we have ||λ + ρ||2 = ||λ + ρτ ||2τ if λ is τ invariant Thus we can use theorem
5.2 exchanging the roles of s and t and fixing the parameter value s = T we have
proved the following proposition.

Theorem 6.1. ∑
w∈W̃

ε(w)e−
1
t (w(2πid+h),2πid+k)τ =

e−
1
2t ||h||

2
τ e−

1
2t ||k||

2
τ e−

t
2 ||ρ

τ ||2τ δτ (h)δτ (−k)

vol(ZR1)
(

2π
t

) l
2

·
∫
G

v t
T2

(gehτg−1τ−1e−kτ, T )dg
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7. Wiener measure

The Wiener measure of a euclidean vector space with variance s > 0 is a measure
ωsV on the Banach space of paths

CV = {x : [0, T ] → V |x(0) = 0, xcontinuous}
(the space has as norm the supremum norm) and is defined using the fundamental
solution ws(x, t) of the heat equation

∂f(x, t)
∂t

=
sT

2
∆V f(x, t)

on V as follows: First, one defines cylinder sets on CV to be the following subsets
of CV

{x ∈ CV |x(t1) ∈ A1, . . . , x(tm) ∈ Am}
with 0 < t1 ≥ t2, . . . ,≥ tm ≥ T , m ∈ N, and where A1, . . . , Am are Borel sets in V .
Then the Wiener measure ωsV of variance s > 0 is defined on the cylinder sets of
CV via:

ωsV (x(t1) ∈ A1, . . . , x(tm) ∈ Am) =∫
A1

. . .

∫
Am

ws(∆x1,∆t1) . . . ws(∆xm,∆tm)dx1 . . . dxm

where dx is a Lebesgue measure on V and we have set xk = x(tk),∆xk = xk −
xk−1,∆tk = tk−tk−1 and x0 = 0. The conditional Wiener measure ωsV,X of variance
s > 0 is defined on the closed subspace CV,X ⊂ CV with fixed endpoints x(t) = X
on the cylinder sets via

ωsV,X(x(t1) ∈ A1, . . . , x(tm−1) ∈ Am−1) =∫
A1

. . .

∫
Am

ws(∆x1,∆t1) . . . ws(∆xm,∆tm)dx1 . . . dxm−1

where additionally xm = X and tm = T . Now a classical result in the theory
of Wiener measure states that the ”measures” ωsV , ω

s
V,X are σ additive on the σ

algebra generated by the cylinder sets in CV and CV,X respectively. This result is
proved in [Kuo] chapter 4. Furthermore, the σ algebras generated by the cylinder
sets are exactly the Borel σ algebras of the respective Banach spaces. As another
result we have

ωsV (CV ) = 1 and
ωsV,X(CV , X) = ws(X,T )

where ws(x, t) is the fundamental solution of the heat equation on V. Using the
fundamental solution of the heat equation on the compact Lie group G we can define
Wiener measure ωsG and the conditional Wiener measure ωsG,Z on the complete
metric space

CG = {z : [0, T ] → T |z(0) = e, zcontinuous}
and CG,Z = {z ∈ CG, Z(T ) = Z} in exactly the same fashion as the Wiener
measure on V. The metric on CG is given by ε(z, z1) = supt∈[0,T ] ε0(z(t), z1(t))
where ε0(g, g1) denotes the length of the shortest geodesic in G connecting two
given points g, g1 where the metric on G still being given by the negative of the
Killing form on g. For the convenience of the reader we state the notion of Wiener
measure on a compact Lie group, although it is exactly similar to the definition in
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euclidean space.
As before we call cylinder sets the following subsets of CG

{z(·) ∈ CG : z(t1) ∈ A1, . . . , z(tm) ∈ Am, 0 < t1 < . . . < tm ≤ T}

where A1, . . . , Am are Borel subsets of G. Now the Wiener measure of variance
t > 0 is defined on the cylinder sets of CG by (a)

ωsG(x(t1) ∈ A1, . . . , x(tm) ∈ Am) =∫
A1

. . .

∫
Am

ws(∆x1,∆t1) . . . ws(∆xm,∆tm)dx1 . . . dxm

(b) The conditional Wiener measure reads:

ωsG,Z(x(t1) ∈ A1, . . . , x(tm−1) ∈ Am−1) =∫
A1

. . .

∫
Am

ws(∆x1,∆t1) . . . ws(∆xm,∆tm)dx1 . . . dxm

where dz is a Haar measure on G and ∆zk = zkz
−1
k−1, z0 = e,∆tk = tk− tk−1, t0 = e

and in case (b).
One of the fundamental properties of Wiener measure is its translation quasi in-
variance. This is a consequence of the Cameron Martin theorem, see e.g [Str] for a
nice exposition on this theorem. First note, that we denote, following [F] and [W1]
an integral with respect to Wiener measure by:∫

CV

f(x)dωsV

if f is an integrable function and instead of the above expression by the symbolic
expression: ∫

CV

f(x)e−
1
2t (x

′,x′)dωsV

This notion is introduced in [F] and can be justified since the Wiener measure
is viewed as pullback of the standard Gaussian measure on Rn. Frenkel deduces
the translation quasivariance of Wiener measure through the symbolic expression
above: ∫

CV

f(x)e−
1
2t (x

′,x′)dωsV =
∫
CV

f(x+ y){e− 1
2t e

(x′+y′,x′+y′)
} =∫

CV

f(x+ y)e−
1
t (x

′,y′)− 1
2t (y

′,y′){e− 1
2t (x

′,x′)dωsV }

Here f : CV → R is an integrable function an y ∈ CV is a C∞ path. One can
deduce the quasi-invariance for the conditional Wiener measure similar:
If f : CV,X → R is an integrable function the translation quasi-invariance now
reads:∫

CV,X

f(x)dωsV,X(x) =
∫
CV,X+Y

f(x+ y)e−
1
s (x′,y′)− 1

2s (x′,y′)dωsV,X+Y (x)

with Y = y(T ) In the formulas above, (x′, y′) denotes the Stieltjes integral
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1
T

∫ T

0

(y′(t), dx(t))

and (., .) denotes the scalar product on the vector space V . In Ito’s construction
of BM on a compact Lie group, an important connection between BM on the Lie
algebra and BM on the Lie group appeared. The so called Ito map. Let y ∈ Cg be
a continuous path. For an n ∈ N and for k = 0, . . . , 2n − 1 a path zn : [0, T ] → G
is defined by zn(0) = e and

zn(t) = zn(
k

2n
T ) exp(y(t)− y(

k

2n
T ))for

k

2n
T < t ≤ k + 1

2n
T

The goal of this construction is, as above, to deduce an isomorphism between the
Wiener measures on the Lie algebra and the Lie group. If y is a differentiable path,
then limn→∞ zn is the fundamental solution of the differential equation z′ = zy′ and
hence defines a path in G. Now a map i is defined, which according to [McKean]
turns out to be an isomorphism. The map

i : Cg → CG

is defined via

y → lim
n→∞

znif the limit exists andeif the limit does not exist.

Now the fundamental result of [McKean] is the following: the series zn converges
with n→∞ in the topology of CG almost everywhere with respect to the Wiener
measure on the Lie algebra, which is as usual denoted by ωsg. Then as above the map
i induces a measure on CG, the Wiener measure ωsG. So i defines an isomorphism

I : L1(Cg, ω
s
g) → L1(CG, ωsG)

The proof of this appears in [McKean] page 117-123. We can state the analogous
quasitransformation property of Wiener measure on a compact Lie group. Let
f : CG → R be a integrable function on CG, let g ∈ CG be a C∞ path. Then the
translation quasi-invariance of the Wiener measure with variance s > 0, respectively
the conditional Wiener measure reads:

(40)
∫
CG

f(z)dωsG(z) =
∫
CG

f(zg)e−
1
s (z−1z′,g′g−1)g− 1

2s (g−1g′,g−1g′)gdωsG(z)

and for the conditional Wiener measure:∫
CG,Z

f(z)dωsG,Z(z) =
∫
CG,zg(T )−1

f(zg)e−
1
s (z−1z′,g′g−1)g · e− 1

2s (g−1g′,g−1g′)gdωsG,Zg(T )−1(z)

Here the term (z−1z′, g′g−1)g should be interpreted as the Stieltjes integral

1
T

∫ T

0

(g′g−1, d(i−1(z)))g

where (., .) denotes the negative of the Killing form on g. (The subscirpt g is added
in order to avoid confusions in the calculations below). Note, that i−1 is according
to the results of [McKean] indicated above, a well defined map almost everywhere
on CG with respect to ωsG. In [F] Frenkel calculates the following path integral
using the translation quasi-invariance of the Wiener measure.
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Proposition 7.1. ([F]Prop.5.2.12) Let K,Y ∈ L(g, τ), g ∈ L(G, τ) be elements
such that K = gY g−1 − g′g−1 and g(0) = e than one has

e−
||Y ||2g

2t

∫
CG,Z

e
1
t (z

−1z′,Y )gdωsG,Z(z) = e−
||K||2g

2t

∫
CG,Z

e
1
t (z

−1z′,K)gdωsG,Z(z) =

vs(Za−1
0 , T ) where a0 = a(T ), Y = a−1a′, a(·) is a C∞ path in CG

Proof. We first make a change of variables in the first integral and then this reads:∫
C
Gg

−1
0 ,Z

e
1
t ((zg)

−1(zg)′,Y )gdωs
G,Zg−1

0
(zg)

Let us first calculate the inner product, that is

((zg)−1(zg′), Y )g = ((g−1z−1(z′g + zg′)), Y )g =

(g−1z−1z′g, Y )g + (g−1z−1zg′, Y )g = (g−1z−1z′g, Y )g + (g−1g′, Y )g =

(z−1z′, gY g−1)g + (g−1g′, Y )g

Inserting this in the integral above and considering the quasi-invariance of the
integral we get:∫
C
Gg

−1
0 ,Z

e
1
t (g

−1g′,Y )g+ 1
t (z

−1z′,gY g−1)g− 1
t (z

−1z′,g′g−1)g− 1
2t (g

−1g′,g−1g′)gdωs
G,Zg−1

0
(z)

where g(T ) = g0. Let g(·) ∈ L(G, τ) i.e g(T ) = g(0) = e so we obtain the first
part of the statement. For the second part let g = a, hence g0 = a0 ,g−1g′ = Y
since Y = a−1a′ in the assumption of the proposition. So the inner product in our
integral is now:
− 1

2 (Y, Y ) + (g−1g′, Y ) + (z′z−1, gY g−1)− (z−1z′, g′g−1)− 1
2 (g−1g′, g−1g′) = 0

and we obtain the second part. �

In [W1] a slightly different notion is introduced, but the statement and the proof
of the theorem stays the same. The theorem in [W1] reads:

e−
||Y ||2g

2t

∫
CG,Z

e
1
t (z

−1z′,Y )gdωsG,Z(z) = us(Zg(T )−1, T ),

where g ∈ CG is a C∞ path and g′ = gY . Now let Ogτ denote the G− orbit in

Gτ containing the element gτ . Multiplying each element of Gτ with τ−1 we can
identify Ogτ with a G− orbit in G, where G acts on itself by twisted conjugation:
(h, g) 7→ (hgτh−1τ−1). (In fact, this is twisted conjugation and the multiplication
with τ−1). This G− orbit obtained by the above statement will be denoted by Ogτ
as well. We will rewrite Theorem 6.1 as integral over G. To do this we will again
need a path space. So let us define CG,Ogτ ⊂ CG to be the space

C = {C([0, T ] → G)} with z(T ) ∈ Ogτ
So we have a space of continuous path with endpoints in Ogτ . And on this path
space we can introduce conditional Wiener measure ωsG,Ogτ . This is defined by

∫
CG,Ogτ

f(z)dωsG,Ogτ (z) =
∫
G

(
∫
C
G,g1gτg

−1
1 τ−1

f(z)dωsC
G,g1gτg

−1
1 τ−1

(z))dg1
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where f is integrable on CG,g1gτg−1
1 τ−1 for almost all g1 ∈ G. Now we insert this

definition in Theorem 7.1 and get:

Corollary 7.2. Let Y ∈ L(g, τ) and let g ∈ CG be a C∞ path such that g′ = gY

Then

e−
||Y ||2g

2t

∫
CG,Z

e
1
t (z

−1z′,Y )gdωsG,Z(z) =
∫
G

us(g1Zτg−1
1 τ−1g(T )−1, T )dg1

where as before us(z, z) is the fundamental solution of the heat equation on G.

So let us introduce the path space

CGτ = z̃ : [0, T ] → Gτ |z̃τ−1 ∈ CG

Now it is easy to introduce Wiener measure on this path space. This is exactly
the same procedure as in the cases described before. Since the definition of Wiener
measure depends on the fundamental solution of the heat equation and we observed,
that G and Gτ are isometric as Riemannian manifolds, so the fundamental solutions
of the heat equations coincide. So Wiener measures on this spaces coincide as well.
Due to this fact, we can define Wiener measure on Gτ through Wiener measure on
G. ∫

CGτ

f(z̃)dωsGτ (z̃) =
∫
CG

f̂(z̃τ−1)dωsG(z̃−1),

where f̂ is a function on CG which is given by f̂(z) = f(zτ). The conditional Wiener
measures CGτ,Zτ and CGτ,Ogτ are defined analogously. Now recall 6.1 which reads:

Theorem 7.3. ∑
w∈W̃

ε(w)e−
1
t (w(2πid+h),2πid+k)τ =

e−
1
2t ||h||

2
τ e−

1
2t ||k||

2
τ e−

t
2 ||ρ

τ ||2τ δτ (h)δτ (−k)

vol(ZR1)
(

2π
t

) l
2

·
∫
G

v t
T2

(gehτg−1τ−1e−kτ, T )dg

Looking at this expression we first observe, that we will have to change our
paramter in the fundamental solution of the heat equation in Corollary 7.2. So let
us set s = t

T 2 . Now the Corollary reads, if we interpret it over CGτ ,OZτ

e−
||Y ||2gτ

2

2t

∫
CGτ ,OZτ

e
T2
t (z−1z′,Y )gdω

t
T2

Gτ,OZτ (zτ) =
∫
G

v t
T2

(g1Zτg−1
1 τ−1g(T )−1τ, T )dg1

where we just inserted into the expression of Corollary 7.2 and used the new param-
eter, as well as the remark on the function f̂ . Of course, vs(gτ, t) is the fundamental
solution of the heat equation on Gτ . Let us fix a parameter value T = 1

r . Observe,
that for Y ∈ L(g, τ) we then have ||Y ||r = −||Y ||g. So for h, k ∈ h◦ we can set
Y = 1

T k = rk and for Z = eh. The motivation for this comes from the fact, that we
want to insert this manipulations in the integral of Theorem 2.34, we then obtain
the same integral as in the rewritten corollary 2.43 from above, and then we can
use this, to rewrite Theorem 2.34 with respect to the Wiener measure. So from
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the above considerations we have g(T )−1 = ek. So first we insert Z = eh into the
integral of Theorem 2.34 and with g(T )−1 = k we get:∫

G

v t
T2

(gZτg−1g(T )−1τ, T )

but this is exactly the integral of the rewritten corollary, so we get for h, k ∈ h̄:

Theorem 7.4. ∑
w∈W̃

ε(w)e−
1
t (w(2πid+h),2πid+k)τ =

δτ (h)δτ (−k)e− 1
2t ||h||τ−

t
2 ||ρ

τ ||τ

vol(ZR1)( 2π
t )

l
2

∫
CGτ,O

eh
τ

e
1
tr2

(z−1z′,k)gdωtr
2

Gτ,O
eh
τ (zτ)

7.1. A generalization of Frenkel’s character formula. In this section we will
end our exposition of [W1] and indicate, how the integral of Theorem 7.4 can be
interpreted as an integral of a certain closure of a coadjoint orbit of L(G, τ). All the
necessary ingredients of a generalization of Frenkel’s character formula, which was
stated in the introduction, are present. The classification of affine adjoint orbits, the
Poisson resumation of the numerator of the analytic Kac-Weyl character formula,
the interpretation of the resulting integral as integral over a path space, on which
a well understood measure could be introduced. To finish the analogue of Frenkel’s
program, Wendt introduces certain closures of the spaces so far discussed. Then
using the natural mappings between this spaces, he obtains an analogue of Frenkel’s
character formula. Recall the notion of the affine shell

Pa,bC = {x(·) + a1C + b1D ∈ g̃C|2a1b1 + (x, x) = a, b1 = b}

So for a, b ∈ C and b 6= 0 let Pa,b be the affine shell just stated above. Since Pa,b is
a submanifold of g̃ we can identify Pa,b with L(g, τ) via the projection p : C 7→ 0
and D 7→ 0. We now observe how the affine adjoint action transformes under this
projections, the coadjoint action was given by

Ãdg(aC + dD+ y) = aC + bD+ gyg−1 − bg′g−1 + (〈g−1g′, y〉 − b

2
)〈g′g−1, g′g−1〉)C

Now the affine adjoint action responds under the projections above:

(g, y) 7→ gyg−1 − bg′g−1

we now have a series of maps

Pa,b p→ L(g, τ) s→ C∞g
i→ C∞G

eτ→ Gτ

where s(x)(t) =
∫ 1

0
x(κ)dκ and where i maps a path y ∈ Cg∞ to the fundamental

solution of the differential equation z′ = 1
b zy. The map eτ is given by eτ (z) = z( 1

r τ).
From Ito’s isomorphism we have a map ĩ : Cg → CG which is the extension of the
map i : C∞g → C∞G above to the corresponding completions Cg and CG. Now every
element y ∈ Cg defines an element dy ∈ L(g, τ)∗ via the Stieltjes integral

〈x, dy〉 = r

∫ 1
r

0

(x(κ), dy(κ))
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where (., .) denotes the Killing form on g. Now for y ∈ L(g, τ) we have 〈x, d(s(y))〉 =
(x, y)τ where (., .)τ is the bilinear form on L(g, τ) as used throughout our exposition.
Now we use the smooth part of L(g, τ)∗, denoted by L(g, τ)∗0, which is just the
image of Cg under this map with the topology induced from Cg. And let s̃ :
L(g, τ)∗0 → Cg denote the inverse map. As seen in the diagram below, s̃ is the
extension of the map s. Putting all together we get the following commutative
diagram: Here eτ denotes the extension of the map eτ to CG. In the classification
of affine adjoint orbits we have seen that an L(G, τ) Orbit Ox(·)+a1C+b1D, which
lives in Pa,b, is mapped to a Gτ orbit Oeτ◦i◦s(x) When we discussed topologies on
affine Lie algebras we introduced the C∞ topology, as well as the Hilbert space
L(g, τ)(L2), on which we defined the norm

|x(·)| = sup
t∈[0, 1r ]

|
∫ t

0

x(κ)dκ|

The completion of L(g, τ)(L2) with respect to this norm will be L(g, τ)∗0. So we
obtained a series of completions:

L(g, τ) ⊂ L(g, τ)(L2) ⊂ L(g, τ)(L2)∗0

with respect to the L2 topology on L(g, τ) and the norm on L(g, τ)(L2) introduced
above. Now we can introduce an appropriate closure of an affine adjoint orbit. If
we look at the mappings in the diagram above, we see that the set s̃−1 ◦ ĩ−1 ◦
ẽ−1
τ (Oeτ◦i◦s(x)) ⊂ L(g, τ)∗0 can be viewed as the closure of the affine adjoint orbit
Ox(·)+a1C+b1D in L(g, τ)∗0 and is mapped to CG,Oi◦s(x) under the map ĩ ◦ s̃. So the
integral ∫

CGτ ,OZτ
f(z)dωsGτ,OZτ (zτ)

can be viewed as integral over the closure of the affine adjoint orbit in L(g, τ)∗0.
The observations above allow one to interpret the numerator of the Kac Weyl
character formula in Theorem 7.4 as integral over the closure in L(g, τ)∗0 containing
aD+H = Λ+ ρ̃ where we use the notion introduced in section 2.2. To interpret the
integral in proposition 2.44 as character formula, we have to use the formulations
introduced in our first reformulation of the Kac- Weyl character formula, that is we
have set the parameters t = − 1

ab , b = H
a and K = k

b for b ∈ iR and K ∈ ih◦. Note
the numerator of the Kac Weyl character formula is a function p not depending
on the highest weight Λ of the corresponding representation, so it can be seen as
the analogue of the universal function appearing in the original Kirillov character
formula. With the repeated notions above the analogue of Frenkel’s character
formula in the twisted case now reads:

Theorem 7.5. ([W1] Theorem 4.9) Let bD + K ∈ h̃ with K ∈ h◦ and b ∈
iR,im(b) < 0 Furthermore, for Λ ∈ P̃+ let Λ + ρ̃ = aD + H. Then the char-
acter of the highest weight representation corresponding to Λ evaluated at bD +K
is given by

ch(L(Λ))(bD +K) = p−1(bD +K) ·
δτ (Ha )δτ (−K

b )e
ab
2 ||

H
a ||τ−

1
2ab ||ρ

τ ||τ

vol(ZR1)(−2abπ)
l
2

·
∫
CGτ ,O

(e
H
a )τ

e−
ab
r2

(z−1z′,Kb )gdω
− r2
ab

Gτ,O
(e
H
a )τ

(zτ).
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Remark 7.6. It would be interesting to obtain a kind of ntegration, that allows
one to integrate over the coadjoint orbit itself, rather the continouus closure. This
would open the way to apply the orbit method in infinite dimensions, where no
natural measure is available. This will be presented in the rest of the paper.

8. The Duistermaat Heckmann formula

Standard references for this section are the books [McDS], [Aud] and the original
articles [DH1], [DH2]. Also the lecture notes [Ci] are a good source for a detailed
exposition of the Duistermaat Heckmann formula. Our exposition follows mainly
[McDS] and [Ci].

Definition 8.1. A symplectic manifold M is a 2n dimensional manifold with a
closed, nondegenerate two form ω.

Definition 8.2. The volume form ω∧n

n! on (M,ω) is called the Liouville volume
form.

Definition 8.3. A complex structure on a vector space V is an endomorphism
J : V → V , such that J 2 = −I. So V becomes a complex vector space with
multiplication by i =

√
−1 corresponding to J

Definition 8.4. A symplectic vector bundle (E,ω) over a manifold M is a real
vector bundle

π : E →M

which is equipped with a symplectic bilinear form on each fiber Eq, which varies
smoothly with q ∈ M . All these forms ωq fit together to a smooth section of the
natural bundle

∧2
E∗, where E∗ denotes the dual bundle of E. This form ω is a

non degenerate skew symmetric bilinear form, which will is called symplectic bilinear
form.

Definition 8.5. A complex structure J is called compatible with the symplectic
form ω if gJ := ω(.,J ·) defines an inner product.

Lemma 8.6. [Ci] Let (V, ω) be a symplectic vector space. There exists a natural
continouus map from the space of all inner products to the space of all compatible
complex structures which maps each induced inner product gJ to J . Thus the space
of compatible complex structures is non empty and contractible.

Proof. An inner product g defines an isomorphism A : V → V via ω(·, ·) = g(A, ·)
. Skew symmetrie of ω implies At = −A. Recall from linear algebra that each
positive definite operator P posesses a unique positive definite square root

√
P and√

P commutes with any operator with which P commutes. So we can define:

Jg := (AAt)−
1
2A

It follows that J2
g = −I and

ω(·,J ·) = g(
√
AAt·, ·)

is an inner product. Continuity of the map follows from continuity of the square
root. If g = gJ for some J then A = J = gJ . Contractability follows from
convexity of the space of inner products and the following general fact: If f :
X → Y and g : Y → X are continuous maps between topological spaces satisfying
f ◦ g = −I, then a contraction ht of X induces a contraction f ◦ ht ◦ g of Y . �
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The following proposition is a consequence of the above lemma, if we equipp the
spaces of sectons with a resonable topology:

Proposition 8.7. The space of compatible complex structures on a symplectic vec-
tor bundle (E,ω) is nonempty and contractible.

Definition 8.8. An almost complex structure on a manifold is a complex structure
J of the vector bundle TM → M . It is called compatible with a symplectic form
ω(·, ·) if ω(·,J ·) is a Riemannian metric.

As a consequence of 8.7 there exist compatible almost complex structures on any
symplectic manifold and they form a contractible space.
Now let (M,ω) be a finite dimensional symplectic manifold and assume that we
have an action of some torus T = Rl/Zl. That is a smooth map

g : T ×M →M (g, x) 7→ g · x

We denote the orbit of the action by

T · x := {t · x|x ∈M}

and the stabilizer of x by

Tx := {t ∈ T |t · x = x}

We have Tt·x = tTxt
−1 so all stabilizers are conjuagate along an obit. This con-

juagcy class is called the type of the orbit. Let us assume that our torus action is
symplectic, that is g∗ω = ω. where g denotes the action from above. We denote the
Lie algebra of the torus by h and every H ∈ h gives us an R action and therefore
a vector field H̃ on M . This follows from the well known correspondence (see e.g
[Hs])

{one- parameter subgroups} ↔ {left invariant R actions} ↔ {left invariant vector fields}

Definition 8.9. We call H ∈ h generic if the subgroup generated by (expH) is a
dense subgroup of T .

Furthermore let us assume that we have a Hamiltonian function JH , which comes
from the R action. Recall the notion of a hamiltonian vector field. If f : M → R is a
smooth function on a symplectic manifold M , then X̃ is called a hamiltonian vector
field corresponding to f , if the identity df = iX̃ω is valid. Here i denotes the usual
insertion operator. The function f is that called the Hamiltonian corresponding to
X̃. That is in our case the identity dJH = iH̃ω is valid. Furthermore we assume
that the torus acts effectively on M , that is

⋂
x Tx = 1. We also assume that the

fixed point set of our torus action consists of isolated points p, i.e. we can find a
neighbourhood of p such that no other point is contained in this neighbourhood. So
the torus action can also be viewed as a linear action on each tangent space with foot
point a fixed point p. So we have a linearly torus action on TpM . Now according
to 8.7 we pick an almost complex structure on M which is compatible with ω.
Furthermore we assume that ω commutes with the T action. Since representations
can also be defined via group actions, the above gives us a decomposition of each
TpM =

⊕n
j=1 V

p
j into complex one dimensional representations V pj of p. Here p is

not a power, but an index for the fixed point. Here T acts on the one dimensional
representation V pj via the complex character t 7→ exp(2πiαpj (H)), where exp(H) =
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t. Again, p should be interpreted as an index. We now state the Duistermaat-
Heckmann exact integration formula

(41)
∫
M

e−tJH
ω∧n

n!
=
∑
p∈P

e−tJH(p)∏n
j=1 α

p
j (H)

where t can be any real or complex parameter. This theorem can be extended to
the case when the fixed point set consists of submanifolds instead of isolated points.
Now let us assume that there is not only a symplectic structure on our manifold,
but we also chose a Riemannian metric σ. Let dσ denote the Riemannian volume
form. The symplectic and Riemannian volume form are related via the Pfaffian Pf.
We call the skew symmetrix automorphism on the tangent bundle TM , associated
to ω and the metric σ, Bσ. It is defined by

ωx(X,Y ) = σx(Bσ(X), Y ) for X,Y ∈ TxM .

Now the symplectic and Riemannian volume form are related by
ω∧n

n! =Pf(Bσ)dσ

In the infinite dimensional case, the symplectic volume form (also called Liouville
form) does not make sense. Ignoring this fact, physicists use the Duistermaat
Heckmann formula to calculate certain integrals over infinite dimensional symplectic
manifolds. The integration methods are merely justified by their analogy with
the finite dimensional cases. Such infinite dimensional integrals are often called
functional integrals, since they are by definition integrals of the form

∫
C∞(Σ,G)

e...

Here Σ is a Riemann surface of genus g ≥ 1 and G denotes a compact, simply
connected Lie group. Such integrals play an important role in quantum field the-
ory, but their exact meaning is at least today, still mysterious. More recently such
functional integrals appeared also in economics, motivated by statistical mechanics,
they are used in certain models for option pricing, see e.g [Vo]. Now let (M,ω) be
an infinite dimensional, symplectic manifold, that is a Frechet manifold together
with a closed, non degenerate two form ω. In our case, the non degeneracy of the
two form means, that the tangent map φ : TmM → TmM

∗, Xm 7→ ω(Xm, .) is
injective at each m ∈ M . Furthermore, we assume the TmM to have a countable
basis for all m ∈M , in order to avoid not manageable calculations.
We now start to develop an infinite dimensional analogue of the Duistermaat Heck-
mann exact integration formula, to this end assume that there is an effective action
of some torus T on M which preserves ω and I. Like in the finite dimensional case
let us assume that the fixed point set of the torus action consist of isolated points
p. But now there may be infinitely many p. Again, we have a torus action of T on
the tangent spaces TpM which decomposes into the direct sum of one dimensional
complex representations, TpM =

⊕n
j=1 V

p
j , since we are only concerned with cur-

rent manifolds, in general this decomposition does not hold. As before we have the
action of T on V pj via the complex character t 7→ exp(2πiαpj (H)) for H ∈ h. Now
we have p ∈ R for all p ∈ P and j ∈ N. This is the place, where an important tool
for the development of the conceptual integration approach comes into play.
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9. Zeta regularized products

The general theory of zeta regularization is developed in [QHS] and [Ill].

Definition 9.1. Let λk be a sequence of nonzero complex numbers, then we define
the zeta regularized product

∏ζk λk to be exp(−ζ ′k(0)), where ζk(s) is the corre-
sponding zeta function, that is

∑∞
k=0 λ

−s
k .

We assume, that ζk(s) has a meromorphic continuation with at most simple
poles, to a half plane containing the origin and is analytic at the origin. Such a
sequence is called zeta regularizable. Some basic calculatio rules are readly verified:

Lemma 9.2. (a) Let Λ = {λ1, λ2, . . .} be a zeta multipliable series. If we denote
the index n ∈ N for even natural numbers by neven and for odd natural numbers by
nodd the following holds: If the series over all n ∈ Neven is zeta multipliable, and
the series over all n ∈ Nodd is zeta multipliable, then the series over all n ∈ N is
multipliable and equality holds:

∏
n

ζ
λn =

∏
neven

ζ
λn ·

∏
nodd

ζ
λn

(b) Let Λ be as above and let a, b ∈ C. Then

(∏
n

ζ
λan

)
=

(∏
n

ζ
λn

)a
and

(∏
n

ζ
λnb

)
=
∏
n

ζ
λn · bζ(0)

Proof. (a) Let us denote the zeta functions for the corresponding indices by the
following

ζN(s) =
∑
n∈N

e−s log λn

ζNeven =
∑

n∈Neven

e−s log λn

ζNodd =
∑

n∈Nodd

e−s log λn

If Re >> 0 the even series is absolut convergence and the odd series is absolut
convergent, then the series over all n ∈ N is absolut convergent. If the odd and
even series are meromorphic, then the series over all n ∈ N is meromorphic and
regular at 0.

ζN(s) = ζNeven + ζNodd

(ζ ′N(0)) =
(
−ζ ′Nodd(0)

)
+
(
ζ ′Nodd(0)

)
(42)
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Let us now apply the exponential function to (3.1)

exp (ζ ′N(0)) = exp
(
−ζ ′Nodd(0) + ζ ′Nodd(0)

)
(43)

and because of the functional equation of exp the assumption follows. Also the
other properties of zeta regularized products hold, since meromorphic functions are
a field.
(b) Let us denote the two zeta regularized products we consider here:

(∏
n

ζ
λan

)
,
∏
n

ζ
λn

again we denote the corresponding zeta functions by

ζ̃(s) =
∑
n∈N

e−sa log λn , ζ(s) =
∑
n∈N

e−s log λn

Now we can take derivatives of these zeta functions

ζ̃ ′(s) =
∑
n∈N

−a log λne−sa log λn = aζ ′(s),

ζ ′(s) =
∑
n∈N

− log λne−s log λn

Now for s = 0 this reads

−ζ̃ ′(0) = −aζ ′(0) ⇒

(∏
n

ζ
λan

)
=

(∏
n

ζ
λn

)a

since eaζ
′(0) =

(
eζ

′(0)
)a

.
now we turn to the second part of (b). Let us denote

ζ = λn

ζ̃ = λnb

Now we can write
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ζ(s) =
∑
n∈N

e−s log λn

ζ̃(s) =
∑

n ∈ Ne−s log λnb =
∑
n∈N

e−s(log λn+ln b) =(∑
n∈N

e−s log λn

)
e−s log b =

ζ(s)e−s log b

Now we can take derivatives

ζ̃ ′(s) = ζ ′(s)e−s log b − log b ζ ′(s)e−s log b

But

− log

(∏
n

ζ
λnb

)
= ζ̃ ′(0) = ζ ′(0) · 1− log(b)ζ(0) · 1 =

= − log

(∏
n

ζ
λn

)
− log

(
bζ(0)

)
=

= − log

((∏
n

ζ
λn

)(
bζ(0)

))
It follows that (∏

n

ζ
λn

)
=

(∏
n

ζ
λn

)
· bζ(0)

Like in the first case, the meromorphically continuation follows. �

Definition 9.3. α = inf{s ∈ R|
∑∞
k=0 |λk|−s <∞}

For λ 6= λk we consider the shifted sequence λk − λ. and the associated zeta
function ζ(s,−λ) =

∑∞
k=0(λk − λ)−s which converges for Res > α. We use the

following convention: for |λk| large, arg(λk − λ) is near arg(λk).

Theorem 9.4. If λk is zeta regularizable, then so is λk − λ

Proof. This is proofed in [QHS] Theorem 1 �

Next we establish the relationship between zeta regularized products and the
classical Weierstrass product. Let h be an integer such that h+ 1 > α. We define
the Weierstrass product by

Definition 9.5. Wh(λ) =
∏∞
j=0(1−

λ
λj

) exp
(
Ph( λλj )

)
where Ph(x) = x + x2

2 + . . . + xh

h . At s0 we define the finite part of ζ at
s0, FPZ(s0), to be the constant term of the Laurent expansion for ζ at s0. Let
Resζ(s0) denote the residue of Z at s0. Resζ(s0) = 0 if s0 if not a pole.
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Theorem 9.6. Suppose h is an integer with h + 1 > α and that F has poles of
order at most 1 at integer points then∏ζ(λk − λ)∏ζ

λk
= e−Qh(λ)Wh(λ)

where

Qh(λ) =
h∑
j=1

FPZ(j)
λj

j
+

h∑
j=2

ResZ(j)
(

1 +
1
2

+ . . .+
1

j − 1

)
λj

j

and F (s) =
∑∞
k=0Gk(s) with

Gk(s) = (λk − λ)−s −
k∑
j=0

(
s+ j − 1

j

)(
λ

λk

)j
Proof. [QHS] Theorem 2 �

According to [QHS] a sequence is called admissible if it lies in the half plane
Reλ > 0, the function

∑∞
k=0 e

−λkt converges absolutely for t > 0 and has a full
asymptotic expansion

∑∞
ν=0 cjν t

jν , j0 < j1 < . . . → ∞ as t → ∞. Furhtermore
limt→0

∑∞
k=0 |e−λkt|tβ = 0 for some β > 0. The sequences that are studied in [QHS]

are rotations of admissible sequences, that is of the form aλk for an admissible
sequence λk. With the knowledge of the function

∑∞
k=0 e

−λkt we can study the
analytic continuation of ζ(s) for an admissible sequence. We first write ζ(s) as
Mellin transform. Write

Γ(s) =
∫ ∞

0

e−tts−1dt, Res > 0

and make the change of variables t 7→ λt (λ 6= 0) and we get

Γ(s) = λs
∫ ∞

0

e−λtts−1dt

For Res > β (β from above), we sum over Λ = λk getting

(44)
∑
k

λ−sk =
1

Γ(s)

∫ ∞

0

∑
k

e−λktts−1dt.

Now ζ(s) can be analytically continued using the following theorem:

Theorem 9.7. Suppose φ(t) is a complex valued continuous function of a real
variable t, with |φ(t)| ≤ e−bt for some b > 0 and t large. If φ(t) has the asymptotic
expansion

φ(t) v
∞∑
ν=0

cjnut
jν ast→ 0+

j0 < j1 < . . .∞ then

F (s) =
∫ ∞

0

φ(t)ts−1dt

converges for Res > −j0 to an analytic function and can be analytically continued
to a function meromorphic in the complex plane with simple poles −jν and residues
cjν
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Proof. For N > 0 let

φN (t) = φ(t)−
N∑
ν=0

cjν t
jν

and write

F (s) =
∫ ∞

1

φ(t)ts−1dt+
∫ 1

0

N∑
ν=0

cjν t
jν+s−1+

∫ 1

0

φN (t)ts−1dt =
N∑
ν=0

cjν
1

jν + s
+A(s)

where A(s) is analytic for Res > −jN+1. This holds for Res > −j0 but provides an
analytic continuation to a function meromorphic with simple poles in Res > −jN+1.
Heinz : Probability theory / Heinz Bauer. Transl. from the German by Robert B.
Burckel. - Ber �

Applying 9.7 theorem to the zeta function ζ(s) for an admissible sequence λk,
letting φ(t) =

∑
k e

−λkt, and ζ(s) = F (s)/Γ(s), we see that for jν 6= 0, 1, . . . then
ζ(s) has a pole at −jν with residue cjν

Γ(−cjν ) . We also see that if m = 0, 1, 2, . . .
then ζ(−m) = cm(−1)mm! where by convention cm = 0 if m 6= jν for some ν. In
particular ζ(0) = c0 To handle the double zeta function let φ(t) = e−at

∑
n e

−λnt,
so we get

ζ(0, a) =
∑
m≥0

c−m
am

m!

The following theorem is a classicial result and its proof can be found in [SG] p.458

Theorem 9.8. Let

θ(t) v
∞∑
ν=0

ckνtkν

as t→ 0, where −1 < k0 < k1, . . .→∞. Assuming that the Laplace type integral

ϕ(a) =
∫ ∞

0

e−atθ(t)dt

has a half plane of simple convergence, then ϕ(a) posseses an asymptotic expansion

ϕ(a) v
∞∑
ν=0

ckνΓ(kν + 1)a−(kν+1)

as a→∞ in the angular sector |arg(a)| ≤ δ < π
2

For admissible sequences the theorems 9.7 and 9.8 provide an asymptotic ex-
pansion for ζ(s, a) and

∏ζ(λk + a) as a → ∞ provided we have an asymptotic
expansion 44 for φ(t) =

∑
k e

λkt as t→ 0.
Next we state several examples of zeta regularized products that where obtained in
[QHS]. These examples will allow us to calculate the zeta regularized products in
a more conceptual way then in [W2].

Lemma 9.9. ∏ζ
n =

√
2π

Proof. We insert into the definition of the zeta regularized product, exp(−ζ ′(0))
and use the fact that ζ ′(0) = − log

√
2π. �
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Lemma 9.10.

FormoreinformationonthisderivativeandonregularLiegroupssee[K−M ]
∞∏
n=1

ζ

nτ =
√

2πτ−
1
2

Proof. According to the basic calculation rules we have

∞∏
n=1

ζ

nτ = τ ζ(0)
∞∏
n=1

ζ

n = τ−
1
2
√

2π

�

Lemma 9.11.
∞∏
n=1

ζ

(n+ a) =
√

2π
Γ(a)

Proof. Since the finite part of ζ(1) = γ theorem 9.6 together with 9.9 gives:

∞∏
n=1

ζ

(n+ a) = a
√

2πeγa
∞∏
n=1

(
1 +

a

n

)
exp

(
−a
n

)
By we well known product formula for the Gamma function we have

∞∏
n=1

ζ

(n+ a) =

√
(2π)

Γ(a)

�

Lemma 9.12.
∞∏

m,n=−∞

′

|m+ nτ |2 = (2π)2|η(τ)|4 Imτ > 0

The evalutation of the product is Kronecker’s limit formula, the ′ indicates, that in
the product zero is ommitted. η is Dedekind’s eta function.

Proof. Let ζ(s) =
∑∞
n=1

∑∞
m=−∞(|m+nτ |2)−s and ζ1(c, s) =

∑∞
m=−∞(|m+a|2)−s

where a = b + ic, b fixed. Using Theorem 9.8 we get an asymptotic expansion for
ζ1 as c → ∞ if we have an expansion for

∑∞
m=−∞ e−(m+b)2t as t → 0+. The

corresponding integral reads∫ ∞

−∞
e−(m+b)2tdx =

√
(π)t−

1
2

and as t→ 0 the difference between the sum and the integral is shown to be O(tn)
for all n > 0. Thus we have the full asymptotic expansion

(45)
∞∑

m=−∞
e−(m+b)2t v

√
(π)t−

1
2

as t→ 0+. Now 9.8 and 45 give

(46) ζ1(s, c)−
√
π

Γ(− 1
2 + s)

Γ(s)
c−2s+1 = O(c−2s−2)
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as c→∞ for Res > −1. Letting a = n(x+ iy) and summing up over n gives
(47)
∞∑
n=1

(
ζ1(s, n2y2)−

√
π

Γ(− 1
2 + s)

Γ(s)
(ny)−2s+1

)
= ζ(s)−

√
π

Γ(− 1
2 + s)

Γ(s)
ζR(2s−1)y1−2s

where ζR denotes the Riemann zeta function, and we have Res > −1. Now differen-
tiating 47 at s = 0 and using

∏∞
n=−∞

ζ(n+ b)2 = 4 sin2 πb as well as ζR(−1) = − 1
12

and Γ(− 1
2 ) = −2

√
π we get

(48)
∞∑
n=1

(− log 4|sinnπτ |2 + 2πny) = ζ ′(0)− πy

6

Exponentiating both sides gives

(49)
∞∏

m=−∞
|m+ nτ |2 = |η(τ)|2,

where in the product above n = 1. Now we can use 9.9, which gives∏ζ
m2 = (2π)2

and the proof is complete. �

Lemma 9.13.

(50)
∞∏

m=−∞

ζ

(m+ a) =

{
1− e2πia Im a > 0
1− e−2πia Ima < 0

where we have Im a 6= 0 and −π < arg(m+ a) < π

Proof. If Im a > 0 we have −(m+ a) = e2π(m+ a) now we can use 9.11, the basic
calculation rules for zeta regularized products and get

∞∏
m=−∞

ζ

(m+ a) = a
∞∏
m=1

ζ

(m+ a)
∞∏
m=1

ζ

eπi(m+ a) =

a−1

√
2π

Γ(a)
eπi(−

1
2+a)

√
2π

Γ(−a)
Now we use the identity Γ(a)Γ(1− a) = π

sinπa and get the final result

1− e2πia

We do a simiar calculation for Im a < 0 and get the desired result. �

Lemma 9.14.
∞∏

m,n=−∞

ζ′

(m+ nτ)) = 2πiη2(τ)e
2πi
6

where Imτ > 0 and −π ≤ arg(m+ nτ) < π

Proof. Let ζ1(s, a) denote the analytic continuation of
∑∞
m=1(m+ n)−s. We have

seen from 9.8 that

ζ1(s, a) =
a1−s

s− 1
− 1

2
a−1 +

s

12
a−1−s +O(|a|−3−s)
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for Res > −3, a → ∞, |arga| < π − δ. Likewise ζ2(s, a) = eπisζ1)(s, eπia) is the
analytic continuation of

∑∞
m=1(−m+a)−s where arg(−m) = −πi and substituting

ζ1(s, a) yields:

ζ1(s, a) = − a1−s

s− 1
− 1

2
a−1 +

s

12
a−1−s +O(|a|−3−s)

Now letting ζ(s, a) being the analytic continuation of the whole series
∑∞
m=−∞(m+

a)−s we have
ζ(s, a) = ζ1(s, a) + a−s + ζ2(s, a)

and adding the two above asymptotic expansions we have

(51) ζ(s, a) = O(|a|−3− s)

for Res > −3, as a → ∞, −π + δ < arga < π − δ. Checking the residues we see
that 51 is an entire function of s. Also by 51 we see that

(52)
∑
n 6=0

(m+ nτ)−s =
∞∑

n=−∞

′

ζ(s, nτ)

Furthermore the sum over n on the right converges absolutely for Res > −2 and
the analytic continuation of 52 is also an entire function of s. Now we can take the
iterated product ∏

n 6=0

ζ
(m+ nτ) =

∞∏
n=−∞

ζ ′ ∞∏
m=−∞

ζ

(m+ nτ) =

=
∞∏
n=1

∞∏
m=−∞

ζ

(m+ nτ)
∞∏
n=1

∞∏
m=−∞

ζ

(m− nτ) =

∞∏
n=1

(1− e2πinτ )2 = η2(τ)e
−πiτ

6

where we used the basic calculation rules and 9.13.
Now 9.9 and the rules yield

∞∏
m=−∞

ζ

m = πi

FInally for Imτ > 0 we get

∞∏
m,n=−∞

ζ′

(m+ nτ) = 2πiη2(τ)e−
πiτ
6 = 2πi

∞∏
n=1

(1− e2πinτ )2

�

Lemma 9.15.
∞∏

m,n=−∞

ζ

(m+ nτ + z) = iη−1(τ) exp
(
−πiτ

6
− πiz

)
ϑ1(z)

Here Imτ > 0, −π < arg(m+nτ+z) < π and ϑ1(z) denotes a Jacobi theta function
as in [SG], that is

ϑ1(z) = i
∞∑

n=−∞
(−1)nq(n−

1
2 )2 exp(2n− 1)πiz
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Here q = eπiτ .

Proof. Let Ω denote the lattice with basis 1, τ and −π < argγyπ. The consider the
corresponding zeta function ζ(s) =

∑
γ∈Ω γ

−s. We have

(53) ζ(s) = ζR(s) + (e−πi)−sζR(s) +
∑
n 6=0

(m+ nτ)−s.

We can convert the sum as in 52 into an iterated sum, since ζ is an entire function
of s we can apply theorem 9.6 and get

∏
γ∈Ω

ζ
(γ + z) =

∏
γ∈Ω

′ζ
γ

 exp
(
−ζ(2)

2
z2 + ζ(1)z

)
σ(z)

where σ(z) denotes the Weierstrass product associated with the sequence γ. By 53
and 52 we can compute ζ(2) and ζ(1) by iterated summation. For ζ(2) this is the
Eisenstein summation formula, applying this formula yields:

(54) ζ(2) = −4πi
η′(τ)
η(τ)

We can directly compute from 53 that

(55) ζ(1) = −πi, ζ(0) = −1

Finally we use 53, 54, 55 and 9.14 to get∏ζ
(γ + z) = 2πiη2(τ) exp

(
−πiτ

6
+ 2πi

η′(τ)
η(τ)

z2 − πiτ

)
σ(z)

Now using the Jacobi theta function ϑ1(z) we can deduce the following relationship

σ(z) = ϑ(z)(2π)−1η−3(τ) exp
(
−2πi

η′(τ)
η(τ)

z2

)
Now the final result follows∏ζ

(γ + z) = iη−1(τ) exp
(
−πiτ

6
− πiz

)
ϑ1(z)

�

10. The Liouville functional

With these definitions we can define an analogue of the denominator of the
Duistermaat Heckmann formula for the infinite dimensional setup stated above.
Let αpj (H) be the weights from above and let us assume, that the αpj (H) are zeta
multipliable, then we introduce

Zp(H) =

∏
j∈N

ζ
|αpj (H)|


Up to sign this is the exact analogue of the denominator of the Duistermaat Heck-
mann formula for finite dimensional compact manifolds. To take care of the some
we consider the number p of rotation planes V pj for which αpj (H) < 0. We have to
make the assumption that p is finite for all p ∈ P . Then (−1)]p will be the desired
sign. Now all the necessary structures for the definition of the Liouville functional
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are collected. This yields

Definition 10.1. Let (M,ω) be an infinite dimensional symplectic manifold with a
torus action for which all the assumptions above are satisfied. For H ∈ h as above
, let JH be a Hamiltonian function of the R action on M defined by H. Then for
t ∈ R>0 we define the Liouville functional Lt(JH) via

Lt(JH) =
∑
p∈P

(−1)]p
e−tJH(p)

tζ(0)Zp(H)

whenever this sum makes sense.

Now we consider, like in the finite dimensional case, a Riemannian metric σ on
the manifold M . That is, σ is a non degenerate, symmetric bilinear form σm = 〈., .〉
on each tangent space TmM which varies smoothly with m. As before, the non
degeneracy means, that the induced map TmM → T ∗mM is injective. Now an
analogue to the integration with respect to the Riemannian volume form in the
finite dimensional case is defined. Remember, that in the finite dimensional case the
symplectic form ω and the Riemannian metric σ where related by a skew symmetric
automorphism Bσ of the tangent bundle. So in the infinite dimensional case the
compatibility looks like the following: Assume that there is a skew symmetric
automorphism Bσ,x of the tangent space TxM for each x ∈M such that

ωx(X,Y ) = σx(Bσ,x(X), Y )

Furthermore, let us assume that the zeta regularized determinant (i.e the zeta
regularized product of the eigenvalues of Bσ,x) exists. Now, if the zeta regularized
determinant defines a nowhere vanishing positive function on M , we can define the
zeta regularized Pfaffian Pfζ : M → R of Bσ,x by Pfζ(x)2 = detζ(Bσ,x). We will
call the symplectic form ω and the Riemannian metric σ zeta compatible, or just
compatible, if Pfζ(Bσ) exists. (This means, that the zeta regularized product of
the eigenvalues of Bσ exists). So we can define another functional which will be
refereed to as ”integration” with respect to the Riemannian volume form:∫

M

e−tJHPfζ(Bσ)dσ = Lt(JH)

In the cases considered in [W2] the manifold M is always a homogenous space G/G′

and σ and ω can be chosen invariant under the canonical G action. So if Pfζ(Bσ)
exists, it will be constant. Therefore, such an M is always orientable and we can
rewrite the above expression∫

M

e−tJHdσ =
Lt(JH)

Pfζ(Bσ(x0))

10.1. The Liouville functional on a complex manifold. In this section we
will carry over the formalism of the Liouville functional to the case where M is a
complex manifold. There are no major changes, except that we have to take care of
the definition of the number of rotation planes. The zeta regularization works also
for complex series, so there arises no problem in calculating the zeta regularized
determinants. We first recall some basic definitions of complex geometry. For an
introduction to this vast branch of differential geometry see [F-G] or the forthcom-
ing book [Huy]. First consider a Haussdorf space with countable basis, equipped
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with a complex coordinate system. Like in the real case one has charts (U, φ),
but now the homeomorphisms φ map the open subset U ⊂ M into an open ball
B ⊂M . Also the coordinate changes are now biholomorphic maps and a covering of
M with pairwise compatible complex coordinate systems is called a complex atlas.
An equivalence class of a complex atlas is called a complex structure and one defines

Definition 10.2. A complex manifold M is a Haussdorf space M with countable
basis, equipped with complex structure.

Note, that there exist also other versions of this definition, in particular one
which we learned from [Joy].
Let M be a real manifold of dimension 2m. An almost complex structure J is
defined as a tensor Jba which satisfies the cocycle condition JbaJ

c
b = −δca. For each

vector field v on M define Jv by J(v)b = Jbav
a. So J satisfies J2 = −1 and

gives each tangent space TpM the structure of a complex vector space. Now one
associates the so called Nijenhuis Tensor to J . That is a tensor N = Na

bc which
satisfies

Na
bcv

bwc = ([v, w] + J([Jv,w] + [v, Jw])− [Jv, Jw])a

for all vector fields v, w on M and where [., .] denotes the usual Lie bracket for
vector fields. One calls J a complex structure if N ≡ 0. Then again M is called a
complex manifold if it is equipped with a complex structure J . It turns out that
this definition is equivalent to the above, but is more convenient for the treatment
of Calabi-Yau manifolds. For more information we refer to [Joy]. In our case we
consider the infinite dimensional manifold M which is equipped with a closed, non
degenerate, complex valued C linear two form ω = ω1 + iω2. In this case ω will
not be compatible with the natural complex structure I on TM which is given by
multiplication by i, since we have ω(IX, IY ) = −ω(X,Y ). To handle this problem
we assume that TM has a second complex structure J which anticommutes with
I and is compatible with ω, that is J ∗ ω = ω, ω(., J(.)) is ”positive definite” in
the sense, that for all m ∈ M , Xm ∈ Tm we have either ω2(Xm, J(Xm)) > 0 or
ω2(Xm, J(Xm)) = 0 and ω1(Xm, J(Xm)) > 0. Like in the real case we assume
that there is an action of some torus T which preserves I and J and leaves ω
invariant. Furthermore we assume the T− action to have a discrete fixed point set
P . Following [BtD] J gives the tangent spaces TpM the structure of quaternionic
representations of T . Since we are working in a complex setting, we can give
TpM a decomposition according to the ±i eigenspaces of J . That is, we have a
decomposition TpM = TpM

+ ⊕ TpM
−, where TpM+ denotes the +i eigenspace

of J and TpM
− denotes the −i eigenspace of J . Viewed as vector spaces TpM−

and TpM
+ are isomorphic. Now we can decompose TpM+ like in the real case

into ints direct sum of complex one dimensional representations, that is TpM+ =⊕
j∈N V

p
j (with respect to the complex structure J), such that T acts via the complex

character t 7→ exp(2πiαpj (H)). With theses choices made we can define Zp(H), p
and the Liouville functional Lt(JH) of some Hamiltonian function JH exactly the
way we did in the real case. Of course it is natural in the complex setting to consider
the H which give rise to the R action to live in hC, rather then in the real Lie algebra
h. Since M is a complex manifold, such an H defines a vector field H̃ and we call
the function JH : M → C Hamiltonian if the identity dJH = iH̃ω is valid. The
formalism of the Liouville functional can be generalized to this setting without
major changes. Again we get a decomposition of tangent spaces TpM =

⊕
j∈N V

p
j
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into complex (with respect to I) one dimensional representations V pj on which the
Lie algebra hC acts via the character 2παpj . This causes only problems with the
definition of p, since the zeta regularization works also in the complex case. To
generalize the notion of p to the complex case we observe what happened in the case
H ∈ h. We have decompositions of the tangent spaces of M at p into 4-dimensional
real representations TpM =

⊕
j(V

p
αj ⊕V

p
−αj ) of T (where T is the torus), such that

if one diagonalizes the T−action with respect to the complex structure I the torus
acts on V pj via the complex character exp(2πiαpj ). In this setting the other complex
structure J defines an R linear map J : V pα → V p−α. Restricting the T action to the
+i eigenspace of J amounts to picking one character out of each pair ±αpj appearing
in the decomposition of TpM . Now the choice of some regular H ∈ h (i.e β(H) /∈ Z
for all characters exp(2πiβ) of T ) gives a decomposition of the character lattice Q
into positive and negative characters if we declare β ∈ Q to be positive if β(H) > 0.
In this picture our number p is exactly the number of negative characters appearing
in the series {αpj}j∈N. Now it is straightforward to generalize the definition of p to
the complex case. The element H ∈ hC comes from the action of the Lie algebra of
the complexified torus TC on M . So we pick a decomposition of the character lattice
Q = Q− ∪Q+ of TC into positive and negative characters. In analogy with the real
case the decomposition should come from an element H ∈ hC. We define α ∈ Q
to be positive if Im(α(H)) > 0 or Im(α(H)) = 0 and Re(α(H)) > 0. This choice
of decomposition of the character lattice Q into positive and negative characters
agrees with the definition of positive definiteness of the C valued symmetric bilinear
form ω(., J(.)) above. Then as before we can set p to be the number of negative
characters appearing in the series {αpj}j∈N

11. A partition function for a compact Lie group

In this section a Liouville functional is calculated which gives rise to an interest-
ing function. We first consider the infinite dimensional manifold LG/T where G is
a compact, semi simple, simply connected Lie group, T denotes its maximal torus
and as usual LG is th1e loop group, i.e C∞(S1, G). Let g denote the Lie algebra of
G and so Lg is the loop algebra. Let 〈., .〉 denote the negative of the Killing form
on g ⊗ C , this gives rise to a G− invariant bilinear form on g. If we want to use
the Liouville functional approach for any calculation, we should ask if it is possible
to give LG/T a symplectic structure. So let us first establish a skew symmetric
bilinear form on Lg. The latter is defined via 〈., .〉:

ω(X,Y ) =
∫ 1

0

〈X ′(t), Y (t)〉dt,

Lemma 11.1. ω gives rise to a symplectic form on LG/G.

Proof. We note that 〈·, ·〉 is an invariant form andX ′(t) denotes the usual derivative.
We have to show, that ω is a antisymetric, closed, non degenerate billinear form
on LG/G. Obviously, it is non degenerate on the space of constant loops. Partial
integration yields the skew symmetry:
Let

c(t) 7→ 〈X(t), Y (t)〉
Then c′(t) is

X ′(t)Y (t) +X(t)Y ′(t)
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Now the fundamental theorem of calculus yields∫ 1

0

c′(t) = c(1)− c(0) = 0

since our loops are closed and we have ω(X,Y ) = −ω(Y,X) as desired.
To show that ω is closed, we first note that the map

(56)

LGy
LG/G

Now consider the map is a principal fiber bundle. Consider the map

σ : S1 × (−ε, ε) → G

σ(z, t) = σt(z)

d

dt
|0σt : S1 × (−ε, ε) → TG

Now we can calculate

dω(ζ, η, ξ) = ζ · dω(η, ξ)± . . .− ω([ζ, η], ξ)± . . .

and we define two maps

ω : g× g → R ω̃ : g× g → R

ω̃(ζ, η) = ω(Tλg−1 · ζ, Tλg−1 · η). Now

ω̃(LX , LY ) = ω(X,Y )

and so

dω(LX , LY , LZ) = −ω([X,Y ], Z) + ω([X,Z], Y )− ω([Y, Z], X)

which shows that ω is closed by the Jacobi identity. �

It is a well known fact, that G/T is a generic coadjoint orbit of G and hence
possesses a canonic symplectic structure, the Kirillov-Kostant-Souriau form ωH0 .
On the tangent space eT this form is given by

ωH0 (X,Y ) = 〈H, [Y,X]〉
As a manifold, LG/T is isomorphic to LG/G × G/T . So for generic H ∈ h(i.e
exp(H)is dense in T )we have a symplectic form on LG/T , which is given by

ωH = pr∗1ω + pr∗2ω
H
0

It was shown in [PS] that the symplectic manifold LG/G admits a complex struc-
ture, which makes it into a Kaehler manifold. According to the formalism of the
Liouville functional we will choose a Riemannian metric σ on LG/G and show that
σ and ω are compatible. First we define a Riemannian metric σ by

σeT (X,Y ) =
∫ 1

0

〈X(t), Y (t)〉

where again 〈., .〉 denotes the negative of the Killing form. According to the above
definition the symplectic form σ is given by

σeT =
∫ 1

0

〈X ′(t), Y (t)〉+
∫ 1

0

〈H, [Y (t), X(t)]〉dt = = σeT (X ′(t), Y (t))−
∫ 1

0

〈[H,X(t)], Y (t)〉dt
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So the skew symmetric endomorphism relating the two structures is given by

Bσ,eT =
∂

∂t
− ad(H)

Since the structures σ and ωH on LG/T are both defined by left translation the
zeta regularized Pfaffian PfBσ - if it exists - will be constant. So the next goal
is to show, that PfBσ indeed exists. To this end, we identify the root system of
g⊗C with a subset of the character lattice Q of T used above in the complex case.

Lemma 11.2. The zeta regularized Pfaffian PfBσ(eT ) exists and is given by∏
α∈∆+

2 sin(πα(H))

Remark 11.3. The zeta regularized Pfaffian was defined as
√

detζ Bσ(eT ), so it is
sufficient to show the existence of detζ Bσ(eT ). The zeta regularized determinant
was defined as the product of the eigenvalues of the endomorphism in question. We
will provide another calculation than that one employed in [W2], since we have 9.11
at hand.

Proof. Let us first consider the root space decomposition of C∞(S1, g). Remember
that we identified the root system with a subset of the character lattice, the the
root space decomposition reads

⊕
C∞(S1, hC ⊕α∈∆ CXα) =

=
⊕

α∈∆∪B
Ce2πintXα

Here B denotes a basis of h. Since we identified ∆ with a subset of Q and the torus
acts exactly by the character exp(2πiαpj ), with p a fixed point of the torus action,
the eigenvalues of Bσ(eT ) are

{±2πin)}n∈N ∪ {±2πiα(H)± 2πin}n∈N0

The multiplicities of the eigenvalues are 1 if α 6= 0 and l = dimT if α = 0.
So we calculate

∞∏
n∈Z

ζ

2πia(n+ α) = 2πiaα

( ∞∏
n∈N

ζ

2πia(n+ α)

)
·

( ∞∏
n∈N

ζ

2πia(−n+ α)

)

= 2πiaα (2πia)ζα(0)

( ∞∏
n∈N

ζ

(n+ α)

)
(−2πia)ζ−α(0)

( ∞∏
n∈N

ζ

(n− α)

)

= 2πiaα (2πa)ζα(0)+ζ−α(0)

√
2π

αΓ(α)
·

√
2π

−αΓ(−α)

= 2πiaα(2πa)−1 · 2π sin(πα)
πα

=
2πiα2π
2πaπα

· sin(πα)

= 2i sin(πα)
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Since we want to range the product over all positive roots, we use the same calcu-
lation again, which gives the result

−2i sinπα

Putting these calculations together we get∏
α∈∆+

4 sin2(πα)

Taking we square root yields the desired result, now we calculate the term involving
only 2πian ∏

n∈Z/{0}

ζ
2πian =

(∏
n∈N

ζ
2πian

)
·

(∏
n∈N

ζ
− 2πian

)
=

= (2πia)ζ(0)
∏
n∈N

ζ
n · (−2πian)ζ(0)

∏
n∈N

ζ
n = (2πa)2ζ(0) ·

√
2π ·

√
2π =

1
a

�

Remark 11.4. Note, that
∏
α∈∆+

2 sin(πα(H)) is the denominator in the Weyl char-
acter formula for the compact Lie group.

12. A torus action on LG/T

We will now introduce a torus action on our homogenous space, this will be
done in conceptual analogy with the introduction of the symplectic form. We first
consider a torus action on LG/G and on G/T , together this yields a torus action
on LG/G. So let us identify LG/G with the space of based loops ΩG = {γ ∈
LG|γ(0) = e}. S1 acts on ΩG by rotation, that is

Rt(γ)(u) = γ(u+ t)γ(t)−1

One sees immediately that this is indeed an action.
But there is a further action on LG/G. The maximal torus T ⊂ G acts on LG/G
by conjugation. We can put the two actions together and get the following S1 × T
action:
Note, that we write elements of the torus as exp(H) where H ∈ h and the latter
denotes the Lie algebra of the torus. So an element (t, exp(H)) ∈ S1 × T acts by

(t, exp(H)) : γ 7→ exp(tH)Rt(γ) exp(−H)

Clearly, the fixed point set of this action are the homomorphisms γ : S1 → T .
There is also an action on G/T , here the torus acts by left multiplication. So the
fixed point set of this action is N(T )/T where N(T ) denotes the normalizer of T
in G. It is well known, that N(T )/T is the Weyl group. Letting S1 act trivially
on G/T we get an S1 × T action on G/T with fixed point set Q∨ ×W , where Q∨

denotes the lattice of homomorphisms γ : S1 → T and W is the Weyl group of
G. It is easy to see, that this torus action preserves the symplectic form as well as
the complex structure I. Now take a generic H ∈ h, this defines an R action on
LG/T by the construction above. Now we can compute the denominator Zp(H)
of the Liouville functional. The tangent space of LG/T at eT is isomorphic to
Lg/h. Its decomposition into rotation planes is exactly the decomposition of Lg/h
into eigenspaces of the endomorphism Bσ(eT ) used in the lemma above. In the
proof of 3.9 that the eigenvalues of the torus action are given by the two series
{2πi(±α(H) ± n)}α∈∆+,n≥0 and {±2πin}n>0 again with the multiplicities 1 for
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α 6= 0 and l for α = 0. Note also, that the eigenvalues of the torus must be
multiplied by 1

2π according to the definition of ZeT . Therefore we have to calculate
the zeta regularized product

ZeT =
∏
α∈∆+

(
(α(H))2

∞∏
n=1

(n2 − α(H)2)2
)
ζ

·

( ∞∏
n=1

n2

)l
ζ

So exactly the same calculation as in 11.2 leads to the result

Lemma 12.1. The denominator of the Liouville functional is given by

ZeT = (
√

2π)l
∏
α∈∆+

2 sin(πα(H))

So the series defining ZeT is zeta multipliable and all the necessary premises
to calculate the Liouville functional of a Hamiltonian of our R action are checked.
Now we have to calculate the number of fixed points (β,w) ∈ Q∨ × W . To do
this, we identify the fixed point set Q∨ ×W with the affine Weyl group W̃ of the
untwisted affine Lie algebra g̃C (see Prop 2.30) corresponding to the Lie algebra
g. Furthermore the set {±α ± n|α ∈ ∆+, n ≥ 0} ∪ {±n|n > 0} can be identified
with the root system of ∆̃ of g̃ (cf.[K]). Let us assume that H ∈ h lies in a
fundamental alcove of the action of the affine Weyl group on h. Then the set
∆̃+ = {α ∈ ∆̃|α(H) > 0} defines a decomposition of ∆̃ into positive and negative
roots. Now we can see by identifying the spaces Tβ,wLG/T with TeLG/T via left
multiplication of a representative of (β,w)−1 in LG that the number of fixed points
(β,w) is exactly the number of positive roots of g̃C which are mapped to negative
roots by the action of (β,w) by the action of (β,w) on the root system of g̃C. By
definition, this is the length l(w) of (β,w) in W̃ .

13. Calculation of a Liouville functional

Let H ∈ g and γ ∈ LG be given. Recall the notion of a vector field along a
curve: [Michor]

Definition 13.1. Let γ be a curve from an interval J into a manifold M . Let
πM : TM →M and call γ′(t) : J → TM a vector field along γ if πM ◦ γ′ = γ.

We define the vector field adH(γ) along γ by

adH(γ) =
∂

∂s
|0 exp(sH)γ exp(−sH).

With the above definition and the well known fact that the tangent bundle for a
Lie group is trivial, it is immediately seen that adH(γ) is a vector field along γ.
Now let H ∈ h be a generic element (i.e the group generated by exp(H) is dense in
T ). Let us define a function JH : LG→ R via

γ 7→ 1
2

∫ 1

0

||( ∂
∂t
γ(t)− adH(γ(t)))γ−1(t)||2dt

Since the scalar product 〈., .〉 is G− invariant we have JH(γ) = JH(γh) for all h ∈ T .
So JH defines a function on LG/T which will be denoted by the same symbol. Our
next goal is to show that JH is a Hamiltonian. This is done in analogy to the proof
8.9.3 in [PS]. In order to view the γ’s as matrix valued functions we fix a faithful
representation of the group G (such a representation can be found for every compact
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Lie group G). So we can write JH(γ) = 1
2

∫ 1

0
||γ′(t)γ−1(t)+γ(t)Hγ−1−H||2dt. We

show

Lemma 13.2. The Hamiltonian vector field on LG/T corresponding to JH(γ) is
exactly the vector field coming from the R action defined by H.

Proof. Choose a representative γ for γT ∈ LG/T and let δγ be the variational
derivative of γ. The vector field generated by the R action on LG/T is given at the
point γT by γ′ + adH(γ)(modh). So according to the definition of a Hamiltonian
function we have to show that

(dJH)γ(δγ) = ωHγ (δγ, γ′ + adH(γ))

But dJHγ (δγ) is given by

dJHγ (δγ) =
∫ 1

0

〈δ(γ′γ−1 + γHγ−1 −H), γ′γ−1 + γHγ−1 −H)〉dt =

=
∫ 1

0

(〈δ(γ′γ−1), γ′γ−1〉+ 〈δ(γ′γ−1), γHγ−1〉 −

−〈δ(γ′γ−1),H〉+ 〈δ(γ−1Hγ), γ′γ−1〉+
+〈δ(γ−1Hγ), γHγ−1〉 − 〈δ(γ−1Hγ),H〉)dt

where we just used the definition of JH and the bilinearity of the scalar product.
Now a short calculation shows

δ(γ−1γ′) = (δγγ−1)′ + [δγγ−1, γ−1γ′]

and

δ(γHγ−1) = [δγγ−1, γHγ−1]

Furthermore the pointwise G invariance of the scalar product 〈., .〉 implies

〈[δγγ−1, γ−1γ′], γ−1γ′〉 = 0 = 〈[δγγ−1, γHγ−1],H〉

Partial integration yields ∫ 1

0

〈(δγγ−1)′,H〉 = 0

So we get

dJHγ(δγ) =
∫ 1

0

〈(δγγ−1)′, γ′γ−1, γHγ−1〉dt+
∫ 1

0

〈H, [γ′γ−1 + γHγ−1, δγγ−1]〉

Comparing with the definition of ωHγ we see that this is the assertion. �

Next we will according to the definition, calculate JH in the fixed points. Since
the fixed point set is exactly Q∨ × W we choose representatives gw ∈ N(T ) for
w ∈W and let β be in Q∨. Set γ(t) = gw exp(tβ) and recall the notion of JH , that
is

JH(γ) =
1
2

∫ 1

0

||γ′(t)y−1(t) + γ(t)Hγ−1 −H||2dt

but y′(t) = gw exp(tβ)β and γ−1(t) = (exp(tβ))−1
g−1
w . So γ′(t)γ−1(t) = β. And

γ(t)Hγ−1 = w(H). So the function JH reads

JH(γ) =
1
2

∫ 1

0

||β + w(H)−H||2 =
1
2
||β + w(H)−H||2
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Now we plug into the definition of the Liouville functional. First recall the definition

L1(JH) =
∑
p∈P

(−1)]p
e−JH

Zp(H)

So L1(JH) reads

L1(JH) =
1

(
√

2π)l
∏
α∈∆+

2 sin(πα(H))

∑
w∈W

∑
β∈Q∨

(−1)l(w)e−
1
2 ||β+w(H)−H||2

Let ρ =
∑
α∈∆+

α denote the half sum of positive roots and recall a theorem due
to I.Frenkel which was stated in ??:
There σ(h)σ(−k) denotes the denominator of the Weyl character formula for a
compact Lie group. We saw that

∏
α∈∆+

2 sin(πα(H)), i.e the denominator of the
Weyl character formula for a compact Lie group, appeared in the calculation of
the zeta regularized Pfaffian. Furthermore in our case t = 1 and h = k so we can
rewrite the double sum in L1(JH)

∑
w∈W

∑
β∈Q∨(−1)l(w)e−

1
2 ||β+w(H)−H||2∏

α∈∆+
4 sin2(πα(H))

e
1
2 ||h||

2+ 1
2 ||−h||

2
· (2π)

l
2 · volQ∨ =

=
∑
λ∈P+

|χλ(exp(H))|2e− 1
2 ||λ+ρ||2

So the double sum in L1(JH) reads∑
w∈W

∑
β∈Q∨

(−1)l(w)e−
1
2 ||β+w(H)−H||2 =

∏
α∈∆+

4 sin2(πα(H))

(2π)
l
2 · volQ∨

·
∑
λ∈P+

|χλ(exp(H))|2e− 1
2 ||λ+ρ||2

Now we insert this into L1(JH) and get

L1(JH) =
1

(
√

2π)l
∏
α∈∆+

2 sin(πα(H))
·
∏
α∈∆+

4 sin2(πα(H))

(2π)
l
2 · volQ∨

·

·
∑
λ∈P+

|χλ(exp(H))|2e− 1
2 ||λ+ρ||2 =

∏
α∈∆+

2 sin(πα(H))

(
√

2π)2lvol(Q∨)
·
∑
λ∈P+

|χλ(exp(H))|2e− 1
2 ||λ+ρ||2

Now we recall the definition of the formal integration with respect to the Riemann-
ian volume form, which was∫

M

e−tJHdσ =
Lt(JH)

Pf(BσeT )
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The zeta regularized Pfaffian was calculated in 11.2 and is given by
∏
α∈∆+

2 sin(πα(H))
Now inserting these identities in the definition of

∫
M
e−tJHdσ yields:∫

LG/T
e−JHdσ =

∏
α∈∆+

2 sin(πα(H))

(2π)lvol(Q∨)
·
∑
λ∈P+

|χλ(exp(H))|2e− 1
2 ||λ+ρ||2 ·

·

 ∏
α∈∆+

2 sin(πα(H))

−1

=

=
1

(2π)lvol(Q∨)
·
∑
λ∈P+

|χλ(exp(H))|2e− 1
2 ||λ+ρ||2

According to [W2] we will also formulate this result as a theorem:

Theorem 13.3. The following identity is valid:∫
LG/T

e−JHdσ =
1

(2π)lvol(Q∨)
·
∑
λ∈P+

|χλ(exp(H))|2e− 1
2 ||λ+ρ||2

Remark 13.4. One can give a physical interpretation of the calculations leading
to theorem 3.13. Consider a quantum mechanical particle moving on a compact
Lie group G with classical action JH . Then according to Feynman’s path integral
formulation of quantum mechanics, the trace or partition function of this quantum
mechanical system is formally given by

∫
C∞(S1,G)

e−JH(γ)dγ, where the integra-
tion is over all closed loops in G. But this is basically the same as the ”integral”∫
M
e−JHdσ we calculated above. Indeed, the definition of

∫
M
e−JHdσ for a sym-

plectic manifold M is merely a formalization of the heuristic techniques employed
in the physics literature in calculating such integrals.

As we saw in the statement of Frenkel’s theorem above, our H ∈ h defining the
symplectic structure on LG/T was chosen to be the same as the element K ∈ h
which defined the R action. This is in fact not necessary and was only done to
emphase the similarities with the calculations leading to the partition function of
the WZW model. We will see, that for certain choices of H and K there is a natural
interpretation of the integral

∫
LG/T e

−JHdσ as characters of the affine Lie algebra
g̃C.
Choose a ∈ R>0 and H ∈ h such that aH is generic in h. Then we define like in
the above discussion a non degenerate closed two form ωH,a on LG/T via ωH,a =
pr∗1ω

a+pr∗2ω
aH
0 , where as before LG/T is identified with LG/G×G/T and we have

ωeT (X,Y ) =
∫ 1

0
〈aX ′(t), y(t)〉dt. Furthermore let us choose b ∈ R>0 and K ∈ h. As

in the case above we define an R action on LG/T via

u : γ 7→ exp(buK)Rbu(γ) exp(−buK)

If bK is generic, the fixed point set of this action Q∨×W as before. The vector field
defined by this R action at a point γT ∈ LG/T is by bγ′+ad(bK)(γ), and as in the
proof of Lemma 3.12 one deduces that this vector field is exactly the Hamiltonian
vector field on LG/T corresponding to the function JH,K,a,b which is defined by

JH,K,a,b =
ab

2

∫ 1

0

||γ′(t)γ−1(t) + γ(t)Kγ−1(t)||2dt

The skew symmetric endomorphism Bσ(eT ) relating the Riemannian metric and
the new symplectic form is now given by a ∂∂t + ad(aH) and the zeta regularized
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Pfaffian is given, by exactly the same calculations as in 11.2, by

Pfζ(Bσ)(eT ) =
1
al

∏
α∈∆+

2 sin(πα(H))

and

ZeT (K) =
1
bl

(
√

2π)l
∏
α∈∆+

2 sin(πα(K))

Like in the case above we calculate

L1(JH,K,a,b) =
bl

(
√

2π)l
∏
α∈∆+

2 sin(πα(K))
·

·
∑
w∈W

∑
β∈Q∨

(−1)l(w)e−
ab
2 ||β+w(K)−H||2

Set c = 1
ab and again apply Frenkels theorem stated above, now the reformulation

of our double sum above yields: ∑
w∈W

∑
β∈Q∨

(−1)l(w)e−
1
2c ||β+w(K)−H||2 =

=

∏
α∈∆+

2 sin(πα(H))
∏
α∈∆+

2 sin(πα(K))

(
√

2π)lvol(Q∨)
·
∑
λ∈P+

χλ(exp(−H))χλ(exp(K))e−
c
2

Now we calculate L1(JH,K,a,b)

L1(JH,K,a,b) =
bl

(
√

2π)l
∏
α∈∆+

2 sin(πα(K))
·

·
∏
α∈∆+

2 sin(πα(H))
∏
α∈∆+

2 sin(πα(K))

(
√

2π)lvol(Q∨)
·
∑
λ∈P+

χλ(exp(−H))χλ(exp(K))e−
c
2 =

=
bl
∏
α∈∆+

2 sin(πα(H))

(
√

2π)2lvol(Q∨)
·
∑
λ∈P+

χλ(exp(−H))χλ(exp(K))e−
c
2

Now we calculate
∫
M
e−JH,K,a,b which is just L1(JH,K,a,b) divided by Pfζ(Bσ)(eT ),

that is ∫
M

e−JH,K,a,b =
al∏

α∈∆+
2 sin(πα(H))

·

·
bl
∏
α∈∆+

2 sin(πα(H))

(
√

2π)2lvol(Q∨)(2π)dim g
·
∑
λ∈P+

χλ(exp(−h))χλ(exp(K))e−
c
2 =

=
(ab)l

(2π)lvol(Q∨)
·
∑
λ∈P+

χλ(exp(−H))χλ(exp(K))e−
c
2
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Theorem 13.5. Let a, b,H,K as above. Then the following identity is valid:∫
M

e−JH,K,a,b =

(abl)
(2π)lvol(Q∨)

·
∑
λ∈P+

χλ(exp(−H))χλ(exp(K))e−
c
2

It was shown in [F] how for certain H and b the numerator of the right hand
side can be interpreted as numerator of the Kac Weyl character where t can be
any real or complex parameter. This theorem can be extended to the case when
the fixed point set consists of submanifolds instead of isolated points. Now let us
assume that there is not only a symplectic structure on our manifold, but we also
chose a Riemannian metric σ. Let dσ denote the Riemannian volume form. The
symplectic and Riemannian volume form are related via the Pfaffian Pf. We call
the skew symmetrix automorphism on the tangent bundle TM , associated to ω and
the metric σ, Bσ. It is defined by

ωx(X,Y ) = σx(Bσ(X), Y ) for X,Y ∈ TxM .
Now the symplectic and Riemannian volume form are related by

ω∧n

n! =Pf(Bσ)dσ
formula for highest weight representations of the untwisted affine Lie algebra cor-
responding to g evaluated at K, b. (The generalization of Frenkels program for
twisted affine Lie algebras was discussed in chapter two). So theorem 3.16 gives a
realization of the affine characters as integral of a coadjoint orbit. This is one of
the main features of Kirillov’s ”method of orbits” in the representation theory of
Lie groups. In the following section this approach will be compared with the one
from chapter two. Recall that the main difference between the Liouville functional
approach and the analytic one applied in chapter two is, that we can apply the
Liouville functional in situations, where no natural measure is available. So in the
calculations above we integrated over a coadjoint orbit, while in chapter two we
were forced to take an appropriate closure of the affine adjoint orbit, on which the
Wiener measure exists.

14. Comparison with Wiener measure

We already mentioned that physicists use the Duistermaat Heckmann formula
for calculations on infinite dimensional manifolds. One example appears in [A]
where some interesting ideas are discussed. In his heuristic deduction of the index
theorem for the Dirac operator on a Riemannian manifold, Witten suggested that
that the Wiener measure on a Riemannian manifold M should closely be related to
the ”Riemannian measure” on the loop space of M . (Of course the loop space of a
Riemannian manifold is not a symplectic manifold in our sense, but one can extend
the definition of dσ to this case.) In the case of the homogenous space LG/T we
consider, one can make this connection between the Riemannian volume form dσ
and the Wiener measure explicit. In fact, we can embed LG/T into a space of
continuous maps [0, 1] → G on which the Wiener measure is defined (cf.chapter 2).
So the first guess would be that possibly after some identifications, the Riemannian
volume form and the Wiener measure coincide. But the Riemannian volume form
is translation invariant, where the Wiener measure is only quasi invariant; Set let

CG = {z : [0, 1] → G|z(0) = e, zcontinuous}
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and let f : CG → R be integrable with respect to the Wiener measure ω̄ on CG.
Then ∫

CG

f(z)dω̄(z) =
∫
CG

f(gz)e〈z
′z−1,g−1g′〉− 1

2 〈g
′g−1,g′g−1〉dω̄(z)

where g ∈ CG and 〈X,Y 〉 =
∫ 1

0
〈X(t), Y (t)〉dt for X,Y ∈ C([0, 1], g). To get rid of

this defect, we will replace dω̄(z) with d ˜̄ω = e
1
2 ||z

′z−1||2dω̄(z). This ”new” measure
d ˜̄ω is indeed invariant under left translations and we will formally have dσ = d ˜̄ω
as desired. To be more concrete remember the classification of the LG orbits on
Lg× {1} from 3: Let Og denote the conjugacy class of G containing the element g
and set

CG,Og = {z ∈ CG s.t. z(1) ∈ Og}
Let us identify Lg × {1} with Lg. Then LG acts via γ : X 7→ γXγ−1 + γ′γ−1.
After identifying LG/T with the LG orbit through H, we then define a map

φ : LG/T → CG,Oexp(H)

via
γHγ−1 + γ′γ−1 7→ zγHγ−1+γ′γ−1

where zX denotes the fundamental solution of the differential equation z′ = −Xz.
One can identify CG with a subspace (Lg)∗0 of Lg∗ and in this identification CG,Oexp(H)

can be viewed as the closure in (Lg)∗0 of the coadjoint orbit containing H. As we
have seen in 7, the most natural measure on CG,Oexp(H) is the conditional Wiener
measure introduced in [F]. Let CG,Og → R be an integrable function with respect
to this measure. The integral over f will be denoted by∫

CG,Og

f(z)dω̄G,Og (z)

This integral has the quasiinvariance properties stated above. As outlined before
we replace dω̄G,Og by d ˜̄ωG,Og (z) = e

1
2 ||z

′z−1||2dω̄G,Og (z) such that we can write∫
CG,Og

f(γz)d ˜̄ωG,Oγ(2π)g(z) =
∫
CG,Og

f(z)d ˜̄ωG,Og (z)

for all γ ∈ CG.
Now let us define a function J̃H : CG,Oexp(H) → R via J̃H(z) = 1

2 ||z
′z−1 + H||2.

Now one checks easily that φ∗J̃H = JH with φ : LG/T → CG,Oexp(H) as before.
The main result of this section is the following:

Proposition 14.1.∫
LG/T

e−JH(γ)dσ(γ) = c ·
∫
CG,Oexp(H)

e−J̃H(z)d ˜̄ωG,Oexp(H)

where c = e
1
2 ||ρ||

2
(2π)lvol(Q∨).

So up to a constant, which does not depend on H, the Wiener measure on CG,Oexp(H)

and the integration with respect to the Riemannian volume form on LG/T are equal.

Proof. For z ∈ CG,Oexp(H) we have

J̃H(z) =
1
2
||z′z−1||2 + 〈H, z′z−1〉+

1
2
||H||2,
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so we get∫
CG,Oexp(H)

e−J̃H(z)d ˜̄ωG,Oexp(H)(z) = e−
1
2 ||H||

2
∫
CG,Oexp(H)

e−〈H,z
′z−1〉dω̄G,Oexp(H)(z)

But the last integral was computed in ??

e−
1
2 ||H||

2
∫
CG,Oexp(H)

e−〈H,z
′z−1〉dω̄G,Oexp(H)(z) =

∑
λ∈P+

|χλ(H)|2e− 1
2 ||λ+ρ||2−||ρ||2

Now compare with Theorem 13.3 and we see that indeed∫
LG/T

e−JH(γ)dσ(γ) = e
1
2 ||ρ||

2
(2π)lvol(Q∨) ·

∑
λ∈P+

|χλ(H)|2e− 1
2 ||λ+ρ||2−||ρ||2

�

15. The twisted partition function

In this section functions on the coadjoint orbits of twisted loop groups will be
integrated using the Liouville functional approach. Let ψ a an outer automorphism
of order ord(ψ) = r of the simply connected compact semi simple Lie group G such
that ψ acts as an automorphism of the Dynkin diagram on the root system of the
complexified Lie algebra g⊗C. As in the previous sections denote the twisted loop
group by

L(G,ψ) = {γ ∈ LG|ψ(γ(t)) = γ(t+
1
r
)}

for all t ∈ [0, 1]. The Lie algebra of the twisted loop group will be denoted by
L(g, ψ). By restriction the symmetric form 〈., , 〉 and the antisymmetric form ω on
Lg give a symmetric and antisymmetric form on L(g, ψ) by restriction and will be
denoted by the same symbols. The form 〈., , 〉 is non degenerate on ω on Lg and
defines a Riemannian metric on L(g, ψ) by left translation. The form ω is degenerate
exactly in the subspace of constant loops so that it defines a symplectic form on
L(g, ψ)/Gψ where Gψ denotes the group of fixed points under the automorphism ψ.
Since we chose G to be compact and semisimple, so will be Gψ with maximal torus
Tψ. Like in the untwisted case the manifold Gψ/Tψ can be viewed as coadjoint
orbit of Gψ through a generic H ∈ hψ. As before, the Kirillov form of such an
orbit is denoted by ωH0 . After identifying LGψ/Tψ with LGψ/Gψ×Gψ/Tψ we can
define a symplectic structure ωH on L(G,ψ)/Tψ via ωH = pr∗1ω + pr∗2ω

H
0 . As in

the untwisted case the skew symmetric endomorphism of the tangent space at eTψ

relating the Riemannian metric and the symplectic structure, reads

Bσ,eTψ : X 7→ X ′ + adH(X)

The calculation of the zeta regularized Pfaffian of Bσ,eTψ is essentially the same
as in the untwisted case, but now we have to take care of the multiplicities of the
eigenvalues. Let ∆ denote the root system of g⊗C and let ∆ψ denote the ”folded”
root system, that is ∆ψ = {ᾱ|α ∈ ∆} where ᾱ = 1

ord(ψ)

∑ord(ψ)
i=1 ψi(α). Now let us

assume for the moment that ∆ is an irreducible root system of type ADE but not
of type A2n. In this case ∆ψ is a root system of type BCFG. Let ∆ψ

l and ∆ψ
s

denote the corresponding subsets of long and short roots in ∆ψ respectively. Now
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one uses [K] Prop. 6.3 to see that the eigenvalues of Bσ,eTψ are given by

{±2πin|n ∈ N>0} ∪ {2πi(±α(H) + n)|α ∈ ∆ψ
s , n ∈ Z} ∪

{2πi(±α(H) + nr)|α ∈ ∆ψ
l , n ∈ Z}

Furthermore if ∆ is of type XN in the notion of [K] then for an arbitrary eigenvalue
2πiλ of Bσ,eTψ , we have mult(2πiλ) = 1 if λ = α(H) + n, with α ∈ ∆ψ. And in
the case λ = n we have mult(2πiλ) = l = dim(Tψ) if r divides n and mult(2πiλ) =
(N−l)
r−1 if r does not divide n. Now we can calculate the zeta regularized determinant

in complete analogy with Lemma 11.2, but now we take the different multiplicities
into account. First we consider the terms with multiplicity 1. This product was
already calculated in Lemma 11.2∏

n∈Z

ζ
2πin = 1

Now we calculate the zeta regularized product for the terms which have values in
the short roots: ∏

n∈Z

ζ
2πi(α+ n) =

∏
α∈∆ψ

s+

4 sin2(πα(H))

Now we calculate the zeta regularized product for the terms which take values in
the long roots, here we have to take the term (±α+ nr) into account:∏

n∈Z

ζ
(2πir)(

α

r
+ n) = 2πir

α

r

∏
n∈N

ζ
2πir(

α

r
+ n)

∏
n∈N

ζ
2πir(

α

r
− n) =

= 2πiα(2πr)
ζα
r

(0)+ζ−α
r

(0)
·
∏
n∈N

ζ
(
α

r
+ n)

∏
n∈N

ζ
(−α

r
+ n) =

=
2πiα
2πr

·
√

2π
√

2π
(αr )Γ(αr )(−α

r )Γ(−αr )
=

=
2πiα · 2π
2πr · παr

· sin(π
α

r
) = 2i sin(π

α

r
)

So again taking the product over all positive long roots we get∏
α∈∆ψ

l+

4sin2(α(π
α

r
))

As in Lemma 11.2 we have used the results of [QHS]. Now we come to the last
term, which involves the 2πirn∏

n∈Z

ζ
(2πirn) = (

1
r
)

according to our calculations in Lemma 11.2. Now we take the multiplicities into
accout and this yields:

1

rl−
(N−l)
r−1 +2|∆ψ

l+
|

Finally we get for the zeta regularized Pfaffian:

Pfζ(Bσ)(eTψ) =
1

√
r
l− (N−l)

r−1 +2|∆ψ

l+
|

∏
α∈∆ψvee

2 sin(πα(H))
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Note, that like in the untwisted case the zeta regularized Pfaffian is exactely the
denominator of the Weyl character formula for the compact Lie group with root
system ∆ψ∨ or equivialently, the denominator of the characters of the outer com-
ponent of the principal extension of the Lie group with root sytem ∆, discussed in
chapter 2. In any case we see, that like in the untwisted case the Riemannian metric
and the symplectic form are compatible. So let us consider a S1 × Tψ action on
LG/Tψ by restriction of the S1× T action of the untwisted case. That is, S1× Tψ
acts on L(G,ψ)/Gψ by ”twisted rotation” and Tψ acts on Gψ/Tψ by conjugation.
The same arguments as in the untwisted case show now that the fixed point set
of this action is Wψ ×M where M ⊂ h is the lattice generated by the long roots
of ∆ψ (where we identified h with h∗ via the negative of the Killing form). As we
saw before, and in Prop.2.30 we can identify Wψ ×M with the affine Weyl group
W̃ belonging to the twisted affine Lie algebra L(G,ψ). The number of fixed points
](β,w) for Wψ×M is again given by ](β,w) = l((w, β)), where l(w, β) denotes the
length of (β,w) in Wψ ×M . Like in the untwisted case, the same calculation as
for the Pfaffian, but now the eigenvalues are divided by 2π yields:

ZeTψ (H) = c ·
∏
α∈∆1

+

2 sin(πα(H))

where c = (
√

2π)l((
√
r)l−

(N−l)
r−1 +2|∆ψ

l+|)−1. In exact analogy with the untwisted
case we introduce a function J̃H which will be the Hamiltonian function for the
calculation of the Liouville functional. We get this function just by restriction to
the function considered in the untwisted case. That is our J̃H is JH |L(G,ψ)/Tψ :
L(G,ψ)/Tψ → R, where JH is just the function considered in the untwisted case.
So we will denote J̃H by the same symbol and this yields:

JH(γ) =
1
2

∫ 1

0

||γ′(t)γ−1(t) + γ(t)Hγ−1(t)− h||dt

Since for generic H ∈ hψ, the corrseponding R action on L(G,ψ)/Tψ is just the
restriction of the corresponding R action on LG/T , it follows from lemma 3.12 that
the Hamiltonian vector field on {L(G,ψ)/Tψ corresponding to JH is the vector field
generated by the R action. Therefore one can calculate the Liouville functional.
This calculation is in exact analogy with the calculations in the untwisted case,
remember that we used there a theorem of I.Frenkel [F]Prop. 4.3.4, now we consider
the twisted case of this theorem, which was obtained in [W2] and presented in our
Theorem 5.1. In rest of the calculation is exactly the same as in the untwisted case.
So we first take JH in the fixed points, which was JH(γ) = 1

2 ||β + w(H) − H||2.
Now we insert into the definition of the Liouville functional and get

L1(JH) =
1

c ·
∏
α∈∆1

+
2 sin(πα(H))

·
∑

w∈Wψ

∑
M

(−1)l(w)e−
1
2 ||β+wH−H||

According to the calculations leading to Theorem 5.1 we can rewrite the double
sum in the equation above: ∑

w∈Wψ

∑
M

(−1)l(w)e−
1
2 ||β+wH−H|| =

=

∏
α∈∆1

+
4 sin2(πα(H))

(2π)
l
2 vol(a0M)

∑
λ∈P+(∆1)

|χλ(exp(H))|2e− 1
2 ||λ+ρψ||2
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where P (∆ψ∨) denotes the weight lattice of the corresponding root system, P+(∆ψ∨)
denotes the cone of dominant weights, χλ denotes the irreducible character of the
compact simply connected semi simple Lie group G of the same type as the root
system ∆ψ∨, and as usual ρψ is the half sum of positive roots of corresponding to
the root system ∆ψ∨. So let us put the above calculations together:

L1(JH) =

∏
α∈∆1

+
2 sin(πα(H))

c(2π)
l
2 vol(a0M)

∑
λ∈P+(∆1)

|χλ(exp(H))|2e− 1
2 ||λ+ρψ||2 ,

where c is the constant of above.
Now we calculate the integral with respect to the Riemannian volume form, that
is by definition ∫

M

e−tJH =
L1

Pf(Bσ(eT ))

The Pfaffian was calculated above and we just insert into the definition∫
L(G,ψ)/Tψ

e−JH (γ)dσ(γ) =
1

((
√
r)l−

(N−l)
r−1 +2|∆ψ

l+|)−1
∏
α∈∆ψ∨ 2 sin(πα(H))

·

·

∏
α∈∆1

+
2 sin(πα(H))

c(2π)
l
2 vol(a0M)

∑
λ∈P+(∆1)

|χλ(exp(H))|2e− 1
2 ||λ+ρψ||2

This yields

Proposition 15.1.∫
L(G,ψ)/Tψ

e−JH (γ)dσ(γ) = c ·
∑

λ∈P+(∆ψ∨)

|χλ(exp(H))|2e− 1
2 ||λ+ρψ||2

Where c = (2π)
l
2 vol(M)−1 · ((

√
r)l−

N−l
r−1 +2|∆ψ

l+
|)−2

As in the non twisted case one can compare the Liouville functional with the
Wiener measure, and again the Wiener measure is up to a constant the same as
the formal integration with respect to the Riemannian volume form.

16. The WZW model

We can now use the Liouville functional approach to integrate functions on
spaces, where no measure theory is yet developed. A particular example of such
a situation is the partition function of the so called Wess-Zumino-Witten (WZW)
model, which is a quantum field theory on a Riemann surface Σ with values in a
simply connected semi simple Lie group G, or more generally in its complexification
GC. In our discussion the Riemann surface will be an elliptic curve, i.e the torus Στ
with modular parameter τ = τ1 + iτ2 with τ1, τ2 ∈ R, τ2 > 0. The torus S1 × S1 =
R2/Z2 is equipped with a complex structure which is defined by f : Στ → C. The
complex structure is holomorphic if ∂̄f := (∂s + τ∂t)f = 0. We now come to the
definition of the WZW action functional. For more information on the physical
background see e.g [G]. Let 〈., .〉 denote the Killing form on gC normalized in such
a way that the long roots have square length 2 and set ∂ = ∂s + τ̄ ∂t. In this
normalization the action functional of the WZW model reads:

SG,κ(g) = − κπ

2τ2

∫
Σ

〈g−1∂g, g−1∂̄g〉dsdt+
iκπ

3

∫
B

tr((g̃−1dg̃)∧3)
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Here B is a three dimensional manifold with boundary ∂B = Σ, and g̃ : B → G is
a map such that g̃|∂B = g and trace denotes the negative of the normalized Killing
form as well. The second term in the action is the so called Wess-Zumino-Witten
term. Up to the factor iκ, it is the integral over the pull back of the generator of
H3(G,Z) to B via the map g̃. There is some need for an explantation of the 3-form
tr((g̃−1dg̃))∧3. The term inside the bracket is a Lie algebra valued one form. That
is we have a map

g̃−1dg̃ = δlg̃ : TM → g ⊂ gl(n)

That is the left logarithmic derivative. Note, that the Lie algebra is really viewed as
matrix Lie algebra. So the the operation inside tr((g̃−1dg̃))∧3 is matrix multiplica-
tion. If one would view the Wess Zumino term as real valued three form, this would
not make any sence, because of the alternating propertie of differential forms this
term would vanish. Viewed as Lie algebra valued one form, the anti commutativity
of the Lie bracket kills the alternating property. So the term tr((g̃−1dg̃))∧3 can be
viewed as three form, which makes sense on a three dimensional ball.
According to [Hi1] the Wess Zumino term is an invariant with values in R/2πZ
associated to a map g : Σ → G. The Wess Zumino term can be viewed as the
holonomy around Σ of the canonical gerbe on G(see. [Hi1], [Hi2], [Hi3] for more
information on this point of view). The classical interpretation of the Wess Zu-
mino term is that of the integral on G over an extension of g to a three mani-
fold M with with boundary Σ. If G is a compact, simple, simply connected Lie
group and B(X,Y ) denotes the Killing form of the corresponding Lie algebra, then
B(X, [Y, Z]) defines a bi-invariant closed three form on G whose cohomology class
generates H3(G,R). A particular multiple of this form gives a form Ω such that
[Ω] generates H3(G, 2πZ) ∼= Z. As an example in [Hi1] the case G = SU(2) is
mentioned, in this case the three form is given by

Ω =
1
12
tr(g−1dg)∧3

(In our notion g is the map g̃). Now for a general Lie group g−1dg is replaced by
the Maurer Cartan form ω ∈ Ω1(G, g). If g̃1 and g̃2 are two different extensions of
g they differ by a map h̃ : B → G such that h̃|∂B = e. But for such h̃ we have
π
3

∫
B
tr(h̃−1dh̃)∧3 ∈ 2πZ such that the action eSG,κ,(g) is well defined for all κ ∈ Z.

An important formula for calculations with the Wess Zumino term is the Polyakov-
Wiegmann formula.

Proposition 16.1. Let g, h : Σ → G. Then the following identity is valid:

SG,κ(gh) = SG,κ(g) + SG,κ(h)−
κπ

τ2

∫
Σ

〈g−1∂g, ∂̄hh−1〉dsdt

Note that the imaginary part of the term κπ
τ2
〈g−1∂g, ∂̄hh−1〉 is exactly the cocycle

in the explicit construction of the central extension Ĝ of the loop group LG as a
quotient see [KW] and also [FKh].
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Proof. One checks directly by inserting into the definitions:

− κπ

2τ2

∫
Σ

〈h−1g−1∂(gh), h−1g−1∂̄(gh)〉dsdt =

− κπ

2τ2

∫
Σ

〈g−1∂g, g−1∂̄g〉dsdt− κπ

2τ2

∫
Σ

〈h−1∂h, h−1∂̄h〉dsdt

− κπ

2τ2

∫
Σ

〈(g−1∂sg, ∂shh
−1)〉+ τ1〈g−1∂sg, ∂thh

−1〉

+τ1〈g−1∂tg, ∂shh
−1〉+ τ τ̄〈g−1∂tg, ∂thh

−1〉dsdt

Now we insert into the Wess Zumino term and this yields

iκπ

3

∫
B

tr((gh)−1d(gh))∧3 =
iκπ

3

∫
B

tr(g−1dg)∧3 +
iκπ

3

∫
B

tr(h−1dh)∧3

+iκπ
∫
B

tr((g−1dg)∧2 ∧ dhh−1 + g−1dg ∧ (dhh−1)∧2)

=
iκπ

3

∫
B

tr(g−1dg)∧3 +
iκπ

3

∫
B

tr(h−1dh)∧3

+iκπ
∫
B

dtr(g−1dg ∧ dhh−1)

Since B is a manifold with boundary ∂B = Σ we can apply Stoke’s theorem and
this yields

iκπ

∫
B

dtr(g−1dg ∧ dhh−1) = iκπ

∫
Σ

tr(g−1dg ∧ dhh−1).

Now we write dg = ∂sgds+∂tgdt and dh = ∂shds+∂thdt, this yields the assertion.
�

Now we come to the definition of the gauged WZW model, in this generalization
of the WZW model one adds a particular term. So let H ∈ h be a generic element.
We will extend the WZW model by adding an H− dependent term. Set

SG,H,κ(g) = SG,κ(g)+
κπ

τ2

∫
Στ

(〈g−1∂g,H〉−〈∂̄gg−1,H〉−−〈H, g−1Hg〉+〈H,H〉)dsdt

SG,H,κ(g) is the action functional of the gauged WZW model, studied in [GK]. The
partition funtion of this model at level κ is formally given by the integral∫

C∞(Στ ,GC)

eSG,H,κ(g)D(g, )

The measure theoretic meaning of this integral is at least at this time unclear, D(g)
is interpreted as ”formal” measure, in the sequel we will use the Liouville functional
approach to calculate the partition function of the gauged WZW model.

16.1. Double loop groups and a torus action. We will now apply the results
of 4 to the Liouville functional approach Now, we use slightly different notion and
denote the double loop group by LLG.
Let H ∈ h be generic and choose a modular parameter τ = τ1 + iτ2 ∈ C such
that τ2 > 0. In analogy with the loop case, we define a non degenerate closed
two form and and R action on L̃LGC/TC. Like in the loop group case we have
LLGC/TC ∼= ΩΩGC ×GC/TC where ΩΩGC denotes the set of based double loops,
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that is the set of all maps g ∈ LLGC such that g(1, 1) = e. Let X,Y : S1×S1 → gC
be elements of the corresponding Lie algebra. Then

ωe(X,Y ) =
π

τ2

∫
S1×S1

〈∂̄X(s, t), Y (s, t)〉dsdt

defines a C valued skew symmetric bilinear form on LLgC which is degenerate on the
set of holomorphic maps. Since our elliptic curve Στ is compact any holomorphic
map has to be constant, so we can use the form above to define a non-degenerate
C valued two form on LLGC/GC ∼= ΩΩGC. Like in the loop case we can choose a
C valued two form ωH0 on GC/TC which is defined via ωH0,eTC

(A,B) = π
τ2
〈H, [A,B]〉

for A,B ∈ TeTC and extended to GC/TC via left translation. Again, we put this
forms together and get a symplectic form ωH = pr∗1ω + pr∗2ω

H
0 . The formalism of

the Liouville functional asks as a next prerequisite for an almost complex structure
which is compatible with the symplectic form. We are now working in the complex
setting described in 3.3. So the almost complex structure J must satisfy J∗ω = ω
and ω(·, J(.)) is positive definite in the sense that for allm ∈M , Xm ∈ TxM we have
either ω2(Xm, Jm(Xm)) > 0 or ω2(Xm, Jm(Xm)) = 0 and ω1(Xm, Jm(Xm)) > 0,
where the symplectic form ω = ω1 + iω2.
Consider the root space decomposition of gC/hC =

⊕
α∈∆ gα into one dimensional

root spaces. Here ∆ denotes the root system of gC. For each α ∈ ∆ we choose a root
vector Xα ∈ gα such that 〈Xα, X−α〉 = 1. Furthermore we choose an orthonormal
basis of the Cartan subalgebra h. Denote the basis vectors with H1, . . . ,Hl. Then
we can write any X ∈ LLgC/hC as

X(s, t) =
∑

(n,m)∈Z2

∑
α∈∆

cn,m,αXαe
2πi(ns+mt) +

∑
(n,m)∈Z2

(n,m)6=(0,0)

l∑
j=1

cn,m,jHje
2πi(ns+mt)

with cn,m,α, cn,m,j ∈ C.
As always we have τ = τ1 + iτ2, the modular parameter of the elliptic curve Στ .
Now let ∆+ be the set of positive roots of gC with respect to a basis of ∆. Let us
decompose the set ˜̃∆ = {(α, n,m)|α ∈ ∆∪ 0, (n,m) ∈ Z2, (α, n,m) 6= (0, 0, 0)} into
˜̃∆+ ∪ ˜̃∆− via defining (α, n,m) to be positive if either n+ τ1m > 0 or n+ τ1m = 0
and m < 0 or n = m = 0 and α ∈ ∆+. Now we can define an R linear anti-
involution J of LLgC/hC which anticommutes with the natural complex structure,
which is given by multiplication with i: For c ∈ C set

J(cn,m,αXαe
2πi(ns+mt)) = c̄n,m,αX−αe

−2πi(ns+mt)if(α, n,m) ∈ ˜̃∆+and

−c̄n,m,αX−αe
−2πi(ns+mt)if(α, n,m) ∈ ˜̃∆−

analogously set

J(cn,m,νHνe
2πi(ns+mt)) = c̄n,m,νHνe

−2πi(ns+mt)if(0, n,m) ∈ ˜̃∆+

−c̄n,m,νHνe
−2πi(ns+mt)if(0, n,m) ∈ ˜̃∆−

Now if the set of positive roots ∆+ is chosen in such a way that H lies in the fun-
damental chamber of the Weyl group with respect to ∆+, one checks by inserting
into the appropriate formula of the pullback, that the complex structure is indeed
compatible with the symplectic form ωH . Furthermore J commutes with the nat-
ural TC action on LLgC/hC. So J defines an automorphism of the tangent bundle
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and thus an almost complex structure on LLGC/TC by left translation.
A bilinear form on LLgC is given by

σ(X,Y ) = π

∫
S1×S1

〈X(s, t), Y (s, t)〉dsdt

Hence the skew symmetric endomorphism of the tangent bundle relating ωH and σ
reads Bσ,eTC = 1

τ2
(∂̄ + ad(H)). As before let ∆ denote the root system of G Then

the eigenvalues of Bσ,eTC are

(57)

{
2πi
τ2

(n+ τm+ α(H)), α ∈ ∆, n,m ∈ Z
2πi
τ2

(n+ τm), n,m ∈ Z, n 6= 0 orm 6= 0

The multiplicity of the eigenvalues in the first series is 1 and the multiplicities of the
second series is l = dimR h. This can be seen by using the root space decomposition
of the semi simple Lie algebra gC. With Lemma 9.15 at hand we can easily calculate
the zeta regularized product Pfζ ·Z(H) where Z(H) denotes the nominator of the
Liouville functional with respect to the Riemannian volume form.

Proposition 16.2. The zeta regularized product Pfζ · Z(H) for the above eigen-
values is given by

C·(2π·
√
τ2|η(τ)|2)l·

∏
α∈∆+

|q12(e(1
2
α(H))−e(−1

2
α(H)))×

∞∏
n=1

(1−qne(α(H)))(1−qne(−α(H)))|2

Proof. According to 9.15 we calculate the product once for Pfζ than for Z(H),
which was just the zeta regularized product of the eigenvalues, since we are taking
the product over all positive roots we will get the desired square in the product. In
the following q = e2πiτ and e(z) = e2πiz∏
m,n

ζ 2πi
τ2

(m+ τn+ α(H)) =
(

2πi
τ2

)−1 ∏
α∈∆

iη−1(τ) exp
(
−πiτ

6
− πiα(H)

)
· ϑ1α(H)

Now we use the product expansion of the Jacobi theta function, which can be found
in [SG] p.266 Inserting this one yields(

2πi
τ2

)−1 ∏
α∈∆

iη−1(τ) exp
(
−πiτ

6
− πiα(H)

)
·

∞∏
n=1

(1− qn)q
1
2 · (−i)

∞∏
n=1

((1− qn e (α(H)))(1− qn e (−α(H)))) ·

(1− e(−α(H)))e(
1
2
α(H)) =

=
(

2πi
τ2

)∏
α∆

e
πiτ
12 exp

(
−πiτ

6
− πiα(H)

)
exp

(
πiτ

4

)
·

∞∏
n=1

((1− qn e (α(H)))(1− qn e (−α(H)))) ·
(
e(

1
2
α(H))− e(−1

2
α(H))

)
Now we calculate

e−
πiτ
12 · exp(−πiτ

6
) exp(−πiα(H)) exp(

πiτ

4
) =

exp(−πiτ
6

) · exp(−πiτ
6

) · exp(
πiτ

4
) · exp(−πiα(H)) =
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exp(−21πiτ
12

) = q−
1
12

Putting these calculations together we get
(58)(

2πi
τ2

)−1 ∏
α∈∆

q−
1
12 (e(

1
2
α(H)−e(−1

2
α(H)))×

∞∏
n=1

((1− qn e (α(H)))(1− qn e (−α(H))))

Doing the same calculatio for Z(H), but now the eigenvalues are divided by 2π,
and taking into account that Z(H) is the zeta regularized product of the absolut
value of the eigenvalues we get as final result for the eigenvalues with multiplicity
1:
(59)

C ·
∏
α∈∆

|q 1
12 (e(

1
2
α(H)−e(−1

2
α(H)))×

∞∏
n=1

((1− qn e (α(H)))(1− qn e (−α(H)))) |2

and C = τ2
2π . Now we calculate the zeta regularized product for the eigenvalues

with multiplicity l, using 9.12.

(60)
∞∏

m,n=−∞

ζ ′
2πi
τ2

· i
τ2
|m+ nτ |2 =

√
τ2(2π)−

1
4 (2π2)|η(τ)|2

since the Pfaffian is defined as the square root of the zeta regularized determinant.
Puttng the eigenvalues with both multiplicities together yields the final result:

Pfζ · Z(H) = C · ((2π)2|η(τ)|2)l ·∏
α∈∆

|q 1
12 (e(

1
2
α(H)− e(−1

2
α(H)))×

∞∏
n=1

((1− qn e (α(H)))(1− qn e (−α(H)))) |2

where C = (2π)−
l
4 · τ22π �

Finally, we have to calculate the number of fixed points ]p in order to obtain our
sign (−1)]p for the fixed points p of the torus action on LLGC/TC. Again, this is
done exactly the way we did it in the loop case: Let (β1, β2, w) ∈ Q∨ × Q∨ ×W
be a fixed point of the S1 × S1 × T action. We choose a representative gw ∈ G for
each w ∈W , so (β1, β2, gw) can be viewed as an element of LLGC. But LLGC acts
transitively on LLGC/TC, so we can use left translation by (β1, β2, gw) to identify
the tangent spaces of TeTCLLGC/TC and T(β1,β2,gw)LLGC/TC. But (β1, β2, gw) is an
element of the normalizer of TC, so the identification is well defined. Now with this
identification the infinitesimal actionof S1 × S1 × T is given on the tangent space
T(β1,β2,gw)LLGC/TC by (β1, β2, gw)−1(∂s + ∂t +H)(β1, β2, gw) for (∂s + ∂t +H) ∈
Lie(S1 ×S1 × T ). (And ∂ was defined as ∂ = ∂s + τ̄ ∂t). But this defines an action
of Q∨ × Q∨ ×W on the above defined set ˜̃∆. According to the Definition in 2.2,
](β1, β2, w) is the number of elements of ˜̃∆+ mapped to ˜̃∆− under (β1, β2, w). As
in the case of affine roots systems and the affine Weyl group one can see by using
the fact that the cardinality of the finite root system ∆, which was used in the
definition of ˜̃∆, that again the number of fixed points ](β1, β2, w) = (−1)l(w) where
l(w) denotes the lenght of the Weyl group element w.
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16.2. Calculation of the partition function. In this section the partition func-
tion of the gauged WZW model will be calculated, so like in the case of a partition
function for the compact Lie group G, we will show, that the action functional
of the WZW model is the Hamiltonian of the R− action defined above. We first
note, that the action functional SG,H,κ(g) does not depend on the representative
of g modulo the complexified torus TC. So by left translation, SG,H,κ(g) defines
a function on LLGC/TC. To apply the Liouville functional approach we have to
check that SG,H,κ(g) is the Hamiltonian of the S1 × S1 × T action defined above.
This is done in analogy with Lemma 8.9.3 in [PS] and the calculations in the loop
case. We have

Lemma 16.3. The Hamiltonian vector field on LLGC/TC corresponding to −SG,H,1
is exactly the vector field on LLGC/TC defined by the element (∂,H) ∈ Lie(S1 ×
S1 × T ) considered above.

Proof. We choose a representative g of gTC in LLGC/TC and let δg be the cariational
derivative of g (i.e a vector field along g). The vector field generated by the element
(∂,H) ∈ Lie(S1 × S1 ×G) is given at the point gTC by ∂g + adH(g). So we have
to show that

−dSG,H,1(δg) = ωHgT (δg, ∂g + adH(g)).

In order to handle the action functional more conveniently we denote the H depen-
dent term in SG,H,1(g) by S̃H(g) so that we have

SG,H,1(g) = SG,1 + S̃H(g)

Now we apply the Polyakov Wiegmann Formula (prop. 4.1) and see that

−dSG,1(δg) =
π

2

∫
Σ

〈g−1∂g, ∂̄(g−1δg)〉dsdt

(This is just inserted into the Polyakov Wiegmann Formula) Now we apply the
same for the H dependent term, so we just insert into the last term in SG,H,κ(g)

−dS̃H(δg) =
π

2

∫
Σ

(〈δ(g−1dg),H〉 − 〈δ(∂̄gg−1),H〉 − 〈H, δ(g−1Hg)〉)dsdt

We already know that δ(g−1∂g) = ∂(g−1δg)+[g−1∂g, g−1δg]. Thus partial integra-
tion yields

∫
Σ
〈δ(g−1∂g,H)〉 =

∫
Σ
〈[g−1∂g, g−1δg]〉dsdt. Furthermore 〈δ(∂̄gg−1),H〉 =

〈∂̄(g−1δg), g−1Hg〉 and as in the proof of Lemma 11.2 we have 〈H, δ(g−1Hg),H〉 =
〈H, [g−1Hg, g−1δg]〉. So we put all the terms together and this yields

−dSG,H,1 =
π

τ2

∫
Σ

〈∂(g−1δg), g−1∂g + g−1Hg〉dsdt

+
π

τ2

∫
Σ

〈H, [g−1δg, g−1∂g − g−1Hg]〉dsdt

Which is the assertion, by the definition of ωHgT . �

Since SG,H,κ = κSG,H,1 (which is immedeately seen from the definition) this
lemma allows us to calculate the formal integral

∫
LLGC/TC

via the Liouville func-
tional approach. before we start with the calculations, we recall some facts from
the representaton theory of Kac Moody algebras. According to [K] chapter 12, one
can give the Kac Weyl character formula another meaning, using theta functions.
So let g̃C = LgC ⊕ +Cc ⊕ Cd be the untwisted affine Lie algebra corresponding
to the semi simple Lie algbra gC and let A denote the generalized Cartan matrix
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introduced in chapter 1. As usual ∆̃ denotes the root system of g̃C and we choose a
root basis α0, . . . , αl of simple roots. Denote by α∨0 , . . . , α

∨
l the dual simple roots,

that is αi ∈ h̃ such that 〈αi, α∨j 〉 = (A)ij . Let ai be the minimal integers such that
A(a0, . . . , an) = 0 and set δ =

∑n
i=0 aiαi. Following [K] chapter 12.4 one introduces

the so called canonical central element of g̃C

K =
l∑
i=0

aiα
∨
i

We repeat the notions of chapter 2

P̃ = {λ ∈ h∗C|〈λ, α∨i 〉 ∈ Z for all i = 0, . . . , n},
P̃+ = {λ ∈ P̃ |〈λ, α∨i 〉 ≥ 0 for all i = 0, . . . , n} and
P̃++ = {λ ∈ P̃+|〈λ, α∨i 〉 > 0 for all i = 0, . . . , n}

Remember that there exists a bijection between the irreducible integrable highest
weight models of g̃C and the dominant integral weights λ ∈ P̃+. For λ ∈ P+ let
L(λ) denote the corresponding irreducible highest weight module of g̃C. There is
no loss of generality for the representation theory of g̃C if we assume 〈λ, d〉 = 0 for
highest weight λ of g̃C, so from now on, we restrict P̃ to {λ|〈λ, d〉 = 0}. Since the
highest weight modules L(λ) are irreducible, K operates as a scalar on L(λ). We
define the level k of λ to be the non negative integer k = 〈λ,K〉 and set

P̃ k+ = {λ ∈ P+| level(λ) = k}
Now for λ ∈ P̃+ let ch(λ) denote the character and χλ denotes the normalized
character of the g̃C module L(λ). That is for λ ∈ h∗ we set

χλ =
∑
w∈W◦(−1)l(w)e(w(λ+ ρ̄)− ρ̄)∏

α∈∆◦(1− e(−α))

if 〈λ, α∨i 〉 ∈ Z+ for i = 1, . . . , l then χλ is nothing else but the formal character
of the gC module L(λ)◦. Choose an element Λ0 ∈ h̃ such that 〈Λ0, α0〉 = 1 and
〈Λ0,Λ0〉 = 〈Λ0, α

∨
i 〉 = 0 for all i = 1, . . . , l. If we choose orthonormal coordinates

of v1, . . . , vl of h with respect to the negative of the Killing form on g, we can
coordinatize h̃C via

v = 2πi(
l∑

ν=1

zνvν − τΛ0 + uδ),

and identify v ∈ h̃C with the vector (τ,H, u) with H =
∑
zνvν ∈ hC and τ, u ∈ C.

It is known that for any λ ∈ P̃+ the character ch(λ) and the normalized character
χλ converge absolutely on the domain

Y = {(τ,H, u)|H ∈ hC; τ, u ∈ C, Im(τ) > 0}

Therefore ch(λ) and χλ define holomorphic functions on Y . Since the center of
g̃C acts on L(λ) by scalar multiplication, we can view ch(λ) and χλ as functions
ch(λ)(τ,H) and χλ(τ,H) of τ and H and forget about the central u coordinate
without loss of generality. Note, that there is also a geometric interpretation of
these characters as sections of certain line bundles over abelian varieties, see e.g
[EFK] and [Lo].
An explicit formula for the normalized character is given by the Kac Weyl characte
formula. As before let Q∨ ⊂ h be the dual root lattice of gC(with the appropriate
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identifications) and let ∆+ and ∆̃+ be set of positive roots of gC and g̃C respec-
tively(w.r.t the simple roots α0, . . . , αl). Set ρ =

∑
∆+

α. For µ ∈ P̃ define µ̄ ∈ h

to be the projection of µ to h and for x, τ ∈ C set e(x) = e2πix and q = e2πiτ . Then
for λ ∈ P̃ k+define

Θλ(τ,H) =
∑

γ∈Q∨+k−1λ̄

e(
1
2
kτ〈γ, γ〉+ k〈γ,H〉)

With these definitions the Kac Weyl character formula (cf.[K]ch.10,12) reads

χλ(τ,H) =
∑
w∈W (−1)l(w)Θw(λ+ρ̃)(τ,H)

q
dim g

24 e(〈ρ,H〉)
∏
α∈∆̃+

(1− e(−α(τ,H)))multα

where mult α = dim gα denotes the dimension of the root space corresponding to
α ∈ ∆̃ and ρ̃ ∈ h is defined via 〈ρ̃, α∨i 〉 = 1 for i = 0, . . . , l and 〈ρ̃, d〉 = 0. As
already said, the squared absolute value of the denominator of this formula is, up
to the coefficient C the product Pfζ(Bσ) · Z(H). This can be seen using the root
space decomposition of ∆̃+ into real and imaginary roots

∆̃+ = ∆+ ∪
∞⋃
n=1

{∆ + nδ} ∪
∞⋃
n=1

nδ

Here δ is the same as in 11 ∆im
+ = {nδ|n ∈ N} is called the set of positive imaginary

roots. The multiplicities of the roots are given by mult α = 1 for α ∈ ∆+ −∆im
+

and mult α = l for ∆im
+ . We can now state the theorem which gives a conceptual

calculation of the partition function of the gauged WZW model:

Theorem 16.4. Let h∨ be the dual Coxeter number of gC, that is h∨ =
∑
a∨i and

let k be a positive level of g̃. Set κ = h∨ + k(This is motivated by the physical
meaning of the action functional, see [G]). Then the following identity is valid:∫

LLGC/TC

=
C0

C1C

∑
λ∈P̃k+

|χλ(τ,H)|2

with C0 = κl, C1 = (
√

2κτ2)
l

vol κQ∨ and C = (2π)−
l
2 .

Proof. The equality of the denominators is clear because of the definition of the
integral w.r.t the Riemannian volume form (that was L1(JH)

Pfζ(Bσ) ). Above we saw that
the product of the zeta regularized Pfaffian with the denominator of the Liouville
functional is equals the squared absolute value of the Kac Weyl character formula,
so the equality of the denominators follow. Next we calculate SG,H,κ(g) in the fixed
points of the S1 × S1 × T action which are given by (s, t) 7→ gw · exp(sβ) · exp(tµ),
with β, µ ∈ Q∨ and where as before gw is a representative of w ∈ W .The action
functional can be written as

SG,H,κ(g) = −κ
π

∫
Σ

(〈g−1∂g + g−1Hg −H, g−1∂̄g + g−1Hg −H〉

−2i〈g−1∂tg, g
−1Hg +H〉)dsdt+

iκπ

3

∫
B

tr(g̃−1dg̃)∧3
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For g(s, t) = gw · exp(sβ) · exp(tµ), the Wess Zumino term can be calculated using
the Polyakov Wiegmann formula and the calculation of Lemma 4.1

iκπ

3

∫
B

tr((gh)−1d(gh))∧3 =
iκπ

3

∫
B

tr(g−1dg)∧3 +
iκπ

3

∫
B

tr(h−1dh)∧3

+iκπ
∫
B

dtr(g−1dg ∧ dhh−1)

Writing g(s, t) = gw · (exp(sβ) · exp(tµ)) we see that the constant term does not
contribute to the integral. Furthermore we have

iκπ

3

∫
B

tr((exp(sβ) exp(tµ))−1d(exp(sβ) · exp(tµ)))∧3 =

iκπ

3

∫
B

tr(exp(−sβ)d(exp(sβ)))∧3 +
iκπ

3

∫
B

tr(exp(−sµ)d(exp(sµ)))∧3 +

iκπ

∫
Σ

tr(exp(−sβ)d exp(sβ)) ∧ d(exp(tµ) exp(−tµ))

The first two terms of the right hand side of the equation vanish, and the third
term is calculated to be κπi〈β, µ〉 So in the fixed points of the torus action the
action functional reads

SG,H,κ(gw exp(sβ) exp(tµ)) = − πκ

2τ2
〈β + τµ+ w−1H −H,β + τ̄µ+ w−1H −H〉

+πiκ〈µ,w−1H +H〉 − πiκ〈β, µ〉.

Now after rearranging the order of the terms the theorem follow with Lemma 16.5,
since the denominators have already been observed to be equal. �

Lemma 16.5. The following identity is valid:

volκQ∨

(
√

2κτ2)l
∑

β,µ∈Q∨

∑
w∈W

(−1)l(w)e−
πκ
2τ2

〈β+τµ+H−wH,β+τ̄µ+H−wH〉

×eπiκ〈β,µ〉+πiκ〈µ,H+wH〉

=
∑
λ∈P̃k+

∑
w1∈W

(−1)l(w1)Θw1(λ+ρ̃)(τ,H)

×
∑
w2∈W

(−1)l(w2)Θw2(λ+ρ̃)(τ,H).

Proof. Let us denote the right hand side of the equation with Nk(τ,H). Note that
we have ¯̃ρ = ρ and level ρ̃ = h∨. (see [K] ch. 12). Therefore

Nk(τ,H) =
∑
λ∈P̃k+

∑
w1∈W

(−1)l(w1)Θw1(λ+ρ̃)(τ,H)
∑
w2∈W

(−1)l(w2)Θw2(λ+ρ̃)(τ,H)
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Now we use the definition of Θ and note that κ = h∨ + k. So the above reads:

=
∑

λ∈P̃κ++

∑
w1∈W

∑
γ∈Q∨+ 1

κw1λ̄

(−1)l(w1)e(
1
2
κτ〈γ, γ〉+ κk〈γ,H〉)

×
∑
w2∈W

(−1)l(w2)Θw2(λ+ρ̃)(τ,H)

=
∑

λ∈P̃κ++

∑
α∈Q∨

∑
w,w′∈W

(−1)l(w
′)(−1)l(ww

′)e(
1
2
κτ〈 1

κ
w′λ̄+ α,

1
κ
w′λ̄+ α〉)

×e(κ〈 1
κ
w′λ̄+ α,H〉)Θw′λ̄+α(τ, wH)

The set { 1
κ λ̄|λ ∈ P̃κ++} lies in a fundamental alcove of the affine Weyl group and

the singular weights do not contribute to the sum below. Since Θγ only depends
on the class of γ modulo (Q∨) we can sum over α ∈ Q∨ and w′ ∈W and get

=
∑
γ∈ 1

κP

∑
w∈W

(−1)l(w)e(
1
2
τκ〈γ, γ〉+ κ〈γ,H〉) ·Θτ (τ.wH)

=
∑
γ∈ 1

κP

∑
w∈W

∑
µ∈Q∨

(−1)l(w)e(
1
2
τκ〈γ, γ〉+ κ〈γ,H〉)

×e(−1
2
τ̄κ〈γ + µ, γ + µ〉 − κ〈γ + µ,wH〉)

=
∑
γ∈ 1

κP

∑
w∈W

∑
µ∈Q∨

(−1)l(w)e−2πκτ2〈γ,γ〉−2πiκτ̄〈γ,µ〉−πiκτ̄〈µ,µ〉

×e2πiκ〈γ,H〉−2πiκ〈γ+µ,wH〉

=
∑
γ∈ 1

κP

∑
w∈W

∑
µ∈Q∨

(−1)l(w)e−2πκτ2(〈γ,γ〉+〈γ,µ〉)−2πiκτ1〈γ,µ〉+2πiκ〈γ,H−wH〉

e−πiτ̄κ〈µ,µ〉−2πiκ〈µ,wH〉

In fact this calculations can be seen as technically analogous to the calculations
leading to theorem 5.1. Also here we will apply the Poisson transformation formula,
that is for an euclidean vector space V , a Schwartz function f : V → C,and a lattice
M ⊂ V we have ∑

β∈M∨

f̂(β) = volM
∑
γ∈M

f(γ)

with

f̂(β) =
∫
V

e2πi〈γ,β〉f(γ)dγ

and where M∨ denotes the lattice dual to M with respect to the scalar product on
V . if we choose

f(γ) = e−2πκτ2(〈γ,γ〉+〈γ,µ〉)−2πiκτ1〈γ,µ〉+2πiκ〈γ,H−wH〉−πiτ̄κ〈µ,µ〉−2πiκ〈µ,wH〉
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inserting into the definition yields

f̂(β) =
1

(
√

2κτ2)l
e−πi〈µ,β〉−

π
2τ2κ

〈β,β〉+πτ1
τ2

〈β,µ〉− π
τ2
〈β,H−wH〉−π·(τ21+τ22 )κ

2τ2
〈µ,µ〉

×e
πτ1κ
τ2

〈µ,H−wH〉− πκ
2τ2

〈H−wH,H−wH〉−πiκ〈µ,H+wH〉.

So by the Poisson summation formula, we get

Nκ(τ,H) =
1

vol 1κP · (
√

2κτ2)l
∑

β∈κQ∨

∑
w∈W

∑
µ∈Q∨

(−1)l(w)e−πi〈µ,β〉−
π

2τ2κ
〈β,β〉

×e
πτ1
τ2

〈β,µ〉− π
τ2
〈β,H−wH〉−π·(τ21+τ22 )κ

2τ2
〈µ,µ〉+πτ1κ

τ2
〈µ,H−wH〉

×e−
πκ
2τ2

〈H−wH,H−wH〉−πiκ〈µ,H+wH〉

=
volκQ∨

(
√

2κτ2)l
∑
β,µQ∨

∑
w∈W

(−1)l(w)e−πiκ〈µ,β〉−
πκ
2τ2

〈β,β〉

×e
πτ1κ
τ2

〈β,µ〉−πκ
τ2
〈β,H−wH〉−π·(τ21+τ22 )κ

2τ2
〈µ,µ〉+πτ1κ

τ2
〈µ,H−wH〉

×e−
πκ
2τ2

〈H−wH,H−wH〉−πiκ〈µ,H+wH〉

=
volκQ∨

(
√

2κτ2)l
∑
β,µQ∨

∑
w∈W

(−1)l(w)e−
πκ
2τ2

〈β−τµ+H−wH,β−τ̄µ+H−wH〉

×e−πiκ〈β,µ〉−πiκ〈µ,H+wH〉

=
volκQ∨

(
√

2κτ2)l
∑
β,µQ∨

∑
w∈W

(−1)l(w)e−
πκ
2τ2

〈β+τµ+H−wH,β+τ̄µ+H−wH〉

×eπiκ〈β,µ〉−πiκ〈µ,H+wH〉

�

An important fact of conformal field theories is their invariance under a certain
SL(2,Z) action. The modular group SL(2,Z) acts on the torus S1 × S1. Under
this action the modular parameter τ of the elliptic curve Στ is transformed via

τ 7→ aτ + b

cτ + d

for (
a b
c d

)
∈ SL(2,Z)

This SL(2,Z) action can be extended to the domain Y via(
a b
c d

)
: (τ,H, u) 7→ (

aτ + b

cτ + d
,

H

cτ + d
, u− c〈H,H〉

2(cτ + d)
)

It was shown in [KP] that for each k ∈ N the SL(2,Z) action on Y defined above
gives rise to an SL(2,Z) action on the set of normalized characters of g̃C at level k.
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In particular it follows from the explicit transformation properties of the characters
under the SL(2,Z) action that the sum

∑
λ∈P̃k+

|χλ,H|2 is SL(2,Z) invariant. Since
the SL(2,Z) action on the modular parameter arises naturally in the functional in-
tegral setup in [W2] one can deduce the modular invariance of the partition function
of the WZW model, since zeta regularization works also for complex numbers.

17. Open Questions

The results presented in this paper lead to several open questions, two of them
where stated in [W2]. But we will indicate, that there are much more directions
for further extensions.

17.1. Stochastic point of view. According to the classification of coadjoint orbits
for double loop groups, one can find a path space, which is defined on the unit
square, the exact determination of this space is work in progress. Surprinsingly,
this space will again be a G valued path space, although the coadjoint orbits are
classified in terms of conjugacy classes, which live in the holomorphic loop group.
It would be interesting to build a measure on this space, which will certainly arise
as probabhility measure of a multiparameter process, e.g. the Brownian sheet
([D], [Nu]). Some kind of Brownian sheet would be especially usefull because of its
simple covariance structure. This could open the way, to build an SL(2,Z) invariant
measure. Such a measure on double loop groups could perhaps lead to a measure
theoretic interpretatin for the gauged WZW model, certainly one could compare a
possible measure with the formal Liouville functional approach. It would also be
interesting to investigate, which well esthablished results from stochastic analysis so
far developed on Loop groups, can be generalized to the case of double loop groups.
For example Driver and Lohrenz showed in [BL] the existence of logarithmic Sobolov
inequalities on loop groups, perhaps similar results could be obtained in the double
loop case. Another problem stated in [W2] would be to obtain a classification
of infinite dimensional symplectic manifolds on which a measure theory can be
developed and which contains the Duistermaat Heckmann formula as a theorem.

17.2. Geometric point of view. The conceptual approach to the partition func-
tion of the gauged WZW model leads to the question, which other Quantum field
theories are suitable for such a symplectic approach. It would interesting to obtain
a similar approach to the Boundary WZW model.
We want to underline the importance of the mathematical methods presented in

this paper and certain branches of conformal field theory in Condensed matter
phyiscs and nanotechnology, see e.g. the papers [Aff], [Al-D’All], [D’All1], [D’All2],
[Sch], [Tv], [Tv1].
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