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Preface

These are lecture notes for a four hour advanced course on general topology. They
assume familiarity with the foundations of the subject, as taught in the two-hour
introductory course offered at our faculty. In fact, a number of topics from the
introductory course will be repeated here to keep prerequisites minimal. Based on
this, detailed proofs are supplied for all results. Nevertheless, the approach taken is
rather advanced and theory-oriented, and the overall style is in the Bourbaki spirit
(which the subject matter lends itself to quite naturally). Throughout, we mainly
follow the standard text [5], with occasional input from other sources (mainly [1]
and [3]).

Michael Kunzinger, summer term 2016
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Chapter 1

New spaces from old

1.1 Subspaces and products

1.1.1 Example. Let (X,d) be a metric space and let U C X. Then d’ := d|yxu
is a metric on U. The e-balls in (U,d’) are given by

{z e Uld (x0,2) < e} =UN{x € X|d(xg,x) < e},

hence are exactly the intersections of the e-balls in X with U. We expect that d’
defines the restriction of the topology of X to U.

More generally, we define:

1.1.2 Proposition. Let (X,0) be a topological space and U C X. Then Oy =
{ONU|0 € O} is a topology on U, the so-called trace topology (or induced topology,
or subspace topology). (U, Oy) is called a (topological) subspace of X.

Proof. We have to verify the axioms of a topology for Oy: U =XNU, 0 =0NU,
Uier(0iNU) = (Uiel Oi) NU, N (0:NU) = (ﬂz‘el Oi) nu. .
The open (resp. closed) subsets of U thus are exactly the intersections of the open
(resp. closed) subsets of X with U. If U; is open (closed) in U, it need not be open
(closed) in X. For example, [0, 1) is open in [0,2) and closed in (—1, 1), but neither
open nor closed in R.

1.1.3 Examples.

(i) The natural topology on C is induced by the metric d(z1,22) = |21 — 22| =
(2o — x1)% 4 (y2 — y1)?)'/? for 2z, = a1, + iyk. The trace topology induced by
this topology on R is the natural topology on R.

(ii) Let A C B C X, each equipped with the trace topology of the respective
superset. Then X induces on A the same topology as B.

The following result characterizes the trace topology by a universal property:

1.1.4 Theorem. Let (X,0) be a topological space, U C X and j : U — X the
inclusion map. The trace topology Oy has the following properties:

(i) For every topological space Y and any map g:Y — U, g is continuous if and
only if j o g is continuous (i.e., g : Y — U is continuous < g : Y — X is
continuous).



(i) Oy is the coarsest topology on U for which j : U — X is continuous.

Proof. (i) jog is continuous < VO € O: (jog)~1(0) = g~ 1(j740)) = g~ (OND)
isopenin Y < g:Y — (U,Oy) is continuous.

(ii) Let O be any topology on U. Then Oy is coarser than O < g := id: (U,0) —
(U, Oy) is continuous gj =goj:(U,Op) — X is continuous. . O
If X,Y are topological spaces and f : X — Y is continuous in z € A, then also
fla : A = Y is continuous in z (let V' be a neighborhood of f(z) in Y, then
125 (V) = f~4(V) N A is neighborhood of z in A). However, the converse is not
true in general:

1.1.5 Example. Let X =Y =R, A:=Q,

0 forzeQ
f(m)'_{ 1 forz e R\Q

Then f is not continuous in any point although both f|g and f|r\g are continuous.

Nevertheless, under certain conditions the continuity of a map follows from the
continuity of its restrictions to certain sets:

n

1.1.6 Proposition. Let X = |J A, where each A; is closed in X. Let f : X =Y,
i=1

fla, continuous for each 1 <i < n. Then f is continuous.

Proof. Let B C Y be closed. Then

is closed in X. O

1.1.7 Definition. A map f: X — Y is called an embedding of X into Y if f is a
homeomorphism of X onto f(X).

1.1.8 Lemma. f : X — Y is an embedding if and only if f is continuous and
injective and f(U) is open in f(X) for every open set U in X.

Proof.

(=): f is clearly injective and f : X — Y is continuous by 1.1.4 (i). Also, if U C X
is open then so is f(U) in f(X).

(<): f: X — f(X) is bijective, and continuous by 1.1.4 (i). Finally, f~1: f(X) —
X is continuous since for U € X open we have (f~1)~1(U) = f(U) is open in f(X).
a

1.1.9 Examples.
(i) f:R—=R? f(z):= (z,0) is an embedding.

(i) f:[0,27) — St € R?, 2 — (cosz,sinz) is continuous and injective, but is not
an embedding. Indeed, for 0 < t < 2w, [0,¢) is open in [0, 27), but f([0,¢)) is
not open in S*



We now turn to the product of topological spaces.

1.1.10 Definition. Let I be a set and for all i € I let (X;,0;) be a topological
space. Let X = [[,c; Xi = {(wi)ierlzi € X; Vi € I} and let p; : X — Xj,
pi((zj)jer) := x;. The product topology O on X is defined by the basis

B:= { m p;, " (Ok)|O) € Oy, K C I ﬁm’te}.

keK
(X,0) is called the product (or topological product) of the spaces (X;, O;).

A sub-basis of B is given by S = {p; 1(0;)|0; € O;, i € I}. A subset A of [[,.; X;
is in B if and only if A =T]..; O;, where O; is open in X, for all i and O; = X; for
almost all ¢ € I.

iel

1.1.11 Examples.

(i) The natural topology on R" is precisely the product topology on R™ = []"_, RR.

(ii) Let A; C X; for all 4 € I. Then the trace topology of ||
the product of the trace topologies of X; on A;. Indeed,

[Tain]]o:=]]:nos,

i€l iel iel

ser Xion [[cAiis

where O; = X; and (4; N O;) = A; for almost all i € .
1.1.12 Theorem.

(i) For every j € I, pj : [[;c; Xi — X is continuous and open.

(ii) The product topology on [[;c; Xi is the coarsest topology for which all projec-
tions p; (j € I) are continuous.

Proof. (i) For every O; open in X, p}l(Oj) is an element of B, hence open, so p;
is continuous. Also, if O = [],.; O; € B, then p;(O) = O; is open, so p; is open.

(ii) Let O’ be a topology on [, ; X;, for which all p; are continuous. Then O’
contains every p; *(O;) and these sets form a subbasis of O, O C O'. O

1.1.13 Proposition. Amapg:Y — ]
is continuous for every i € I.

ic1 Xi 18 continuous if and only if g; = p;og

Proof. (= ): Clear since the p; are continuous by 1.1.12.

(«<=): Since the sets p; '(O;), O; open in X;, form a subbasis of the product topology,
it suffices to note that g~ (p; (0;)) = g; *(0;) is open in Y. O

1.1.14 Theorem. Let f; : X; = Y;, X; #0 (i € I). The map

I HXi — HYi, (zi)ier = (fi(z4))ier

il il
is continuous if and only if f; is continuous for every i € I.

Proof. Let p; : Hje[ X; = X; and g; : Hjel Y; — Y, be the projections.

(<): fiop; = ¢; o f is continuous for every f, so f is continuous by 1.1.13.

3



(=): Fix (ai)ier in [[;c; Xi and set, for j € I

X S T[ K s(e) = (e with e % PTIE
s5: X5 — Hsz sj(xj) = (2i)ier with z; := { z; for i = j
i€l
Then s; is continuous since p; o s; is continuous for every ¢ (it is even an embedding
by 1.1.8) and the diagram
f
[[Xi—]]Y;
i€l icl

W, b

XY,

commutes. Hence f; = g; o f o s; is continuous for every j € 1. |

1.2 Initial topologies

Both trace and product topology are characterized as being the coarsest topology
with respect to which certain maps (inclusions, projections) are continuous. In this
section we will generalize this construction principle by means of so-called universal
properties (as we have already encountered in 1.1.4 and 1.1.14).

1.2.1 Definition. Let X be a set, (X;,0;):cr a family of topological spaces and,
foreachi eI, fi : X — X; a map. A topology T on X is called initial topology
with respect to (f;)ier if it possesses the following universal property:

If Y is a toplogical space and g :' Y — X is a map then g is continuous if and only
if fi o g is continuous for each i € I.

Yy —% (X,7)
; lfi g continuous < Vi : f; 0g continuous (1.2.1)
09
i

By 1.1.4 and 1.1.14, the trace and the product topology are initial topologies with
respect to j and (p;);cr, respectively.

1.2.2 Theorem. Under the assumptions of 1.2.1, there is a unique initial topology
T on X with respect to (fi)icr- I is the coarsest topology on X such that f; : X —'Y;
is continuous for each i € I. Setting M; := {f;1(0)|0 € O;}, S := U;c; M; is a
subbasis of T.

iel

Proof. Uniqueness: Let Z;, Ty be initial topologies, and consider the diagram

(X, T) —4> (X, 1)

S

)

Setting £k = [ = 1, id is continuous, so (1.2.1) implies that f; : (X,Z;) — X, is
continuous for all 7 € I.



Now setting k = 1, [ = 2, since all f; are continuous, (1.2.1) shows that id:(X,Z;) —
(X,Z5) is continuous, hence Z; > Z,. By symmetry, also Zo > 7y, so 71 = Is.

Ezistence: If T is to be the initial topology on X with respect to (f;);cs then from
(1.2.1) and

(X,7) %> (X,1)

X;

it follows that f; oid = f; is continuous for every ¢ € I. Consequently, Z must
contanin all elements of S = ;c;{f; ' (0)|O € O;}. Now let O be the topology
defined by the subbasis S. Then O is the coarsest topology for which all f; are
continuous and by the above Z is necessarily finer than O. To finish the proof we
show that O possesses the universal property (1.2.1).

To this end, first let g : Y — (X, O) be continuous. Then since the f; are continuous,
so is f; o g for every i. Conversely, let f; o g be continuous for every i € I. To show
that g is continuous, it suffices to show that g=!(S) is open for each S € S. Since
S = f71(0) for some O € O;, we have g~1(S) = g~ ' (f71(0)) = (fi 0 9)~'(0),
which is open. O

1.2.3 Theorem. (Transitivity of initial topologies) Let X be a set, (Z;)icr a family
of toplogical spaces, (Jx)xer a partition of I and (Y))xer a family of sets. For every
A€ Llet hy: X — Yy, and for each X\ € L and each i € Jy let g;» : Y\ — Z; and
set fi; := gix © ha. Suppose that every Yy is endowed with the initial topology with
respect to (gix)ica,- Then on X the initial topology with respect to (f;)icr and the
ingtial topology with respect to (ha)aer coincide.

Proof. Let Z; be the initial topology with respect to (hy)xer, and Zy the initial
topology with respect to (f;)ier- By 1.2.2 it suffices to show that Z; possesses the
universal property (1.2.1) with respect to (f;):cr. To see this, let W be a topological
space and let k : W — X. Then by (1.2.1) for Z;, k is continuous with respect to
7, if and only if hy ok : W — Y, is continuous for all A, which in turn is equivalent
to the continuity of g;x o hy ok = f; ok for all A € L and all i € J,. Since the Jy
form a partition of I, this finally is equivalent to f; o k being continuous for every
1€ 1. O

1.2.4 Remark. In particular, if (Jy)cr is a partition of I, then

Ixi=1J I x-

i€l AEL i€y

1.2.5 Example. Least upper bound of a family of topologies.



Let (O;)ier be a family of topologies on a set X. Then there exists a unique coarsest
topology O on X that is finer than each O;. In fact, O is finer than O; if and only if
id: (X,0) — (X, ;) is continuous. Therefore O is the initial topology on X with
respect to all id: X — (X, O;).

1.3 Final topology, quotient topology

In this section we consider the dual problem of that treated in the previous one:

1.3.1 Definition. Let X be a set, (X;,O;)icr a family of topological spaces and
foreachi e I let f; : X; — X be a map. A topology F on X is called final topology
with respect to (fi)icr if it possesses the following universal property:

If Y is any topological space, a map g : X — Y is continuous if and only if go f; is
continuous for each i € I.

g

X, F) —=Y
fiT / g continuous < Vi : go f; continuous (1.3.1)
goJi

X;

1.3.2 Theorem. Under the assumptions of 1.3.1 there is a unique final topology F
on X. F is the finest topology on X for which all maps f; : X; — X are continuous.
Moreover, F = {0 C X|f;1(0) € O; Vi € T}.

Proof. Uniqueness: Let Fi, Fo be topologies on X with the universal property
(1.3.1) and consider

(Xvﬂ) ;d> (Xafk)

7

X;

For k = [ = 1, since id is continuous, (1.3.1) implies that f; : X; — (X, Fy) is
continuous for each i. Now set k = 1 and [ = 2, then again by (1.3.1) it follows that
id: (X, F2) — (X, F1) is continuous, i.e., F1 C Fo. By symmetry, F; = Fo.
Existence: We first verify that F is indeed a topology. Since fi_l(X ) = X; and
f7H(0) = 0, both X and () are in F. If Oy € F for A € L then f; " (Uyep Or) =
User fi'(Ox) € O; for all i. Finally, if Oy,...,0, € F then f'(N}_, 0;) =
N1 f71(0;) € 0; for all i.

By construction, all f; are continuous for F. Conversely, if O is a topology on X
for which all f; are continuous then, for each O € O, f,t-_l(O) € O, foralli € 1,
so O € F, which shows that O < F. Thus F is the finest topology for which
all f; are continuous. It remains to show that F possesses the universal property
(1.3.1). Thus let g: (X, F) — Y be continuous. Then g o f; is continuous for each
i. Conversely, let g o f; be continuous for each ¢ € I and let U C Y be open. Then
g7 (U)) = (go f;)"H(U) is open in X; for each i € I, so g~ '(U) is open in
(X, F), implying that g is continuous. O

Final topologies also satisfy a transitivity property analogous to 1.2.3

1.3.3 Theorem. (Transitivity of final topologies) Let X be a set, (Z;)ier a family
of topological spaces, (Jx)rer a partition of I and (Yx)xer o family of sets. Suppose

6



that for every A\ € L, hy : Y» — X is a map and that for each A\ € L and each
i € Jx, gri : Zi — Yy is a map, and set f; :== hy o gx;- Let each Yy be equipped
with the final topology with respect to (gxi)ica,- Then on X the final topologies with
respect to (f;)icr and with respect to (hy)xer coincide.

Proof. Let F; be the final topology with respect to (hx)xer, and Fa the one
with respect to (f;)icr. By 1.3.2 it suffices to show that JF; possesses the universal
property (1.3.1) with respect to (fi)icr. Let W be a topological space and let
k: X — W. Then k is continuous with respect to F; if and only if koh) : Y\ = W
is continuous for all A € L, which in turn is the case if and only if ko hy o g\; =
ko f; : Z; — W is continuous for all A € L and all i € J,. Since the J) partition I,
this holds if and only if ko f; : Z; — X is continuous for all i € I. a

1.3.4 Remark. Analogously to 1.2.5, 1.3.2 can be used to determine the greatest
lower bound of a family of topologies on X. In fact, if (O;);er is a family of toplogies
on X then 1.3.2; applied to id: (X, 0;) — X shows that the finest topology coarser
than all O; is given by O =,; O;.

An important special case of final topologies is the quotient topology:

1.3.5 Definition. Let X be a topological space, ~ an equivalence relation on X
and p : X — X/~ the canonical projection from X onto the set of equivalence
classes, p : x — [z]. The final topology on X/~ with respect to p is called quotient
topology. X/~ is called quotient space or factor space with respect to ~.

By 1.3.2 the quotient topology is the finest topology on X/~ for which p is contin-
uous. A C X/~ is open if and only if p~*(A) is open in X. Note that

p HA) ={z € X|p(z) € A} = {z € X|Fa € A with = ~ a}.

1.3.6 Example. On R, consider the equivalence relation x ~ y <= z —y € Z.
Let S := R/~. Then S is homeomorphic to the unit circle S* C R?: Let g : S —
S1, g([x]) = (cos 2wz, sin 27rz). Then g is well-defined and bijective. g is continuous
by (1.3.1) since h := gop : x > (cos2mx,sin27x) is continuous. Moreover, ¢ is
open: We have S = {[z]|z € [0,1)}. For z € (0,1), a neighborhood basis in S is
given by p((z —e,x +¢€)) (¢ > 0). Then g(p(x —e,x+¢)) = h(r —e,x +€) is open
in S1. Now let z = 0. Then a neighborhood basis of [z] is given by p(U.) (¢ > 0)
with U, :=[0,€) U (¢, 1), so g(U.) is open in S*.

7



1.4 Identification topology, gluing of topological
spaces

For any map f: X =Y,z ~y:& f(z) = f(y) defines an equivalence relation. Let
p: X — X/~ be the corresponding projection, and set

[z]) == f(2)
J;([afz]) = f(z1) = f(z2) =

e the inclusion map. Then

[ X/~ = f(X),

f(
Then f is well-defined and surjective, and f([z1]) =
[x1] = [z2], so f is bijective. Also, let j: f(X) = Y
the following diagram commutes:

X/~ — f(X)

1.4.1 Definition. Let f: X — Y be continuous and equip X/~ with the quotient
topology, as well as f(X) with the trace topology of Y. If f : X/~— f(X) is a
homeomorphism then f is called an identifying map. If f is, in addition, surjective,
then the topology of Y is called identification topology.

1.4.2 Theorem. Let f: X — Y be continuous. Then:

(i) p, f and j are continuous.

(ii) f is a homeomorphism if and only if for every open (closed) set of the form

FYHA) (ACY), the set f(f~1(A)) is open (closed) in f(X).

(iii) If f : X =Y is surjective and open or closed, then'Y carries the identification
topology with respect to f.

Proof.

(i) pand j are continuous by definition of the quotient and trace topology. Since
[ is continuous, j o f op is continuous, and this by 1.1.4 implies that fop is
continuous. By (1.3.1) this gives that f is continuous.

(ii) Since f is continuous and bijective, f is a homeomorphism if and only if
f: X/~ — f(X) is open (resp. closed). To see that the latter is equivalent
to (ii) we need some preparations:

(1) VV C X/~ we have: f=1(f(p~1(V)))
Indeed, = € fH(f(p~ (V) & f(z) € f(p~
r~isrep (V)

(2) YACY: p~H(p(f~1(A))) = f~1(4)

In fact, = € p~ (p(f () & p(z) € p(f~1(4) & 37 € F~'(A) with
r~Ts flr)e A e fHA)

Using this we can now show:

f open (closed) & VA C Y with f~!(A) open (closed): f(f~1(A)) is open
(closed) in f(X)

(V) & 3& € p~ (V) with

(=): Let V:=p(f~(A) = p (V) @ F71(A) is open (closed) = V is open
L(fc(los)ed) in X/~ = f(V) = fop(f~1(A) = f(f~*(A)) is open (closed) in
X



(<): Let V. C X/~ be open (closed) and set A := f(p~1(V)). Then

(iii) Since f(X) =Y, by (ii) we have to show that f(f~1(A)) is open (closed) for
f71(A) open (closed). This in turn is immediate from f open (closed). O

1.4.3 Examples.

(i) Let f : R — St C R?, f(x) = (cos2mx,sin2mx). f is continuous, surjective
and open. Let x ~y & f(r) = f(y), i.e: z ~y < o —y € Z. Then by 1.4.2
(iii), f : R/~— S! is a homeomorphism, confirming 1.3.6.

(i) Let X :=R3\ {0}, = = (z1,22,23), ||z] = /23 + 23+ 23, T:= Mam € S22 C

R?\ {0}. We define an equivalence relation ~ on X by
z~z e INER, A>0, st 2’ =Xz

Let [z] be the equivalence class of z and consider f : R3\ {0} — R3\
{0}, f(z) =Z. Then f(x) = f(2') & x ~ a’. fis continuous and f(X) = S
That f~!(A) is open in R? \ {0} means that the cone which is determined
by AN S?%is open in R3\ {0}. But then also AN S?, so f(f~!(A)) must be
open. Hence by 1.4.2 f : X/~ — f(X) = S?%, f([z]) = f(x) = Z is a homeo-
morphism. The trace topology on S2 therefore is precisely the identification
topology with respect to f.

(iii) For z, y € S% let x ~ y if y = —x. Then S?/~ with the quotient topology
is called the projective plane P2. Alternatively, on R3 \ {0} consider the
equivalence relation x = y < 3X # 0 s.t. * = Ay. Let [[z]] be the class of z
with respect to . Consider

g: 8%/~ B3\ {0}/ ~
2] = [[e]].

g is well-defined and bijective. Let p; : S? — S?/~, py : R\ {0} —
(R3\ {0})/ =~ be the projections. Then g o p; = pa|gz is continuous, so g
is continuous and g~t o py = z H%\I — [ﬁ] is continuous, hence g is a
homeomorphism. It follows that (R3\ {0})/ = is an equivalent representation
of P2.

1.4.4 Definition. Let (X;, O;)icr be a family of topological spaces that are pair-
wise disjoint. Let j; : X; — Upc; Xi be the canonical embedding. Then | J;c; Xi,
equipped with the final topology with respect to (j;)icr is called the topological sum
of the (X;)icr. If the X; are not disjoint, we replace X; by (X; x {i})ier-

By 1.3.2 a subset O C |J..; X; is open if and only if O N X; is open in X; for all

jer “}j
i € I. Thus | J;c; X; induces on every Xj its original topology O;.

We now turn to the task of gluing topological spaces.

1.4.5 Definition. Let X and Y be disjoint topological spaces, A C X closed, and
let f: A—=Y. On the topological sum X UY we define the following equivalence
relation:

21,20 € A and f(z1) = f(z2) or

21 € A,z9 € f(A) and f(z1) = 22 or

29 € A, z1 € f(A) and f(z2) = z1 or

22 =2

21~ 29 >



Then'Y Uy X := (X UY)/~ is the topological space resulting from gluing X and Y
along f.

Thus any point from f(A) is identified with every element of its pre-image.

1.4.6 Examples.

(i) Let X :=10,1], A={0}U{1},Y :=1[2,3], f(0) :=2, f(1) :=
Then Y Uy X is homeomorphic to S*: Let p: X UY — X UY/~ be the
projection. For 0 < z < 1 or 2 < z < 3 there clearly exists a neighborhood
basis in X U Y/~ that maps bijectively to a basis in X resp. Y. But also
for z = f(0) = 2 there is a neighborhood basis whose inverse image under p
consists of the sets [0,€) U [2,¢), which are open in X UY, and similar for

z= f(1)=3.

(i) Let X = {(z,) € R2e? +3° <1}, A= {(2,9) € R +47 = 1}
Y ={(0,2) e R?}, f(x,y):=(0,2) V(z,y) € A. Then Y Uy X = S%

1.4.7 Definition. Let D™ be the closed unit ball in R", e" := (D")°, "~ =
OD™ = D"\ e,, equipped with the trace topologies. D™ resp. €™ (and any spaces
homeomorphic to them) are called n-dimensional ball resp. n-dimensiona cell. Let
f: 8" = X a map into a topological space X. Then X U D™ (as well as any
space homeomorphic to it) is called a space resulting from X by gluing an n-cell
along f to X.

Note: Since e NS 1 = (), for 21, 29 € e™ we have 21 ~ 2y < 2; = 2. Therefore
(with p: X UD™ — X Uy D"), plen : €™ — p(€e™) is a homeomorphism.

1.4.8 Examples.
(i) Let X := D?, f:=idg:. Then X Uy D? = 5.

(ii) Let X = {(z,y) e R0 <2 <1, 0 <y < }A
Oorl}, Y :=1[0,1. Let f: A=Y, f(0,y) =y, f
M =Y Us X is called the Moebius strip.

(1,y) :

1.5 Manifolds and topological groups

Here we briefly introduce some notions that play an important role in several fields
of Mathematics.

1.5.1 Definition. Let M be a set such that there exists a cover (U;);cr of M and
a family of bijective maps ; : U; — V; with V; C R™ open. Moreover, suppose that
for alli, j with U;NU; #0, pi(U; NU;), ¢;(U;NU;) are open and that

pioprt o) (U;NUy) = ¢s(Ui NT;)

is a homeomorphism. FEquip M with the final topology with respect to the <pi_1
Vi — M. If M is Hausdorff, it is called a topological manifold of dimension n.

The (p;,U;) are called charts of M, the system {(¢;,U;)|i € I} is called atlas
of M. Often one requires in addition that the topology of M should possess a
countable basis (or is paracompact, see Ch. 7). The maps p; o <pj_1 are also called
chart transition functions. If these maps are even diffeomorphisms of class C*
(1 <k < ), then M is called a C*-manifold. If they are analytic, M is called a
C“-manifold.
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1.5.2 Lemma. Fvery ¢; : U; — V; is a homeomorphism, and each U; is open in
M.

Proof. By definition of the final topology, each gpi_l : V; — M is continuous.
Hence (by 1.1.4) also ¢; ' : V; — U is continuous. It remains to show that ¢; is
continuous. Let W C V; be open. Then for all j € I,

(07D e T W) = 0, (U; N (W) = ,(U; N U g (W)
cU;

= ;e Hes(UiNU;)) N ' (W) = @ 0 @7 (0i(Us NU;) N W)

open in ¢, (U;NU;)

is open in ¢, (U; NU;) C ¢,;(U;) = V;. By 1.3.2 it follows that ¢; '(W) is open in

M, and since gpi_l(W) C U,, it is also open in U;. Consequently, ¢; : U; — V; is

continuous.

Finally, (<pj_1)*1(U,;) = ¢;(U; NUj) is open Vj, so U; is open in the final topology.
O

By suitably restricting the ¢; and composing them with translations and dilations
we can achieve that V; = B1(0) for all ¢ € I. Thus a manifold is a topological
space that locally looks like a ball in R™. Moreover, B;(0) is homeomorphic to R™.
Indeed, f: B1(0) = R", f(z):= E tan(Z||lz||) is a homeomorphism: B;(0) — R"
with inverse f~!(y) = 2 arctan (||y) - ¥ - [|y||. Thus manifolds can equivalently be
viewed as topological spaces that locally look like R"™.

1.5.3 Examples.
(i) Every R™ is a manifold with atlas {id}.

(i) Let M = St = {(z,y)|z? + y* = 1} . M is a manifold with the following
charts:
Up=8"n{z>0}, pr=p2: (x,9) =y
Uy =S'n{z <0}, g2 =pa
Us=8'"N{y>0}, p3=p1: (2,9) >
Us=5"n{y <0}, pa=p

E.g.: o(U; NU3) = (0,1), p(U; NU3) = (0,1) and: ¢, 0 3" () = V1 — 22
is C*°, and analogously for the other cases. Hence S' is a smooth manifold.
Since all ; are homeomorphisms (when their domains are equipped with the
trace topology from R?), S! carries the trace topology of R? (in particular,
St is Hausdorff).

1.5.4 Definition. Let G be a group that at the same time is a topological space
such that:

(i) (x,y)—x-y:GxG— G is continuous.

(ii) x— 71 : G — G is continuous.
Then G is called a topological group.

1.5.5 Definition. If G is a group that also is a C°°-manifold, and such that (i),
(ii) are smooth, then G is called a Lie group.

1.5.6 Examples.

11



(i) (R™,+), (C™,+) are topological groups and Lie groups.

(ii) The matrix groups GL(n,R), SL(n,R), GL(n,C), SL(n,C), O(n), U(n),...
are topological groups (and Lie groups) with respect to matrix multiplication.
They all are equipped with the trace topology of R resp. (C”Q, since M (n) it-
self can be identified with R™ resp. C". The group operations are continuous
(even smooth) by the usual formulas for matrix multiplication/inversion.

12



Chapter 2

Filters and convergence

2.1 Nets

2.1.1 Definition. A set I is called directed, if on I there is a relation < satisfying
(i) i<iViel.
(1) i1 < i Nig < i3 =iy < ig.

(iii) Vi1, iz € I Jig € I with iy < iz A s < i3.

Also, i1 < iy means: i1 < ig, but not iy < iy.

2.1.2 Examples.

(i) (N, <), (R, <) are directed sets.

(ii) Let X be a topological space, x € X and U(z) the set of all neighborhoods of
x. U(z) is a directed set via Uy < Uy < Uy C Us.

(iii) The set Z of all partitions Z = (2o, Z1,...,Tpn), a =2Tog <21 < -+ < Tp =1
of the interval [a,b] C R is a directed set via Zy < Zy & Z; C Zy

2.1.3 Definition.

(i) A net (or: Moore-Smith sequence) in a set X is a map @ : I — X, i — x; of
a directed set I into X. One also writes (x;)icr for ®.

(ii) A net (x;)icr n a topological space X is called convergent to x € X, x; — x,
’Lf YU GU(JJ) Jdigel: x; € U Vi>ig.

2.1.4 Examples.

(i) A sequence (x,,)nen is a net on the directed set N. The net (2, ),en converges
if and only if the sequence (2, )nen converges.

(ii) Let X be a topological space, let z € X and let U(z) as in 2.1.2 (ii). If for
any U € U(x), zy is a point in U then the net (zv)yey(s) converges to x. In
fact,let V> U,ie. VCU, thenzy € VCU,soxy € UVV >U.

13



(iii) Let Z as in 2.1.2 (iii), f : [a,b] — R and consider the nets

n

D1 : Z =R, (0,21,...,%p) — Z(acZ —xi—1) sup {f(z)|z € [zi—1, 2]}
i=1

@2 12— ]Ra (‘TOa cee 7xn) = Z(xl - xi—l) inf {f(x)h7 € [aji—laxi}}

i=1

Then f is Riemann-integrable if ®; and ®5 converge to the same number c. In this

case, ¢ = fbf(x) dzx.

2.1.5 Theorem. Let X, Y be topological spaces.

(i) Let A C X. Then x € A if and only if there exists a net (v;)icr, i €
A with x; — x.

(i) Let f : X — Y. Then f is continuous in = if and only if for each net (x;)icr
with x; = z, f(x;) — f(x).

Proof.

(i) (=): YU € U(z) 3zy € UN A. Thus (2y)yecu(e) is a net in A that converges
to  (by 2.1.4 (ii)).

(«<): Let U € U(x) and (z;)iesr a net in A with z; - z = Jz,, € U =
ANU # 0.

(ii) (=): Let V e U(f(x)) = U € U(x) with f(U) C V. Since z; — x, there
exists some ig such that z; € U Vi > ig. Then also f(z;) € V Vi > ip, so
f(xi) = f(=).

(«<): If f were not continuous in z there would exist some V' € U(f(z)) such
that VU € U(z) : f(U) €V = VYU € U(z) Jzy € U with f(zy) ¢ V. But
then (zy)veu(s) is a net with xy — x, but f(zy) 4 f(z), a contradiction.

d

2.2 Filters

In 2.1 we have repeatedly considered nets over the directed set U(z). For a system
of sets F that is directed by inclusion the above examples suggest to say that F
converges to x if eventually (in the sense of this direction) the sets of F lie in any
Uel(x).

2.2.1 Definition. Let X be a set and let F C P(X) (the power set of X ). F is
called a filter, if:

(i) D¢ F, X € F.

(ZZ) Fi,lhe F=MnNEk eF.
(iii) FeF, 'O F = F €F.
2.2.2 Examples.

14



(i) Let X be a topological space and let x € X. Then U(z) is a filter, the so-called
neighborhood filter of x.

(ii) Let X be an infinite set and let F := {F C X|X \ F finite }. Then F is a
filter: (i) and (iii) are clear, and (ii) follows from

X\ (FLNF)=(X\F)U(X\F) finite.
F is called Fréchet filter on X.
(ifi) Let 0 £ A C X. Then F := {B C X|A C B} is a filter.
(iv) Any filter is a directed set by defining
< F,: F, CF.

Then 2.1.1 (i) and (ii) are clear and 2.1.1 (iii) follows from: Fy,Fy € F =
FiNFy, e Fand F} < Fi1NFy, Fy < 1N Fy. For any F € F choose an
zp € F, then (zp)per is a net.

(v) Conversely, let (x;);cr be a net and set
F = {F C X|3ig € I with {;]i >io} C F}.

Then F is a filter: (i), (iii) from 2.2.1 are clear, and (ii) follows from: Fy, F5 €
F = {xli 2 i1} C Fu, {a;]i > ia} C Fy. Pick ig € I such that iy < i and
io < ig, then {J)z|’t > io} CFHFNFE=FNkKeF.

We will return to the relation between filters and nets below when we look at
convergence.

2.2.3 Definition. Let X be a set and let F,F' be filters on X. F is called finer
than F', and F' coarser than F, if F 2 F' (i.e., F € F = F € F).

2.2.4 Example. Let I be a set and for each ¢ € I let F; be a filter on X. Then
Nic; Fi is a filter on X, namely the finest filter that is coarser than every F;.

Next we want to answer the question under what conditions for a given system S
of subsets of X there exists a filter containing S.

2.2.5 Proposition. Let X be a set, S C P(X). The following are equivalent:

(i) There exists a filter F containing S.
(ii) If 8" C S is finite, then (geg S # 0.

Then F := {F C X|3§' C S finite with (\gcs S C F'} is the coarsest filter on X
containing S.

Proof. (i)=-(ii): Clear by 2.2.1 (i) and (ii).

(ii)=-(i): We show that F is a filter: 2.2.1 (i), (iii) are clear. Ad (ii): Let Fy, F» €
F, ﬂSGSiS C Fy, ﬂSeSéS C Fy, = mSe(S{USé)S CHFNFy=FNFy, e F.
Let 7' be another filter containing S = F' contains all (g.gS and thereby all
FeF=FCF. O

2.2.6 Definition. Let X be a set and suppose that S C P(X) satisfies 2.2.5 (ii).
Let F be the coarsest filter containing S. Then S is called a subbasis of F.
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The following result clarifies the dual question to 2.2.4:
2.2.7 Corollary. Let I, X be sets, and fori € I let F; be a filter on X. TFAE:

(i) There exists a coarsest filter that is finer than every JF;.

(i1) For every finite set J C I and every family (F;)jes with F; € F; for every j,
ﬂjeJ F; # 0.
Proof. By 2.2.5, (i) < 3 coarsest filter F with S := J,.; Fi € F & (ii). O

2.2.8 Corollary. Let X be a set and let (F;);er be a family of filters on X that is
totally ordered (with respect to inclusion). Then there exists a coarsest filter F on
X that is finer than every F;.

Proof. Let J C I be finite, J = {i1,...,4,} such that F;, C F;,, C ... F; . Let
Fi, € Fi;, (1 <j<mn). Then F;, € F; Vj = ﬂ;;l Fi, # 0, yielding the claim. O

2.2.9 Proposition. Let X be a set, B C P(X) and F := {F C X|3B € B with
B C F}. TFAE:

(i) F is a filter.

(ZZ) (a) VBl, By eB E|B3 € B with B3 C B1 N Bs.
()0 & B+0.

Then F is the coarsest filter on X that contains B.

Proof. (i) = (ii): (a): Let By,By € B= B1,By € F = B; N By € F = claim.
(b): Clear since F is a filter.

(11) = (1) 2.2.1 (1), (111) are clear. Ad (11) Fy, D B,Fy, D By = FiNFy, D Bi1NBy D
Bs.

Finally, if 7’ is a filter that contains B, then 7' D F. O

2.2.10 Definition. Let X be a set and let B C P(X) as in 2.2.9 (ii). Let F be
the coarsest filter that contains B. Then B is called a filter basis of F.

Any filter basis of F is also a subbasis of F. Conversely, if S is a subbasis of a filter
F then by 2.2.5 {\gcs SIS’ € S finite } is a basis of F.

2.2.11 Examples.
(i) The tail ends {x;]i > io} of a net form a basis of the filter defined in 2.2.2 (v).
(ii) The sets {(n,00)|n € N} form a basis of the Fréchet filter on N.

2.2.12 Proposition. Let X be a set, F a filter on X and B C F. TFAE:

(i) B is a filter basis of F.

(ii) VF € F 3B € B with BC F.
Proof. (i) = (ii): Clear by 2.2.9.
(ii) = (i): B is a filter basis: (a): By,Bs € B= B1,By; € F = 3B3 C B; N Bs.
(b): O ¢ B +# 0 is clear.
By 2.2.9, Bisa basisof G := {F C X|3B € B: BC F} = G C F. Conversely,
BcgWrcgsr=g. o

In particular, 2.2.12 implies that the filter bases of the neighborhood filter U (x) are
precisely the neighborhood bases of x.
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2.2.13 Proposition. Let X be a set, F,F' filters on X with bases B,B’. TFAE:
(i) F is finer than F', i.e.: F 2O F'.
(ii) VB' € B' 3B € B with BC B'.

Proof. (i) = (ii): B/ C F' C F ={F C X|3B € B with B C F}.
(ii) = (i): Let Y € F' = 3B’ € B’ with B C F' =3B € Bwith BC B’ CF' =
F'eF. O

Before we turn to the definition of ultrafilters, let us first recall some notions from
set theory.

Let (X, <) be an ordered set, A C X, = € X. x is called an upper bound of A if
a<zxforalla e A. m € X is called mazimal element of X, if m < z, z € X implies
xz=m. If (X, <) is an ordered set in which any totally ordered subset possesses an
upper bound, then there exists a maximal element in X (Zorn’s Lemma).

2.2.14 Definition. Let X be a set and let F be a maximal element in the set of
all filters on X. Then F is called an ultrafilter on X.

Thus F is an ultrafilter if and only if for every filter ' with 7’ D F it follows that
F' =F.

2.2.15 Theorem. Let X be a set and let F be a filter on X. Then there exists an
ultrafilter F' on X with F' O F.

Proof. Let ¥ := {F'|F' is a filter on X with 7' O F}. By 2.2.8, any totally

ordered subset of ¥ has an upper bound. Thus by Zorn’s Lemma, ¥ has a maximal
element F’. This is the ultrafilter we wanted to find. O

2.2.16 Theorem. Let X be a set and F a filter on X. TFAE:

(i) F is an ultrafilter.
(ii)) VA C X, either Ac F or X\ A€ F.

Proof. (i) = (ii): Since AN (X \ A) = () there can be no two sets Fy, F5 in F with
Fy C Aand F» C X \ A. Thus either all F € F intersect A or all of them meet
X \ A. In the first case, {F N A|F € F} is the basis of a filter G which by 2.2.13 is
finer than F = F=G=Aec F. L FN(X\A)#0VF € F it follows analogously
that X \ A e F.

(ii)= (i): Suppose that F is not an ultrafilter. Then there exists a filter G D F =
IGeg,G¢ F=X\GeFCG=G X\G €. But this is impossible since G
is a filter. O

2.2.17 Definition. Let X be a set and F a filter on X. F is called free if
Nper F = 0. Otherwise F is called fixed.

2.2.18 Corollary. Let F be a filter on a set X. TFAE:
(i) F is a fized ultrafilter.
(it) 3z € X with F ={F C X|z € F}.
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Proof. (i) = (ii): Let x € (pcr F' = all F € F meet A := {x}. Hence by 2.2.16,
(i) = @), {{z} N F|F € F} = {{z}} is a basis of F.

(ii) = (i): {z} is a basis of . Hence A C X isin F < x € A. Since either x € A
orz € X\ A, we get: for any A C X, either A € For X\A e F = Fisan
ultrafilter. O

Fixed ultrafilters are in fact the only ones that can be described explicitly.

2.2.19 Corollary. Let F be an ultrafilter on X and let A,B C X and AUB € F.
Then A€ F or B e F.

Proof. Suppose indirectly that A ¢ F and B ¢ F. Then by 2.2.16 X \ A €
F, X\BeF=(X\A)N(X\B)=X\(AUB)e F=AUB¢F. O

By induction it immediately follows that if |J;_, A, € F = 3j € {1,...,n} with
Aj e F.

2.2.20 Proposition. Let F be a filter on X. Then
F = ﬂ{g D F|G ultrafilter}

Proof. C: follows from 2.2.15.

D: Let A¢ F. Then FE AVF € F = FN (X \A) #0VF € F. Then by 2.2.5,
{X\ A} U{F|F € F} is a subbasis of a filter F’ that is finer than F. Let G be an
ultrafilter with G O F'. Then X\ A€ G = A¢ G = A¢ {G 2 F|G ultrafilter}.

O

Next we look at restrictions of filters to subsets.
2.2.21 Proposition. Let X be a set, A C X and F a filter on X. TFAE:
(i) Fa:={FNA|F € F} is a filter on A.
(ii)) FNA# 0O VF e F.
Proof. (i)=-(ii): clear.
(ii)=(i): We check 2.6 (i) — (iii) : (i): 0 ¢ Fa by (i), A = XN A € Fa. (ii):

(FBiNA)N(FanA)=FNE)NA (ii): Lee ADBDFNA=FUB &€ F and
therefore B=(FNA)U(BNA)=(FUB)NAE€ Fyu. O

2.2.22 Proposition. Let X be a set, A C X and F an ultrafilter on X. TFAE:
(i) Fa is a filter on A.
(i) AeF.

In this case Fy is an ultrafilter on A.

Proof. (i) = (ii): f A¢ F, then by 2216 X \Ae F=0=(X\A)NAE Fu,a
contradiction.
(i) = (1): Ae F=ANF #0VF € F = F4 is a filter by 2.2.21.

To see that Fy4 is an ultrafilter on A we use 2.2.16: Let B C A, B ¢ F4. We
need to show that A\ B € Fy4. Since B ¢ F4 it follows that B ¢ F (otherwise
B = BN A € Fa). Therefore, since F is an ultrafilter, X \ B € F = A\ B =
(X \ B) NA€EFyu. 0O
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2.2.23 Definition. Let X be a set, A C X, F a filter on X and FNA # ) VF € F.
Then F 4 is called the trace of F on A.

2.2.24 Example. Let X be a topological space, A C X, z € X. Consider U(z)a.
U(xz)a is afilteron A VV el(z), VNA#Doz e A

2.2.25 Proposition. Let X,Y be sets and B a basis of a filter F on X. Let
f: X =Y be amap. Then f(B) is a basis of a filter f(F) on'Y. If F is an
ultrafilter then also f(B) is a basis of an ultrafilter (hence f(F) is an ultrafilter).

Proof. Clearly, 0 ¢ f(B) 7é 0. Let Bl,BQ cB= E|B3 C BiNBy; = f(Bg) -
f(B1) N f(By). If F is an ultrafilter, we employ 2.2.16: Let A C Y, then there are
two possibilities:

1) f"Y(A) e F=3BeBwith BC f71(A) = f(B) C A= Ac f(F).

2) X\ fHA) =f1(Y\A) eF=3IBC ffYYY\A) = fB)CY\A=
Y\ Ae f(F). O

2.2.26 Theorem and Definition. Let (X;)icsr be a family of sets and for each

1 € 1 let B; be a basis of a filter F; on X;. Tﬁen B :={[[,c; Bi|Bi = X; for almost

all i, B; € B; otherwise} is a basis of a filter F on [[;c; Xi. F is called the product
of the filters (F;)icr-

Proof. Obviously, § ¢ B # (.

Now let B; = X, for i ¢ H (finite), B; € B; otherwise, B, = X, for i ¢ H' (finite),
B} € B; otherwise. For i € HN H' let B] € B such that B C B; N B}

B, ic€cH\H

. B, ieH \H ,

Let C; = B icHNE =[[cc[[B]]B
X, i¢ HUH i€l iel iel

2.2.27 Example. Let (z;)ier € [[;c; Xi- Then the product of the (U(z;))icr is
precisely U((z;)ier)-

2.3 Convergence
2.3.1 Definition. Let X be a topological space, F a filter on X with basis B and
x € X. x is called limit or limit point of F (or also of B), if F is finer than the

neighborhood filter U(x) of x. We write F — x.

Thus F converges to z if any neighborhood U of z contains some B € B. Together
with F, also any finer filter ' converges to .

2.3.2 Proposition. Let X be a topological space, F a filter on X and z € X.
TFAE:

(i) F converges to .
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(i) Every ultrafilter G O F converges to .

Proof. (i)=-(ii): clear.
(i)=(): U(z) CNg5rG = F (using 2.2.20). 0

Here, for one last time we look at nets, to clarify the relation between convergence
of nets and of filters. For the following, cf. 2.2.2 (iv) and (v).

2.3.3 Theorem. Let X be a topological space, x € X.

(i) Let (x;)icr be a net in X and F the filter whose basis are the tail ends {x;|i >
io} of (xi)icr (cf 2.2.2 (v)). Then:

T, > r & F— .

(ii) Let F be a filter on X and for any map s : (P(X) 2)F — X consider the net
(s(F))rer = (sr)rer. Then:

F—oxesp—x Vs: F— X withspe FVYF e F.

Proof. (i) z; —» x < every V € U(x) contains a tail end of (z;);e; & F — .

(ii) (=): Let V e U(x) = IF, € F with F;, C V. Let s : F — X with sp € F for
all F € F. Then {sp|F > Fy} CV, because sp € F C Fy CV VF > F,.

(<): If F 4 =, then there exists some V € U(z) such that F ¢ V VF € F =
VFEIHSFEF\Vé(SF)Fe]:—H{IJ. O

From 2.3.3 it can be seen that a satisfactory theory of convergence can be based
both on nets or on filters. Generally, filters are preferred in the literature since
systems of sets possess a number of technical advantages as compared to nets. In
particular, the notion of ultrafilter is more versatile than the corresponding notion
of universal net. Henceforth we will therefore exclusively work with filters.

2.3.4 Definition. Let X be a topological space, B a basis of a filter F on X and
x € (\gep B. Then x is called a cluster point of F.

Thus z is a cluster point of F < 2 € BYBeB&VYBeBYU cU(x): BNU # 0.
If Bi,B, are bases of the same filter F, then ﬂBGB B = nBeB B : Let B; €
By = dB; € By with By C By = ﬂB eB B2 C ﬂB EB By, and analogously for the
converse direction. In particular: (zcp B = (\per F. The set of cluster points of
F is closed, being the intersection of closed sets.

2.3.5 Proposition. Let X be a topological space, F a filter on X, x € X. TFAE:

(i) x ist a cluster point of F.
(ii) There exists a filter G on X, G O F with G — x.

In particular, any limit point of F is also a cluster point of F.

Proof. (i) = (ii): Let B:= {FNU|U € U(x), F € F}. Then B is a basis of a filter
G with G D F and G D U(x), i.e. G — x.

(i) = (i): Since G D FUU(x), FNU #OVF € FVYU € U(z). O
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2.3.6 Corollary. Let X be a topological space, F an ultrafilter on X, z € X.
TFAE:

(i) F—zx
(i) x is a cluster point of F.

Proof. (i) = (ii): Clear from 2.3.5.
(ii) = (i): 2.3.5 = 3G 2> F with G — z. Since F is an ultrafilter, G = F. o

2.3.7 Theorem. Let X be a topological space, A C X, x € X. TFAE:
(i) = € A.
(ii) There exists a filter F on X with A € F and F — x.

(#ii) x is a cluster point in X of some filter on A.

Proof. (i) = (ii): {ANU|U € U(x)} is a basis of a filter F that contains A and is
finer than U(x).

(ii) = (iii): Since A € F, by 2.2.21 F4 := {F N A|F € F} is a filter on A (hence
also a filter basis on X). To see that z is a cluster point of F4 on X, let U € U(x).
Then U € F because F — x. Thus for any F € F, (FNA)NU € F, hence is
nonempty.

(iii) = (i): Let F be a filter on A with x as a cluster point of F on X. This means

that
ve [ F
FeF
It follows that for any U € U(z), F € F we have ANU 2 FNU # (. Therefore,
z €A O

2.3.8 Definition. Let X be a set, Y a topological space, F a filteron X, f : X =Y
and y € Y. y is called limit (resp. cluster point) of f with respect to F if y is a
limit (resp. cluster point) of the filter f(F) (cf. 2.2.25). If y is a limit of f with
respect to F then we write y = limx f.

Note that, in general a map f can have more than one limit with respect to a filter.

Hence from y = limz f, ' = limx f it does not follow that y = ¢’ (unless Y is
Hausdorff, cf. 3.1.5 below).

2.3.9 Proposition. Under the assumptions of 2.3.8, TFAE:
(i) y = limg f.
(i) YV € U(y) IF € F with f(F) C V.
as well as
(i’) y is a cluster point of f with respect to F.
(i) YV € U(y) VF € F Jz € F with f(x) € V.
Proof. Immediate from the definitions. O
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2.3.10 Example. Let X = N, F the Fréchet filter on N (cf. 2.2.2 (ii)). Let
w:N =Y  w= (z,)nen be a sequence in Y. If z is a limit of w with respect to
F, we write x = lim,,_,o, z,. A cluster point of w with respect to F is called an
accumulation point of w.

The filter that is associated to (2, )nen by 2.3.3 (i) is called the elementary filter of
w. By 239, x = limrpw & VV € U(x) IF € F with w(F) CV < every V € U(x)
contains a tail end of w & = = lim,_,o x,. Also, x is a cluster point of w with
respect to F < VV € U(z) Vk € N Iny, > k with z,,, € V < z is an accumulation
point (in the sense of analysis) of the sequence w. However, in general (unless Y is
first countable) this does not imply that w possesses a subsequence that converges
to x, as would be the case for sequences in R (there only needs to be a finer filter
that converges to z, see 2.3.11 below).

For a subsequence (2, )gen of w, the family ({z,, |k > [})icn is a basis of a filter
that is finer than the elementary filter of w. More generally we have:

2.3.11 Proposition. Let X be a set, Y a topological space, F a filter on X,
f:X—=>Y, andyeY. TFAE:

(i) y is a cluster point of f with respect to F.
(i) There exists a filter G O F on X such that y = limg f.

Proof. (i) = (ii): B := {f~Y (V)N F|V € U(y),F € F} is a filter basis on X:
In fact, fY(Vi))NEFy N (Vi) N Ey = f~Y(ViNn Vo) N Fy N Fy, so it suffices to
show that f~1 (V)N F # 0 VV,F. By 2.3.9 (ii"), there exists some x € F with
f(x) e V=a2€ Fnf~1(V). Let G be the filter with basis B. Then G 2 F and
YV € U(y) we have: f(f~H(V)NF)C f(f~YV))CV = limg f = y.

(ii) = (i): By 2.3.5, y is a cluster point of f(G), hence also of f(F) C f(G). O
2.3.12 Definition. Let X,Y be topological spaces, a € X, f: X - Y, yeY. y

is called limit (resp. cluster point) of f in a, if y is a limit (resp. cluster point) of
f with respect to U(a). We write y = lim,_,, f(x).

2.3.13 Theorem. Let X,Y be topological spaces, f: X —Y,a € X. TFAE:

(i) f is continuous in a.

(ii) f(a) =limg_, f(z).
(iii) If F is a filter on X with F — a, then f(F) — f(a).

Proof. (i) = (ii): Let V € U(f(a)) = U € U(a) with f(U) CV = f(U(a)) 2
U(f(a)).

(i) = (iii): F 2U(a) = f(F) 2 fU(a)) 2U(f(a)) = f(F) = f(a).

(iii) = (i): Set F := U(a). Then F — a = f(F) = f(U(a)) 2 U(f(a)) = VV €
U(f(a)) U € U(a) with f(U) CV = f continuous in a. 0

2.3.14 Corollary. Let X,Y be topological spaces, Z a set, f: X =Y, g: 7 —- X,
F a filter on Z. Let a =limg g and [ continuous in a. Then f(a) =limgz f o g.

Proof. By 2.3.13, g(F) — a implies f(g(F)) — f(a), i.e., f(a) =limg fog. O

2.3.15 Definition. Let X,Y be topological spaces, A C X, a € A, f: A=Y,
y €Y. y is called limit of f in a with respect to A if y is a limit of f with respect
toU(a)a (cf. 2.2.21). We then write y = lim f(z).

z€EA
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Note that, by 2.2.21 we need a € A to secure that U(a)a is a filter. Also, if
y = lim f(z), then y € f(A): In fact, if V € U(y), then there exists some U € U(a)

TEA
with f(UNA) CV,and UNA # () since a € A, hence VN f(A) # (). (Alternatively,

apply 2.3.7 (ii) to f(U(a)a).)
If A= X\ {a} and a € A (i.e., a is not an isolated point of X), then instead of

y= lim f(z) we write lim f(z). If g: X =Y, for y = lim g[a(z) we simply
zeX\{a} r#a z€A
write y = lim g().
z€A

2.3.16 Lemma. Let X,Y be topological spaces, f: X — Y.

(i) fBCACX,a€B andyz%iﬁrr&f(x), theny:%ig%f(x).
fas re

(ii) Let a € A C X, y € Y, V a neighborhood of a, y = lim f(x). Then
] zeVNA
y = lim f(z).
z€A
Proof. (i): Let V € U(y) = IW € U(a) with f(WNA)CV = f(WNB)CV.

(ii): Let U € U(y) = IW € U(a) with fF(VNANW) CU. Since VNW € U(a),
this gives the claim. O

2.3.17 Proposition. Let X,Y be topological spaces, a a non-isolated point of X,
f: X =Y. TFAE:

(i) f is continuous in a.

(i) Jim, £(x) = f(a).
r#a
Proof. (i) = (ii): By 2.3.13, f(a) = lim, 4 f(z). Thus, 2.3.16 (i) with B = X\ {a}
and A = X gives f(a) = lim f(x).
r#a
(i) = (i): Let V e U(f(a)) = 3U € U(a) with f(U\{a}) CV = f(U)CV = f

continuous in a. O

2.3.18 Theorem. Let (X;);cr be a family of topological spaces, X a set and f; :
X — X; amap (i € I). Let X be endowed with the initial topology with respect to
(fi)icr- Then for any filter F on X, TFAE:

(i) F — .
(i) fi(F) = fi(x) Viel.

Proof. (i) = (ii): This follows from 2.3.13 since every f; is continuous.
(ii) = (i): By 1.2.2, { ek fi'(Ug)|K C T finite, Uy € U(fx(x))} is a basis of

neighborhoods of z. By assumption, Vk € K 3F, € F with fx(F)) C Ug. Hence
Fi= e Fr € Fand F C Nyex fr ' (Ur). m
2.3.19 Corollary. Let F be a filter on [],c; X and let x € [[,.; X;. TFAE:

(i) F — z.

(i) pi(F) — pi(x) Vi € I.
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Proof. [],.; X; carries the initial topology with respect to (p;)ier- O

iel

2.3.20 Corollary. Let A; € X; Vi € I. Then ([[;c; Ai) = [Lcr A;. Thus [Licr Ai
is closed if and only if each A; is closed.

Proof. Let 2 = (z;)icr € (J[;c; A¢). Then by 2.3.7 there exists a filter F on

[lic; Xi with F — x and A € F. By 2.3.19, p;(F) — x4, and A; = p;(A) € pi(F).

Since any limit point is also a cluster point, it follows that z; € A; Vi.

Conversely, let 7 € [],.; A; and let [I;c; Ui be aneighborhood of z (U € U(x;), U =

X for almost every 7). Then [],o; UsN] ;e Ai = [Lic;(UiNA;) # 0,50 x € [, Ai
O

2.3.21 Corollary. Let X, I be sets and fori € I, let Y; be a topological space. Let
[:X =1l Ye, F oafilter on X and y € [[,c;Yi. TFAE:

(i) lims f = y.

(ii) Vi € I, limgp; o f = p;(y).

Proof. By 2.3.19, f(F) =y < Vi e I : pi(f(F)) = pi(y). =
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Chapter 3

Separation properties

In R™ or, more generally, in metric spaces, any two disjoint closed sets can be sep-
arated by disjoint open sets. However, in general topological spaces, this property
may be lost. As an example, consider a topological space (X,0) with O = {0, X}
the indiscrete topology. Then in X no two closed sets can be separated openly. It
has proved to be useful to classify topological spaces on account of their separation
properties.

3.1 Separation axioms

3.1.1 Definition. A topological space is called

Ty, if whenever two points are distinct, one of them possesses a neighborhood not
containing the other.

T1, if whenever two points are distinct, each of them possesses a neighborhood not
containing the other.

Ty, if any two distinct points possess disjoint neighborhoods. Ts-spaces are also
called Hausdorff.

Ts, if any closed set A C X and any x € X \ A possess disjoint neighborhoods.

T, if for any closed set A C X and any x € X \ A there exists a continuous
function f: X — [0,1] with f(z) =1 and f|a = 0.

Ty, if any two disjoint closed sets possess disjoint neighborhoods.

These properties are also called separation axioms.

3.1.2 Remark. Relations between the separation axioms.

(i) Any Ti-space is a Tp-space, but not conversely: Consider on R the topology
O :={0,R} U{(—o0,a)|la € R}. Then (R,O.) is Ty, but not T3.

(ii) Any Ts-space is a Tj-space, but not conversely: Let X be an infinite set and
O :={X,0} U{X \ A]A C X, A finite}. Then (X,0) is T1: Let z # y =
X\{y} e U(z), X\{z} € U(y). However, (X, O) is not Tz: Suppose that U,V
areopen, x €U, y eV, UNV =0. Then X =X\ (UNV)=X\UUX\V
would be finite, a contradiction.
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(iii) A Ts-space need not be either Tj or Tb: Let X be a set , |X| > 1 with the
indiscrete topology O = {0, X }. Then the only closed sets are ) and X, so T
is satisfied trivially. However, (X, Q) is neither T} nor T5.

(iv) Any T3.-space also is a Ts-space: Let A # () closed and z € X \ A. Let
f:X —[0,1] with fla =0 and f(z) = 1. Then f~([0,3)) and f~((3,1])
are open, disjoint neighborhoods of A and x, respectively.

(v) Ty & T3: Let X = {1,2,3,4} and O := {0,{1},{1,2},{1,3},{1,2,3}, X }.
The closed sets of X then are: 0,X,{4},{2,4},{3,4},{2,3,4}. Thus two
closed sets of X are disjoint only if one of them is empty. It follows that X is
T,. However, the point 1 and the closed set {4} cannot be separated by open
sets, so X is not T3.

3.1.3 Proposition. Let (X, d) be a metric space. Then X is Ty, Ty and T3, (and
thereby also Ty, Th and T3).

Proof. Let B(z,r) be the open ball of radius r.

To: x# vy, r:=d(z,y) = B(z,5)N By, 5) = 0.

Ty: Let Ay, As be closed and disjoint. Then for any x € A; there exists some
7z > 0 such that B(x,2r,) N A; = 0 Vj #i. Let O; := J,cn, B(%,72). Then O;
is open, A; C O; and O N Oy = 0: In fact, suppose there were some z € O N Os.
Then there exist z € A; and y € Ay with z € B(x,r;) N B(y,ry). Thus d(z,y) <
d(z,z) + d(z,y) < ry + 1y < 2max(ry,ry), but d(z,y) > max(2r,,2r,) by the
definition of 7, and r,, a contradiction.

T3,: Let A be closed, and = ¢ A. Then d(z,A) := inf,ca d(x,a) > 0 (otherwise

da, — x = = € A since A is closed). Let f(y) := min (1, ﬁ . d(y,A)). Then

f:X —[0,1] is continuous, f|4 =0, and f(z) = 1. O
3.1.4 Theorem. Let X be a topological space. TFAE:

(i) X is Ty.

(1) Any singleton in X is closed.
(ii) Any A C X is the intersection of all its neighborhoods.
Proof. (i) = (ii): Let x € X, and y € X \ {z}. Then there exists some U, € U(y)
with Uy C X\ {z} = X \ {z} open = {z} closed.

(i) = (iii): Clearly, A € (N ey(a)U. Conversely, let ¢ A = X \ {z} is an open
neighborhood of A =z ¢ X\ {z} 2 Nyey(a) U-

(iti) = (i): Let y # 2 =y & Npey(w) U = {2z} = U € U(z) with y ¢ U. ]
3.1.5 Theorem. Let X be a topological space. TFAE:
(i) X is Hausdorff.
(i) Any convergent filter on X has a unique limit.
(i1) Vo € X, {z} = Ny U-
(iv) A:={(z,z)|x € X} C X x X is closed.
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Proof. (i) = (ii): Suppose that F — x and F — y, but « # y. Since X is Ty, there
exist U € U(z), V € U(y) with UNV = 0. Since F D U(z) UU(y) = IF, C U,
F, CV = FiNF, =, a contradiction.

(ii) = (iil): Clearly, = € Ny ey U. Conversely, let y € Noeu) U. Then y is a
cluster point of U(x), so by 2.3.5 there exists a filter F with F D U(z) and F — y.
Thus both y and x are limits of F, so y = .

(iii) = (i): Let x # y = 3U € U(x) with y ¢ U = U and X \ U are neighborhoods
of  resp. y that are disjoint.

(i) = (iv): Let (z,y) ¢ A =z £y = 3JU € U(x), V € U(y) with UNV =
Therefore, U x V' is a neighborhood of (z,y) in X x X and (U x V)N A =
Consequently, (z,y) ¢ A=A CA=A=A= Ais closed.

(iv) = (i): If  # y then (x,y) € A = 3JU e U(x), V e U(y) with (U xV)NA =
P=UnV=0. O

0.
0.

3.1.6 Theorem. Let X be a topological space. TFAE:

(i) Vx € X YO open with x € O 3U € U(x) withx € U CU C O (i.e.: the closed
neighborhoods of x form a neighborhood basis of x).

Proof. (i) = (ii): Let O be open, x € O. Then X \ O is closed and =z ¢ X \ O,
so there exist U, W open with z € U, X \NO C W, and UNW = . Thus
UCX\WCO=UCO.

(ii) = (i): Let A be closed, z ¢ A. Then O := X \ A is open and x € O. Hence
there exists some U € U(z) withx € U CU C X\ A. Therefore, AC X\U, z €U,
and (X \U)NU = 0. 0

3.1.7 Theorem. Let X be a topological space. TFAE:
(i) X is a T3,-space.

(ii) B:={f~H(U)|U CR open, f: X — R continuous and bounded} is a basis of
the topology of X.

(iii) B := {f~Y(U)|U C R open, f: X — R continuous} is a basis of the topology
of X.

(i) B:={f~1(0)|f : X = R continuous} is a basis for the closed sets of X (i.e.,
any closed set is an intersection of sets from B).

(v) B :={f~10)|f : X — R continuous and bounded} is a basis for the closed
sets of X.

Proof. (i) = (ii): It suffices to show that, for each z € X, {B € B | « € B} forms a
neighborhood basis of . To see this, let V' € U(x) be open. Then X'\ V is closed and
x ¢ X \V,so (i) implies that there exists some f : X — [0,1] C R continuous (and
bounded) with f(X \ V) C {0}, and f(x) = 1. Hence f~1(R\ {0}) = f~1((0,1]) is
an open neighborhood of x with f~}(R\ {0}) C V.

(if) = (iii): clear.

(iii) = (iv): Let A € X be closed. Then since X € B (take f = 0), we have
A C Npep.acp B Conversely, let © ¢ A. We have to show that there exists
some B € Bwith z ¢ B and A C B. By (iii), X \ A = Uies £ 1(U;), where each
fi : X = R is continuous, and U; C R is open. Thus

A= )X\ S HU)). (3.1.1)

icl
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As z ¢ A, there exists some k € I with € f,_'(Uy). Also R, being a metric
space, is T34, so there exists a continuous g : R — [0,1] with g(fx(z)) = 1 and
g(R\ Ux) C {0}. Consequently, by (3.1.1) we obtain

9o fu(A) Cgo fi(X\ fy '(Ur)) S g(R\Uy) C {0} and g o fy(x) = 1.

Seg B (gofi) (0}, AC B,
(iv) = (i): Let A C X be closed and x ¢ A. Then by (iv) there exists some
f: X — R continuous with A C f=(0) and f(z) # 0. Set f; := |f| and

f1(y)
fi(z)’
Then g : X — [0,1] is continuous, g(A) C {0}, and g(z) = 1.
(v) = (iv): is clear since B C B.

1).

9(y) = min(

(iv) = (v): It suffices to show that for every f : X — R continuous there exists
some f : X — R continuous and bounded with f~'(0) = f~!(0). To this end, since

arctan : R — (Z, §) is bijective, it suffices to set f := arctanof. O

3.1.8 Theorem. Let X be a topological space. TFAE:

(i) If A C X is closed then for any neighborhood U of A there exists some open
O with AC O CO CU (i.e.: the closed neighborhoods form a neighborhood
basis of A).

Proof. (i) = (ii): Let A C X be closed, and let U be an open neighborhood
of A. Then X \ U is closed and disjoint from A. Hence there exist W7, Wy open,
WlﬂWQ :(D, Ang, X\Ug WQ. ThusAQWl nggX\WQ :X\W2 QU
(ii) = (i): Let Ay, Ay be closed with A; N Ay = (). Then A; is contained in the
open set X \ Ay, so there exists soem open set O with 4, C O C O C X \ 4,.
Consequently, O, X \ O are open and disjoint, A; C O, and 4, C X \ O. O

3.1.9 Definition. Let X be a Ti-space. X is called regular if X is T3, completely
regular if X is T34, and normal if X is Ty.

Then we have the following interrelations between the various separation properties:

3.1.2 (i
normal%compl. reg. 0y reg. 314 Ts T To
Def\H] Defﬂ Defﬂ
3.1.2 (iv)
Ty T3, ———= 15

3.1.10 Theorem. Any completely regular space X can be embedded into a product
space of the form [[;cp Iy. Here L is a suitable index set and any Iy is a closed,
bounded interval in R.

Proof. We will in fact show the following stronger statement: Let L be a set of
continuous and bounded functions X — R with:

(i) L separates points, i.e.: Vo,y € X with x # y 3f € L with f(x) # f(y).
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(ii) If B is a basis of the topology of R then {f~1(B)|B € B, f € L} is a basis of
the topology of X.

Such sets L do exist, e.g. L := {f : X — R|f continuous and bounded}: In fact,
since X is Ty and Tj,, for 2 # y there exists some f : X — [0,1] continuous with
f(x) =0, f(y) =1, and (ii) follows from 3.1.7 (ii).

We will show that if we pick for every f € L a closed and bounded interval Iy C R
with f(X) C Iy then

e: X — [[1r, = (f@))ser
feL

is an embedding (cf. 1.1.7).

First, e is injective by (i): e(z) = e(y) = f(z) = fly) Vf e L=z =y.

e is continuous by 1.1.13: Let p : erL Iy — I, be the projection. Then pjoe =g
is continuous for every g € L, so e is continuous.

By 1.1.8 it remains to show that for every U from a basis of the topology of X the
set e(U) is open in e(X). By (ii) we have that {g~1(V)|g € L, V C R open} is a
basis for X. Thus let U := g~ (V). Then (viewing p, as a map into R):

e Hpg (V) = (pgoe) (V) =g~ (V) =U = e(U) = p, ' (V) Ne(X).

Hence e(U) is open in e(X). O

3.1.11 Remark. In fact, every Iy can be chosen to be [0,1]: Indeed, for every
f € L there exists a homeomorphism hy : Iy — [0, 1] (composing a translation with
a dilation). Then (2y)rer — (hy(zf))fer is a homeomorphism [[,c, Iy — [0, 1]F
(cf. 1.1.14).

3.2 Inheritability of separation properties

3.2.1 Theorem. Any subspace of a T;-space (i € {0,1,2,3,3a}) is itself T;. In
particular, any subspace of a (completely) reqular space is (completely) reqular.

Proof. To begin with, let X be T3, Y C X and A closed in Y. Then there exists
some B C X closed with A=Y NB. lfye Y\ AC X\ B, then there exist U, V
open in X such that UNV =0,y €U, BCV. Hence UNY, VNY are disjoint
and open (in Y) neighborhoods of y resp. A.

The cases i = 0, 1, 2 follow in the same way.

Finally, let X be T3,. Then by the above it follows that there exists some continuous
f X — [0,1] such that f(y) = 1, flp = 0. Hence g := fly : ¥ — [0,1] is
continuous, g(y) =1, and g|4 = 0. O

On the other hand, general subspaces of normal spaces do not have to be normal.
We have, however:

3.2.2 Theorem. Any closed subset of a normal (resp. Ty-) space is normal (resp.
Ty).

Proof. Let Y C X be closed, A, B C Y closed, AN B = (. Since Y is closed,

A, B are closed in X. Hence there are U, V openin X, ACU, BCV, UNV =),
and so UNY, VNY are disjoint neighborhoods of A, B in Y. O
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3.2.3 Theorem. Let (Xi)rer be a family of topological spaces and let i € {0,1,2,
3,3a}. TFAE:

(i) Tlper X& is T
(ii) All Xy, are T;.

Analogous equivalences therefore hold for (completely) reqular spaces.
Proof. (i) = (ii): Fix ko € I and for j # ko pick any z; € X;. Then

k=47 +4k
faxe— (xp)ker, xk::{i] k:i::é ’

is a homeomorphism from Xj, onto the subspace [, c; Yx of [[,c; X& (cf. 1.1.14),

where

Y. = {$k} k 7é kO

k Xp, k=ko

As this space is T; by 3.2.1, the claim follows.
(ii)= (i): We suppose that all X} are T5 (the cases Ty, Ty, T» follow analo-
gously). We use 3.1.6: Let v = (2p)rer € X = [[ue; Xi and let U € U(x).
Then by 1.1.10 there exists a finite subset K of I and U, € U(xy) such that
Nier Pr (Ux) € U. Now 3.1.6 = Vk € K JAy closed € U(zy) with Ay C Uy,

50 ek Py, ' (Ag) is a closed neighborhood of z in U.

Suppose now that all Xy, are T3,, A C X closed, and © = (zx)rer ¢ A. Then there
exists some U = (\,cx Py, (Ux) € U(z), K C I finite, with U N A = (). For each
k € K there exists some fj : X} — [0, 1] continuous with fi(zx) =1, fi|x,\v, = 0.
Let g: [[ner Xx — [0,1], (y&)rer — min{ fi(yx)|k € K}. Thus g = min{ f opy|k €
K}, so g is continuous: X — [0, 1]. Moreover, g(x) =1 and g|x\y =0, so g|a = 0.

O
Note, however, that products of normal spaces need not be normal.

Finally, we turn to inheritability of separation properties by quotients. These are,
generally speaking, rather poor.

3.2.4 Example. Let X :=[0,1] C R and denote by ~ the equivalence relation
x~y:sr=yorz,ycQniol].

X is metric, so it satisfies every T; (i € {0,1,2,3,3a,4}) by 3.1.3. Weset Y := X/~.
Y is To: Let p(x) # p(y) € X/~. Then z # y and (w.lo.g.) ¢ Q. Let U :=Y \
{p(2)}. Thenp(y) € U and p~'(U) = [0, 1]\{z} is open = U € U(p(y)), p(x) ¢ U.
However, Y is not T; for i € {1,2,3,3a,4}:

Y is not Ty: Letz € [0,1]NQ = p~!(p(z)) = [0,1]NQ, which is not closed in [0, 1]
= {p(z)} not closed in y. Consequently also:
Y is not T

Y is not T3: Let y € [0,1]\ Q = {p(y)} is closed in Y since p~1(p(y)) = vy is
closed in [0,1]. Let z € [0,1] N Q = p(z) ¢ {p(y)}, but every neighborhood
of p(y) contains p(z): let U € U(p(y)) be open, then p~1(U) is open in [0, 1]
and contains y, so it must also contain some z € Q. Therefore, U contains
p(z) = p(z). In particular:

Y is not T3,
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Y is not Ty: Let z #y € [0,1]\Q = {p(x)}, {p(y)} are closed and disjoint, but if
U, V are neighborhoods of {p(x)}, {p(y)} then both contain p(Q), hence are
not disjoint.

The following theorem states conditions under which separation properties are in-
herited by quotient spaces. To formulate it we need the following auxiliary result
on closed maps:

3.2.5 Lemma. Let X,Y be topological spaces and f : X =Y a closed map. Let
B CY andlet U C X be an open neighborhood of f=*(B). Then there exists an
open W in'Y with BC W and f~1(W) CU.

Proof. We have X\U C X\ f~1(B) = f~}(Y'\B), so f(X\U) is closed and C Y\ B.
=W =Y\ f(X\U)isopen and D B. It remains to show that f~*(W) C U:
fAW) = YN F(XND) = X\ fTHAXN\D) S XN\ (X\U) =U. O

3.2.6 Theorem. Let ~ be an equivalence relation on a topological space X, let

p: X — X/ ~=:Y be the canonical projection and set R := {(z,y) € X x X|z ~ y}.
Then:

(i) X/~ is Ty if and only if every equivalence class in X is closed.
(i) If X/~ is Ty then R is closed in X x X.
(iii) If p is open then X/~ is Ty if and only if R is closed X x X.
(iv) If X is regular and p is open and closed, then X/~ is Ty.

(v) Let X be regular and A C X closed. If ~ is the equivalence relation x ~ y &
x=y orxzy € A, then X/~ is Ts.

(vi) If X is normal (resp. Ty) and p is closed, then also X/~ is normal (resp. Ty).
Proof.
(i) X/~ is Ty < p(x) closed in X/~ Vz € X < p~t(p(x)) closed in X Vz.

(i) We have R = (p x p)"1(Ay), where px p: X x X = Y XY and Ay =
{(y,y)ly € Y}. Since Y is Tz, by 3.1.5 (iv) Ay is closed, hence so is R.

(iii) (=): follows from (ii)
(<): Let p(z) # p(y
U xV of (z,y) with

neighborhoods of p(z
would entail (u,v)

Y. Then (z,y) € (X x X)\ R = 3 neighborhood
x V)N R = (. Thus, since p is open, p(U), p(V) are
, p(y) in Y, and p(U) Np(V) = 0, since p(u) = p(v)

Sm

5 —

(iv) By (iii) it suffices to show that R is closed in X x X. Thus let (z,y) €
(X x X)\ R. Then z ¢ p~!(p(y)), which is closed since X is T} and p is
closed and continuous. As X is T3, there exist U, V open and disjoint with
x € U and p~1(p(y)) C V. Again since p is closed, by 3.2.5 there exists an
open neighborhood W of p(y) with p~*(p(y)) € p~ (W) C V. Therefore,
U x p~1(W) is a neighborhood of (x,y) and (U x p~(W))N R = : in fact, if
(u,2) € R, where u € U, 2 € p Y (W) = p(u) =p(z) e W = uep 1 (W) C
V', a contradiction to U NV = (). Hence R is closed.
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(v) Let p(x) # p(y) €Y, © € A, y ¢ A (the case x,y € A, © # y is treated
similarly using that X is 77 and T3, hence T3). Since X is T3, there exist U, V
openin X, UNV =0, ACU, y€ V. Then p(U)Np(V) = 0: if p(u) = p(v),
then u = v or u,v € A, a contradiction. Also, p(z) € p(U), p(y) € p(V).
It remains to show that p(U), p(V) are open. To see this, note that since
ACU,p Y (p(U))=U and since VC X\ U, p~t(p(V)) = V.

(vi) Let X Ty, A, B CY closed, AN B = (. Then p~1(A), p~(B) are closed,
p 1 (A)Np~L(B) = 0, and so there exist U, V open and disjoint, p~1(A) C
U, p~1(B) C V. By 3.2.5 it follows that there exist Wi, W5 open in Y, A C
Wi, B C Wy, p7'(W1) C U, p~'(W2) € V. Hence = p~ (Wi N W) =
p L (W)Np~t(Wy) C UNV = (), and thereby WiNWy = p(p~t(W1NW3)) = 0,
so Y is indeed T}.

If, finally, X is normal (i.e., Ty and T7), then it remains to show that Y is 7T7.
Let p(z) € Y. Since X is Ty, {z} is closed, hence {p(z)} is closed, giving the
claim by 3.1.4.

3.3 Extension by continuity

3.3.1 Theorem. Let X, Y be topological spaces, Y T, f, g: X =Y continuous.
Then:

(1) {z € X|f(z) =g(x)} is closed in X.
(1) If D C X is dense in X and f|p = g|p, then f =g.
(i1i) The graph of f, T'y = {(z, f(z))|x € X} is closed in X x Y.

() If f is injective, then X is Hausdorff.

Proof. (i) Let h: X — Y x Y, h(z) := (f(z),9(x)). Then h is continuous and
therefore {x € X|f(z) = g(z)} = h~1(Ay) is closed by 3.1.5 (iv).

(ii) A:={z € X|f(x) = g(x)} is closed and AD D= AD D = X.

(iii) f xid: X x Y = Y x Y is continuous and I'y = (f x id) "' (Ay).

(iv) Let &1 # @9 € X. Then f(x1) # f(x2) = VI € U(f (1)), Vo € U(f(x2)), V1N
Vo = @®:> ffl(Vl) S U(l'l), fﬁl(VQ) S U(l'z) and ffl(Vl) n fﬁl(‘/g) = fﬁl(Vl N
Vo) =10. O

3.3.2 Corollary. Let X,Y be topological spaces, Y To and f : X — Y continuous.
Let ~ be the equivalence relation x ~ 2’ :& f(x) = f(2'). Then X/~ is Ts.

Proof. In Section 1.4 we derived the decomposition

!

X——Y

P

X/ — f(X)

Here, jo f : X/~ — Y is continuous and injective, and Y is Ty, so by 3.3.1 (iv),
X/N is Tg. O
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If DC X is dense, Y is T and f : D — X is continuous, then by 3.3.1 f can
be extended in at most one way to a continuous function F' : X — Y. However,
such an extension in general need not exist! As an example, consider f(z) = %
on D = (0,1) C [0,1]. The following result provides a necessary and sufficient
condition for the existence of a continuous extension.

3.3.3 Theorem. Let X be a topological space, D C X dense in X, Y regular, and
f:D =Y amap (a priori not assumed to be continuous). TFAE:

(i) 3F : X =Y continuous with F|p = f.

(i1) Yx € X there exists ?}g% f(y).
yeD

F then is uniquely determined.

Proof. (i)= (ii): Since F is continuous, by 2.3.13 and 2.3.16 (i) we have for every
z € X:
Fla) = lim F(y) = lim F(y) = lim £(3).

y—T z y—x
yeD yeD
(i)= (i): Let F(x) := ?}gré f(y) (this is well-defined since Y is T).

yeD
F is continuous: Let V be a closed neighborhood of F(x) (by 3.1.6 these form a
neighborhood basis). Then there exists some open U € U(z) with f(UND) C V.
Let z € U. Then U € U(z) and by 2.3.16 (ii) and the remark following 2.3.15 we
obtain:
) =lm fy) = Jim fy) e FDAU)CV =V.

yA)Z
yeD yeDNU

Consequently, F(U) C V, so F is continuous.

F|p = f: to see this, we show that for any x € D we have f(z) = ?}1_% fly) =: a.
yeD

In fact, suppose that f(z) # a. Then since X is T3, there exists some V € U(a)

with f(x) ¢ V. However, by definition of a there exists some U € U(x) with

f(UND) CV. But then also f(x) € V, a contradiction.

F' is unique: Since Y is regular, it is also T3, so the claim follows from 3.3.1 (ii). O
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Chapter 4

Normal spaces

In general, a topological space need not possess many continuous functions. E.g.,
on a space with the indiscrete topology only the constant functions are continuous.
On normal spaces, however, there are in fact many continuous functions, as we shall
see in this section.

4.1 Urysohn’s lemma

4.1.1 Lemma. Let (X,d) be a metric space and let A, B C X be closed, ANB = {).
Then there exists a continuous function f: X — [0,1] with fla =0, f|lp=1.

Proof. Let d(z, A) := inf,c 4 d(z,a). Then it suffices to set f(z) := %.
' s

This property is characteristic of Ty-spaces:

4.1.2 Theorem. (Urysohn): Let X be a topological space. TFAE:
(i) X is a Ty-space.

(i) VA, B C X closed with ANB = () there exists a continuous map f : X — [0, 1]
with fla =0 and flp = 1.

Proof. (ii)=> (i): The sets U := f~1([0, 3)) and V := f~!((4,1]) are disjoint open
neighborhoods of A and B.

()= (ii): Let A, B be closed, ANB = (. Then G := X'\ B is an open neighborhood
of A. By 3.1.8 there exists an open neighborhood G¢ of A with Gy C G1. Again by
3.1.8 there exists an open neighborhood G% of Gy with G% C G4, hence:

GyCGy GG

By 3.1.8 there is an open neighborhood G% of Gy with G1 C G

neighborhood of @ with Gig C Gy, ie:

1 1 and 3G open
4 2 4

GoCGy, GLCGz, G

2

caG

Q

C Gi.

2 3, 3
22 22 22

¥

Iterating this procedure, we obtain:

G%QGR-;#, k=0,1,2,...,2" — 1, G;—; open for j =0,1,...,2".  (4.1.1)

2
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Next we show that for all dyadic numbers r < r’ € [0,1] N {£|k,n € N} =: D we
have L

Gr g Gr/
To see this, note that without loss of generality (expanding fractions) we can assume

that r = 2% and 1’ = 5—; Since r < ' it follows that k < &, so (4.1.1) yields the
claim.

For any t € [0, 1] we set

Then G is an open set and for ¢, t' € [0, 1] we have:

G, CGyift<t. (4.1.2)
Indeed, pick n € N with 5 < 2(t' —t) = 25 <t' —t = 3k € N with:
k k+1 o ko k+1
— - .e.: — .
[2n, on ]_(t,t),le t<2n< o <t

Thus G; C GQ% C G% C Gy, which gives (4.1.2).
In addition, we set Gy := X for ¢t > 1 and G := ) for ¢ < 0. Then (4.1.2) holds for
t,t' eR, t<t.
For z € X let
f(z):=inf{t e R |z € Gy}

Since Gy = X for t > 1, f(z) < 1 for all z and since Gy = 0 for t < 0, f(z) > 0.
Also, A C G implies f|a =0, and B = X \ Gy, together with f < 1 gives f|g = 1.
It remains to show that f: X — R is continuous.
Let zp € X and € > 0. Then it suffices to show that there exists some U € U(xp)
with [f(z) — f(20)| < e Vo € U. For x € Gy(yy)4c we have f(z) < f(zo)+¢ and for
T € X\ Gzg)—e we get f(z) > f(xo) — € (in fact, f(x) < f(xo) — & would imply
x € Gze)—c). Hence for 2 € U := Gyzp)4e \ G(ag)—e We get f(zg) —e < f(z) <
f(xo) +& ie: [f(x) = f(zo)| <e.
Finally, U € U(xo): U is open and xo € U, since we have

f(xo) < f(:Co) +e= a9 € Gf(xo)_,_g, and

: .
Flwo) = 5 < f(z0) = 20 & Gao)-5 2 Gfiao)—e

4.1.3 Corollary. Any metric space X is normal.
Proof. X is clearly T1. By 4.1.1 and 4.1.2 it is also Ty. See also 3.1.3. a
4.1.4 Corollary. Any normal space is completely regular.

Proof. Immediate from 4.1.2 and the definition of completely regular (77 + T5,).
O

In the following we want to characterize zero sets f~1(0) of continuous functions
f: X —=R O

4.1.5 Definition. Let X be a topological space. A C X is called a Gs-set if A is
the intersection of countably many open sets: A = ﬂfil G, G; open. B C X is
called an F,-set if B is the union of countably many closed sets: B = |J;=, F;, F;
closed.
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Here G stands for ‘Gebiet’, F' for ‘fermé’ (closed), o for ‘sum’ (union), § for ‘inter-
section’.

4.1.6 Proposition. Let X be a Ty-space and ) # A C X closed. TFAE:
(i) 3f : X = [0,1] continuous with f~1({0}) = A.
(ii) A is a Gg-set.

Proof. (i)= (ii):

. LN, 11 S |

A=) = () = N7 )
(ii)= (i): Let A =2y Gs, G; open. 4.1.2 = Vi € N 3h; : X — [0,1] continuous
with h;(A) = {0} and h;(X \ G;) = {1}. Let f,, := Y7 ;2 *h;. Then for every
z € X, (fn(z)) is a Cauchy sequence, hence converges to some f(x). Furthermore,
fn — f uniformly on X and therefore f is continuous: Let ¢ > 0, zg € X and
no such that [f,, () — f(z)| < § Vz € X. Let U € U(zo) be such that [f,,(x) —
Jno(w0)| < § Vo € U. Then for all 2 € U:

[f (@) = f(@o)| <1f(2) = fuo (@)| + [ fng (%) = frng (@0)| + |y (w0) = f(0)| <&

:OVZ:>$¢X\G1VZ:>$EH;ZOGZ:A

Moreover, f(z) = 0 & h;(x)
=0Vi= f(z) =0. Thus 4 = f~1({0}). O

Conversely, © € A = h;(x)

Based on this result we can strengthen Urysohn’s Lemma as follows:

4.1.7 Proposition. Let X be Ty, A, B closed and nonempty, ANB = 0. If A resp.
B is a Gs-set, then there exists a continuous map f : X — [0,1] with f(A) = {0}
and f(B) = {1} such that f(z) #0Ve € X \ A resp. f(z) # 1 Vo € X\ B. If
both A and B are Gg-sets, then there exists some continuous f : X — [0,1] with

A= f71({0}) and B = f1({1}).

Proof. Let A be Gs. Then by 4.1.6 there exists some g : X — [0, 1] continuous
with g71({0}) = A. Also, by 4.1.2 there exists some f : X — [0, 1] continuous with
f(A) = {0}, f(B) = {1}. Let h := max{f,g}. Then h: X — [0,1] is continuous
with h(A) = {0}, h(B) = {1} and h(z) #0 Vz ¢ A.

Let B be Gs. Then by 4.1.6 there exists some k : X — [0,1] continuous with
k=*({1}) = B. Then [ := min(f, k) is continuous X — [0,1], I(A) = {0}, I(B) =
{1} and l # 1 on X \ B.

Finally, suppose that both A and B are Gs, and set e := %(h + min(f,k)). Then
e: X — [0,1] is continuous, and

e(r) =0« h(z)=0A(f(x)=0Vk(zr)=0)<zcA,

—
& f(x)=0Ag(x)=0

Sr€A
e(r)=1<h(x)=1Afx)=1Ak(z) =1z € B.
B
STE
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4.2 Extension of continuous maps

Urysohn’s Lemma 4.1.2 can also be read as follows: X is Ty if and only if for all
A, B closed with AN B = () the function f : AUB — [0,1], fla =0, f|p =1 can be
extended continuously to all of X. (As A and B are open in AU B, f is continuous
on AUB in the trace topology) . Hence 4.1.2 is a special case of the following result:

4.2.1 Theorem. (Tietze) Let X be a topological space. TFAE:
(Z) X is T4,

(i) Let A C X be closed and f: A — R continuous. Then there exists a continu-
ous F: X - R with Fla=f

For the proof of 4.2.1 we require two auxilliary results:

4.2.2 Lemma. Let X be Ty and A C X closed. If f : A — [—1,1] is continuous,
then there exists a sequence (gp) of continuous functions g, : X — R with:
— ()" VreX,

(i) =1+ (3)" < galz) < 2
(ii) |f(z) = gn(z)] < (%) Va € A,
(iii) |gns1(x) — gn(a)| < 3(3)" Vo e X,

(1) |gn(x) — gm(z)| < (2)P Yz e X ¥m,n>p.

Proof. Proceeding by induction, we first set go(z) = 0 Vo € X, so go satisfies (i),
(ii). Suppose that go, . .., g, have already been defined in such a way that (i), (ii),(iii)
are satisfied. Let

B i= {2 € 41 fa) = 0a(0) 2 3 @)}
Cusr = {2 € 41 5(0) = gule) <~ @)}

Then B, 41, C’n+1 are closed and disjoint. By 4.1.2 there exists a continuous func-
tion vy, : X — [ (Z)Hv %(3)"] with v, (Bpny1) = {_’(*) } U (Cpy1) = {%(%)n}
Let gn+1 := gn — vn. Then by (i) for g, we get

71+gn7 E 2n< —Up = <1- gn+l gné(')for
3 3 3 S gn n = gn+1 > 3 3 3 1 gn+1

=3~ =)+

and:
|f(@) = gn1 ()| < |f(2) + gn(@)] + |vn(@)] =: (%)

There are now two possibilites:
L) |f(z) — gn(2)] < 3(

< = (x) < 33" =)
2.) [f(z) = gn(x)] = 5(

1
3
3 = 2By orx eyt

Wi Wi

s
s
z) — gn(z) > 3(3)". By induction hypothesis (i) we

a) Let € Bpy1 = f
have f(z) — gn(x) < ( )™. Due to vn|3n+1:—%(%) we get:

- so-win S0 < )]
= f(#) = gnpa (x)] < (3"

38



b) Let ¢ € Cpy1 = f(z) — gn(z) < —%(2)™. Also, by induction hypothesis
>

(i), (2) — gn(2) > —(2)". Now vnlc, s, = L(2)", so:
1 /2\" 2 /2\"
@) = guir(o) = 1) - an()+ 3 (5) < |3 (3) 0]
= £ (@) = gns1(@)] < (3" = (i) for gor-

(iii) follows from |gni+1 — gn| < |vn| < %(%)”
(iv) By (i),

k
|9n-+1:(2) Z i — Gnvi-1(2))|
=1
(2”)1 9 n k 9 i—1 2 n
< Z = Z Z
: 3(3> >() <)

Let 1 > m > p = |ga(w0) — g (@)] < (2)™ < (2)7 = (iv).
O

4.2.3 Lemma. Let X be Ty and A C X closed. Then any continuous function
f i+ A— (—1,1) can be extended to a continuous function F' : X — (—=1,1), and
analogously for f + A — [—1,1].

Proof. Let (gn)nen be as in 4.2.2. By 4.2.2 (iv) g, converges uniformly. Thus
F(z) := limy,— 00 gn () is continuous on X (cf. the proof of 4.1.6). Let z € A. Then

F(@) ~ F@)] = () ~ lim_gu(@)| = lim /(@) — gu(x)| = 0

by 4.2.2 (ii). Hence F|4 = f. Also, 4.2.2 (i) implies —1 < F(z) <1Vr € X. = F :
X — [1,1] (which gives the claim for f : A — [-1,1]). Let B := {a € X||F(x)| =
1}. Then B is closed and AN B = (), so by 4.1.2 there exists some continuous
g X — [0,1] with g(A) = {1}, ¢g(B) = {0}. Then F := F - g is continuous,
Fla=fand |F(z)]<1Vze X. O
After these preparations we are now ready to give the

Proof of 4.2.1: (i) = (ii): Let A C X be closed, f : A — R continuous. Let
h:R—(=1,1) be a homf)omorphism. (e.g.: hga:) = ﬁ) By 4.2.3 there ex~ists
a continuous extension F' : X — (=1,1) of f := ho f. Then F := h™' o F is
continuous: X - Rand Fla =h 1o f=f.

(ii) = (i): Let A, B C X be closed and disjoint. Extend f: AU B — [0, 1], fla
0, f|lp = 1 continuously to F : X — [0,1]. Then F~*((—o0,1)) and F~*((%, 00
are disjoint open neighborhoods of A and B.

o= |l

4.2.4 Lemma. Let A be a closed Gg-set in a Ty-space X. Then any continuous
function f: A — [—1,1] can be extended to a continuous function F: X — [—1,1]
such that |F(x)| <1 Vx ¢ A.

Proof. By 4.2.3 there exists some F' : X — [~1,1] continuous with F|4 = f.

By 4.1.6 there exists some g : X — R continuous such that A = g=1({0}). Let
F(z) := 1ﬁ§xi>| = |F(z)| < |F(z)] <1, Fla = Fla = f and for z ¢ A we have
l9(2)| > 0, s0 |[F(2)| < |F(x)] < 1. O
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4.3 Locally finite systems and partitions of unity

In many areas of mathematics (analysis, differential geometry, measure theory, ... )
one requires decompositions of functions into functions with small supports in order
to derive global properties from local ones.

4.3.1 Definition. Let X be a topological space and (U;);er a family of subsets of
X. (Us)ier is called a cover of A C X if A C |J;c;Ui. The cover is called open
resp. closed, if all U; are open resp. closed. It is called finite resp. countable if I is
finite resp. countable. A family A = (A;)icr of subsets of X is called locally finite
if any x € X has a neighborhood U € U(x) that intersects only finitely many A;. A

is called point-finite if any x € X is contained in only finitely many A;.

4.3.2 Example. Clearly, locally finite implies point-finite, but not conversely: Let
X :={%|n € N}U{0} with the trace topology of R and set A := {{2}|n € N}JU{X}.
Then A is point-finite, but not locally finite: any neighborhood of {0} contains
infinitely many %

4.3.3 Definition.  An open cover U = (U;)ier of some subset F' C X is called
shrinkable if there exists an open cover V = (V;)ier of F such that V; C U; for all
i€ 1. ThenV is called a shrinking of U.

4.3.4 Theorem. Let X be a toplogical space. TFAE:

(i) X is Ty.

(i) Any point-finite open cover of any closed subset F' of X is shrinkable.
(i) Any point-finite open cover of X is shrinkable.

Proof. (i)=(ii): Let FF C X be closed and A = (A;);csr a point-finite system of
open sets covering F. Let M be the family of all open covers of F' of the form
(Bp | ke K}YU{A |l € L} with KUL =1, KNL=0and By C A4, Vk € K.
Then M # (), since one can take K = (), L = I. We introduce an ordering on M as
follows: For C ={By | ke K}U{A; |le L}, C'={B;, | ke K'}U{A4;|le L'} €
Mlet C <C'if K C K' and By, = B, Yk € K. We want to apply Zorn’s lemma
in order to find a maximal element in M. Thus let (C®)scs be a totally ordered
subset of M, C* ={Bj | k€ K} U{A; |l € Ls}, K4ULs=1, KsNLs=0. Let
K :=,csKs, L:={,cq Ls. Then

EnL=J ®.n (L) JE.NL)=0

seS s'esS seS
and
I=(\(K.UL)< ((|JKsUL)=|JKsU[)L:=KUL,
seS =7 seS s'eS s'esS ses
so KUL=1.

Set C :={By | k € K}U{A; |l € L} with By, = B} for k € K,. The By, are
well-defined: if kK € K, and k € Ky and w.l.o.g. Cs < Cy then by definition of the
order relation, K; C K and B} = BZ/.

We now claim that S is an upper bound, i.e., C € M, and C > C* Vs € S.

To establish this we only need to prove that C is an open cover of F'. Thus let x € F'
and set P(x):={i €I |z € A;}. Since A is point-finite, P(z) is finite. This leaves
two possibilities:
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1.) P(z)NL#(. Thenleti € P(zx)NL = A; €C and z € A;.

2.)) P(x)NL = (. Then due to K UL =1, P(x) C K. Since P(z) is finite and
(Ky)ses is totally ordered it follows that P(x) C K for some s € S = Jk €
K, C K with « € By, = B}, € C° C C (otherwise, since C* is a cover of F, we
would have z € A; for some [ € Ly = I'\ K, contradicting P(z) NI\ K, = 0).

By Zorn’s Lemma, therefore, there exists a maximal element
C'={Br|ke K*}U{A/ |leL"}

in M.
We claim that L* = () (which will finish the proof). Suppose to the contrary that
L* 40 = FieL* Let

D:F\(U BeU| J{A/|le L, 17&1}).

keK*

Then D is closed. Since C* is a cover of F' we must have D C A;. Next, sirlce X is
Ty, it follows from 3.1.8 that there exists some open set B; with D C B; C B; C A;.
But then

C =By | ke K*}U{B;YU{A | l€ L*1£i}eM, C' >C*, C #C7,

contradicting the maximality of C*.

(ii)=(iii) is clear.

(iii)=(i): Let A and B be closed and disjoint. Then U := {X \ A, X \ B} is a
point-finite open cover of X. Let {U,V} be a shrinking of /. Then X \U and X \V
openly separate A and B. O

4.3.5 Lemma. Let X be a topological space and A = (A;)icr a locally finite family
of subsets of X. Then also A := (A;)ics is locally finite and

U4 == (4.3.1)

i€l i€l

Proof. Let z € X and pick U open in U(x) such that U N A; # 0 only for i € H,
where H C [ is finite. If U N A; # (), there exists some y € U N A;. Hence U € U(y)
and since y € A; we get that UN A; # ) = i € H. Thus A is locally finite. It
remains to show (4.3.1):

D: is clear.

C: Let # ¢ U;c; Ai and U € U(x) such that U N A; # 0 only for i € H C I finite.
Then V := U\ U,cy Ai € U(z) and

i€l i€l i€H el

4.3.6 Definition. Let X be a topological space, f : X — R. Then the set

supp f := {z € X | f(z) # 0}

is called the support of f.
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If (fi)ier is a family of continuous functions: X — R, such that (supp f;)ier is

locally finite, then
f@) =Y fi(x)
icl
is well-defined and continuous: In fact, for each x € X the sum is finite. Moreover,
for each € X there exists some U € U(z) and some finite set H such that
fluv =>,cn filu, which is continuous.

4.3.7 Definition. Let X be a topological space, and U = (U;);er an open cover of
X. A family (fi)ic1 of continuous functions is called a partition of unity subordinate
tolU, if:

(i) fi(x) >0Vex e X Viel.

(ii) (supp fi)ier is locally finite.
(#3) supp f; CU; Vi€ I.

(i) Yiep filz) =1Vz € X.

4.3.8 Theorem. Let X be Ty and let U = (U;);er be a locally finite open cover of
X. Then there exists a partition of unity subordinate to U.

Proof. U is locally finite, hence point-finite. Therefore 4.3.4 guarantees the exis-
tence of an open cover B = (B;);er of X with B; C U; Vi € I. Also, since X is Ty, by
3.1.8 Vi € I 3C; open with B; C C; C C; C U;. Thus Urysohn’s Lemma 4.1.2 gives:
Vie I 3g;: X —[0,1] with g;(z) =1 Vz € B; and g;(z) = 0 for z € X \ C;. Hence
supp g; C C; C U;, implying that g(x) = > icr 9i(z) is well-defined and continuous.
For any x € X there exists some i € I with x € B;, so g;(x) = 1, and consequently
g(x) 2 1. Finally, setting f; := %, it follows that (f;)ies satisfies (i) — (iv). O

4.3.9 Corollary. Let X be Ty, F C X closed and (U;);er a locally finite open cover
of F. Then there exists a family (f;)icr of continuous functions f; : X — [0,1] such
that fi(x) =0 for x ¢ U; and )., fi(x) =1 Vo € F.

Proof. (U;);c;U{X \ F} is a locally finite open cover of X, so by 4.3.8 there exists

a partition of unity (f;)icr U {f}x\r subordinate to this cover. These f; have the
required properties. |
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Chapter 5

Compactness

Compactness is of central importance in all applications of topology, in particular
in analysis (PDEs, functional analysis, global analysis,...) as it is one of the most
common sources of existence results.

5.1 Compact spaces

5.1.1 Definition. A topological space X is called compact if any open cover of X
contains a finite sub-cover, i.e.:

UUi:X, U; openin X = 3I' C I, |I'| < co: UUi:X.
il iel’
A subset A C X is called compact if A is compact in the trace topology.

5.1.2 Remark. (i) Some authors, (e.g., Bourbaki) call the above property quasi-
compact and for compactness require, in addition, that X be T5.

(ii) An elementary, yet fundamental observation is that compactness is independent
of the subspace, in the following sense: Let K C A C X. Then K is compact in X
if and only if K is compact in A. This is immediate from the form of open sets in
the trace topology.

5.1.3 Theorem. Let X be a topological space. TFAE:

(i) X is compact.

(ii) Any family (A;)icr of closed sets in X with (,c; A; = 0 contains a finite
family (Ai)ier with ;e Ai = 0 (finite intersection property).

(iii) Any filter on X possesses a cluster point.

(iv) Any ultrafilter on X is convergent.
Proof. (i) = (ii): Let U; := X \ A;. Then U; is open, and

UUi:U(X\Ai):X\ﬂAi:Xa

el el el

so there exists some finite set I’ C I with

X={Ju=x\(N4=[)4=0

iel’ iel’ iel’
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(ii) = (iii): Suppose there existed a filter F on X without an accumulation point.
Then (per F =0, and so by (i) there exist Fy,...,Fy € F with § = ﬂle F, D
ﬂle F;, but this is impossible since F is a filter.

(iii) = (iv): Let F be an ultrafilter on X. Then F possesses an accumulation point,
hence is convergent by 2.3.6.

(iv) = (i): Suppose to the contrary that there exists an open cover (U;);cr of X
that does not contain a finite sub-cover. For L C [ finite let By := X \ U, Ui
Then By, is nonempty and By N Brr = X \ U;erup Ui = Brurr # 0. Hence by
2.2.9 B:={By | L C I finite } is a basis of a filter 7/ on X, and so by 2.2.15 there
exists an ultrafilter F 2 F’. (iv) now implies the existence of some x € X with
F = x,i.e. F D U(x). As (U;)icr is an open cover of X there exists some i € I with
U; € U(z). Consequently, U; € F. However, for L = {i} also B, = X\ U; € F,
contradicting the fact that F is a filter. a

5.1.4 Corollary. Let X be a compact topological space. Then any sequence (Zp)neN
possesses an accumulation point in X.

Proof. Let F be the filter with basis ({z, | m > n})nen. By 5.1.3 (ii), F possesses
an accumulation point, which by 2.3.10 is an accumulation point of the sequence
(Tn)nen- O

Note, however, that the converse of 5.1.4 is false in general.

The following result shows that it suffices to check the defining property 5.1.1 of
compact spaces for elements of a subbasis.

5.1.5 Theorem. (Alezander) Let S be a subbasis of the topological space X.
TFAE:

(i) X is compact.
(i) Any cover of X by sets from S contains a finite sub-cover.

Proof. (i) = (ii): is clear.
(ii) = (i): Suppose to the contrary that X is not compact. Then by 5.1.3 there

exists an ultrafilter F on X that does not converge. We claim that Vx € X U, € S
with z € U, and U, ¢ F.

In fact, otherwise there would exist some x € X such that all S € § with x € S
lie in F. But then also all finite intersections of such S lie in F. As these form a
neighborhood basis of z we conclude that F 2O U(x) = F — x, a contradiction.

These sets U, form an open cover of X by sets from S, so by (ii) there exists some
Y C X finite with X =, ¢y Uy. As Uy ¢ F, 2.2.16 implies that X \ U, € F. But
then

b=x\JU,=()X\U, €7,

yey yey

a contradiction. O

5.1.6 Example. Let I = [a,b] C R. The intervals [a, c) and (d,b] with a < ¢,d < b
form a subbasis of the trace topology on I. Let U be a cover by sets of this subbasis.
Let ¢ := sup{c| [a,c) € U}. Then there exists a d; < & with (d1,b] € U (otherwise
¢ would not be contained in any element of I/).

Since di < ¢, there exists some ¢; > dy with [a,c1) € U, and so [a,c1) and (d, D]
cover [a,b]. By 5.1.5 this implies that [a,b] is compact.
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5.1.7 Lemma. Let X be Ty and K compact in X. Then for any x € X \ K there
exists a neighborhood U of K and a neighborhood V' of x with UNV = (.

Proof. Let z € X \ K. Then since X is T5, for any y € K there exists some U,
open € U(y) and some V,, € U(z) with U, NV, = 0. Then (U,),cx is an open cover
of K, so there exist y1,...,y, € K with K C |, Uy, =: U. Let V := (N, V,,.
Then V eU(x), U e U(K),and UNV = 0. 0

5.1.8 Theorem.

(i) Any closed subset of a compact space is compact.

(i) Any compact subset of a Hausdor(f space is closed.

Proof. (i) Let A C X, A closed, X compact. Let A; C A be closed, (,c; Ai = 0.
Then since A; is closed in X, 5.1.3 (ii) shows the existence of some finite set I’ C T
with (), Ai = 0. Thus, again by 5.1.3 (ii), A is compact.

(ii) Let K C X be compact and = ¢ K. Then by 5.1.7 there exists some U € U(x)
with UNK =0. Thusz ¢ K,andso K C K C K, i.e., K =K. O

5.1.9 Theorem. Any compact Hausdorff space is normal.

Proof. Let A, B C X be closed and disjoint. By 5.1.8 (i), A and B are compact.
Also, by 5.1.7, Vo € A 3U, open, U, € U(z), V, open neighborhood of B with
U, NV, = 0. Since A is compact, 3z1,...,z, with A C |J_,U,, =: U. Let
V=i, Vi,. Then U, V are disjoint neighborhoods of A4, B. O

5.1.10 Theorem. Let X be compact and f : X — Y continuous. Then f(X) is
compact.

Proof. Let (U;)icr be an open cover of f(X), ie., f(X) € U;c;Ui. Then X =
FHX)) € Uier fHT), so there exist iy, ..., i, with X C Uj_, f7HU;,). Tt
follows that f(X) C Ui_, f(f~(Us,)) € Uj-, Ui, O

5.1.11 Corollary. Let X be compact and f : X — R continuous. Then there exist
x1, g € X with f(x1) < f(x) < f(x2) for all x € K, i.e., [ attains a minimum
and a mazimum on X.

Proof. By 5.1.10, f(X) is compact, hence bounded: the sets U, := {y | |y| < m}
cover f(X), so there exists a finite sub-cover, and thereby there exists some my
with f(X) C Upng.

It follows that there exist real numbers m = inf f(X), M = sup f(X). By definition
of the supremum there is a sequence x,, € X with f(z,) = M. As R is T, by 5.1.8
(ii) f(X) is closed, and so by 2.3.7 and 2.3.10 M = lim f(x,) € f(X). This means

that the maximum is attained, and analogously for the minimum. O

5.1.12 Proposition. Let X be compact, Y Ty, and f : X — Y continuous. Then f
is closed. If f is injective (or bijective), then f is an embedding (a homeomorphism,).

Proof. Let A C X be closed. Then by 5.1.10 f(A) is compact, hence closed by
5.1.8 (ii). It follows that f is closed.

Let f be injective. Then f: X — f(X) is open: if O C X is open, then f(X\O) =
F(X)\ f(O) is closed in f(X), so f(O) is open in f(X). By 1.1.8, therefore, f is
an embedding. O
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5.1.13 Definition. Let X be a topological space and A C X. A is called relatively
compact if there exists a compact set B D A.

5.1.14 Proposition. Let X be Hausdorff, AC X. TFAE:
(i) A is relatively compact.
(i) A is compact.

Proof. (ii) = (i): is clear.

(i) = (ii): Let B D A, B compact. Then by 5.1.8 (ii), B= B = A C B. From
this, 5.1.8 (i) implies that A is compact. O

5.1.15 Theorem. (Tychonoff) Let (X;)icr be a family of nonempty topological
spaces. TFAE:

(i) [l;er Xi is compact.
(i) X; is compact Vi € I.

Proof. (i) = (ii): Since p; : [[,c; Xi — Xj is continuous for each j € I, X; =
p;(I[;c; Xi) is compact by 5.1.10.

(ii) = (i): Let F be an ultrafilter on [[,.; X;. Then by 2.2.25 each p;(F) is an
ultrafilter on X;, and therefore converges by 5.1.3 (iv). Now 2.3.19 implies that F

converges, and this by 5.1.3 (iv) establishes the compactness of [[,.; X. O

5.1.16 Theorem. (Heine-Borel) Let A CR"™. TFAE:
(i) A is compact.
(i) A is closed and bounded.

Proof. (i) = (ii): A bounded follows as in 5.1.11. A is closed by 5.1.8 (ii).

(ii) = (i): Since A is bounded there exists some a > 0 such that A C [—a,a]™.

[—a,a]™ is compact by 5.1.6 and 5.1.15. Thus since A is closed, it is compact by
5.1.8 (i). O

5.2 Locally compact spaces

5.2.1 Definition. A topological space is called locally compact if it is Hausdorff
and any point has a compact neighborhood.

5.2.2 Example.
(i) Any compact Hausdorff space is locally compact.
(ii) R™ is locally compact.
(iii) In functional analysis it is shown that a normed space (or, more generally,

a topological vector space) is locally compact if and only if it is of finite
dimension.

5.2.3 Theorem. Any locally compact space is reqular.
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Proof. By 3.1.6 it suffices to show that for any x € X the closed neighborhoods
form a neighborhood basis. Let K € U(x) be compact. Then K is closed by 5.1.8
(ii) and by 5.1.9 K is normal, hence also regular. Let U € U(x), then UN K is a
neighborhood of = in K. As K is regular, by 3.1.6 there exists a neighborhood V'

of z in K with V QVK CUNK. V is of the form W N K for some W € U(z), so
V € U(x). Furthermore, VX — VNK is closed in X, oV =VozeVCVcC U,
so the closed neighborhoods form a neighborhood basis. O

In 5.2.8 we will even show that X is completely regular.

5.2.4 Proposition. Let X be locally compact and let x € X. Then the compact
neighborhoods of x form a neighborhood basis of x.

Proof. By 5.2.3, X is regular, so by 3.1.6 the closed neighborhoods of = form a
neighborhood basis. Let K be a compact neighborhood of z, then {K NV | V €
U(z), V closed} is a neighborhood basis, which by 5.1.8 (i) consists of compact sets.

O

5.2.5 Proposition. Let X be locally compact, A C X closed, U C X open. Then
ANU is locally compact.

Proof. We first note that A is locally compact (let K € U(x) be compact, then
AN K is a compact neighborhood of z in A). Also, U is locally compact since, by
5.2.4, Vo € U 3K € U(z) compact with x € K C U. Finally, ANU is a closed
subset of the locally compact space U, hence is itself locally compact. O

5.2.6 Example. Stereographic projection. As is well-known, this is the projection
of the north pole N of S? (with S? attached to the origin of R?) onto R?. Then
S2\ N is homeomorphic to R?, S? is compact, and S? \ N is dense in S2.

An analogous construction can be carried out for any locally compact space:

5.2.7 Theorem. (Alezandroff-compactification). Let X be locally compact. Then
there exists a compact Hausdorff space Y, unique up to homeomorphism, that con-
tains a subspace X1 homeomorphic to X and such that Y \ X1 consists of a single
point, denoted by oco. If X is not compact, then Xy is dense in Y. The space Y
is called one-point or Alexandroff-compactification of X. oo is called the point at
infinity.

Proof. Assume first that such a Y has already been constructed. Then {oco} is
closed in Y, so X; is open in Y. Whence U C X; is open in Y if and only if it is
open in X;. All the other open sets in Y contain the point co. Let U be such a
set, then Y \ U is closed in Y, hence Y \ U is compact and C X;. Conversely, for
K C X; compact, Y \ K is open. Thus we have no other choice than defining the
topology Oy on Y as follows (where Oy, is the one on X;):

Oy :={0OCY |0 € Ox, vVIK compact in X7 with O =Y \ K}.

Also, let YV := X7 U{oo} (X7 := X). Then:

Oy isatopology: K=0=Y =Y\ K € Oy, 0 € Ox, C Oy. Let (O;)ics € Oy.
Ifal O; € Ox, = O = Uiel O, € Ox, C Oy. Otherwise there exists some ¢ such
that co € Oio- Then Y\O = miEIY\Oi g Y\Oio, SO Y\O = miEIXl \Ol
is closed and contained in the compact set X; \ O;,, hence Y \ O is compact, so
0O € Oy.
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Let O1,...,0, € Oy. If there exists some k with Oy, € Ox,, then (N, O; C X7,
SO

DL

mOi: (OiﬂXl)EOXlgOy.
=1 =1

Otherwise, X; \ O; is compact for every 1 <14 < n, so

Y\(0:i=X1\[)0:i=]x:1\0;
i=1 i=1 i=1
is compact in X;, implying that (;_, O; € Oy.
Oy induces Ox, on X;: Clearly, Ox, C Oy|x,. Conversely, let O € Oy. If
O € Ox,, then ONX; € Oxy. Otherwise O=Y\ K = X; N0 =X;\ K € Oy, .

Uniqueness: Let Y/ = X{ U {c0’} be another Alexandroff-compactification. Then
since X7 & X 2 X7, there exists a homeomorphism f : X; — X{. Let F: YV —
Y', Flx, = f, F(c0) := o0’. Then F is bijective and F|x, is continuous. Let
Y’ \ K’ be a neighborhood of F(c0) = 0o’. Then F7Y(Y'\ K') =Y \ f~YK') is
a neighborhood of oo, so F is continuous. By symmetry, also F'~! is continuous,
implying that in fact F' is a homeomorphism.

Y is Ty : any z, y € X1 can already be separated in X; since X7 is To. If © # oo,
choose K compact € U(z). Then K, Y \ K separate z and co.

Y is compact: Let (O;)icr be an open cover of Y = Jig, such that co € O;,. Then

0;, =Y\ K for somé compact K. Here, K C (J,c;0; N X1 = iy, ... i, with
K C U1 0i, = Y € U= Oiy.-

If X is not compact, then X; is not compact, hence not closedin Y = X; D X; =
X, =Y. m

Note that if X is compact, then X; is open and closed in Y, so Y is the topological
sum of X and {oco} (cf. 1.4.4).

5.2.8 Corollary. Any locally compact space is completely reqular.

Proof. Y is a compact Th-space, hence normal by 5.1.9. From this, the result
follows by 4.1.4 and 3.2.1. O

5.2.9 Proposition. Let (X;);cr be a family of topological spaces, X; # () Vi.
TFAE:

(i) [l;c; Xi is locally compact.
(ii) Vi € 1, X; is locally compact and for almost all i € I, X; is compact and Ts.

Proof. (i) = (ii): Let a; € X; Vi € I. Then by 1.1.14, every map

8j 3XjHHXz‘ =X, 5j(z;) = (2i)ier, 2 = { z; iij
iel

is an embedding and s;(X;) = [[,c; As, with

_f{ai} i#]
&_{inj’

so by 2.3.20 (and 3.2.3), s;(X;) is closed. It follows that each X; is homeomorphic
to a closed subspace of X, hence is itself locally compact. Let K be a compact
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neighborhood of (a;);er. Then p;(K) is compact Vi. By definition of the product
topology, p;(K) = X; for almost all ¢ = X; is compact for almost all 4.

(ii) = (i): Let (as)ier € [[;c; Xi- Let H C I finite such that X is compact Vi & H.
For i € H let K; be a compact neighborhood of a;. Then by 5.1.15,

. (K i€eH
iel
is a compact neighborhood of (a;)ics in [],c; X;. Finally, X is Ty by 3.2.3. O

5.2.10 Definition. A locally compact space X is called o-compact (or countable
at infinity) if X is a countable union of compact sets.

5.2.11 Examples.

(i) R™ is o-compact: R™ =J*_, B,,(0).

m=1

(ii) Let U C R™ be open. Then U is o-compact since we can write it as

U= J{zeU]lz| <mAd(x,dU) >

m=1

}.

1
m
5.2.12 Theorem. Let X be locally compact. TFAE:

(i) X is o-compact.
(ii) There exists a sequence (Uy)nen of open sets in X such that:

(1) U, is compact ¥n € N.
(2) U7nQ Un+1 Vn € N.
(3) X:UnGNUn'

Proof. (ii) = (i): X = U, ey Un-

(i) = (ii): We first show that if X is locally compact then for any compact set K
in X there exists some open set O and some compact set K’ with K C O C K.
Indeed, Vo € K 3U, open in U (x) with U, compact. K compact = Jz1,...,z, € K
with K C Uy, U---UU,, =: 0. Then O = J;_, U,, =: K’ is compact.

By (i), X = Uy, K, K, compact. By what we have just shown, there exists
some U; open with K1 C U; anﬁd U1 compact. Suppose that Uy,...,U, have
already been constructed. Then U, U K11 is compact, so there exists some open
set Upt1 2 U, U K1y with Uy,41 compact. Thus (U, )nen satisfies (1)—(3). O

5.2.13 Corollary. Let X be locally compact. TFAE:

(i) X is o-compact.

(ii)) X possesses a compact evhaustion: 3 K, compact in X, X = |J,cn Kn,
K, C K, foralln € N.

Proof. (i)=(ii): Set K,, := U, in 5.2.12.
(ii) = (i): Clear. O

5.2.14 Corollary. Let X be locally compact . TFAE:

49



(i) X is o-compact.

(i) If Y is the Alexandroff-compactification of X, then oo possesses a countable
neighborhood basis.

Proof. (i)=(ii): Let (U,), be as in 5.2.12 (ii). Then each Y \ U, is a neighborhood
of co. Let Y\ K be any open neighborhood of co. Then K C J,cy Un, so there
exists some ng such that K C U,, = Y \U,, C Y \ K. Thus (Y \ U,)nen is a
neighborhood basis of oc.

(il)=(i): Let (Y \ K,,)nen be a countable neighborhood basis of co, and let z € X.

Then {z} is compact, so Y \ {z} is a neighborhood of co, and therefore there exists
some n such that Y\ {z} DY \ K,,. This implies that X = (J,, oy K»- O

The previous result explains the expression ‘countable at infinity’.

5.2.15 Proposition. Let X, Y be locally compact with Alexandroff-compactifications
X', Y. Let f: X =Y be continuous and F : X' = Y', F|x = f, F(c0) := 0.
TFAE:

(i) F is continuous.
(ii) VK' compact in Y, f~1(K') is compact in X.

Proof. F' is continuous on X. Thus F' is continuous < F' continuous in oo < for
every open neighborhood Y’ \ K’ of oo’, F7Y(Y'\ K') = X'\ f~}(K’) is an open
neighborhood of co < (ii). O

5.2.16 Definition. A map f : X — Y between topological spaces X, Y is called
proper if it satisfies 5.2.15 (ii).

5.2.17 Proposition. Let X, Y be locally compact and f: X — Y a continuous
proper map. Then f is closed and f(X) is locally compact.

Proof. By 5.2.15, F': X’ — Y is continuous and by 5.1.12, F is also closed. Let
A C X be closed. Then AU {oo} is closed in X’ (indeed, X'\ (AU{o0}) =X\ A€
Ox C Oxr). Thus F(AU{oc0}) = f(A)U {0’} is closed in Y. Since Oy |y = Oy,
we conclude that f(A) is closed in Y. Finally, f(X) = F(X’')NY is locally compact
by 5.2.5. 0
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Chapter 6

Algebras of continuous
functions, the
Stone-Weierstrass theorem

The classical theorem of Weierstrass states that any continuous function on a com-
pact interval can be approximated uniformly by polynomials. In this short chapter
we ask a more general question: Let X be compact and let D C C(X). Under
which conditions can we approximate any f € C'(X) uniformly by elements of D?

6.1 The Stone-Weierstrass theorem

6.1.1 Definition. Let X be a compact topological space and C(X) the set of con-
tinuous functions on X. Then d(f,g) := sup,cx |f(x) — g(z)| defines a metric on
C(X). The corresponding topology is called the topology of uniform convergence.

In fact, d(f,,f) — 0 < f, — f uniformly on X. Also, A C C(X) is dense in
C(X) & Vf € C(X) 3 sequence (fy) in A with d(f,, f) = 0. Our aim is to find
algebraic criteria for a subset A of C(X) to be dense in C(X).

6.1.2 Lemma. There exists a sequence of polynomials p,, : R — R with p,(0) =0
that converges to t — \/t, uniformly on [0,1].

Proof. Let
Polt) = 0, pusa(t) = palt) + 5 (¢~ P (1) (6.1.1)
Then
VE = pra(t) = (V= palt) (1= 5(VE + pa(t)) (612)
We show by induction that for all n € N we have
p(t) >0, pa(0) =0 (t€[0,1],n € N) (6.1.3)
2/i

0 <Vt—pa(t) < Ry

(t€1]0,1],n € N) (6.1.4)

n = 0: clear.
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n — n+1: By (6.1.1), (6.1.3), and (6.1.4), 0 < p,11(t), as well as p,+1(0) = 0.
Hence

(6.1.4)

0 < Vi~ prr () L (VI pud)(1 ~ S(VE 4 pa(®) <
—

(6.1.4)

> 0 >1-vt >0
24/t 1 24/t 1 2V/t
W Ly e Y e WV
24+ ny/t 5 p"())_2+n 7 gl )_2+(n+1)ﬁ
Using Qi\nff/f < 2.(6.1.4) implies SUPye(o,1] [Vt —pn(t)] < 2, so p, — v/t uniformly
on [0,1]. O

6.1.3 Lemma. There exists a sequence of polynomials (q,) with ¢,(0) = 0 that
converges uniformly on [—a,a] (a > 0) to t — [t].

Proof. Let p, as in 6.1.2 and set ¢,(t) :=a pn(—Z) Then for ¢t € [—a,a] we get

t
a

2 2 2\ | (6.1.4) 2a4/ 2—22 %2

a5~ ) Som(5)| 8 —H=<=

2 + m/é—z on
a
6.1.4 Remark. Using the pointwise operations: f+Ag:=t— f(t)+Ag(t), f-g:=
t — f(t)g(t), C(X) is an algebra. Let D C C(X). The algebra A(D) C C(X)
generated by D is the smallest algebra containing D. Thus

It = an(t)] = =a

AD)={ > ay..di*...d7|rneN, d; €D,

0<vi,...,vr<n
1<i<r ay.. €ER, ao..0 =0}

6.1.5 Lemma. Let X be a compact space and A a closed subalgebra of C(X).
Then together with any f, g, A also contains |f|, max(f,g), and min(f,g).

Proof. Since min(f,g) = 3(f +9) — 5|f — g and max(f,g) = 5(f +9) + 31/ — g
it suffices to show that together with f also |f| lies in A.

Let a := sup{|f(z)| | * € X}. Then a < oo by 5.1.11, so by 6.1.3 for any ¢ > 0
there exists a polynomial p. with p.(0) =0 and || f(z)| —p:(f(z))| < e Vz € X. By
6.1.4, p.o f € A. Also, p. o f — |f| in C(X), and since A is closed we conclude
that |f] € A. O

6.1.6 Lemma. Let X be a compact space and A a subalgebra of C(X). If f, g € A,
then also f+g, f-g andc- f (¢ €R) are in A. Hence A is a subalgebra as well.

Proof. f, g€ A = 3f, € A, g, € A with f, — f, g» — g uniformly on X.
= fotogn—=f+g cfn—=cf fn-gn—[-g U

After these preparations we are now ready to prove the main result of this chapter:

6.1.7 Theorem. (Stone-Weierstrass) Let X be a compact space and let D C C(X)
be such that

(i) Yo € X 3f, € D with fy(x) #0.
(i) Yo,y € X, x £y 3f € D with f(x) # f(y).
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Then the subalgebra A(D) generated by D is dense in C(X), i.e., A(D) = C(X).

Proof. Let f € C(X) and let £ > 0. We have to show that there exists some
g: € A(D) with |f(z) —ge(z)| <eVr € X,ie: f(z)—e < ge(z) < flx)+eVr e X
(because then A(D) and thereby A(D) itself is dense in C(X)).

Claim 1: Yy,z € X Jh € A(D) with h(y) = f(y) and h(z) = f(2).

In fact, (i) = 3f1, f2 € D with fi(y) # 0, f2(z) # 0. Let

1 1
fy = 7.]011 fz = m

fi(y)
Then fy, f. € A(D) and fy(y> = fu(2) = 1. Let hy := fy+ f.— fy- f- = h1 € A(D)
and hq(y) = h1(z) = L.
If y =2, set h:= f(y) - fy. If y # z then by (ii) there exists some hy € D with
ha(y) # ha(z). Then let

fy) — f(z) hy — FWha(2) = f(2)ha(y)
ha(y) — ha(2) ha(y) — ha(2)

= h e AD), h(y) = f(y) and h(z) = f(2).
Claim 2: Ye > 0Vz € X 3h, € A(D) with h,(z) = f(z) and h.(z) < f(z) + ¢ for
all z € X.

To see this, note that by claim 1 Yy € X 3¢, € A(D) with g,(2) = f(2) and
g9y(y) = f(y). f, gy, continuous = 3U, € U(y) such that g,(z) < f(z) +¢ Vz € U,.
X compact = 3L C X finite with X C |J, ¢, Uy. Let . := min{gy|y € L}. Then

by 6.1.5, h, € A(D). Also, h,(z) = miIngy(z) = f(z) and for any = € X there exists
ye
some y € L with z € U,. Therefore, h,(z) < gy(z) < f(z) +e.

Now for every z € X pick some h, as in claim 2. Since h,(z) = f(z) and since both
functions are continuous, there exists some W, € U(z) with h.(z) > f(x) —e Va €
W.. X compact = 3K C X finite with X = (J,.x W.. Let g. := max{h.|z € K}.

Then h, € A(D) by 6.1.5. Now let x € X = 3z € K with z € W, and so

fa.

h:=

1

F@) = £ < ha(@) < g.(2) = maxha(e) < f(z) +e

by claim 2. O

6.1.8 Corollary. (Weierstrass) Let [a,b] be a compact interval in R and f : [a,b] —
R continuous. Then:

Ve > 0 3 polynomial p. : R — R with |p.(x) — f(z)| < € Vx € [a,b].
Proof. Set X = [a,b] and D = {f1, fo} with fi =1 and f2(x) = 2. O

6.1.9 Corollary. Let X C R™ be compact. Then any continuous function on X
can be uniformly approximated by polynomials.

Proof. Let fo =1 and f; = p; : R” — R the projections p;(x1,...,2,) = x; for
1<i<mn. Let D:={fo, f1,.-.,fn}. Then A(D) is the set of all polynomials on
R™. O

Let us analyze the proof of 6.1.7 more closely: setting D" := A(D), we have shown
that D/ = C(X). Apart from 6.1.7 (ii) we only used the following properties:

(1) D’ is a linear subspace of C'(X).
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(2) (cf. claim 1 in 6.1.7): Vy,2 € X 3h € D’ with h(y) = h(z) = 1.

(3) 91,92 € D' = min(g1,g2) € D’ and max(g1,g2) € D'.
Moreover, consider the following property:

(3) feD =gl eD

Then: (1) A (3) = (3') since |g| = 2max(g,0) — g, and: (1) A (3') = (3): in fact,
max(g1, 92) = 5(g1+ 92+ |91 — g2]), min(g1, 92) = 5(91+92 91— g2|). Let g1,92 €
D’ = 3h,, k, € D', hy, — g1, kn — go uniformly. Thus max(resp. min)(hy, k,) —
max(resp. min) (g1, g2) uniformly = (3). Note also that (2) is certainly satisfied if
f: X =R, f=1is contained in D’. Thus we obtain:

6.1.10 Theorem. (M. H. Stone) Let X be a compact space and D a linear subspace
of C(X) with:

(i) D contains the constant function f: X — R, f(z) = 1Vz.
(i1) Yo #y € X 3h € D with h(z) # h(y).
(iii) h € D = |h| € D.

Then D is dense in C(X). O
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Chapter 7

Paracompactness and
metrizability

7.1 Paracompactness
7.1.1 Definition.

(i) Let A= (A;)icr and B = (Bj)jecs be systems of subsets of a set X. B is called
finer than A or a refinement of A, if:

Vj € J 3i el with B; C A;.

(ii) A Hausdorff-space X is called paracompact, if for any open cover U of X
there exists a finer locally finite open cover V.

Obviously, any compact Hausdorff-space is paracompact.

7.1.2 Lemma. Let X be paracompact, A, B C X closed and disjoint. Suppose
that for any x € A there exists some open U, € U(x) and an open V, 2O B with
U, NV, =0. Then A and B possess disjoint open neighborhoods.

Proof. U :={U,|x € A} U{X \ A} is an open cover of X, so there exists an open
locally finite finite cover (T;);ecs finer than U. Let T := UAQT#Q T;. Then T is an
open neighborhood of A. (T;);er is locally finite, so for every y € B there exists
some open W, € U(y) such that W, intersects at most finitely many T;. Let j be
such that T; N W, # 0 and ANT; # 0. Since (T});er is a refinement of U, there
exists some z; € A with T; C Uy, .

Then J(y) :={j € I | T, N W, # 0 and T; N A # (0} is finite and we set Wy =
Wy N Njesq) Va;- Then W)y, is an open neighborhood of y and we claim that
W,NT = 0.

To see this, suppose that there existed some z € Wy N T. Then by definition of
T there exists some j € I with z € Tj and ANT; # 0. z € W, = z € W,
=zeT;NW, = j € J(y). But then z € T; "W, C U,,NV,, = 0, a contradiction.

Thus W := UyEB W, is an open neighborhood of B that is disjoint from 7. O

7.1.3 Theorem. Any paracompact space X is normal.
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Proof. Let C, D C X be closed and disjoint. Since X is 75, any ¢ € C' and any
d € D possess disjoint open neighborhoods. Applying 7.1.2 to A := D and B := {c}
it follows that there exist an open neighborhood of ¢ and an open neighborhood
of D that do not intersect. Again from 7.1.2 we conclude that C' and D can be
separated by open sets. O

In applications, the most important property of paracompact spaces is the existence
of partitions of unity for arbitrary open covers (not only for locally finite ones as in
the case of normal spaces, cf. 4.3.8). In fact, this property is characteristic:

7.1.4 Theorem. Let X be T,. TFAE:

(i) X is paracompact

(i) For every open cover U of X there exists a subordinate partition of unity.

Proof. (i) = (ii): Let B = (Bj)jes be a locally finite open cover finer than
U = (Ui)icr- Then Vj € J 3®(j) € I with B; C Ugp(j). This defines a map
®:J — I By 7.1.3, X is normal, so 4.3.8 shows the existence of a partition of
unity (g;);es subordinate to B. Let

(2 i d-L(
fi(z) :z{ OZ‘D(j)=iga( ) i d(i) #0

otherwise

Since B is locally finite, any point possesses a neighborhood in which only finitely
many g; do not vanish identically, so f; is continuous. Moreover,

suppfi € |J supp g; € Ui
je2=1(i)

To see that (supp f;)ier is locally finite, let # € X. Then since (g;);jes is locally
finite, there exists some open neighborhood U of z that intersects only finitely many
supp g;, say those with j € {j1,...,jx}. Henceif ¢ & {®(j1),...,P(jx)} it follows
that f;ly =0, so U Nsupp f; = 0. Finally,

Zfi(x) = Z Z gj(z) = Zgj(x) =1.

i€l i€l ®(j)=i jeJ

(ii) = (i): X is To: Let ¢ # y. Then U := {X \ {z}, X \ {y}} is an open cover of X,
so there exists a subordinate partition of unity (f;);er for U. Then there exists some
ip such that f;,(z) = a > 0. This implies that supp f;, € X \ {y}, so fi,(y) = 0.
Consequently, the open sets figl((%, 1]) and fi;l([()7 %)) separate  and y.

Next, let U = (U;);cr be an open cover of X. We need to show that there ex-
ists a locally finite open cover that refines U. Let (f;);cs be a partition of unity
subordinate to . We first claim:

If g : X — R is continuous and g(xg) > 0 then there exists some Uy € U(xo) and
some finite set Iy C I such that

filz) < g(z) VeeUyVielll. (7.1.1)

To see this, note that since ), ; fi(zo) = 1, there exists some Iy C I finite with

L =3 e, filzo) < g(xo). Let Up:={z € X |13 ,c; fi(x) <g(x)}. Then Uy is
open and f;(z) < g(z) for all i € T\ I and all x € U.

Let f(x) := sup;e; fi(x). For any g € X there exists some iy € I with f;, (zo) >
0. Setting g := f;, in (7.1.1), it follows that there exists some Uy € U(zp) and
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Iy C I finite with f;(z) < fi,(x) Vi € I\ Iy Yo € Uy. Thus on Uy we have
f(z) = max(f;,(x), max;ey, fi(z)), so flu, is continuous. Since xy was arbitrary,
f: X — R is continuous.

Let V; := {z € X|fi(z) > %f(x)} Then V; is open and since supp f; € U;, V; C
U; = (V;)ier is a refinement of (U;);cr. Also, (V;); is a cover of X: Let z € X. Due
to f(z) = sup;e; fi(x) > 0, there exists some i € I with fi(z) > 1 f(z) = z € V.
Finally, (V;); is locally finite: Let 29 € X. Setting g(z) := 3 f(z) in (7.1.1), it follows
that there exists some Uy € U(zo) and some finite Iy C I with fi(z) < 1 f(z) Va €
Uy Vi € I'\ Iy. Therefore, x ¢ V; Ve e Uy Vi e I\Io = UyNV,=0VieI\I. O

7.1.5 Definition. A system A of subsets of a topological space X is called o-locally
finite, if A is a countable union of locally finite sub-systems: A =J;o, A;.

7.1.6 Example.

(i) Any locally finite system is o-locally finite.

(ii) If B = {B1,Ba,...} is a countable basis of X, then B is o-locally finite:
B =2, A, with A; = {B;}.

7.1.7 Proposition. Let X be regular. TFAE:

(i) X is paracompact.
(i) Any open cover of X possesses a finer o-locally finite open cover.

(ii) Any open cover of X possesses a finer (not necessarily open) locally finite
cover.

(iv) Any open cover possesses a finer locally finite closed cover.

Proof. (i) = (ii): clear, since locally finite implies o-locally finite.

(ii) = (iii): Let U be an open cover of X and S = (J,,cySn a finer open cover
such that any S, is locally finite. Let X, := USeSn S, Yo :i=Ul" o Xy, and Ag :=
Yo, Ay =Y, \ Yy g (n>1). Let A := (A, )nen. Then X = U, oy Xn = Upeny Yo =
Unen An- We claim that Z := {A, N S|S € S,, n € N} ist a locally finite cover
finer than U.

To see this, note first that Z is a refinement of ¢/: In fact, A, NS C S and S CU
for some U € U since S is a refinement of U. Also, Z is a cover: Let x € X. Then
since X = J, ey An, there exists some n € N with 2 € A, =Y, \ ¥,,_1 C X,,, and
since X,, = USeSn S, there exists some S € S,, with z € S, hence x € A, NS € Z.

Z is locally finite: Let x € X. Then due to X = (J, oy Ya, there exists some n
with z € Y,,. Y,, is open and Y;, N A, = # Vk > n, so Y,, can only intersect a set
of the form A,, NS € Z if m < n. Thus let m < n. Since §,, is locally finite,
there exists some V;,, € U(x), Vi, C Yy, that intersects only finitely many S € S,,.
Hence V := (' _, Vin meets only finitely many S € (J, _)Sm. Dueto VCY,, V
therefore only meets finitely many sets from Z.

(iii) = (iv): Let U be an open cover of X. Let x € X and U, € U such that x € U,.
As X is regular, 3.1.6 implies that there exists some open W, with x € W, C W, C
Uy. Let W= (Wy)zex. Then by (iii), there exists a locally finite cover A finer
than W. By 4.3.5 also A := (A) 4c4 is a locally finite cover of X. A is a refinement
of U since any A € A lies in some W, and W, C W, C U,.

(iv) = (i): Let U be an open cover of X and V a locally finite cover finer than .
For € X let W,, € U(x) be open such that W, meets only finitely many V € V.
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(iv) = A locally finite closed cover finer than W := (W, ).ecx. Since any W, meets
only finitely many V € V), we also have:

Any A € A meets only finitely many V € V. (7.1.2)
Fixing any V € V, the set {4 € A|JANV = 0} C A, is locally finite as well. By
4.3.5,
Ja-Ud- U4
AcA AcA AcA
ANV =0 ANV =0 ANV =0
andsoV':=X\( |J A)isopen. Dueto |J ACX\V=VCV =V .=
AcA AcA
ANV=0 ANV =0

(V')vey is an open cover of X.

Next we claim that V' is locally finite. To see this, note first that since A is locally
finite, for any « € X there exists some T, € U(z) such that T, intersects only
finitely many A;,..., A, € A. Ais a cover, so T, C (J,_; Ax. Now suppose
that T, N V" # 0 = 3k € {1,...,n} with A, NV’ # 0 (otherwise we would
have V' N U;_, Ax = 0). By definition of V', therefore, Ay NV # 0 (otherwise

A, € U ACX\V'). By (7.1.2), Ay meets only finitely many V € V = T,
AeA
ANV=0

meets only finitely many V'’ € V', which gives the claim.

For every V' € V there exists some Uy € U with V' C Uy. To conclude the proof,
we show that V" := {Uy NV’/|V € V} is a locally finite open cover finer than .
First, V' is locally finite since V'’ is. Also, clearly V" is open. Moreover, V" is finer
than U since Uy NV’ C Uy € U. Finally, V" is a cover: in fact, V C Uy NV’ and
Y is a cover, so also V" is one. O

7.1.8 Theorem. Let X be a topological space. TFAE:
(i) X is paracompact.

(i) X is regular and for any open cover of X there exists a finer o-locally finite
open cover.

Proof. (i)=-(ii): X is normal, hence regular by 7.1.3, so the claim follows from
7.1.6 (i).
(ii)=(i): follows from 7.1.7. 0

7.1.9 Theorem. Let X be locally compact, connected and paracompact. Then X
is o-compact.

Proof. We will in fact show that X possesses a compact exhaustion (see 5.2.13).
Since X is locally compact and paracompact we may choose a locally finite open
cover (Uy)aea of X such that each U, is compact and non-empty. Fix g € A and
put Ag := {ap}. Then for k € N we recursively define A, C A by

Apir i ={a€A|3B € Ap: UyNUs # 0}

Since Up is compact and (U, )aea is locally finite, only finitely many U, can have
non-empty intersection with Ug. Thus each Ay, is finite. Also, Ay C Ap4q for all k.
Now set U := UypenyUaea, Ua- Then U is open. If z ¢ U then we pick some a € A
with « € U,. It then follows that U, N U = @: in fact, otherwise there would exist
some k € N and some 8 € A with U, NUg # 0. But then o € Ap41 and z € U, a
contradiction. Therefore U is also closed, and since X is connected, U = X.
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We show that the sets K,, := UaE A, U, form a compact exhaustion of X. Every
K, is compact and X = U = |J,,cy Kn. Finally, if z € K, then there exists some
a € A with x € U, and there exists some 8 € A, with z € 75 Hence U, NUg # 0.
It follows that o € A;11 and so z € U,ey,,, Ua € Kppy. O
7.1.10 Definition. A topological space is called Lindelof if any open cover pos-
sesses a countable sub-cover.

7.1.11 Proposition. Any o-compact space is Lindeldf.

Proof. Let U be an open cover of X and (K, )nen a cover by compact sets. Then
any K, is covered by finitely many elements of ¢ and the union of these countably
many finite collections of sets is a countable cover of X. O

7.1.12 Corollary. (Classes of paracompact spaces)

(i) Any regular space with countable basis is paracompact.
(ii) Any regular Lindelof-space is paracompact.

(i4i) The union of countably many closed subsets of a paracompact space is para-
compact.

Proof. (i) Let B be a countable basis of X and let & be an open cover of X. Then
V:={BeB|3U elU: BCU} is an open cover of X (since B is a basis) and
refines U. Also, since V C B, it is countable, hence o-locally finite by 7.1.6 (ii).
Thus 7.1.7 gives the claim.

(ii) By definition, any open cover U contains a countable, hence in particular o-
locally finite sub-cover V), so 7.1.8 gives the claim.

(iii) Let F =J,2, Fy, F, closed Vn € N. Let U = (U;)ies be an (in F) open cover
of F. Then Vi € I 3V, open in X such that U; = F NV;. For any n € N,

Vo i={Vi|i € I}U{X\F,}

is an open cover of X and therefore possesses a locally finite open refinement A,,
that covers X. Let B, :={FNA| A€ A, and ANF, # 0}. Then B, is locally
finite (since A, is), so B := |U,—, By, is o-locally finite. B covers F because B,
covers F,,. In addition, B is finer than : Let FF'N A € B,,. Then since A,, refines
V, and AN F,, # () implies that A € X \ F,,, there has to exist some i such that
ACV,=FnNACFNV; =U;. The claim therefore follows from 7.1.8 since F is

regular by 3.2.1. a

7.2 Metrizability

7.2.1 Definition. A topological space X is called metrizable if there exists a metric
on X that generates the topology of X.

Our first aim in this section is to show that any metrizable space is paracompact.
For this, we need some preparations from set theory.

An ordered set is called well-ordered if any nonempty subset possesses a smallest
element. On any set there exists a well-ordering (this is a theorem of Zermelo,
and is equivalent to the axiom of choice). Any well-ordered set is totally ordered
(consider subsets of two elements).
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If (X,d) is a metric space and ) # A, B C X, let

d(A,B) = ;Ielg d(z,y).
yeB

Then [d(A, z) — d(A,y)| < d(z,y), so z + d(A, ) is uniformly continuous. More-
over, t € A & Ve > 0 Ja € A with d(z,a) < ¢ & d(z,A) = 0. After these
preparations we can now prove our first main result:

7.2.2 Theorem. (M. H. Stone) Any metrizable space X 1is paracompact.

Proof. Since X is regular by 3.1.3, by 7.1.8 it suffices to show that for any open
cover U = (U;);es there exists a finer o-locally finite open cover. For (n, z) eNxIT
set Fp;:={z € X | d(z, X \U;) >27"}. Then F,,; CU; and U; = {J, | Fi (z €
U=z ¢ X\U; = d(x,X\U;) > 0= 3nsuch that d(z, X \U;) > 27" :>:r€ Fp).
Let < be a well-ordering on I and set G; := Fp; \ Uj<i Fot1j. Let Vi ={z €
X | d(x,Gypi) < 2773} and S,, := {Vp; | i € I}. Then since z + d(z,G,;) is
continuous, V,,; is open.
We first show that (Jo- , S, is a refinement of .
Let x € Vi = d(2,Gp;i) < 273 = Jy € G, with d(x,y) < 27773, Since
Gni c Fni = d(yvx\Uz) > 27, ConsequentIY7 d(xvx\Uz) > d(ya X\Ul)_d(xa y) 2
223> 0=a0é¢ X\U;=2eU; =V, CU,.
Next, ;2 S, covers X:
Let x € X = |J;¢; U;. Since I is well-ordered, there exists a minimal i € I with
x € Uj, and since U; = |J,,cy Fri, there exists some n € N with x € F,;. Asz ¢
Uj Vj <1, ¢ Fn+17j(g Uj) V] <i=>z€lGy=> d(aﬁ,Gm) =0=>z€V, €8S,
Finally, any S,, is locally finite.
To show this we first prove two auxilliary statements:
a) For i # j, d(Gpi,Gpj) > 271 To see this, since I is totally ordered, we may
suppose j < i, ¥ € Gpi, y € Gpj. Then x ¢ Foiq1,; = d(z, X\ U;) < 2771
Also, y € F,; = d(y,X\U) > 27" = d(z,y) > dy, X \Uj) —d(z, X \U;) >
9—n _ 9—n— 1 = 92— n—1

b) For ¢ # j, d(Vm,Vn]) > 2772 Again, let j < i, * € Vpy, y € Viy =
d(z,Gpi) < 27773, d(y,Gry) < 27773 = 32/ € Gy, Y € Gy with d(z,2') <
2—n—3’ d(%?/) < 2 n=3 = d(l‘,y) Z d(mlay/) - d(x7xl) - d(yay/) Z d(Gniaan) -
2—n—3 _ 2—n—3 az) 2—71—1 _ 2—n—2 — 2—n—2.
Now let z € X and set By-n-s(z) := {y € X | d(z,y) < 27" 3} = By-n-s(x) €
U(z). We show that By-n—3(z) intersects only finitely many V,,; (in fact, at most
one): Let Vi,; N By-n-s(x) # 0, Vo N By-n-3(x) # 0, @ # j. Then there exist
Y € Voi, 2 € Vyj with d(y,z) < 27773, d(z,2) < 27773 = d(Viyi, Viry) < d(y,2) <
d(y,z) + d(z,z) <2772, a contradiction. Thus

{6 € I'| Vii N By-nos(x) # 0} < 1.
O

Conversely we now want to analyze the question which topological spaces are metriz-
able. As a preparation we establish a necessary condition for metrizability:

7.2.3 Lemma. Let (X,d) be a metric space. Then:

(i) If A C X is closed = ¥Yn € N 3 G,, open with A = ()7, G,, (i.e.: Ais a
Gs-set).
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(ii) If A C X is open = Vn € N 3 F,, closed with A = J,_, F,, (i.e.: A is an
F,-set).

Proof. (i) A=A={y|d(y,A) =0} =N, {y | d(y,A) < £}
(i) By (1), X\ A= 1Gn = A= X\ Gn =U, 21 (X \ Gn). o

7.2.4 Lemma. Let X be reqular with a o-locally finite basis. Then any open subset
of X is an F,-set.

Proof. Let S = |J;2; S, be a o-locally finite basis, where S,, = {Sy,; | i € I,,}
is locally finite for each n. Let @ # O be open in X. As X is regular, Vo €
0 3V, € U(z) with z € V, €V, C O. Since S is a basis = 3S,(z)i(x) € S with
T € Spyi) € Ve = Sn@yi) € Ve € O. Let

Sk 1= U Sn(z)i(z)-
(

n(z)=k
z€0

Because Sy, is locally finite, 4.3.5 implies that S, = U Sp)ie) = Upen Sk = O.
n(x)=k

zeO
O

7.2.5 Theorem. (Metrization theorem of Bing-Nagata-Smirnow) Let X be a topo-
logical space. TFAE:

(i) X is metrizable.

(i) X is regular and possesses a o-locally finite basis.

Proof. (i)=-(ii): Let d be a metric on X that generates the topology. Let V,, be
the cover of X by all open balls of radius 27™. Then by 7.2.2 there exists a locally
finite open cover &, refining V,,. Then & := (J,2, &, is o-locally finite and it is a
basis: Let x € X, U € U(x) = 3n such that By-»(z) C U. Since &,42 is a cover
of X = 3F € &,,5 with z € E. The diameter of E is < 2.2~ ("2 = 2-(n+1) 4o

E C By-«(x) CU. Finally, X is regular by 3.1.3.

(ii)=-(i): We first show that X is paracompact. To see this, let S = [J;_; S, be a
basis of X such that each S,, = {Sy; | ¢ € I,,} is locally finite. Let & = {U; | i € I}
be an open cover of X and set V,, :={V € S, | Ji with V C U,;}. Since V,, C S,,
V, is locally finite. Let V := Uzo:l Vn- Then V is o-locally finite, refines U and is
a cover because any U, is a union of elements of S (which is a basis!). Hence 7.1.8
gives the claim.

By 7.2.4, any S,,; is an Fy-set = X\ S,,; is a Gs-set. As X isnormal by 7.1.3, by 4.1.6
there exists a continuous function ¢,; : X — [0,1] with S,; = {z | ¢ni(x) > 0}.
Sy, is locally finite = 37, ¢y;(x) is well-defined and continuous and thereby the
same is true for

eni(T)
143 e, #ng(e)

Then 0 < thpi(x) <277, Spi = {2 [ Pni(x) >0}, 0< 37 ; Pni(z) <277, and so

wm(x) =27 "

d(x,y) =Y [tni(@) = Yni(y)|

n=14¢€el,

is well-defined.
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d is a metric: Clearly, d(x,y) = d(y, x), as is the triangle inequality for d, and that
d(xz,z) = 0. Let  # y. Then since S is a basis and X is Ty, there exists some Sy;
with @ € Sni, y & Spi = Vni(2) > 0, Pnily) = 0= d(z,y) > 0.

It remains to show that the topology O4 induced by d equals the topology O of X.
O4 C O: Vg € X, Bo(xo) = {y | d(zo,y) < €} € O because y — d(zo,y) is
continuous as the uniform limit of continuous functions (cf. the proof of 4.1.6).

O C O4: Let ¢ € X and U € U(z). Then since S is a basis, there exists some
x € Spi CU. Let € := ¢p(x) > 0. If d(z,y) < &€ = [ni(x) — Yni(y)| < & = ¥pi(x)
= Yni(y) >0=y €S, CU,ie, Be(r) CU. O

7.2.6 Corollary. (Urysohn’s second metrization theorem ) Let X be compact and
T,. TFAE:

(i) X is metrizable.

(1) X possesses a countable basis.

Proof. (i) = (ii): Let S = |J,—, Sn be a o- locally finite basis of X. Any S,
is locally finite and therefore finite: Vo € X 3U, € U(x) open that intersects
only finitely many S € S,. Since finitely many U, cover X, the claim follows.
Consequently, S is also countable.

(ii) = (i): X is compact and Ty = normal = regular. Thus the claim follows from
7.1.6 (ii). O

7.2.7 Theorem. Let X be locally compact. TFAE:

(i) X possesses a countable basis.
(i) The Alexandroff compactification X' = X U {oco} of X is metrizable.

(i) X is metrizable and o-compact.

Proof. (i) = (ii): Let B be a countable basis of X. Let z € X, U e U(z) = 3K €
U(x) compact with x € K C U = 3B € B with x € BC B C K C U. Therefore
B:={B € B| B is compact} is also a countable basis of X. It follows that X is a
countable union of compact sets, hence is o-compact. By 5.2.14 we conclude that
oo € X' possesses a countable neighborhood basis U of open sets, and so U U B is
a countable basis of the compact space X’. By 7.2.6, therefore, X’ is metrizable.

(ii) = (iii): Being a subspace of X', X is metrizable. Moreover, oo possesses a
countable neighborhood basis, so X is o-compact by 5.2.14.

(iii) = (i): 5.2.12 = 3U,, open in X, U,, compact, C U, 41, X = Unen Un- Any U,
is compact and metrizable, so by 7.2.6 there exists a countable basis (Vim)men of
U, = {UpyNVym | m € N} is a basis of U,. = {U,, N Vym | n,m € N} is a countable
basis of X. 0O

7.2.8 Definition. A topological space X is called separable if X possesses a count-
able dense subset.

Some authors (e.g. Bourbaki) define separability only for metrizable spaces, namely
as follows: a metrizable space X is called separable if it possesses a countable basis.

The following result clarifies the interrelation between these notions:

7.2.9 Theorem. (Urysohn’s first metrization theorem). Let X be a topological
space. TFAE:
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(i) X is reqular and possesses a countable basis.
(i) X is metrizable and separable.
(iii) X can be embedded in [0, 1]N.

Proof. (i)=-(ii): X is metrizable by 7.2.5 (and 7.1.6 (ii)). Let B be a countable
basis of X and @) ¢ B. For each B € B pick some g € B. Then {zp | B € B} is
countable and dense.

(ii)=-(iii): Let d’ be a metric that generates the topology of X. Then d(z,y) :=
min(1, d (x,y)) is a metric (in fact, d = hod’, where h : RT™ — R™, h(u) = min(1,u),
h(u+v) < h(u) + h(v), and h is monotonically increasing). Also, d generates the
same topology as d’ since BZ(xg) = B () for all ¢ < 1.

Now let (an)nen be dense in X and ¢ : X — [0,1]N, ¢(z) := (d(2,a,))nen. Then
© is continuous since any = — d(x, a,,) is continuous.

¢ is injective: Let p(x) = ¢(y), i.e., d(z,a,) = d(y,a,) Yn € N. Since A := {a,, |
n € N} is dense = 3Ja,, = = (j — 00) = 0 = d(z,r) = lim; o d(z,a,,) =
lim; o0 d(y, an,;) = d(y,z) = = y.

By 1.1.8 it remains to show that ¢ : X — ¢(X) is open.

Claim: The topology O of X is the initial topology with respect to (p, © ¢)nen.

To prove this, let O be a topology on X such that all p, o ¢ = z — d(z,a,) are
continuous with respect to @’. By 1.2.2 we have to show that O C O'.

To begin with, d : (X,0’) x (X,0’") — [0,1] is continuous: Let (zg,y0) € X x X
and let ¢ > 0. Since A is dense = 3In, m € N with d(zo,a,) < § and d(yo, am) < §-
Since z — d(x,a,), ¢ — d(z,an) are continuous = IV € U(xzo), W € U(yp) in O
such that forz € V, y € W : |d(x, an)—d(x0, ay)| < § and [d(y, am)—d(yo, am)| < §-
For x € V' it follows that d(x,a,) < § +d(wo,a,) < §+ ¢ = 5 and for y € W we
analogously obtain: d(y,a,,) < §. Consequently, d(z,zo) < d(x,an) + d(an, o) <
£+ § = 5. In the same way we get that d(y,yo) < §. Summing up,

ld(z,y) — d(zo,y0)| < |d(z,y) — d(z0,y)| + |d(z0,y) — d(z0,y0)]
< d(z,z0) +d(y,y0) <€

for (x,y) € VxW. It follows that d : (X,0")x (X, 0’) — [0, 1] is continuous. Hence
for every € > 0, Be(zo) = {y € X | d(z0,y) < ¢} € O, implying that O C O’, and
thereby the claim.

Since [0,1]N carries the initial topology with respect to (pp)neny and (X,0) the
initial topology with respect to (pn © ©)nen, 1.2.3 implies that O is the initial
topology with respect to ¢. Consequently, ¢ : X — ¢(X) is open: In fact, by 1.2.2,
O = {¢~Y(U) | U open in [0,1]N}. For ¢~ 1(U) € O we have that ¢(p~1(U)) =
©(X)NU is open in ¢(X), so indeed ¢ : X — ¢(X) is open. Thus ¢ : X — ¢(X)
is a homeomorphism, so ¢ : X — [0,1]" is an embedding.

(iii)=>(i): [0,1] possesses a countable basis B, so a basis of [0,1]N is given by
{Il,en Bn | Bn € B, B, = X for almost all n}, which is itself countable. Fur-
thermore, [0, 1] is regular by 3.2.3, and so is any of its subspaces by 3.2.1. a
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Chapter 8

Topological manifolds

In this chapter, following [3], we want to derive some fundamental properties of
topological (and thereby also of smooth) manifolds.

8.1 Locally Euclidean spaces

8.1.1 Definition. A topological space X is called locally Euclidean if any point
possesses a neighborhood that is homeomorphic to some R™, for some n € N.

Equivalently, any point is supposed to possess a neighborhood that is homeomorphic
to some open subset of some R™. 8.1.1 allows the number n to vary between points,
consider, e.g., the topological sum of R™ and R™. The following non-trivial result
from algebraic topology shows that n must be locally constant:

8.1.2 Theorem. (Brouwer) Let U, V be subsets of R™ that are homeomorphic.
Then if U is open, so is V.

For a proof, we refer to [4].

8.1.2 indeed implies that n is locally constant: suppose that a point x € X has a
neighborhood that is homeomorphic to both U C R™ and to V' C R™, with m > n.
Then since R™ can be viewed as a subspace of R it would follow from 8.1.2 that U
has to be open in R™, which is impossible. Thus we may assign a natural number
n = dim,(X) to any point € X. Then the map dim(X) : X — N, z — dim,(X)
is locally constant, hence constant on the connected components of X.

The following remark collects some basic properties of locally Euclidean spaces.

8.1.3 Remark. (i) Any locally Euclidean space is 77. This is immediate from
3.1.4 since singletons are closed in R™.

(ii) However, locally Euclidean spaces need not be Hausdorff in general. As an
example, let Z := {0,1} with the discrete topology and set X := R x Z. On X we
define an equivalence relation by (z1,21) ~ (22, 22) if either (x1,21) = (z2,22) or
21 =2 # 0 and 21 # z9. Then X := X/ ~, equipped with the quotient topology,
can be viewed as a real line with two different origins. It follows that X is locally
Euclidean but is not Hausdorff because any neighborhood of U of (0,0) intersects
any neighborhood V of (0, 1).

(iii) Any locally Euclidean Th-space X is completely regular. To see this, by (i) it
remains to show that X is 7T3,. Thus let A C X be closed and let x ¢ A. We
need to construct a function f : X — [0,1] such that f(z) = 1 and f|4 = 0. To
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do this, pick a homeomorphism ¢ : U — R™, where U is an open neighborhood of
x with UNA =0 and ¢(z) = 0. The set K := {x € U | ||e(x)] < 1} is compact
in U, hence also compact in X. Since X is 75, 5.1.8 implies that it is closed in X.
Therefore V := X \ K is open in X, and so the function

X ol e { max(0.1 = [} if e U

is continuous. By definition, f(z) =1 and f|4 = 0.

Since X is T34, 3.1.7 implies that B := {f~}(U)|U C R open, f : X — R continuous
and bounded} is a basis of the topology of X, so by 1.2.2 the topology of X is the
initial topology with respect to these maps.

(iv) By (i) and 7.1.4, a locally Euclidean space X is paracompact if and only if for
any open cover of X there exists a subordinate partition of unity.

(v) Any locally Euclidean Ts-space is locally compact. Indeed, for any z € X, K
as in (iii) is a compact neighborhood of z.

(vi) Any locally Euclidean space is first countable, i.e., any point possesses a count-
able neighborhood basis.

(vii) A locally Euclidean space need not be second countable, however: as an exam-
ple, consider the topological sum of uncountably many copies of R. In fact, there
are even connected locally Euclidean spaces that are not second countable, e.g., the
so-called long line, cf. [7].

8.2 Topological manifolds

Recall from 1.5.1 that a topological manifold is a set M such that there exists a
cover (U;);er of M and a family of bijective maps ¢, : U; — V; with V; C R™ open.
Moreover, for all 4, j with U; NU; # 0, ¢;(U; NU;), ¢;(U; NU;) is open and

piop; ! 1 oi(U;NU;) = ¢i(U; NU;)

is a homeomorphism. M is equipped with the final topology with respect to the
©; L.V, - M. If M is Hausdorff, it is called a topological manifold of dimension
n. Moreover, by 1.5.2, every ¢; : U; — V; is a homeomorphism, each U; is open
in M, and w.l.o.g., any V; can be chosen to be R™. It follows that any topological
manifold is a locally Euclidean space.

Conversely, if M is a locally Euclidean Hausdorff space of constant dimension, then
M is a topological manifold: in fact, pick homeomorphisms ¢; : U; — R such that
(Ui)ier is a cover of M. Then whenever U; NU; # 0, ¢;(U; NU;), ¢;(U; NU;) are
open and <pio<pj_1 2 (U;NU;) = ¢;(U;NU;) is a homeomorphism. For any = € U,
the sets ¢; ' (B.(pi(x))) (¢ > 0) form a neighborhood basis of z in the given toplogy
of the locally Euclidean space M. Since, by 1.5.2, they also form a neighborhood
basis in the manifold topology induced by the atlas (p;, U;);c1, these two topologies
coincide.

Our next aim is to provide various characterizations of topological properties of
locally Euclidean spaces (and thereby of topological manifolds). For this, we will
require the following observation.

8.2.1 Remark. Suppose that (X;,d;):cr is a family of (disjoint) metric spaces.
Then also the topological direct sum (cf. 1.4.5) |J;c; Xi can be equipped with a
metric that induces d; on each X;. In fact, it suffices to define

d(z,y) := { o0 otherwise.

66



8.2.2 Theorem. Let X be a locally Euclidean Hausdorff space. TFAE:

(i) Any connected component of X possesses a compact exhaustion (cf. 5.2.13).
(i) Any connected component of X is o-compact.
(iii) Any connected component of X is Lindeldf.
(iv) Any connected component of X is second countable.

(v) X is completely metrizable, i.e., there exists a metric d on X such that (X, d)
is complete and d induces the topology of M.

(vi) X is metrizable.

(vii) X 1is paracompact.

Proof. (i)<(ii): This follows from 5.2.13.

(if)=-(iii): By 7.1.11, any o-compact space is Lindelof.

(iii)=-(iv): Let Y be a connected component of X. Since Y is Lindeldf, we may
extract a countable cover (U, )men from a cover of Y by sets that are homeomorphic
to some R™. Since R™ is second countable, so is each Up,. Let (Viur)ren be a basis

of the topology of U,,. Then {V,,1 | k,m € N} is a countable basis for the topology
of Y.

vi): This follows from 7.2.7 and 8.2.1.
vi)=(vii): See 7.2.2.
vii)=>(ii): See 7.1.9,

v)=-(vi): is clear.

iv)=(
=(

(
(
(
(

(vi)=(v): By 8.2.1 we may without loss of generality assume that X is connected.
Let d be a metric on X that induces the topology of X. Now consider the space
X xR with the metric d'((x, s), (y, t)) := max(d(z,y), |t—s|). Our aim is to construct
a continuous and proper (cf. 5.2.16) function f : X — R. Suppose for the moment
that we already have such an f. Then consider the map ¢ : X — X x R, «(z) :=
(z, f(x)). It is an embedding since pr;|,(x) is an inverse to ¢ on ¢(X). Therefore
the metric d”’(x,y) := d'(u(x),c(y)) induces the topology of X. This metric is
complete since f is proper: in fact, if (x,) is a Cauchy sequence with respect to
d”, then (f(z,)) is bounded, so (z,) lies in a compact set. It therefore possesses a
convergent subsequence, hence is itself convergent since it is Cauchy.

It remains to construct such a function f. We first note that since we already proved
that (vi)=-(i), we can conclude that there exists a compact exhaustion (K )nen of
X. Then for each n € N, K, and X \ K, are closed and disjoint. Thus by 4.1.1

there exist continuous functions f, : X — [0,1] with fu|x, =0 and fulx\xo,, = 1.
Then f := ) .\ fn is continuous, being a locally finite sum. Moreover, since
f~Y([-=n,n]) € K,y for every n, it is also proper. O

8.2.3 Corollary. Let M be a paracompact topological manifold. TFAE:
(i) M is second countable.
(1) M has at most countably many connected components.

(#ii) M is separable.
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Proof. (i)<(ii): is immediate from 8.2.2 (iv).
(if)=-(iii): Any connected component is separable by 8.2.2 (iv) and 7.2.9, hence so
is X itself.

(iii)=>(ii): Since any dense subset must intersect each connected component of M,
there can be at most countably many such components. |

There are, however, locally Euclidean spaces that are connected and separable, but
are not second countable (]6]).

Finally, we show that any compact manifold can be embedded in some R :

8.2.4 Theorem. Let M be a compact topological manifold. Then there exists some
N € N and an embedding of M into RN .

Proof. Let dim(M) = n. For any z € M there exists a chart ¢, that homeomorphi-
cally maps some open neighborhood U, of x onto R™. Since M is compact, there are
finitely many points x1, ..., T,, such that the sets V; := <p;i1(Bl (0)) i=1,...,m)
cover M. Let h: R™ — [0,1], h(z) := max(0,1 — ||z||) and set, for s = 1,...,m:

T

Then f; is continuous and f;|y, : Vi — R"! is injective. Also, fi(z) # 0 if and
only if # € V;. Therefore F := (fi,..., fm) : M — R™"+1 is continuous and
injective. Since M is compact, 5.1.12 shows that F is an embedding of M into RY
for N =m(n+1). O

One can in fact show that any n-dimensional second countable topological manifold
can be embedded into R?"*1,
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Chapter 9

Uniform spaces

There are a number of fundamental notions from analysis, like uniform continuity,
uniform convergence, Cauchy sequence, or completeness, that cannot be described
purely in terms of topological notions. Instead, a concept of ‘nearness’ of two points
that is symmetric in the points (as opposed to one point lying in a neighborhood of
the other) is required. This leads to the introduction of uniform structures, which
we will study in this chapter.

9.1 Uniform structures

9.1.1 Example. Let (X, d) be a metric space and U, := {(z,y) € X xX | d(z,y) <
e}. Then A = {(z,2) | * € X} C U, and U, is open since d : X x X — RT is
continuous. A map f : (X,d) — (Y,d’) is uniformly continuous if and only if
Ve > 0 3§ > 0 such that d(z1,22) < 0 = d(f(z1), f(z2)) <e & Ve >030 >0:
(x1,22) € Us = (f(z1), f(z2)) € UL (where the latter is defined with respect to d’).

A sequence in X is a Cauchy sequence if Ve > 0 Ing Vn,m > ng : (¢, Tm) € Ue.
Thus the sets U, allow to characterize uniform continuity and Cauchy sequences in
metric spaces. We therefore want to study some general properties of the system
B:={U.|e>0} lfzeX={yeX]|(zy) €U} =Ucx) is an e-ball around =.
Furthermore,

b U617' ) Uen eEB= mle UE{, = Urnin{ei\lgigk} € B.
e U.e B=>ACU..
o U:€B={(z,y) | (y,2) € Uc} = Uc € B (since d(z,y) = d(y, x)).

o U. € B= 3V € B with (z,y) € U if 3z with (,2), (z,y) € V. In fact, by
the triangle inequality we may set V := U, /5.

Generalizing these properties we are going to define uniform structures on general
sets. For this we need some preparations.

9.1.2 Definition. (Operations on relations) For X a set and A,B C X x X let
A7V i={(z,y) € X x X | (y,x) € A} (reflection on A)
AB :={(z,y) € X x X | 3z € X with (x,2) € BA(z,y) € A} (composition)
A2 — AA, A" = AA"L,
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A C X x X is called symmetric if A= A~'. Subsets of X x X are called relations.

As an important special case, functions can be viewed as relations by identifying
them with their graphs. Composition of relations then reduces to composition
of functions: A = {(z, f(x)) | € X}, B = {(z,9(x)) | v € X} = AB =

{(z,fog(x)) |z e X}
9.1.3 Lemma. (Calculating with relations) Let A, A", B,B',C C X x X. Then:
(i) ACB= A"t C B!
(i) ACA' BCB' = ABC A'B'
(iii) (A~H=1=A4
(i’l)) A CXxXViel= (Uie[ Ai)il = Uie] A;17 (ﬂie] Ai)71 = ﬂie[ A;1
(v) A(BC)=(AB)C
(vi) (AB)™1 =B~1A~!
(vii) A= A1 = A" = (A")"! VneN
(viii) Ao A=Aoc A=A
(ir) ACA=ACA™ Vn
Proof. (i) — (iv) are clear.
(v) (z,y) € A(BC) < 3z : (x,2) € BOA(z,y) € A 32,2 - (2,2) e CA(d,2) €
BA(zy) e Ae 32 (Z,y) € ABA(x,2') € C & (z,y) € (AB)C.
(vi) (z,y) € (AB)™' & (y,z) € AB& 32 : (y,2) E BA(z,2) € A J2: (2,2) €
A7YA(z,y) € B! & (z,y) € B71A7L.
(vii) By (vi), (A")~! = (A~1)" = A",
(viii) (z,y) € Ao A& Tz (z,2) € AN (2,y) € A & (x,y) € A
—

Y=z

(ix) By (ii), A = A=t C A"~1 5o (viii) gives A C A™. O

9.1.4 Definition. Let X be a set and ) # U a system of subsets of X x X. U is
called uniform structure or uniformity on X, if:

(1)) UelU, ACXxX andUCA=Acl.
(ii) Uy,...,Uy eU =i, Ui €U.

(iti) UeU = U D A.

(iv) UeU=U"1eclU.

(W UeEU=IVelU:V2CU.

The elements of U are called entourages. (X,U) is called a uniform space. If
(z,y) € U, then x and y are called U-close.

9.1.5 Remark. Properties (iii), (iv), (v) correspond to reflexivity, symmetry, and
triangle inequality of the metric in 9.1.1. Also, by (i), (ii) and (iii),  is a filter on
X x X.

9.1.6 Lemma. Supposing (i)-(iii), (iv) and (v) from 9.1.4 are equivalent to:
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(iv)) VUeU IV el withV =V~ and V2 CU.

Proof. (iv)A(v) = (iv’): Let U € Y and V € U such that V2 C U. Then (ii) and
(iv) imply VAV~ € U. Also, (VAV-1)~' = (VAV ) and (VAV-1)2 C V2 C U.
(iv') = (iv) A (v): (v)isclear. Let U € Y and V = V1 € U with V2 C U. Then by
9.1.3 (ix) and (vii), V C V2 = (V2)=! C U~!. Hence (i) gives U~! € U, implying
(iv). O

9.1.7 Definition. Let (X,U) be a uniform space and B CU. Then B is called a
fundamental system of entourages, if VU €e U AB € B with B C U.

Thus B is a fundamental system of entourages if and only if B is a basis of the filter
U.

9.1.8 Lemma. Let (X,U) be a uniform space and B a fundamental system of
entourages of U. Then also

B :={AnA'|AcB)and B,:={A"|AcB} (n>1)

are fundamental systems of entourages of U. In particular, for any uniform struc-
ture U and any n > 1 the system {A" | A€ U, A= A"} is a fundamental system
of entourages.

Proof. Clearly, B’ C U, and B’ is a fundamental system of entourages.

Turning now to B, let n > 1. Pick k € N such that 2¥ > n. Let U € Y. Then
by 9.1.4 (v) and since B is a basis, there exists some A; € B with A3 C U. Also,

3A, € B with A2 C Ay,...,3A; € B with A2 C Aj_;. Hence: A2" C U. Now for
m>1, AP = ARAPTN C AZATTN = AT 50 AT C A2 C UL Tt follows that B,
is a fundamental system of entourages. a

9.1.9 Proposition. Let X be a set and § # B C P(X x X). TFAE:

(i) B is a fundamental system of entourages of a uniform structure U on X.

(ii) (a) By,By € B=> 3B € B with By C By N Bs.
(b) A C BVB € B.
(¢) VB € B 3B’ € B with B'~' C B.
(d) VB € B 3B’ € B with B? C B.

Proof. (i) = (ii) is clear.

(ii) = (i): Let U :={U C X x X | 3B € B with B C U}. Then 9.1.4 (i) — (iii) for
U are obvious. (iv): Let U € U, B C U. Then by (c), there exists some B’ with
B~1'CBCU,soBCU'=U"!cl. Finally, let U € Y, B C U, B’ such that
B> C BCU. Then since B’ € U, (v) follows. O

9.1.10 Example. Let (X,d) be a metric space. Then B :={U. | ¢ > 0} and B’ =
{U+ | n > 1} are fundamental systems of entourages of the same uniform structure

U, the so-called uniform structure of the metric space (X,d). A uniform space
whose uniform structure is generated in this way by a metric is called metrizable.

As we have seen in 9.1.1, the sets U.(z) := {y € X | (z,y) € U.} generate the
topology of (X,d). We now want to generalize this to general uniform spaces:
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9.1.11 Definition. Let X be a set and let U € P(X x X). For x € X let
Uz) :={y € X | (x,y) € U}.
Then U(z) is called the image of x under U. Analogously, for A C X
UA) ={ye X |Ix e Awith (z,y) e U} = U U(x)
z€A
is called the image of A under U. U(A) is also called a uniform neighborhood of A.

9.1.12 Example. Let f: X — X, U = {(z,f(z)) | z € X} = U(z) = {y |
(z,y) € U} = {f(2)}, and U(A) = f(A).

9.1.13 Theorem. Let (X,U) be a uniform space and for x € X letU(z) = {U(z) |
U € U}. Then there is a unique topology Oy on X such that for all x € X the
family U(x) is the system of neighborhoods of x.

Proof. We have to verify the characteristic properties of the neighborhood filter,
cf. [5, 2.9].

(a) U(z) eU(x),V 2 U(x) =V e U(z): In fact, let V' :=U U {(x,y) | y € V}.
Then by 9.1.4 (i), V' eld and V'(z) =U(x) UV =V.

(b) U(z),V(z) € U(z) = U(z) NV (z) € U(x): Indeed, UNV € U and (U N
V)(z) =U(x) N V(z).

() Ulx) eU(x) =z el(x): ACU = {a} = Ax) CU(x).

(d) VU(z) € U(x) IV (z) € U(x) with: U(z) € U(y) Yy € V(z): To see this, first
note that by 9.1.4 (v) there exists some V € U with V2 C U. Let y € V(z).
Then V(y) € U(y) and V(y) C U(x): Let z € V(y) = (y,2) € V and:
yeV(z)= (z,y) €V = (2,2) € V2 CU = 2 € U(x). Thus U(z) € U(y).

a

~

We will always equip any uniform space (X,U) with the topology Oy. All topolog-
ical properties (7T}, compact, ...) therefore refer to Q.

9.1.14 Examples. (i) The extreme cases: U = {X x X} is a uniform structure
such that Oy is the indiscrete topology. U is therefore called the indiscrete uniform
structure. The singleton B := {A} is a fundamental system of entourages of the
so-called discrete uniform structure. It induces the discrete topology on X since
Ax) = {z} Vz € X.

(ii) Let X be a set , Y a uniform space with fundamental system of entourages B
and F(X,Y):={f: X —-Y}. Let

W(X,B) :={(f,9) € F(X,Y) x F(X,Y) | (f(z),9(z)) € BVz € X}.

Then {W(X,B) | B € B} is a fundamental system of entourages on F(X,Y). If
B stems from a metric d, then also this structure is induced by a (pseudo-)metric,
namely by d.(f, g) := sup d(f(z), g(x)), cf. 12.1.11 below.

reX

(iii) Let G be a topological group, V a neighborhood basis of e € G, and set for any
VelU(e)

Uy :={(z,y) |zy~ ' €V}
Then B := {Uy | V € V} is a fundamental system of entourages of a uniform
structure on G. To see this, we verify (a) — (d) from 9.1.9 (ii):
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(a) U\/1 N UV2 = lenvz.
(b) ACUy sincexz™ ! =ecVVVeV.

(c) Uyt = {(z,y) |yz=t € V} = {(2,y) | 2y~ € V"!} = Up-1, where V=1 :=
{271 | 2 € V} € U, because z — 2! is a homeomorphism. Hence there exists
some V; € V with V; CV~! = Uy, CUpa C UL

(d) - : G x G = @ is continuous, so YV € V IW;, Wy € V with W1W, C V.
Let W := WiNWy = W -W C V. Let (z,y) € U3 = 3z such that
(x,2) eUw A (2,y) €EUw = a2y t=az7l2y L e W - W CV = (2,y) € Uy.

Furthermore, Uy (z) = {y | 2y~ ' € V} ={y | y € V~"lz} = V~1z, so the neighbor-
hoods of x are precisely the translates of the neighborhoods of e.

9.1.15 Proposition. Let B be a fundamental system of entourages of the uniform
structure U on X. Then also

B :={B°|BeB}and B ={B| B € B}
are fundamental systems of entourages of U.

Proof. Let B € B. Then by 9.1.8 there exists some W € I with W = W~! and
W3 C B. We show that W C B°.

In fact, let (z,y) € W. Then W(z) x W(y) is a neighborhood of (z,y) in X x
X. Let (2,2') € W(z) x W(y). Then (z,2) € W, (y,2') € W, (z,y) € W =
(z,2), (z,y), (y,2)) €W = (2,2/) e W3 C B = W(z) x W(y) C B = (z,9) €
B° = B° €U VB € B = B is a fundamental system of entourages of U.

Next we show that W C B. To see this, let (z,y) € W. Since W(z) x W (y)
is a neighborhood of (z,y), there exists some (z,2') € W N (W(z) x W(y)) =
(7,2),(y,2'),(2,2) € W = (x,2),(2,2),(2',y) € W = (x,y) € W3 C B. Since B
is a fundamental system of entourages there exists some B’ € B with B’ C W =
B’ C B = B" is a fundamental system of entourages of U. O

9.1.16 Proposition. Let (X,U) be a uniform space and A C X. Then

A= () UA).

Ueu

Hence A is is the intersection of all uniform neighborhoods of A.

Proof. r€ A=Y el :Ux)NA#D= YU €U :x € U L(A). By 9.1.4 this is
equivalent to: VU e U : x € U(A). O

9.1.17 Theorem. Let (X,U) be a uniform space. Then
(i) X is Ty.
(i) X is Ty < Nyeu U = A.

(iii) Any uniform Hausdorff space is regular.

Proof. By 3.1.6 we have to show that for any x € X the closed neighborhoods
form a neighborhood basis. Let U € U and V € U such that V2 C U. Let z € X.
Then by 9.1.16, V(z) C V(V(x)). Nowy € V(V(z)) © 3z € V(z): (z,y) €V &
y € V2(x). Hence V(V(x)) = V2(x) C U(x).
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(ii) (=): Clearly A C (¢ U. Conversely, let (z,y) ¢ A, ie., x # y. Then since
X is Ty, there exist Uy, Us € U such that Uy (z)NUs(y) = 0. Then U := UyNU; € U
and U(z) N U(y) C Ui(z) NUs(y) = 0. In particular, y ¢ U(x), i.e., (z,y) ¢ U =
(z,y) ¢ ﬂUeu

(=) Letx#yi( y) ¢
with W = W~ and W2 -
W(x)NW(y), then( z) e W,
a contradiction.

A=y U= 3U €U with (z,y) ¢ U. Pick W el
U. Then W(z) N W(y) = 0: if there existed some z €
L (y,2) EW = (2,2), (2,9) €W = (,y) eEW? C U,

(iii) This is immediate from (i). O

In fact, as is easily verified, condition (ii) is also equivalent to X being Tp.

9.1.18 Proposition. Let (X,U) be a uniform space, K C X compact and A C X
closed. Then

(i) The uniform neighborhoods of K form a neighborhood basis of K.
(1)) If KNA=10, then A and K possess disjoint uniform neighborhoods.

Proof. (i) Let U be a neighborhood of K in X = Vz € K 3V, € U such that
Ve(x) C U. Let W, € U such that W2 C V.. Now (W,(z)°)scx is an open
cover of K. Hence there exists some L C K finite with K C (J, o, Wa(z). Let
W= NperWe = W € U and W(K) C U: Let y € W(K) = Joz € K with
(z,y) € W. Moreover, x € K = 3z € L with z € W,(2), i.e. (z,2) € W, = (2,y) €
WW,CW,W,CV,=yeV,(z)CU.

(ii) KN A =0, so K is contained in the open set X \ A. Thus by (i) there exists
some W € U with W(K) C X \ A. Let V be symmetric with V2 C W. Then
V(K)NV(A) = 0: in fact, suppose that there exists some z € V(K) NV (A). Then
there exist k € K, a € A with (k,z) € V, (a,r) € V. Since V = V!, this gives
(k,a) € V2 C W, s0a € W(k) C W(K), a contradiction. O

9.2 Uniformly continuous maps

9.2.1 Definition. Let (X,Ux),(Y,Uy) be uniform spaces, f : X — Y. [ is
called uniformly continuous, if: YV € Uy U € Ux with (f x f)(U) C V. Here,

(f x )(@,y) = (f(2), f ()
Thus f is uniformly continuous if and only if (f x f)~1(V) € Ux YV € Uy .

9.2.2 Proposition. Let f: (X,Ux) — (Y,Uy) uniformly continuous. Then f is
continuous.

Proof. Let z € X and V(f(x)) a neighborhood of f(z). Let U € Ux be such that
(f x /)(U) C V. Then f(U(z)) C V(f(x)): Indeed, let y € U(z) = (z,y) € U.
Then (f(z), f(y)) €V, s0 fy) € V(f(2)). o

9.2.3 Examples.

(i) idx is uniformly continuous.

(ii) Any constant map is uniformly continuous: Let f(x) = yo = (f x f)(U) =
{(yo,v0)} CACV VYV €Uy YU € Ux.

(iii) The composition of uniformly continuous maps is uniformly continuous, be-

cause (fogx fog) (V) =(gxg) " ((f x /)71 (V).
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(iv) @ — 2! is not uniformly continuous on (0,1).

As we know from real analysis, if f : [a,b] — R is continuous then f is also uniformly
continuous. More generally, we have:

9.2.4 Theorem. Let (X,Ux) be compact, (Y,Uy) a uniform space and f: X =Y
continuous. Then f is uniformly continuous.

Proof. Let W € Uy and V € Uy symmetric such that V2 C W. Since f is
continuous, Vr € X 3U, € Ux with f(U.(z)) € V(f(z)). Choose U, € Ux
symmetric with U2 C U,.. Then

FUu(2)) C F(UZ(2)) C f(Us(2)) CV(f(2)), (9-2.1)

(Ug(x)°)zex is an open cover of X, so there exists some finite set L C X with
X =Uer Ue(®). Let U =, U. €Ux.

To conclude the proof we show that (f x f)(U

there exists some z € L with z € U,(z), so (9.2.1) 1mphes that f(a:) e V(f(2)),
ie., (f(2),f(z)) € V. Since (z,2) € U, and (z,y) € U, (z, ) UU, C U2, so

y € U2(=), and (9.2.1) gives f(y) € V((2)) = (/(2). f(@)) € V. (/). f(w)) € V.
Finally, since V' is symmetric, we conclude that (f(z), f(y)) € V2 cw. O

) C W: Let (x,y) € U. Then

9.2.5 Definition. Two uniform spaces X and Y are called isomorphic if there
exists a bijective map f : X — Y such that both f and f~1 are uniformly continuous.
Then also the uniform structures of X and Y are called isomorphic.

Since by 9.2.2 both f and f~! are then continuous, f : X — Y is also a homeomor-
phism.

9.3 Construction of uniform spaces

9.3.1 Definition. If U;,Us are uniform structures on a set X then Uy is called
finer than Uy (and Us coarser than Uy ) if Uy D Us (i.e., U €Us = U € Uy).

9.3.2 Proposition. Let Uy, Uy be uniform structures on a set X. Then:
(i) Uy DUy < id : (X, Ur) — (X,Us) is uniformly continuous.
(ZZ) Z/{l :_)Z/{Q = Oul D OZ/{2~

Proof. (i) is clear.

(ii) For U € Us, = € X, let U(x) be a neighborhood of z in O,. Then since U € Uy,
U(x) is a neighborhood of x in Oy, . O

9.3.3 Theorem. Let X be a set, ((Y;,U;))icr a family of uniform spaces, and
fi : X =Y, (i € I) maps. Then:

(i) B:=A{Nic,(fi x fi) " (Vi) | J C T finite, V; € U; fori € J} is a fundamental
system of entourages of a uniform structure U on X. U is called the initial
uniform structure on X with respect to (fi)icr-

(i) U is the coarsest uniform structure on X for which all f; are uniformly con-
tinuous.
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(iii) Let Z be a uniform space and h : Z — (X,U). Then h is uniformly continuous
if and only if f; o h is uniformly continuous for each i € I.

(iv) U induces on X the initial topology with respect to (fi)ier-

Proof. (i) To show that B is a fundamental system of entourages, we verify the
conditions from 9.1.9. First, (a) and (b) are immediate.

(¢c) By 9.1.3 (iv),

(Nx 27 00) " = xR W)™ = e x 27 05 € B.

i€J i€J i€J

(d) Let ey (fi x fi)"H(V;) € B and for i € J pick W; € U; such that W2 C V.
Now let ( y) € (Niey(fi x fi) ™ ( W;))?. Then 3z such that (z,2) € (N, (fi %

F)T W) A (z,y) € Nie g (fi x fi)~H (W), so (fi(w), fi(2)) € Wi and (fi(2), fiy)) €
Wi :> (fz( ), fi(y)) € W2 Vi € J. Therefore,

(NS x L)W € (i x f)T W2 € (i x £)7H (V).

icJ i€ i€
(ii) Any f; is uniformly continuous for . Conversely, if U’ is a uniform structure
for which all the f; are uniformly continuous, then U’ O B, soU’ D U.
(i) = is clear by 9.2.3 (iii).
«: Let B := ;e (fixf;)"H(V;) € B. Then (hxh)~'(B) = ;e (fiohx fioh)~1(V;)
is an entourage in Z, so h is uniformly continuous.
(iv) Let O be the initial topology with respect to (f;)ics and let x € X. By 1.2.2,
a neighborhood basis of x with respect to O is formed by the finite intersections of
sets f; 1(0;) with O; € Oy, and z € £, *(0;), hence of finite intersections f;*(0;)
with O; an open neighborhood of f;(x). Thus also the finite intersections of sets
£ (W;) with W; an element of a neighborhood basis of f;(x) form a neighborhood

basis of z. By definition of Oy, we may take W; of the form V;(f;(x)) for some
Vi € U;. Finally, since

() £ Valfi(@) = ({y | £ilw) € Vi(fi@)} = (| (fi(=), fiy)) € Vi}

ieJ ieJ ieJ
_m{y| xy fzxfz) (z)}
i€J
—{y | (wy) € (Uix £V} = (Ui x £ 71 (V) (@),
icJ ieJ
x has the same neighborhoods with respect to O and Oy, so O = Oy. |

9.3.4 Remark. By 9.3.3 (iii), the uniform structure ¢ on X satisfies a universal
property that results from (1.2.1) by replacing ‘continuous’ by ‘uniformly continu-
ous’ there. The same replacement in 1.2.3 implies the transitivity of initial uniform
structures.

9.3.5 Definition. Let (X,U) be a uniform space and let A C X, j: A= X the
inclusion map. Let Uy be the initial uniform structure on A with respect to j. Then
(A,Un) is called a uniform subspace of X. We haveUs ={UN(Ax A) |U € U}.
By 9.3.3, Ua induces the trace topology on A.

9.3.6 Example. Least upper bound of a family of uniform structures (cf. 1.2.5):
Let (U;)icr be a family of uniform structures on a set X. The initial uniform
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structure on X with respect to id : X — (X,U;) (i € I) is the coarsest uniform
structure that is finer than every U;. It is called the supremum of (U;);cr, and it
induces on X exactly the supremum of the topologies (O, )icr. A basis of U is
formed by the finite intersections of elements from J;; U;.

9.3.7 Proposition. Let (X,U) be a uniform space, A C X dense in X. Then
{UN(Ax A)|U €U} is a fundamental system of entourages of U. In particular,
if V.eUya, thenV eU.

Proof. Let U € Y. Then if (z,y) € U°NAx A and if W € U((x,y)), it follows
that WNU° elU((z,y)), so WNU°N(Ax A) # . Therefore,

UNAxA) DU NAxA) DU NAxA)=UNAxA)=U°cl

by 9.1.15. Hence UN (A x A) € Y. Now let V' € U. Then by 9.1.15 there exists
some U el withU CV,soUN(Ax A)CV. O

9.3.8 Definition. Let (X;)icr be uniform spaces and p; : [[,c; Xi — X the
projections. The initial uniform structure on [[;,c; X; with respect to (p;)icr is
called the product of the uniform structures of the (X;)ier-

The analogues of 1.1.13 and 1.1.14 hold (with analogous proofs) also for uniform
spaces. By 9.3.3 (iv), the uniform structure on [[,_; X; induces precisely the prod-
uct topology.

iel

9.4 Uniformization

9.4.1 Definition. Let (X, O) be a topological space. X is called uniformizable if
there exists a uniform structure U on X with Oy = O.

Our aim is to characterize uniformizability purely in topological terms. In fact we
shall see that precisely the T3,-spaces are uniformizable (see 9.4.15).

9.4.2 Examples.
(i) Any metric space is uniformizable.

(ii) Any subspace of a uniformizable space is uniformizable (cf. 9.3.5).

9.4.3 Definition. Let X be a set. A map d: X x X — [0,00] is called a pseudo-
metric if Vr,y,z € X:

(i) d(xz,x) =0

(i) d(z,y) = d(y, )

(ii1) d(z,y) < d(z,2) +d(z,y)
Note that, differently from metrics, even for x # y we may have d(z,y) = 0.
9.4.4 Examples.

(i) Any metric is a pseudometric.
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(ii) On £'(R) := {f : R — R | f measurable and [ |f| < oo}, the map d(f,g) :=
J|f — g] is a pseudometric but not a metric (d(f,g) = 0 = f = g almost
everywhere).

9.4.5 Definition. Let d be a pseudometric on a set X. Then
By :={d *([0,a]) | a € R,a > 0}

is a fundamental system of entourages of a uniform structure Uy (cf. 9.1.1), called
the uniform structure generated by d. If (d;)icr is a family of pseudometrics on X
then the supremum (cf. 9.53.6) of the uniform structures generated by the d; is called
the uniform structure generated by the family (d;)icr.

By 9.3.3, a fundamental system of entourages for the uniform structure generated
by (d;)ier is given by

B= {md D | J C I finite, a € (0,1]}.
ieJ

9.4.6 Proposition. Let (X,U) be a uniform space such that U possesses a count-
able fundamental system of entourages. Then there exists a pseudometric d on X
that generates U.

Proof. Let {V,, | n > 1} be a fundamental system of entourages for &. For any
n > 1 we pick a symmetric U,, € U such that U; € V; and U3, C U, NV, (cf.
9.1.8). Since Un41 C U3, 4, also {U, | n > 1} is a fundamental system of entourages
for U and U, 41 C U, Vn. Let

1 for (z,y) ¢ Uy
(2.7) = 1 for (z,y) ¢ Uy _J 0 for(z,y) €N, Un
I\EY) = inf{27% | (z,y) € Uy} else ~ ) 27F for (x,y) € U, for 1 <n<k

but (l‘, ) ¢ Uk+1

Then 0 < g(z,y) < 1 and g(xz,z) = 0. Also, g(z,y) = g(y,z) since all Uy are
symmetric. Now set

n—1

d(z,y) == inf{z 9(ziszig1) | m>1, 20,...,2n € X, 20 =2, 2, =y}
i=0
Then d > 0 and d(z,x) < g(z,z) = 0. Since g(z;, zi+1) = 9(zit1, 2) = d(z,y) =
d(y,z). Tt remains to show the triangle inequality for d: Let z,y,z € X and
e>0=3peNand z = 2,21,...,2, =y with Zl o 9(2i, zip1) < d(z,y) + ¢ and
Jg € N and points zp41,...,2p1q = 2 w1th ZHQ 9(2i,zi41) < d(y,2) +¢e. Thus
by definition of d,

pt+q—1

d(x,z) S Z g(ziazi+l) < d(l’,y) + d(yaz) + 25)
=0

and since € was arbitrary, the triangle inequality for d is established.

Next we claim that
1
29(,y) <d(w,y) < g(z,y) VoyeX. (9.4.1)
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Here, d(z,y) < g(z,y) is immediate from the definition. Also, the left hand inequal-

ity means that Vn > 1 and Vzg =z, 21, ..., 2, = y we have:
1 n—1
59(95’3/) < Zg(zi>zi+1) (9.4.2)
i=0

We show this by induction over n. The case n = 1 is clear. Suppose that (9.4.2)
has already been established for all natural numbers < n. Let zg = x, =y
be points in X. We set a := Z?:_Ol 9(zi,2i41). If @ > 1 there is nothmg to prove
because g < 1. Thus let a < % and assume for the moment that a > 0. Let m be

the highest index such that Zﬁgl 9(zi, zi41) < §, so in particular, m < n.

m

a — a
= Zg(zi7zi+1) >3 Z 9(zi,2i41) < 5
1=0 i=m-+
As m < n, the induction hypothesis implies
m—1 a
g(x, zm) Z 9(zis zit1) 5 (also for m = 0, since g(z, z9) = 0)
1=0

and: $g(zm41,y) < Zl ma19(zi, ziy1) < §. By definition of a and since m < n,
9(2m> Zm+1) < a. Due to a > 0 we may choose k such that 27% < a < 27%*1. Since
a < 27! = k > 2. Therefore, by definition of g,

g(:m Zm)7g<zm7 Zm+1)7g(2m+l7y) < 2_k+1 = ($7Zm)7 (zma Zm+1)7 (Zm+1a y) S Uk

1 1
= (v,y) €U} CUp_y = ig(x,y) < 52’(’“’1) =2"%<a.

On the other hand, if a = Z?;OI 9(zi,zi41) = 0= g(2,2i41) =0 (i =0,...,n—1).
= (2, 2i41) € Uy Vk € N= (2,y) = (20, 2n) € UP Vk. Let n = 3p+r (r € {0,1,2})
= (z,y) €U, U; CU | U1 Yk,...,= (z,y) € Uy Vk

) T
U C Uk Uy CUP CUE C Uk

1
= 9(z,y)=0= jg(z,y) <a
= (9.4.2) and thereby (9.4.1).

Finally, we show that d generates the uniform structure U:

U D Uz By (9.4.1), if (z,y) € Uy then d(z,y) < g(z,y) < 27% = U, C
d='([0,27"]).

Ui CU: Let (x,y) € d7*([0,27%]). Then again by (9.4.1), 39(z,y) < d(z,y)
27F = g(z,y) <271 = (2,y) € Up—1 = d1([0,27%]) C Up_;. m

AN

9.4.7 Proposition. Let (X,U) be a uniform space whose uniform structure U is
generated by a family (d;);cr of pseudometrics. TFAE:

(i) X is Hausdorff.
(ii) Vo #y € X 3i € I such that d;(x,y) > 0.

Proof. By 9.1.17 (ii), X is T% if and only if (;;,, U = A, which by 9.4.5 means

N () '(0.a]) = A.

JCI a>0ic]
[J|<o0
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Here, 2 is automatic, so (i) & Vo #y 3J C [ finite Ja > 03I € J : di(z,y) > a &
Ve#£y3da>03Fel:d(z,y)>as (ii). O

9.4.8 Definition. A uniform space (X,U) is called metrizable if U is generated by
a metric.

9.4.9 Theorem. Let (X,U) be a uniform space. TFAE:
(i) (X,U) is metrizable.

(i) (X,U) is Hausdorff and possesses a countable fundamental system of en-
tourages.

Proof. (i)=(ii): Let d be a metric on X with &4 = Uy. Then X is Tp and
{d=1([0,1]) | n > 1} is a countable fundamental system of entourages.

(ii)=(i): By 9.4.6 there exists a pseudometric d’ on X with & = Uy . Since X is
T5, 9.4.7 implies that Va # y, d(z,y) > 0, so d is a metric. O

9.4.10 Corollary. Let (X,U) be a uniform space whose uniform structure U is
generated by countably many pseudometrics (d;)ier. If X is Ty then X is metrizable.

Proof. By 9.4.5, B := {(,c,d; "([0,2)) | J C I finite, m > 1} is a countable
fundamental system of entourages of U. O

9.4.11 Corollary. Let I be a countable set and fori € I let (X;,U;) be a metrizable
uniform space. Let U be the product of the uniform structures (U;)icr. Then also
(ILies Xi,U) is metrizable.

Proof. By 3.2.3, [[;c; Xiis Ts, and by 9.4.9 any U; possesses a countable fundamen-
tal system of entourages B;. Hence 9.3.3 implies that B := {(N;c;(pi x pi) "' (B;) |
J C I finite, B; € B; Vi € J} is a countable fundamental system of entourages for
U, and 9.4.9 gives the claim. O

9.4.12 Theorem. Let (X,U) be a uniform space. Then there exists a family of
pseudometrics that generates U.

Proof. For V € U let UY € U be symmetric with U} C V. Suppose that U} has
already been defined and choose U,Y, | € U symmetric with (UY,,)? C UY. Then

BY .= {UY |n>1}

is a fundamental system of entourages of a uniform structure /¥ on X: In fact,
9.1.9 (b), (c), (d) are clear, and for (a) note that UY NUY D Ugax(m_n). Since
BY cu,uV CUVV €U, and so U 2 Uy, UY. Let U’ be a uniform structure
with U’ D UVGMUV. Then for every V. c U, U' 5 UY CV = U DU = U is the
coarsest uniform structure finer than every U" (V € U), i.e. it is the supremunm
of the (UV)VGM.

By 9.4.6, each UV is generated by some pseudometric d¥'. Hence by 9.4.5 the family
(dV)v ey generates the supremum of the (U" )y ey, ie. U. O

9.4.13 Proposition. Let X be a completely reqular space. Then X is uniformiz-
able.

Proof. By 3.1.11, X is homeomorphic to a subspace of [0,1]! (for a suitable I).
[0, 1] is uniformizable by 9.3.8 and so is any subspace by 9.4.2 (ii). O
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9.4.14 Theorem. Let (X,0) be a compact Hausdorff space. Then:

(i) U:={U C X x X | U is a neighborhood of A} is a uniform structure on X
with Oy = O.

(i) U is the only uniform structure on X with O = Oy.

Proof. By 5.1.9, X is normal and hence (by 4.1.4) it is completely regular, so X
is uniformizable by 9.4.13. Let U’ be a uniform structure on X with Oy = O.

U’ C U (this even holds for any uniform structure on any space X): Let V' € U’
and pick W’ € U’ symmetric with W2 C V'. Let (x,x) € A. Then W'(z) x W'(x)
is a neighborhood of (z,x) and W' (x) x W'(z) C V’: In fact, let (y,z) € W'(z) x
W'(z) = (z,y) € W, (z,2) € W = (y,2) € W? C V' so V' is a neighborhood of
A.

U C U': suppose to the contrary that there exists some neighborhood V' of A such
that V ¢ U’. Then

B:={UN{(XxX)\V)|U €U’}

is a filter basis of a filter F on X x X (see 2.2.21), and F is finer than U’. X x X
is compact, so F possesses a cluster point (z1,x2), which consequently is also a
cluster point of U4’. Thus

(21,22) €U N(X x X)\V C (X x X)\V = (X x X)\ V° C (X x X)\ A.

However, (x1,22) € (e U' = A (by 9.1.15 and 9.1.17 (ii)), a contradiction.

Summing up, 4 = U’. In particular, U is a uniform structure, and is in fact the
only one with O = Oy. a

9.4.15 Theorem. Let (X,0) be a topological space. TFAE:

(i) X is uniformizable.
(ii) X is Tsa.

Proof. (ii) = (i): Let A:= {f : X — [0,1] | f continuous }. The proof of 3.1.7
shows that X carries the initial topology with respect to A. Let U be the initial
uniform structure with respect to A on X, i.e. the coarsest uniform structure such
that all f € A are uniformly continuous. Then by 9.3.3 (iv), O = Oy,.

(i) = (ii): Let D be a system of pseudometrics that generates the uniform structure
U of X (cf. 9.4.12). For any d € D and any zp € X, dy, = x — d(x,x0) is
continuous because d, (d~1([0,¢))(z)) C Be(dy,(z)). In fact, if y € d=1([0,¢))(x),
then d(z,y) < € = |dy(y) — doo (2)| = |d(20,y) — d(zo,2)| < d(z,y) < e =y €
Be(dzy ().

Now let A C X be closed, g € X \ A. Then there exists some V' € L{ Wlth V(zo
X \ A. By 9.4.5, there exist dy, ..., d € D and a > 0 with (_, d; '([0,a]) C
Let glay) i= s die,v) = (VL d; " ((0,a]) = g (0,

Let f: X — [0,1], f(z) :== max(0,1 — Lg(z,20)). Then f is continuous, f(zg) =1
and for z € A, g(z,x0) > a because g(z x0) < a implies z € V(z9) € X \ A. Hence
f(z) =0, ie., f(A) C {0}. Tt follows that X is T5,. O

) S
V.

9.4.16 Theorem. Let X be a topological space. TFAE:

(i) X is completely regular.
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(i) There exists some set I such that X is homeomorphic to a subspace of [0,1]".
(iii) X is homeomorphic to a subspace of a compact Ta-space.

(iv) X is uniformizable and Ts.
Proof. (i)=-(ii): See 3.1.11.
(ii)=-(iii): [0,1])! is a compact Ty-space by 5.1.6, 5.1.15, and 3.2.3.
(iii)=-(iv): Any compact Ty-space is uniformizable by 9.4.14, hence so is any sub-
space (see 9.4.2 (ii)).
(iv)=(i): See 9.4.15. O

9.4.17 Corollary. Any locally compact space is uniformizable.

Proof. X is completely regular by 5.2.8. Alternatively, X C X’ (the Alexandroff
compactification of X), cf. 5.2.7, so the claim follows from 9.4.14 and 9.4.2 (ii). O
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Chapter 10

Completion and
compactification

10.1 Completion of uniform spaces

10.1.1 Definition. Let (X,U) be a uniform space, AC X and V € U. A is called
small of order V if A x A CV. In particular, if (X,d) is a metric space then A is
called small of order e if Ax A C d='([0,¢)), i.e. if d(x,y) < & Va,y € A.

10.1.2 Examples.

(i) Let (x,) be a sequence in a metric space (X, d). Then (x,) is Cauchy if and
only if for any € > 0 there exists a tail end of (z,,) that is small of order &:

Ing(e) VYp, g > no(e) : d(zp,zq) <e.
(i) Let (X,U) be a uniform space and V =V~ el, (z,y) €V = V(z) UV (y)
is small of order V3: Let v,w € V(x)UV (y). Then there are two possibilities:

1.) v,w € V(x) (or v,w € V(y)): (z,v) €V, (z,w) €V = (v,w) € V2 C
V3.

2)v e V), weV(y) (orwe V(x), ve V) (ve) €V, (x,y) €
V, (y,w) €V = (v,w) € V3.

(iii) Let M, N C X be small of order V, M NN # () = M U N is small of order
V2 Leta€ MNN, 2 €M, y€ N = (v,a) E M xM CV, (a,y) € NxN C
V = (z,y) € V? (and analogously for the other cases).

(iv) Let V.=V ~! M small of order V. Then V(M) is small of order V3: V(M) =
Unen V(m). z,y € V(M) = Imy,my € M: (z,m1) € V, (m1,mz) €
V, (m2,y) €V = (2,y) € V7.

(v) N small of order V, MNN #0 = N CV(M): Let z€e MNN,n € N =
(z,n) ENx NCV =neV(z)CV(M).

10.1.3 Definition. A filter F on a uniform space (X,U) is called Cauchy filter, if
VWV el IF € F with F x F CV (i.e.: F small of order V).

10.1.4 Example. By 10.1.2 (i), the filter associated (via 2.3.3 (i)) to a Cauchy
sequence is a Cauchy filter.
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10.1.5 Proposition. Let (X,U) be a uniform space and F a convergent filter on
X. Then F is a Cauchy filter.

Proof. Let z € X be such that F — z. Let V € U and U = U~ € U with
U?CV.F—ax=3F € Fwith F CU(x). Let (u,v) € FxF = (u,z), (z,v) €U
= (u,v) €U?CV=FxFCV. O

The following result generalized the fact that in metric spaces, any Cauchy sequence
that possesses a convergent subsequence is itself convergent:

10.1.6 Proposition. Any Cauchy filter F on a uniform space (X,U) converges to
its cluster points.

Proof. Let = be a cluster point of 7 and let V' € U be closed (cf. 9.1.15). Since F
is a Cauchy filter, there exists some F' € F with F x FCV = FxFCV, FeF.
Also, x is a cluster point, so « € F. Therefore, F' C V(z) = F D U(z), i.e. F — x.

O

10.1.7 Proposition. Let (X,U), (Y,V) be uniform spaces, f : X — Y uniformly
continuous, and F a Cauchy filter on X. Then f(F) is a Cauchy filter on Y.

Proof. Let V € V = 3U € U with (f x f)(U) C V. F is a Cauchy filter = IF € F
with F x F CU = f(F) x f(F)C V. O

10.1.8 Definition. A Cauchy filter F on a uniform space X is called minimal if
there is no strictly coarser Cauchy filter on X: G C F, G Cauchy filter = G = F.

10.1.9 Theorem. Let (X,U) a uniform space and F a Cauchy filter on X. Then
there exists a minimal Cauchy filter Foy with Fo C F.

Proof. Let B be a filter basis of F, V:={V €U |V =V} and By := {V(B) |
V e V,B € B}. By is a filter basis: Let V1,Vo € V, By,By € Band V € V,
B € B such that V Q Vl n VQ, B Q Bl N BQ = V(B) Q Vl(Bl) n ‘/Q(BQ) AAISO7
V(B) 2 A(B) = B # () VV, B. Let Fy be the filter on X with basis By.

Fo is a Cauchy filter: Let V € U and pick W € V such that W2 C V (cf. 9.1.8).
Since F is a Cauchy filter, there exists some B € B with Bx B C W = W(B) € By
and W (B) x W(B) C W3 CV by 10.1.2 (iv).

Fo C F because B = A(B) C V(B).

Fo is minimal: Let G C F be a Cauchy filter. We have to show that 7y C G. Let
BeBVeV=3GegwithGXxGCV.AsGCF,GeF,soGNB#0=GC
V(B) by 10.1.2 (v). Hence V(B) € G = Fy C G. 0

10.1.10 Corollary. Let (X,U) be a uniform space and x € X. Then U(x) is a
minimal Cauchy filter.

Proof. Let F := {F C X |z € F}. Then F — z, so F is a Cauchy filter by 10.1.5.
B := {{x}} is a basis of F (hence F is even an ultrafilter). The proof of 10.1.9 now
shows that By := {V(z) | V € V} is a basis of a minimal Cauchy filter. Since By is
a neighborhood basis, the claim follows. O

10.1.11 Definition. A uniform space X is called complete if any Cauchy filter F
on X converges.

10.1.12 Example. We will show later (cf. 11.2.3) that a metric space is complete if

and only if any Cauchy sequence converges. Thus R, C", ¢P, LP ... are complete,
but Q is not.
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10.1.13 Lemma. Let F be a minimal Cauchy filter on (X,U) and let F € F.
Then F° € F. In particular, F° # (.

Proof. Let V:={V €U |V =V~1}. Then by 10.1.9, {V(B) |V € V,B € F}isa
basis of F itself since F is minimal. Let FF € F = 3V € V, B € F with V(B) C F.
By 9.1.15 there exists some U € U open with U C V. Hence U(B) C F. Also

uB)=J U= Jlyl (zy) €U}

rEB zeEB

is open (and 2 A(B) = B # (). Thus U(B) C F°. Let V; € V, V3 CU . Then
Vi(B) C F°,s0 F° € F. O

10.1.14 Proposition. Let (X,U) be a uniform space, F a Cauchy filter on X, A C
X, and Fa (cf. 2.2.21) a filter on A. Then Fy is a Cauchy filter on A.

Proof. By 9.3.5, the uniform structure on Ais {UN(Ax A) |U eU}. Let U el
and F € F such that F x F CU. Then FNA € Fgqand (FNA)x (FNA)C
UN(Ax A). O

10.1.15 Proposition. Let (X,U) be a uniform space, and A C X dense in X. If
for every Cauchy filter on A its extension to X converges, then X is complete.

Proof. Let i: A — X be the inclusion map. Let F be a Cauchy filter on X and Fg
the minimal Cauchy filter with 7o C F (see 10.1.9). Let F' € Fy. Then by 10.1.13,
F° e Fy,s0 F°NA#0. By 2221, (Fo)a:={FNA|F € Fy} is a filter on A,
and 10.1.14 shows that it is in fact a Cauchy filter on A. By assumption, the filter
basis i((Fp)a) converges to some z € X. Since i((Fo)a) 2 Fo,  is a cluster point
of Fy (by 2.3.5). Thus 10.1.6 gives Fp — = = F — . 0

10.1.16 Proposition. Let X be a set , (Y;,U;))icr a family of uniform spaces
and f;: X =Y, (1 € I). Equip X with the initial uniform structure U with respect
to (fi)ier (cf. 9.8.3). Let F be a filter on X. TFAE.

(i) F is a Cauchy filter.
(i) Vi € 1, f;(F) is a Cauchy filter.
Thus if all Y; are complete, then so is X.

Proof. (i) = (ii): Since all f; are uniformly continuous, this follows from 10.1.7.
i

(ii) = (i): Let U € U = 3J C I finite, V; € U; (i € J) such that (., (fi x
fi) "X (Vi) € U. Now each f;(F) is a Cauchy filter, so Vi € J 3IF;, € F with
fz(Fz)sz(Fz) CV,. Let F := ﬂie.] F; € F. Then FxF C ﬂie](fixfi)_l(‘/i) - []7
so F is a Cauchy filter. The last claim follows from 2.3.18. a

Together with 9.3.8 this gives:

10.1.17 Corollary. Let (X;)icr be a family of uniform spaces, and F a filter on
[lic; Xi. TFAE:

(i) F is a Cauchy filter on [[;c; Xi.
(ii) Vi € I, p;(F) is a Cauchy filter on X.

10.1.18 Theorem. Let (X;);cr be a family of uniform spaces. TFAE:
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(i) Tl;cr Xi is complete.

(ii) Vi e I, X; is complete.

Proof. (i) = (ii): Let ig € I and let F;, be a Cauchy filter on X;,. For i # ig let
Fi be any Cauchy filter on X; (e.g., a neighborhood filter of some point). Let F be
the product of (F;);er (cf. 2.2.26). Then p;(F) = F; is a Cauchy filter Vi € I = F
is a Cauchy filter by 10.1.17, hence convergent. Since p;, is continuous, 2.3.13 (iii)
implies that F;, = p;,(F) is convergent. Consequently, X;, is complete.

(ii) = (i): Let F be a Cauchy filter on [, ; X;. Then by 10.1.17 any p;(F) is a
Cauchy filter on X;, hence convergent. Thus F converges by 2.3.19. O

10.1.19 Theorem. Let X be complete and A C X closed. Then A is complete.

Proof. Let F be a Cauchy filter on A, and let i : A — X. By 10.1.7, i(F) is
a Cauchy filter on X, hence converges to some x € X. Thus z is a cluster point
of i(F) by 2.3.5. It follows that + € A = A, so F — z in A (in fact, if W is a
neighborhood of x in A = W =UNA with U € U(x) = IF € F with FF C U.
Also, F C A since F is a filter on A. Hence FCUNA=W). O

10.1.20 Theorem. Let X be a uniform Hausdorff space and A C X complete (in
the induced uniform structure). Then A is closed.

Proof. Let z € A, then by 2.2.24 U(x) 4 is a filter, and in fact a Cauchy filter by
10.1.14, hence converges to some y € A. Also, U(x)4 is a basis of a filter F on X
and F converges to y (if V € U(y) then V' N A is a neighborhood of y in A so there
is some U € U(x) with FSUNACVNACYV). Moreover, due to U(z) C F we
have F — x. As X is Ty, 3.1.5 (ii) gives 1 =y € A, so A = A. O

10.1.21 Proposition. Let X be a topological space, A dense in X, Y a complete
To-space and f: A—Y. TFAE:

(i) There exists a continuous function g : X — Y with gla = f.

(ii) Ve € X, {f(UNA)|U €U(x)} is a basis of a Cauchy filter on Y.
The function g then is uniquely determined.

Proof. Y is completely regular by 9.4.16, hence also regular. By 3.3.3 we therefore

get: (i) & Vo € X Jlim f(a) & Vo € X, {f(UNA) [ U € U(x)} is a basis of a
a€A

convergent filter on Y < (ii) since Y is complete. Finally, ¢ is uniquely determined

by 3.3.3. a

10.1.22 Theorem. Let (X,U) be a uniform space, A C X dense in X, Y a
complete Ty-space and f : A — Y wuniformly continuous. Then there is a unique
continuous map g : X — Y with gla = f. Moreover, g is uniformly continuous.

Proof. Let # € X = A. Then by 2.2.24 U(z)4 is a filter on A and therefore a
Cauchy filter on A by 10.1.14. f is uniformly continuous, so by 10.1.7 f(U(x)a) =
{f(UNA)| U € U(x)} is a basis of a Cauchy filter on Y, and 10.1.21 shows the
existence of some g : X — Y continuous with g|4 = f. It remains to show that g
is uniformly continuous. Let V be a closed entourage in Y (cf. 9.1.15). Using 9.3.5
and the uniform continuity of f, we obtain some U € U with

(f x HUN(AXA)=(gxg)(UN(AxA)CV,
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ie, UN(Ax A) C (g x g)~1(V). Since g is continuous, so is g x g, hence (g x
g)"H(V) is closed. Consequently, U N (A x A) C (g x g)~*(V). As these sets form
a fundamental system of entourages by 9.3.7, g is uniformly continuous. O

We call a map f between uniform spaces an isomorphism if it is bijective and both
fand f~1 are uniformly continuous.

10.1.23 Corollary. Let X1, X5 be complete Hausdorff spaces, Ay dense in X1, As
dense in Xo, f: Ay — Ag an isomorphism. Then there exists a unique isomorphism
g: X1 — X5 with gla, = f.

Proof. By 10.1.22 there exists a unique g : X1 — Xy continuous with g|la, = f
and ¢ is uniformly continuous, as well as a unique h : Xo — X3, continuous with
hla, = f~1, and also h is uniformly continuous. It follows that hog|a, = ho f|a, =
id4,. Since also idx, |4, =ida,, hog =idx,, and analogously g o h = idx, . O

Recall from real analysis that Q can be completed to construct R. In this process,
real numbers are defined as equivalence classes of Cauchy sequences of rational
numbers. Two such sequences are considered equivalent if their difference converges
to zero. This procedure can be generalized to uniform spaces:

10.1.24 Theorem. Let (X,U) be a uniform space. Then there exists a complete
Hausdorff space (X,Z:l) and a uniformly continuous map i : X — X with the fol-
lowing universal property:

If Y is a complete T-space and f : X — Y is uniformly continuous then there exists
a unique uniformly continuous map f : X =Y, such that the following diagram
commutes:

x la,f (10.1.1)

Y

If (z",f(’) is another pair with these properties then there is a uniquely determined
isomorphism h : X — X' with i’ = h oi. Furthermore, i(X) is dense in X and U
is the coarsest uniform structure on X such that i is uniformly continuous.

Proof. Let X := {F | F is a minimal Cauchy filter on X}. Then X # 0, since e.g.
U(x) € X Vz € X by 10.1.10. For V=V~ €U let

V={(F,G)eXxX|IMeFNGwith M x M CV}.
Claim 1: B:={V|VelU, V=V"1}is afundamental system of entourages on
X.
To see this, we have to verify 9.1.9 (a)—(d):

(a) Let Vi, V5 be symmetric. Then V' := Vi NV, is symmetric and V C ‘:/1 N ‘:/2 :
(F,)eV=AMeFNGwith M xMCV CVinVy= (F,G)eVinNs.

(b) Ay C VVYVeB: Let V=V-"1eclf and F € X. Since F is a Cauchy filter,
there exists some FF € F = FNF with FXx FCV = (F,F)eV.

(¢) V =V~! holds by definition.

(d) Let V =V~! €Y. Choose W = W~ € U such that W2 C V. Then W2 C V:
Let (F,H) € W2 = 3G with (F,G) € W, (G,H) € W = 3M € FNG with
MxMCW, AN e GNH with N x N CW = M NN € G. In particular,
MNON # 0, so 10.1.2 (iii) gives (M UN) x (M UN) C W2 C V. Also,
M C MUN = MUN e€F, NC MUN = MUN € H = MUN € FNH =
(F,H)eV.
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Let U be the uniform structure on X with fundamental system of entourages B.
Claim 2: (X,U) is Hausdorff.

To see this, we use 9.1.17: Let (F,G) € Nycp V. The family {M UN | M €
F,N € G} is a basis of a filter H with H C F and H C G. H is a Cauchy filter:
Let V = V~! € U. Then since (F,G) € V, there exists some P € FNG C H
with P x P C V. Since both F and G are minimal Cauchy filters, F = H =G.
Consequently, i cp V=A %

By 10.1.10, for any « € X, U(z) is a minimal Cauchy filter. Thus we may define

Claim 3: i : (X,U) — (X,U) ist uniformly continuous.

Let V € B. Then by 9.1.8 there exists some symmetric W with W3 C V. Let
(z,y) € W, then by 10.1.2 (ii) W(z) U W(y) is small of order W3 C V. As
W(x)UW (y) e U(x)NU(y) = (ixi)(x,y) = U(z),U(y)) € V, whence (ixi)(W) C

V.

Claim 4: U is the coarsest uniform structure such that i : X — (X, ) is uniformly
continuous.

To see this we first show:
Gxi)y " (V)CcVv YW =vVleu. (10.1.2)

In fact, (z,y) € (i xi)~' (V) = U(z),U(y)) € V = IM € U(z) NU(y) with M x
MCV=(zyyeMxMCV.

Now suppose that ¢’ is a uniform structure on X such that i : (X,U") — (X,Z;{)

is

uniformly continuous. Let V = V~! € Y. Then by (10.1.2), U’ > (i x i)~ (V) C
V=Veld =UclU.
Claim 5: i(X) is dense in X.
Let F € X and V(F) a neighborhood of F in X. F is a Cauchy filter, so there
exists some ' € F with F' x F' C V. Also, 10.1.13 gives ) # F° € F. Let
x € F° =i(x) =U(z) € V(F), because (F,U(z)) € V (in fact, F° € FNU(z) and
F°x F° C V).
In addition _

i(F)»FeX (10.1.3)
because YV (F) neighborhood of F 3F° € F with i(F°) C V(F).
Claim 6: (X,U) is complete.
We use 10.1.15. Let G be a Cauchy filter on i(X). Then i71(G) := {i~1(G) | G € G}
is a filter basis on X: Let G € G. Then i~1(G) # () since § # G C i(X). Moreover,
iT1(G1)Ni~H(Gy) = i7H(G1NGy). i71(G) is a basis of a Cauchy filter F': in fact, by
9.3.4 and Claim 4, U is the initial uniform structure with respect to i : X — i(X).
Also, i(i71(G)) = G is a Cauchy filter on i(X) and so F’ is a Cauchy filter by
10.1.16.
10.1.9 now shows that there exists some minimal Cauchy filter 7 C F’ on X, and
by 10.1.7 i(F) is Cauchy filter on i(X). Due to F' 2 F we have G = i(i"'(G)) =
i(F") 2 i(F). By (10.1.3), i(F) converges in X, hence so does the finer filter G.
From this it follows using 10.1.15 and Claim 5 that indeed (X,U) is complete.
Claim 7: (i, X) possesses the universal property (10.1.1).
Let Y be complete and T5, and let f : X — Y be uniformly continuous. Let z,y € X
with i(z) = i(y). Then U(x) = U(y) and since f is continuous, f(z) = limy(,) f =
limy(,) f = f(y). Therefore, fo : i(X) — Y, fo(i(z)) == f(z) is a well-defined
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map. fo is uniformly continuous: Let V’ be an entourage in Y = IV = V-1 e Y
with (f x f)(V) C V’. We show that for the entourage V N (i(X) x i(X)) in the
induced uniform structure on i(X) we have (fo x fo)(V N (i(X) x i(X))) C V': Let
(F,G) e VN(i(X) xi(X)) = Iz,ye X with F =i(z) = U(x), G =i(y) = U(y).
(i(x),i(y)) = (F,G) € V = (x,y) € (i x i)~ Y(V) C V by (10.1.2). It follows that

(fo x Jo)(F,G) = (Jo(F), fo(G)) = (fo(i(2)), fo(i(y))) = (f(x), f(y)) € V.
Now by Claim 5 and 10.1.22 there exists a unique f : X — Y continuous with
f‘z(X) = fo, and f is uniformly continuous. For z € X, f(i(z )) = foli(z)) =
f(z) = foi=f. Conversely, goi = f implies that glix) = f|l . Since (X) is
dense and g, f are continuous, f is uniquely determined.

Claim 8: (i, X) is uniquely determined by (10.1.1).
Let (¢, X’) be another pair satisfying (10.1.1) and consider the following diagram:

X"+ X
1
X/

Due to (10.1.1) for (i, X) resp. for (i’, X') there exist h: X — X’ and b’ : X' — X
uniformly continuous with hoi=14', ' oi’ =i = h'ohoi=h'oi =i. Hence the
following diagrams commute:

X'+ X Xt X
\ lh/oh \ lid;(
X X

By (10.1.1) this implies that A’ o h = id ;. Analogously, hoh’ =idy,, so altogether
h: X — X' is an isomorphism. O

10.1.25 Definition. The space X is called the completion of the uniform space
(X,U). i is called the canonical map.

10.1.26 Proposition. Let (X,U) be a uniform space, i : X — X the canonical
map. Then

(i) NyeyV =1{(z,y) € X x X | i(z) =i(y)}.
(ii) {(i x )(V) |V €U} =Uyx).

(i) {V N (i(X) xi(X)) |V €U} is a fundamental system of entourages of U.

Proof. (i) Let i(x) =i(y) = U(x) =U(y) = VV el : V(z) eU(x) =U(y) =y €
V(z) = (z,y) € VVV € U. Conversely, let (z,y) € V VV € U. Then by 9.1.15,
(x,y) e VoVV. V°(x) = {z | (x,2) € V°} is open, hence belongs to U(y) = V(z) €
Uy) = U(x) CU(Y). As (z,y) € VIV = (y,2) € VVV = U(y) C U(x), so
Ux) =Uly).

(ii) By Claim 4 in 10.1.24, U is the coarsest uniform structure on X such that
i : X — X is uniformly continuous, so by 9.3.3 a basis of U is given by {(ixi)~*(W) |
Wely=B. Let Vel =3IW el with (i x i)~ (W) C V, so

(i x i) ((i x i) "L (W) = W N (i(X) x (X)) C (i x i)(V) = (i x i) (V) € Uy(x).

€U;(x)
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Conversely, given W := V N (i(X) x i(X)) € Z:IZ-(X), it follows that W = (i x i)((i x
i)=Y (V) and (i x i)~ (V) € U because i is uniformly continuous.
(iii) As 4(X) is dense in X, this follows from 9.3.7. O

10.1.27 Corollary. Let X be a uniform Hausdorff space. Then i : X — i(X) is
an tsomorphism.

Proof. X is Ty, so 9.1.17 (ii) shows that Ax = [, V, which, by 10.1.26 (i)
equals {(z,y) | i(x) = i(y)}. It follows that ¢ is injective. Hence i : X — i(X) is
bijective, and by 10.1.26 (ii), 7 is an isomorphism. O

By 10.1.27 any uniform Hausdorff space X can be identified with the corresponding
1(X). Then X is a dense subspace of X.

10.1.28 Example. Let X be a complete T>-space, A C X = A~ A. Indeed, Ais
complete by 10.1.19, A is dense in A and with i := A < A the pair (i, A) satisfies
the universal property (10.1.1) due to 10.1.22.

10.2 Compactification of completely regular spaces

10.2.1 Definition. Let X be a topological space and f : X — Z an embedding
of X in a compact space Z such that f(X) is dense in Z. Then (f,Z) is called a
compactification of X.

In this section, analogous to the problem of completing a uniform space in the
previous section, we analyze the question of constructing, for a given topological
space X a compactification (5,8X) with X T, and 8 : X — BX possessing the
following universal property:

For any compact Hausdorff space Y and any continuous f : X — Y there exists a
unique continuous f’: X — Y such that the following diagram commutes:

x5 5x

x ialf, (10.2.1)

Y

10.2.2 Definition. A compactification (3,8X) that has the universal property
(10.2.1) is called a Stone-Cech compactification of X.

10.2.3 Example. The Alexandroff-compactification from 5.2.7 in general does
not possess the universal property (10.2.1) (with respect to § = X — X'): Let
X :=(0,1], then X’ 2 [0, 1] (X’ is compact, X'\ X = {0}). However, the continuous
function x — sin% cannot be extended continuously to X'.

10.2.4 Remark. A necessary condition for a topological space X to possess a
Stone-Cech compactification is that X be completely regular: 8X is compact, hence
completely regular (see 5.1.9 and 4.1.4), hence so is the subspace S(X) of X (cf.
3.2.1).

Conversely, for any completely regular space the compactification problem is indeed
solvable:
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10.2.5 Theorem. Any completely regular space X possesses a Stone-Cech com-
pactification (B, BX). If (8, B'X) is another Stone-Cech compactification of X then
there is a unique homeomorphism h : BX — ['X such that the following diagram
commutes:

x L. px
\ \Lﬂ!h
6/
B'X
Proof. Let C°(X) :={p: X — R | ¢ is continuous and bounded}. For ¢ € C*(X)
let I, be the minimal closed interval containing ¢(X). Then by 3.1.10 the map
e: X = H I,, 20 (0(2))pecn(x)
PEC?(X)
is an embedding into the compact (by 5.1.15) Ty-space HLPECI’(X) I,. By 5.1.8 (i),
BXx=eX)C [ I,

PECh(X)

is compact, and setting § : X — BX, x = (0(2))seccr(x), B(X) is dense in 3X.
Therefore (8, 3X) is a compactification of X.

Claim: (B, fX) possesses the universal property (10.2.1).

Let Y be compact and T, f : X — Y continuous. Since Y is completely regular,
as above also for Y there exists an embedding

Y- [ I
PECH(Y)

Now set

F: I L= [[ Iv pe(F®) =ty
pECH(X)  ECH(Y)

for t = (ty)pecv(x), where py : J[ ccvyy Iy — Iy is the projection. Then the
following diagram commutes:

a
Heeorixy Ie — Tyecrvy 1o

Flex)

X—Y

In fact, Fe(z)) = F(((2))pecre) = (¥ 0 F(@))pecry) = ¢ (F(2)). Furthermore,
F is continuous because py o F' = pyoy is continuous for every ¢ € C®(Y). As
e Y — €(Y) is a homeomorphism, €/(Y) = €/(Y) (cf. 5.1.8 (ii)). It follows from
the continuity of F' that

F(pX) = F(e(X)) C F(e(X)) Ce/(Y) =€(Y)

Consequently, f':=¢'~! o F|gx is well-defined and continuous. Also,

x s 8x

RN

Y
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commutes because f' o (z) =€’ "loFoe(xr)=¢"toe o f(x)= f(x) Vz € X.

f' is unique because it is completely determined on B(X) = e(X) by floB = fand
e(X) = BX. Consequently, (3,8X) is a Stone-Cech compactification of X.

Uniqueness: Let (8, ' X) be another Stone-Cech compactification and consider:

x5 5x
\ hﬁ ,
IB/
X/
Then for b’ o h we obtain: h'oho 8 = h' o/ = . Since also idgx o 8 = 3,

uniqueness in (10.2.1) gives A’ o h = idgx. Analogously, ho b’ = idg/ x, so h is a
homeomorphism. O
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Chapter 11

Complete, Baire-, and polish
spaces

11.1 Complete spaces

In this section we investigate the relation between complete and compact spaces.

11.1.1 Definition. Let (X,U) be a uniform space. X is called precompact if for
every V € U there exists a finite cover of X whose sets are small of order V. A
subset A C X is called precompact if (A,Ua) is precompact (cf. 9.3.5). Precompact
metric spaces are also called totally bounded.

11.1.2 Theorem. Let (X,U) be a uniform space. TFAE:

(i) X is precompact.

(ii) The completion X of X is compact.

Proof. (i) = (ii): Let i : X — (X,U) be the canonical map (cf. 10.1.24). By 5.1.3
(iv) we have to show that any ultrafilter on X converges. Thus let F be an ultrafilter
on X. Since X is complete it suffices to show that F is a Cauchy filter. Let U € U
be closed (cf. 9.1.15) and set V := (i x 4)~1(U). Since i is uniformly continuous,
V € U and so by (i) there exists a cover {Bj, ..., By} of X with U?Zl(Bj xB;) CV.
Let C; :=i(B;). Then

(ixi)(BjxBj)=C; xC; C(ixi)(V)CU=C; xC; CU=U.

Now X =U_; B; = i(X) =Uj_, C; = X = i(X) = U}_, Cj € F, so by 2.2.19
there exists some j € {1,...,n} with C; € F, so indeed F is a Cauchy filter.

(ii) = (i): By Claim 4 from 10.1.24, {(ix4)~"(U) | U € U} is a fundamental system
of entourages of U. Thus let V := (i x i)~ (U) € U. Let U" € U be symmetric
with U2 C U (cf. 9.1.8). Now {U’(z)° | z € X} is an open cover of X, so by (ii)
there exists a finite set F' € X with X = User U'(2)°. Since U, cpi (U (2)°) =
i (Uyep U'(2)°) = i71(X) = X, the family A:= {i *(U'(z)°) | « € F} is a finite
cover of X.

To finish the proof we show that all elements of A are small of order V: Let
a,b € i YU (2)°) = i(a),i(b) € U'(x)° C U'(z) = (i(a),z) € U',(z,i(b)) € U =
(i(a),i(b)) e U? CU = (a,b) € (i x i)~} (U) = V. O
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11.1.3 Corollary. Let (X,U) be a uniform Hausdorff space. TFAE:
(i) X is compact.
(i) X is complete and precompact.

Proof. (i) = (ii): Let F be a Cauchy filter on X. Since X is compact, by 5.1.3
(ii) F possesses a cluster point, hence it converges by 10.1.6. It follows that X is
complete. Thus X = X (in fact, by 10.1.27, X is dense in X and 10.1.20 gives that
X is closed in X ). Hence X is compact, and a fortiori precompact by 11.1.2.

(ii) = (i): If X is complete then as above we conclude that X = X. Consequently,
X = X is compact by 11.1.2. O

11.1.4 Corollary. Let (X,U) be a uniform Ts-space, X the completion of X and
AC X. TFAE:

(i) A is precompact.
(ii) A is relatively compact in X.
(iii) A is compact (where A is the closure in X ).

Proof. (ii) < (iii): holds by 5.1.14.
(i) < (iii): By 10.1.28, A = A, so the claim follows from 11.1.2. O

11.1.5 Corollary. Let (X,U) be a uniform To-space. Then:

(i) If B is precompact and A C B C X, then also A is precompact.
(i) A, B precompact = AU B precompact.

(iii) A precompact = A precompact.

Proof. (i) and (ii) are immediate from 11.1.4 (ii).

(iii) We have A = X N AX C A% so A is relatively compact by 11.1.4 (iii). ]

11.1.6 Proposition. Let X,Y be uniform spaces with completions (X,1), (Y, j).
Let f : X — Y be uniformly continuous. Then there exists a unique uniformly
continuous map f: X =Y with foi=jo f:

f

—_—

b
>~<

~.

-

-
<.

7
—

o8
~h

Proof. jof: X — Y is uniformly continuous, so by (10.1.1) there is a unique
uniformly continuous map f: X — Y with foi=jo f. O

11.1.7 Corollary. Let X,Y be uniform Ty-spaces, A C X precompact and f :
X =Y uniformly continuous. Then f(A) is precompact.

Proof. By 11.1.5 there exists some B C X compact with A C B. Let f X = }7 be
asin 11.1.6 (withi = X < X, j =Y < Y, ¢f. 10.1.27). Then f(A4) = f(A) C f(B),
which is compact. O
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11.2 Complete metric spaces

11.2.1 Examples. (i) R is complete: Let F be a Cauchy filter on R and let
e >0 = JF € F that is small of order d=1([0,¢]), i.e., |zt — y| < e Vo,y € F. Fix
20 € Fandset A:={y € R||zg —y| <e}. Aiscompact by 5.1.16. As F C A,
2.2.21 implies that F4 := {F'NA| F' € F} is a filter on A. By 5.1.3 (iii), F4 has a
cluster point z. Hence z € F' N AA CF NACF/ VYF € F, sozis a cluster point
of F. By 10.1.6 this shows that F converges.

(ii) By (i) and 10.1.18, R™ is complete Vn > 1.

11.2.2 Theorem. Let (X,d) be a metric space with completion (X ?/{) Then there
exists a unique metric d on X with d|XXx = d. Moreover, d generates the uniform
structure U on X.

Proof. Claim 1: d: X x X — R is uniformly continuous:

Let V. := {(z,y) € R? | |z — y| < &} be an an entourage in R. Let p; : X x
X = X ( 1,2) be the projections and V := (p1 x p1) " (d~1([0,5])) N (p2 x
p2)~H(d1([0,5])). By 9.3.3 and 9.3.8, V is an entourage in X x X.

Let ((z,y), (2',y")) € V. We will show that (d x d)((z,y), («',y')) € V., ie., that
|[d(x,y) — d(z',y")| < e. In fact,

d(x,y) < d(z,2') +d(z',y) +d(y',y) = d(z,y) — d(«,y') < d(z,2") + d(y,y'), and
analogously: d(z',y') — d(z,y) < d(z,2") + d(y,y’), hence:

|d(x,y) —d(z,y")| < d(z,2") +d(y,y).

Since ((z,y), (2',y")) € (p1 x p1)~*(d1([0,£])) it follows that d(z,a’) <
analogously d(y,y) < §, establishing Claim 1.

X x X is dense in X x X by 2.3.20 and 10.1.27, and R is complete by 11.2.1 (i). Hence
by 10.1.22 there exists a unique uniformly continuous extension d : X x X — R of

d.

Claim 2. d is a pseudometric on X x X.

Ax = {(z,2) | € X} is dense in Ay = {(y,y) | y € X} (in fact, let W be a
neighborhood of (y,y). Then there exists a neighborhood U of y with UxU C W =
dr € XNU = (z,x) € W). Now d|a, = 0 and d|a, is a continuous extension of
d|ay = 0. Thus by 3.3.1 (ii), dja, =0 = d(y,y) =0 ¥y € X.

Next, Ci(xl71'2)~— ci(x27x1) = d(z1,7) — d(22,71) = 0 V1,70 € X. As X x X is
dense in X x X, again by 3.3.1 (i), d(y1,y2) = d(y2,y1) Yy1,92 € X.

, and

Finally, to show the triangle inequality, note that

D = {(y1,y2,y3) € X* | d(y1,y3) < d(y1,y2) + d(y2,y3)}

is closed and contains X3, so X3 = X3 = D.

Claim 3: d generates U, ie., U; = U.

C: By 945, B = {d=1([0,¢]) | € > 0} is a fundamental system of entourages
of U;. Any d=*([0,¢]) is closed in X x X because d is continuous. Moreover,
U. == d([0,e]) N (X x X) = d~([0,¢]) € Uy, so by 9.3.7, U. € U. Due to
U. Cd=1([0,¢]) = d~*([0,¢]) we therefore get d~*([0,¢]) € U.

D: Let W € U, W closed (cf. 9.1.15). Then WN (X x X) € Uy, so there exists some
e > 0 such that U, := d7'([0,¢)) C W N (X x X). Let V. :=d~([0,¢)) € U;. V.
is open in X x X because d is continuous and we have U, = V. N (X x X). Also,
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V. CU.: let (21,22) € V. and let B be a neighborhood of (21, 22). Then BNV, is a
neighborhood of (21, 22) and since X x X is dense in X x X, BNV, N (X x X) # 0,
ie, (21,20) €U, = V. CU. CW =W = U C Uj, which proves Claim 3.

It follows that U = U;. As U is Ty, 9.4.7 shows that d is a metric. O
11.2.3 Corollary. Let (X,d) be a metric space. TFAE:

(i) X is complete.

(i) Any Cauchy sequence in X is convergent.

Proof. (i) = (ii): This is clear from 10.1.4.

(ii) = (i): If X were not complete there would exist some Z € X \ X. As X is dense
in X and X is a metric space by 11.2.2, there would exist a sequence (Tn)nen in
X with # = lim, in X. (2,)nen is convergent, hence a Cauchy sequence, so (ii)
implies £ € X, a contradiction. O

11.2.4 Definition. Let (X,d) be a metric space, A C X. The diameter of A is
§(A) :=sup{d(z,y) | z,y € A}. For A =0 we set §(A) := 0.

11.2.5 Examples.
(i) 6(By(x)) < 2r.
(ii) 6(A) =0« A =0 or A is a singleton.

(iii) A is small of order e & Ax A C d=1([0,¢]) & d(x,y) <eVr,y € A< §(A) <
€.

11.2.6 Theorem. (Principle of nested intervals) Let (X,d) be a metric space.
TFAE:

(i) X is complete.

(ii) Let A, # 0 be closed sets (n € N) with A, 2 A,41 and ingé(An) = 0. Then
ne
Moy A, = {x} for some z € X.

Proof. (i) = (ii): Let a,, € A, for n € N. Then (ap)nen is a Cauchy sequence:
Let € > 0 = 3ng with 6(A4,,) < €. Since A, is decreasing, 6(4,) < € Vn > ny
= d(an,am) < € ¥Yn,m > ng = a, converges to some a € X.

Let F be the elmentary filter belonging to (a,)nen. Then F — a, so a is a cluster
point of 7. As A, € FV¥n = a € N,enAn = Nnen An- Since 8(),cy An) <
0(An) Vn = 6(Nen An) = 0= Nyeny An = {a} (cf. 11.2.5 (ii)).

(ii) = (i): Let (@n)nen be a Cauchy sequence in X and let Ay := {x,, |n >k} =
(Ag)gen satisfies the assumptions of (ii). Thus there exists some z with {z} =
Mien Ak Let € > 0 = 3ng with 4(A,,) < e. Since x, € A,,Vn > ny it follows that
d(xn, ) < 6(Ap,) < e Vn>ng= = limz,. By 11.2.3, X is complete. O

n—a

It follows that, as in the special case of R, also in general metric spaces completeness
is equivalent to the principle of nested intervals.

11.2.7 Theorem. Let X be a metric space. TFAE:
(i) X is precompact.
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(ii) Ve > 0 3 finite cover (Us)i<i<n(e) of X with 6(Us) < e Vi (Ui)i<i<n(e) 15
called an e-mesh).

(iii) Any sequence in X possesses a Cauchy subsequence.

Proof. (i) < (ii): This follows from 11.2.5 (iii).
(ii) = (iii): Let (z)nen be a sequence in X. For any m € N there exists a finite
cover (U;, )N, of X with §(U;, ) < L Vip,. As {z, | n € N} C UM, U;,, one

im )i =1 i1=1

of the U;, must contain infinitely many x,. These form a subsequence (m%l))neN.

By the same token, infinitely many x%l) must lie in some U,,, so we obtain a sub-

subsequence (zﬁf))neN, ete. Let gy, := 25", Then ({yn | n > k}) < £, 50 (Yn)nen
is a Cauchy subsequence of (z,,)nen.

(iii) = (ii): Suppose that (ii) is violated. Then there exists some € > 0 such that
there is no finite cover of X by sets of diameter < 2¢.

We show by induction that there exists a sequence (2, )nen in X such that d(z;, z,) >
e Vi <n Vn.

n = 0: is clear.

n — n+1: Let xg,...,x, besuch that d(z;, x,) > & Vi < n. Then Uign B.(x;) # X
by assumption, so there exists some zp+1 € X \ U,.,, B:(x;). Thus d(z;, xnt1) >
e Vi <n.

Obviously, (z,)nen cannot contain a Cauchy subsequence, a contradiction. O

i<n

11.2.8 Theorem. Let X be a metric space. TFAE:
(i) X is compact.
(i) X is complete and precompact.
(iii) Any sequence in X possesses an accumulation point.

(iv) Any sequence in X possesses a convergent subsequence.

Proof. (i) < (ii): See 11.1.3

(iii) < (iv): See 2.3.10.

(i) = (iii): By 5.1.3 (iii), the elementary filter of (z,)nen possesses a cluster point.
By 2.3.10, this is an accumulation point of the sequence (z)nen-

(iv) = (ii): X is precompact by 11.2.7, (iii) = (i). Let (z,)nen be a Cauchy
sequence. Then (z,),en has a convergent subsequence, hence is itself convergent.
(This can be proved as in analysis. Alternatively, by 2.3.10, the elementary filter F
of (z)nen possesses a cluster point, so it converges by 10.1.6). Consequently, X is
complete by 11.2.3. O

11.2.9 Corollary. Let (X,d) be a metric space, A C X. TFAE:

(i) A is relatively compact.

(i) Any sequence in A has an accumulation point in X.

Proof. (i) = (ii): By 5.1.14, A is compact, so by 11.2.8 (z,,),, possesses an accu-
mulation point in A C X.

(i) = (i): We use 11.2.8 (iv) to show that A is compact. Let (x,),en be a sequence
in A. Then for eachn > 1, B1 (z,)NA # 0. Let y,, € B1(z,)NA. Then by (ii), (y,)
has an accumulation point ynin X, and 2.3.10 implies ‘that there is a subsequence
(Yny ) e>1 with yp, — y (kK — 00). Since d(zp,,y) < d(@n,, Yn,) + d(Yn,,y) — 0 it

follows that y = limy_,o0 xn, € A4, so A is compact. ]

97



11.2.10 Proposition. Any precompact metric space X is separable.

Proof. The completion X of X is compact by 11.1.2 and metrizable by 11.2.2.
Also, 7.2.6 shows that X and thereby also X has a countable basis. By 3.1.3, X is
normal and consequently also regular. Finally, 7.2.9 shows separability of X. a

11.2.11 Proposition. Let X be a metrizable and separable topological space. Then
X possesses a metric d that induces the toplogy on X such that (X, d) is precompact.

Proof. By 7.2.9, we may without loss of generality suppose that X C [0, 1]".
Now [0, 1]Y is complete by 10.1.18 and metrizable by 7.2.9 (or 9.4.11). By 10.1.28,
X = X. Since [0,1]Y is compact, X is compact by 5.1.8. Thus by 11.1.2, X is
precompact as a subspace of the metric space [0, 1]". O

11.3 Polish spaces

11.3.1 Definition. A topological space X is called completely metrizable if there
is a metric d on X such that d induces the topology of X and (X,d) is complete.

The following class of topological spaces plays an important réle in measure theory:

11.3.2 Definition. A topological space X is called polish if it is completely metriz-
able and has a countable basts.

11.3.3 Examples.
(i) R™ is polish.
(ii) [0,1]" is polish by 7.2.9.

11.3.4 Theorem.

(i) Any closed subspace of a polish space is polish.
(1) Any open subspace of a polish space is polish.

(iii) Any countable product of polish spaces is polish.

Proof. (i) Let X be polish and A C X closed. Then also A has a countable basis
and is complete by 10.1.19.

(iii) Let X,, be polish (n € N). Then by 1.1.10, X =[]~ , X,, has a countable basis
and is completely metrizable by 9.4.11 and 10.1.18.

(ii) Let X be polish, and let d be a metric on X such that (X, d) is complete. Let
U C X be open, U # X. Then

Vi={({tz)eRx X |t-dz,X\U) =1}
is closed because (t,x) — t - d(z, X \ U) is continuous. By (i) and (iii), V is polish.
Let po : R x X — X be the projection and f := paly.
Claim: f :V — U is a homeomorphism.
Let (t,2) eV =d(z,X\U)#£0=>2¢ X\U=f:V->U.

f is surjective: Let z € U, o := d(z,X \U) >0 = 3t € R with o = 1 =
td(z, X\U)=1= (t,z) € V and f(t,z) = z.
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f is injective: Let (t1,21), (t1,22) € V with f(t1,21) = 21 = f(t2,22) = 22 = 21 =
To and: d(xl,X\U) = % Zd(l‘g,X\U) = i =11 = to.

f is continuous, being a restriction of p,. Finally, f~! = z — (m,x) is
continuous on U.

a

Summing up, U is homeomorphic to a polish space, hence is itself polish.
11.3.5 Proposition. Any o-compact metrizable space X is polish.

Proof. By 7.2.7, the Alexandroff-compactification X’ of X is metrizable. Since
X has a countable basis, the same is true of X’ (co has a countable neighborhood
basis). X’ is compact, so 9.4.14 shows that X’ is uniformizable by a unique uniform
structure, and in this structure (which by uniqueness has to be the one induced by
the metric on X’) X’ is complete by 11.1.3. Finally, 11.3.4 (ii) shows that X is
polish. O

11.3.6 Proposition. Let X be a Ty-space and let (A,)nen be a family of polish
subspaces of X. Then also A := (), cyy An is polish.

Proof. Let f: A — XN f(x):= (2)nen. Then f is continuous and injective and
J(A) ={(zn)nen | 3z € A: , = 2 Vn € N} C ], ey An- Dolfca) is a continuous
inverse of f,so f: A— f(A) is a homeomorphism. Let p; : [], .y An — Ai be the
projection. Then

f(A) = m {(zn)nen € H An [ Di((zn)n) = Bi((@n)n)}

i,jEN neN

neN

is a closed subspace of [, .y An (any set in this intersection is closed by 3.3.1 (i)).
Altogether, A is homeomorphic to a closed subspace of ], .y An, hence is polish
by 11.3.4 (i) and (ii). O

11.3.7 Corollary. I =R\ Q is a polish subspace of R.

Proof. Let Q = {r,, | n € N}. Then R\Q =R\ U, ey = Npen R\ {rn} is polish
by 11.3.6. 0

11.3.8 Theorem. (Mazurkiewicz). Let X be polish, A C X. TFAE:
(i) A is polish.
(i) A is a Gs-set.

Proof. (i) = (ii): Let d,ds be metrics such that (X,d), (A,d4) are complete.
Letting d4 denote the diameter in A, set

- 1
Ap:={re€ A|TFU openin X, s.t. z € U and 4,(UNA) < —}.
n

Then A, is open in A and A C A, (for z € A pick U open in X such that

UNA= B;l/“@n)(x) =z € Ay). Hence A C,5; An.

Conversely, let x € (), ~, A, = 2 € A, so by 2.2.24 U(x)a = {UNA|U €U(x)} is
a filter on A and thereby a filter basis on X that is finer than U (z), hence converges
also in X to z. In addition, U(z) 4 is a Cauchy filter on A: Let n > 1 = 3U € U(x)
such that U N A is small of order % with respect to d4. Since (A, d4) is complete,
U(z)a converges in A to some a € A. As j: A — X is continuous, U(x)4 — a in
X =z =a€c A Summing up, A =(),>; 4n.
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For any n > 1, choose U,, open in X with U, N A= An_. X is metrizable and A is
closed, so by 7.2.3 there exists some V,, open in X with A = ﬂn21 V. Thus, finally,

A=(NAn=4A0 (U= [U.NVp)

n>1 n>1 n>1

is a Gs-set.
(ii) = (i): This is immediate from 11.3.4 (ii) and 11.3.6. O

11.3.9 Theorem. Let X be a topological space. TFAE:
(i) X is polish.
(ii) X is homeomorphic to a Gs-set in [0, 1]N.

Proof. (i) = (ii): X is completely metrizable and possesses a countable basis, so
the proof of 7.2.9 (i)<(ii) shows that X is metrizable and separable. Then 7.2.9
implies that there exists some Y C [0,1]N such that X is homeomorphic to Y. It
follows that Y is polish, and by 11.3.8 and 11.3.3 (ii), Y is Gjs.

(ii) = (i): [0, 1] is polish by 11.3.3 (ii). Thus the claim follows from 11.3.8. O

11.4 Baire spaces

11.4.1 Definition. Let X be a topological space. Then A C X is called

- nowhere dense, if (A)° = 0.

- meager (resp. of first category) if A is a countable union of nowhere dense
sets.

- of second category, if A is not meager.

11.4.2 Proposition. Let X be a topological space. Then:

(i) If A is meager and B C A, then B is meager.

(1) If (Ayn)nen is a family of meager sets, then also A := ], .nAn s meager.

neN

(iii) Let AC B C X, A meager in X. Then A is also meager in B.

Proof. (i) Let A = |,y
(.7 B) < @ =o.

A, with (4,)° = 0 Vn = B = [, cn(An N B) and

(ii) is clear.
(iii) Let A = (J,en An with (A,)° = 0 for all n. Then A = Unen(4n N B) and
(A, N BB)OB C (/T,LB)O C (A,)° =0, so A is meager in B. O

11.4.3 Examples. (i) Q is meager in R because Q = |J,,cy{rn} and {rn}o = 0.

(ii) Let V' be a subspace of R™ with dimV < n. Then V is nowhere dense in R™.
In fact, there exists some linear map f on R™ with V = f~1({0}) = ker f. Since f
is continuous, V is closed, and V° = (: suppose there exists some z € V' and some
€ >0 such that B.(z) CV = B.(0) = Bo(xz) 2 CV = Sey,...,5e, € V=V =
R"™, a contradiction.
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11.4.4 Theorem. Let X be a topological space. TFAE:

(i) If A=, cn An, Ap closed, A5, =0, then A° = 0.

(ii) If Uy, is open and dense for every n € N, then (), .y Un is dense in X.
(1i1) If U C X is open and # 0, then U is not meager.

(i) If A is meager in X, then X \ A is dense in X.

Proof. (i) = (ii): Any X \ U, is closed and (X \ U,)° = X\ U, = X \ X = 0.
Let A := U,en X \Un = X\ N,eyUn- Then by (i), A° = 0. Since A° = (X \
Mnen Un)® = X\ (Npen Un), (ii) follows.

(ii) = (iii): Suppose that U is meager = 34, with (4,)° = () such that U =
Unen An- Then X \ 4, is open and (X \ 4,) = X\ (4,)° =X \0=X,s0 X\ 4,
is dense. Hence ey X \ An = X \ U,y An is dense in X, ie. X\, 4, =
X\ (U, A4n)° =X = (Upen 4An)° = 0. But 0 # U € |J,,cn An, a contradiction.
(iif) = (iv): Suppose that X # X \ A = X \ A°. Then A° # () = 3U open, # 0)
with U C A. By 11.4.2 (i), this contradicts (iii).

(iv) = (i): Ais meager = X \ A= X\ A° =X = A° = (. 0

11.4.5 Definition. A topological space satisfying the equivalent conditions from
11.4.4 1s called a Baire space.

11.4.6 Corollary. Let X # () be a Baire space. Then:

(i) X is not meager, hence is of second category.

(i) If X = U, en An, An closed ¥n, then there exists some n € N with A5, # 0.
Proof.i(i) Suppose that X is meager = X = J,,cy An with (4,)° =0Vn= X =
U,en An = X° =0, a contradiction to X = X° # ().

(ii) See 11.4.4 (i). O

11.4.7 Example. Q is not a Baire space because Q = J,q{r}, {r} is closed, and

{r}*=0.

11.4.8 Proposition. Let X be a Baire space, U C X open, U # 0. Then U is a
Baire space.

Proof. We first show that if A is nowhere dense in U, then it is also nowhere dense
in X: Let B:= (A)° = UNBisopeninU, UNB C A. Also, UNB C AY = ANU.
Since (AY) =) = UNB=0,i.e. UC X\B=ACUC X\ B and due to
B C A we get B = ().

It follows that any set that is meager with respect to U is also meager in X.
Moreover, any open subset of U is also open in X. Thus if V' C U is open and
# () then by 11.4.4 (iii) V is not meager in X, and therefore V is not meager in U.
Consequently, U is a Baire space. O

11.4.9 Proposition. Let X # () be a Baire space, A meager in X. Then X \ A is
a Baire space, hence not meager (of second category) in X.
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Proof. By 11.4.4 (iv), = A°:= X \ A is dense in X.
We first show that if B is nowhere dense in A€, then it also is in X.
In fact, suppose that B° # () = 3() # U open 1n X with U € B=UnNA°#(and

UNA® C BN A = BA = The interior of BY in A° is non- empty, so B is not
nowhere dense in A°, a contradiction.

Hence any set M that is meager in X \ A is also meager in X. By 11.4.2 (ii), AUM
is meager in X. Now 11.4.4 (iv) implies that (X \ A)\ M = X \ (AU M) is dense
in X, hence also dense in X \ A. Therefore, 11.4.4 (iv) shows that X \ A is a Baire
space. The final claim follows from 11.4.6 (i) and 11.4.2 (iii). O

11.4.10 Theorem. (Baire)

(i) Any completely metrizable space is a Baire space.

(1) Any locally compact space is a Baire space.

Proof. Using 11.4.4 (ii) we show both statements in parallel.

Let U, be open and dense in X (n > 1). Let G # 0 open. We have to show that
Gn ﬂn21 U, # 0. If X is locally compact then by 5.2.4 we may without loss of
generality suppose that G is compact. Let G := G and suppose that G,, # () open
has already been constructed. X ist regular (cf. 3.1.3). Also U, is dense, so the
open set U, N G, is non-empty, and so by 3.1.6 there exists some § # G, 11 open
with Gp+1 C U, NG,

In case (i) we may additionally have 6(Gp41) < 26(G,,) (This is clear if §(G,,)
Otherwise choose # € G141 and r > 0 such that B, (z) € Gpy1 and 2r < 14( )
and set G),% := B,(r)). Then limn_>OO 0(Gn) =0.

For X locally compact, ﬂ Gn = G # 0 and G,, C G is compact for all n.
Hence by 5.1.3 (ii), (>, G 75 0.

For X completely metrizable it follows from 11.2.6 that (1,5, G, # 0.
Thus in both cases

0 # ﬂan ﬂGan ﬁ GnNUy) C ﬁ(GﬂUn):Gm ﬁUn.
n=1 n=1 n=1

As an application of Baire’s theorem we show:

11.4.11 Theorem. (Banach) There exists a continuous real-valued function f on
[0,1] that is not differentiable in any x € (0,1).

Proof. Let I :=[0,1], C(I) :={f:[0,1] = R | f continuous} with the metric:

d(f,g) = sup{|f(z) —g(z)| |z €I}
Then C(I) is a complete metric space, hence a Baire space by 11.4.10.
Claim: A:={f € C(I)| 3z € I° s.t. f'(x) exists} ist meager in C(I).
Let A, :={f € C(I) | 3z € [0,1 — %] with ‘f@%ﬁ‘“) <nVhe(0,L]}
IffeA=3n>1with feAd, =>AC, -, A
1) A2 =0 Vn > 1: B
Let f € A, and let € > 0. We show: Jg € C(I) with d(f,g9) < e and g ¢ A,, i.e.:

gz +h) —g(x)
h

Vmé[Ol—n}Hhe(O,uwith‘ >n
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By 6.1.8 there exists a polynomial p € C(I) satisfying d(f,p) < §. Let M :=
maxgzer |p/(x)] and let s be a piecewise linear function such that any straight piece
in s has inclination (M + n + 1) and such that 0 < s(z) < £. Let g(x) :=

2
p(z) + s(z), x € I. Then:

d(f.9) < d(f.p) +d(p.g) < 5+ 5 =<

and:

‘g(ﬂc +h) —g(@)
h

_ ’p(x +h)+s(xz+h) —plx) — s(x)
h
’ s(x 4+ h) — s(z) li‘p(x—i-h)—p(x) ‘
h h
) (2)

= (+)

Now by construction, for any = € [0,1 — 1] there exists some h € (0, 1] such that
(1) = (M+4+n+1) and (2) <sup|p'(y)] = M. Consequently, (x) > M4+n+1—-M =
n+1 for this h =g ¢ A,.

2.) A, is closed:

i 11 . | fm(@mth)=fm(zm)
Let fr € Ay, fro — fin C(I) = Vm 3z,,, € [0,1 — ] : ) <
n Vh € (0, %] Now [0,1— %] is compact = z,,, possesses a convergent subsequence,
so without loss of generality z,, — = € [0,1 — L]. Therefore,

[fm(@m) = F@)] < | fn(@m) = f(@m) | +] f(@m) = f(z)| =0

<d(fm,f) —0

Analogously, |fm(zm +h) — f(z+ h)| — 0.

_ |[feth) = f@)) fm(xm+h)_fm($m)‘§th€(0,1}=>f€An'

h m—o0 h n

Summing up, A C |J,,cn An, An closed, A3, = (), so A is meager. By 11.4.4, C(I)\ A
is dense in C'(I), so in particular C(I) \ A # 0, which gives the claim. O
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Chapter 12

Function spaces

In this final chapter we study topologies and uniform structures on function spaces.

12.1 Uniform structures on spaces of functions

12.1.1 Definition. For any sets X,Y, denote by F(X,Y) =YX ={f | f: X —
Y} the set of all maps from X toY.

12.1.2 Examples.

(i) Let X be a set , Y a topological space. Then F(X,Y) = Y™ =[[,.x Y
can be endowed with the product topology. Let (f,)nen be a sequence in
F(X,Y). Then f, converges to f € F(X,Y) in this topology if and only if
fn — f pointwise. In fact, by 2.3.19, f, = f < fu(x) =pzo fn =2 pzof =
f(x) Vo € X, where p, : [[,ex Y — Y, f — f(x) is the projection.

(ii) Uniform convergence: Let Y be a metric space. Then f, € YX converges
uniformly to f if Ve > 0 3ng such that d(f,(z), f(z)) < € Vn > ny, ie.:
(fn: ) € d7H([0,€] Vn = no.

We want to generalize these observations:
12.1.3 Lemma. Let X be a set and (Y,V) a uniform space. ForV € V let
W) :={(f,9) e F(X,Y) x F(X,Y) | (f(),9(x)) € V V& € X}

If B is a fundamental system of entourages of V, then B := {W (V) |V € B} is a
fundamental system of entourages for a uniform structure on F(X,Y).

Proof. We have to verify 9.1.9 (ii), (a)—(d):
(a) Let W(V1),W(Va) € B = 3V3 € Bwith V5 C Vin Ve = W(V5) C W(Wh) N
W(Va).

(b) AF(X,Y) CW((V)VV.

(c) Let V € Band V' € Bsuch that V/=! C V. then W(V')~1 = W(V'71)

(d) Let V€ B and Vi € B such that V? C V = W (V)2 € W (V)
In fact, (f,g) € W(V1)? = 3h such that (f,h) € W(Vy) A (h,g) € W(
(f(z), M=), (h(x), g(x)) € Vi Yz = (f,g) € W(VY).

W),
W (V):
Vl) =

O

c
-
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12.1.4 Definition. The uniform structure defined by the fundamental system of
entourages from 12.1.8 is called the uniform structure of uniform convergence.
When equipped with this structure, F(X,Y) is denoted by F,,(X,Y). The topol-
ogy on F(X,Y) induced by this unifrom structure is called the topology of uniform
convergence on F(X,Y).

If X is a topological space, then C(X,Y):={f: X =Y | f continuous }, equipped
with the trace topology of Fy,(X,Y) is denoted by C,,(X,Y).

12.1.5 Example. Let X be a set and (Y, d) a metric space. A fundamental system
of entourages in F,(X,Y) is then given by ({(f,9) | (f(z),g(z)) € d=*([0,¢]) Vx €
X1})eso. Hence this uniform structure is induced by the pseudometric d,(f,g) :=

sup,ex d(f(x), 9(x)).

12.1.6 Lemma. Let X be a topological space, (Y,V) a uniform space and F a filter
on X. Then A:={f € F(X,Y) | f(F) is a Cauchy filter } is closed in F,(X,Y).

Proof. Let g € A. If U € V and V is symmetric with V3 C U (cf. 9.1.8), then
(W(V))(g) is a neighborhood of g in F,,(X,Y), hence (W (V))(g)NA # 0. Therefore
there exists some f € A with (g, f) € W(V), i.e. (g(z), f(x)) € V Vz € X. f(F) is
a Cauchy filter = 3F € F with f(F) x f(F) C V. For z1,22 € F we then obtain:

(9(@1), f(z1)), (fx1), f(x2), (f(z2),9(22)) €V = g(F) x g(F) SV?CU
We conclude that g(F) is a Cauchy filter = g€ A= A=A O

12.1.7 Theorem. Let X be a topological space, and Y a uniform space. Then
C(X,Y) is closed in F,(X,Y).

Proof. Claim: f € F(X,Y) is continuous in = < f(U(x)) is a Cauchy filter.

=: By 2.3.13, f(U(x)) converges to f(z), so in particular it is a Cauchy filter.

«: f(x) is a cluster point of f(U(x)): in fact, for every U € U(x), f(x) € f(U) C
fU). f(U(x)) is a Cauchy filter and therefore converges to f(z) by 10.1.6. It
follows that f(U(x)) D U(f(x)), so f is continuous by 2.3.13.

Now let A, := {f : X = Y | f continuous in 2} = {f : X - Y | f(U(x)) is a
Cauchy filter}. Then A, is closed in F,(X,Y) by 12.1.6 = C(X,Y) =, cx Az is
closed in F,(X,Y). O

12.1.8 Remark. 12.1.7 in particular shows that uniform limits of continuous
functions are continuous.

12.1.9 Theorem. Let X be a set and (Y,V) a complete uniform space. Then also
F,(X,Y) is complete.

Proof. Let F be a Cauchy filter on Fy,(X,Y). For A € F and =z € X let A(z) :=
{f(x) | f € A}. Then F(x) := {A(z) | A € F}is afilter on Y: A;(z) N Az(z) =
(A1 N Ag)(z). Furthermore, F(z) is a Cauchy filter: Let V € V = 34 € F with
AxACW(V)= A(x) x A(x) C V. Y is complete = Jy € Y with F(z) — v.
Choose some such y and set f(z) :=y. Then f: X =Y, v — f(z) € F(X,Y).
Claim: F — f in F,(X,Y).

Let V € V be closed (9.1.15). F is a Cauchy filter = 34 € F with A x A C W(V),
ie. Alz) x A(x) CV Vz € X = A(z) x A(x) C V. Let v € X = f(z) is a limit,
hence also a cluster point of F(z) = f(z) € A(z). Therefore,

(f(x),g(x)) €V, Ve € X Vg € A, ie. g€ W(V)(f) Vg € A.
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For V. € {V € V | V closed }, the sets W (V) provide a fundamental system of
entourages in F,(X,Y) by 12.1.3. Hence W(V')(f) describes a neighborhood basis
of fin F,(X,Y). Any neighborhood of f therefore contains some A € F, i.e. F — f
in Fu(X,Y). 0

In applications it is often important to study uniform convergence on subsets of X,
e.g. on finite or compact subsets. We analyze this question at once for arbitrary
subsets:

12.1.10 Definition. Let S be a system of subsets of a set X (S C P(X)) and let
Y be a uniform space. For S € S denote by

Rs: F(X,Y) — F,(S,Y)
f=fls

the restriction map. The coarsest uniform structure on F(X,Y) with respect to
which all Rg are uniformly continuous (i.e., the initial uniform structure with re-
spect to (Rg)ses, cf. 9.8.3) is called the uniform structure of uniform convergence
on the sets of S, or the uniform structure of S-convergence. When endowed with this
structure, F(X,Y) is denoted by Fs(X,Y). The topology induced by this uniform
structure is called the topology of S-convergence.

12.1.11 Proposition. (Properties of Fs(X,Y)). Under the assumptions of 12.1.10
we have:

(i) If B is a fundamental system of entourages of Y and if, for S € S andV € B
we set

W(S,V):={(f,9) € F(X,Y) x F(X,Y) | (f(x),9(z)) € V V& € S},

then the finite intersections of the W(S,V) form a fundamental system of
entourages in Fs(X,Y).

(i) The topology of S-convergence is the coarsest topology on F(X,Y) for which
the restriction maps f — fls: F(X,Y) — F,(S,Y) (S € 8) are continuous.

(i4i) Let F be a filter on F(X,Y) and f € F(X,Y). Then:
F = fin Fs(X,Y) & Rg(F) = Rs(f) = fls in Fu(S,Y) VS € S.
(iv) For HC F(X,Y), x € X let H(z) :={h(z) | h € H}. Let

evy : Fs(X,)Y) =Y
[ flx).

Then ev, is uniformly continuous YV € JgesS. Thus H(x) C H(z) YV €
Uges S (where H denotes the closure of H in Fs(X,Y)).

Proof. (i) According to 12.1.3, for any S € S,
({(h, k) € F(S,Y) x F(S,Y) | (h(2),k(z)) € V V& € S}Hves = (Ws(V))ves

is a fundamental system of entourages in F,,(S,Y). Now (Rg x Rg)™1(Wg(V)) =
W(S,V), so the claim follows from 9.3.3 (i).

(ii) See 9.3.3 (iv) and 1.2.2.

(iii) This follows from 2.3.18.

107



(iv) Let V€V, x € [Jges S- Choose S € S such that 2 € S. Then

(evy X evy)(W(S,V)) CV.

In fact, (f,g9) € W(S,V) = (f(y),9(y)) € V Yy € S, hence in particular for
y = x. Thus ev, is uniformly continuous and therefore continuous. Consequently,

H(x) = ev,(H) C ev,(H) = H(x). O

12.1.12 Remark. Some special cases:

(i)

12.1.13 Example. Let X =Y =[0,1], fp:t—t", f:=

If A C X, §= {A}, then the uniform structure on Fs(X,Y) is called
the uniform structure of uniform convergence on A. For A = X we have
Fs(X,Y) = F,(X,)Y). E.g., if E, F are normed spaces and A = B;(0)
then L(E,F) carries the uniform structure with respect to A = B1(0), so
L(E,F) C F4y(E,F).

If A C X and S is the family of all finite subsets of A, then the uniform
structure of Fs(X,Y) is called the uniform structure of pointwise convergence
on A. Let F be a filter on Fs(X,Y). Then

F—geFX,)Y)e Fla) > gla) Vae A:

=: Let VeV, acA S:={a}=3IBeF with BCW(S,V)(g) = B(a) C
Vi(g(a)): Let f e B = (9,f) € W(S,V) = (g(a), f(a)) € V = [f(a) €
V(g(a)) = Fla) = g(a).

<: Let S = {a1,...,an,} C A, V€V =Vke{l,...,n} 3B, € F with
Byi(ar) € V(g(ag)). Let B := ﬂZ:l By, f € B = (g(ag), f(ar)) € V Vay, €
S=feW((S,V)g) =F—g.

For A = X, Fs(X,Y) is denoted by F5(X,Y) (s stands for ‘simple’). The
topology induced by this uniform structure is the coarsest topology for which
all f — fl|s are continuous, with S finite, i.e. the coarsest topology such
that all f — f(z) are continuous, i.e. the product topology on Y. (Indeed,
W(S,V) = Nayes W({a},V), hence S and S := {{a} | a € A} induce the
same uniform structure, hence also the same topology). See also 12.1.2 (i).

Let X be a topological space and § := {K C X | K compact}. Then the
uniform structure of Fs(X,Y) is called the uniform structure of compact
convergence and we write F.(X,Y) for Fs(X,Y).

Let U, U., Us be the uniform structures of uniform, compact, and simple
convergence, respectively. Then U, O U, O Us: VS finite, S is compact,
so W(S,V) is an entourage in U.. Also W(V) = W(X,V) C W(K,V) VK
compact in X. If K is compact then U, = U, since in this case W (V) =
W(X,V) € U..

0 t<1
1 t=1

Then f, — f in F5(X,Y), but f, » fin F.(X,Y) and in F,(X,Y).

12.1.14 Proposition.

(i) Let (Y, V) be a uniform Ts-space, X a set, S € P(X), X = (JgesS. Then

Fs(X,Y) is Ty.

(i) If Y is a uniform Ty-space for k € {1,2,3,3a}, then also Fs(X,Y) is Ty.
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Proof. (i) Let f,g € F(X,Y), (f,9) € () W(S,V). Then for all z € S and

SES
vey

all S € S, (f(x),9(x)) € NyeyV = Ay (by 9.1.17). As any z lies in some S,

(f(z),9(x)) € Ay Vo € X = f(z) = g(z) Vo = f =g = Sﬂs W(S,V) = Apcx.y),
€
vey

so the claim follows from 9.1.17.
(if) By 12.1.12 (ii), F(X,Y) carries the product topology, so 3.2.3 gives the result.
O

12.1.15 Theorem. Let X be a set, S C P(X), and Y a complete uniform space.
Then also Fs(X,Y) is complete.

Proof. By 12.1.10, Fs(X,Y) carries the initial uniform structure with respect to
the maps Rs : F(X,Y) — F,(5,Y) (S €S). By 12.1.9, all F,,(S,Y) are complete,
so 10.1.16 implies that Fis(X,Y’) is complete. O

Compare this result with 12.1.12 (i): L(E, F) is complete if F' is complete. In
particular, setting F' = R it follows that E* is always complete.

12.1.16 Theorem. Let X be a topological space, Y a uniform space, S C P(X),
X =Uges 8. Then C(X,Y) is closed in Fs(X,Y). (For S = {X} this reduces to
12.1.7.)

Proof. Again let Rg: Fs(X,Y) — F.(S,Y), f+— fl|s, and
C'(S,Y) == Rg'(C(S,Y))={f € F(X,Y) | fls : S = Y continuous}.

Since X = (JgesS°, f: X — Y is continuous < f|s is continuous VS € S =
C(X,Y) = Nges C'(S,Y). Therefore it is enough to show that any C'(S,Y) is
closed in Fs(X,Y). Now C(S,Y) is closed in F,(S,Y) by 12.1.7. Also, by 12.1.10
all Rg are (uniformly) continuous = C’(S,Y) = Rg'(C(S,Y)) is closed. O

Note that 12.1.16 is not applicable to Fs(X,Y") since {z}° = 0 in general (unless
the topology of X is discrete). In fact pointwise limits of continuous functions need
not be continuous.

12.1.17 Definition. C(X,Y), equipped with the uniform structure induced by
Fs(X,Y) is denoted by Cs(X,Y). In particular: Cs(X,Y) C Fs(X,Y), Co(X,Y) C
F.(X)Y), Cu(X,Y) C F,(X,Y).

12.2 The compact-open topology

By 12.1.12 (ii), Fs(X,Y) carries the product topology. Thus the topology on
F,(X,Y) is already determined by the topology of Y. A similar observation is
true for C.(X,Y):

12.2.1 Theorem. Let X be a topological space, and (Y,V) a uniform space. For
K C X compact and U CY open let (K,U) :={f: X =Y | f continuous and
f(K) CU}. Then B :={(K,U) | K compact in X,U open in Y} is a subbasis of
the topology of C.(X,Y).

Proof. For K C X compact, V € V, W(K,V) = {(f,9) € F(X,Y) x F(X,Y) |
(f(x),g(x)) € V Vo € K} is a typical element of the uniform structure on F.(X,Y).
Therefore the sets W(K,V) = W(K,V)N(C(X,Y)xC(X,Y)) ={(f,g9) € C(X,Y)x

109



C(X,Y) | (f(z),g9(x)) € V Vo € K} form a fundamental system of entourages in

C.(X,Y) (cf. 9.3.4). For f € C(X,Y) we therefore obtain that «[/1/17(1(7 I(f)| K C
X compact, V' € V} is a neighborhood basis in C.(X,Y’). Let O; be the topology
generated by B, and Os the topology of C.(X,Y).

071 C Oy: We show that any (K, U) lies in O,.

Let f € (K,U). Then f(K) is compact and C U. Thus for all y € f(K) there exists
some T, € V with T,(y) C U. Let V,, € V such that V> C T). f(K) is compact

= JL C f(K) finite with
K)cl| vk cu

z€L
Let V=, Vo. Ify € f(K) = 3z € L with y € V.(z). Therefore,

V(y) CV(Va(2)) C Va(Vil2)) = VZ(2) C Ta(2) C U,

U viwcu
yef(K)

Let g € W(K,V)(f) = (f(2),9(x) € V Vo € K = g(x) € V(f(z)) C V(f(K)) C
UVz e K, ie: ge (K,U)= WK, V)(f)C(K,U)= (K,U) € O,
Oy C O1: We show that any /W(K, V)(f) contains a finite intersection of elements
of B:
Let T € V be closed and symmetric, T3 C V (cf 9.1.8 and 9.1.15). f(K
compact = Jz1,...,z, € K with f(K) C Ui_, T(f(zx)). Let K; :=
FTHT(f(24)), Ui o= (T?(f(x)))° (i = 1,...,n) K compact and f(K;) C
F(K) € T(f(a)) € (T3(f(2.)))° = U, (in fact, = € T(f(x,)) = Uz) >
T%(f(x:) =y € T(2) = (2,9) € T,(f(zi).2) € T = (f(z:),y) € T?

T?(f(x)) = 2 € T?(f(24))°
KN fHT(f () = Uiy Ko

SO

) is
K

(

mlﬂ

)
=Y
Moreover, K = K N f~(f(K)) C U
Claim: ([, (K;, U;) € W(K, V)(f)

In fact, let g € (), (K;,U;) and z
also f(z) € T(f(x;)). Then g(z) € g

T,(f(x:),9(x)) € T = (f(2),9(x)) €
W(K,V)(f), proving the claim.

Hence O, C 01, and thereby O; = Os. O

= 3 € {1,...,n} with x € K;, hence

i) € Ui C T*(f(z:)) = (f(2), f(z)) €
3CV = (f(x),gx)eVVzeK=ge

Since B as defined in 12.2.1 depends exclusively on the topologies of X and Y, we
can generalize the construction as follows:

12.2.2 Definition. Let X,Y be topological spaces. Then the topology defined by
the subbasis
{(K,U) | K C X compact, U CY open}

on C(X,Y) is called the compact-open topology. When equipped with this topology,
C(X,Y) is denoted by Co.(X,Y).

In the following result, f(x,.) denotes the map y — f(x,y).
12.2.3 Theorem. Let X,Y,Z be topological spaces and f: X XY — Z. Then:

(i) If [ is continuous, then so is
FiX 5 CuY,2)
x— f(x,.)
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(i) If Y is locally compact and f is continuous, then so is f.

Proof. (i) Let z € X and let (K,U) be an open neighborhood of f(z) in C.(Y, Z).
Since f(z) € (K,U), f(z)(K) C U, ie. f({z} x K) CU, so {z} x K C f~}(U),
which is open. Hence there exists some V € U(z) with V x K C f~1(U)
f(VxK)=f(V)(K) CU,so f(V) C (K,U) = f continuous in . As z was
arbitrary, this shows continuity of f.

(i) Let (wo,90) € X x Y, V € U(f(x0,y0)) open in Z. Since f(xg, ) = f(xg) €
C.(X,Y), y = f(zo,y) is continuous: Y — Z. Y is locally compact, so 5.2.4 and
the continuity of f(zo,.) imply that there exists some W € U(yo), W compact, such
that f({zo} x W) C V. Let U := {x € X | f(x) € (W,V)} = 29 € U. U is open

since f is continuous. Also, f(U) C (W, V), ie. f(U)(W) = f(U x W) C V. As
(x0,y0) €U X W = U x W € U(xo,y0) = f is continuous at (xg,y0). It follows
that f is continuous. |

12.2.4 Corollary. Let X be locally compact. Then the compact-open topology on
C(X,Y) is the coarsest topology for which the map

e C(X,Y)x X > Y
(f.z) = f(=)

1S continuous.

Proof. By 12.2.3, e is continuous < ¢ : C(X,Y) — C.(X,Y), f—e(f,.)=f
is continuous. Hence e is continuous for a topology on C(X,Y), if and only if this
topology is finer than the compact-open topology. O

12.3 Equicontinuity and the Arzela-Ascoli theo-
rem

12.3.1 Definition. Let X be a topological space (Y,V) a uniform space and H C
F(X,Y). H is called equicontinuous in x € X, if:

YV eV U eU(z) s.t. F(U) C V(f(z)) ¥f € H.

If H is equicontinuous in each x € X, then H is called equicontinuous.

12.3.2 Examples.
(i) Let (M,d),(M’,d") be metric spaces, z,y € M. Let k,a > 0. Then
H:={f:M— M |d(f(x), f(y)) <k d(x,y)"}

is equicontinuous.

(ii) Let H := {f : [a,b] — R differentiable | |f'(z)| < k Vz € [a,b]}. Then H is

equicontinuous.

12.3.3 Proposition. Let X be a topological space, (Y,V) a uniform space and
H C F(X,Y). TFAE:
(i) H is equicontinuous in xg.

Fs(X,Y

(ii) The closure H ) of H in Fs(X,Y) is equicontinuous in xq.
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Proof. (i) = (ii): Let V' € V be closed (cf. 9.1.15). Then there exists some
U € U(xg) with f(z) € V(f(xo)) Vf € HVz € U. Let M := {g € F(X,Y) |
(9(x0),9(x)) € V Vo € U}. Since Vo € X the map ¢, : F5(X,Y) - YV xY (¥
Fu{zo}, Y) x Ful{2},Y)), 12(9) = (Ray(9), Ru(9)) = (9(0), g(x)) is continuous,
M = N,ey ¥z ' (V) is closed in Fy(X,Y). Since H C M, also H € M. Conse-
quently, h(z) € V(h(xzg)) Yo € U Vh € H, i.e. H is equicontinuous in .

(ii) = (i): is clear. O

12.3.4 Proposition. Let X be a topological space, (Y,V) a uniform space and
H C C(X,Y) equicontinuous. Let U, andUs as in 12.1.12 (iv). ThenUc|lg = Us|n -

Proof. By 12.1.12 (iv), U. 2D Us, 80 Ue|g 2 Us|pr-

Conversely, we have to show: VV' € V VK compact in X 37" € V and 35 C X finite
with W(S,T) =W (S, T)N(H x H) CW(K,V):=W(K,V)n(H x H).

Choose T € V symmetric with 7% C V (cf. 9.1.8). H is equicontinuous = Va €
X 3U, € U(z) with (h(z),h(y)) € T Yy € U, Yh € H. Let o',2" € U, =
(h(z),h(z")) € T, (h(z"),h(z)) € T = (h(z'),h(z")) € T?> Vh € H.

K compact = Jzq,...,z, € K with K C U?:l U,,. In each U,,, pick some a;
and set S := {a1,...,a,}. Let x € K = Fi € {1,...,n} with z,a; € U,, =
(h(z),h(a;)) € T?> Vh € H. Now let (g,h) € W(S,T) = (h(a;),g(a;)) € T and
(9(a;), g(x)) € T?. Thus, finally,

(h(z),g(z)) € T® CV V(h,g) € W(S,T) Vz € K

= W(S,T) C W(K,V), as claimed. O

12.3.5 Corollary. Under the assumptions of 12.3.4 we have: FOY) gy,

Fs(X,Y)

Proof. By 12.3.3, H is equicontinuous, so in particular

7YY cox,y). (12.3.1)

Let O, be the topology induced by U,., and Oy the one induced by Us on F(X,Y).
Since Uy D Uy = O, D Oy = H ° C H*. By (12.3.1) and 12.3.4, Us| 0. =

=0, =0, _ =0, =0cl o,
Uelzo., hence also Oglizo, = Oclggo, = H ° = H "NH ~ = H mo

Foslﬁ(DS — Fos n Fos _ Fos = FCC(X,Y) — Foc _ Fos — ﬁFG(XvY)

O
12.3.6 Theorem. (Arzela-Ascoli) Let X be locally compact, (Y,V) a uniform Ts-
space and H C C(X,Y). TFAE:

(i) H is relatively compact in C.(X,Y).
(i) H is equicontinuous and H(x) is relatively compact in' Y Vo € X.

Proof. (i) = (ii): By 12.1.14, C.(X,Y) is Ty. Therefore H is compact in C.(X,Y).
Now 12.1.11 (iv) implies that ev, : C.(X,Y) — Y is continuous, so 5.1.10 gives that
ev, (H) is compact in Y = H(z) compact = H(x) C H(x) ist relatively compact.

Let g € X and let K be a compact neighborhood of zg. Let V! € V and V € V such
that V =V ~land V3 C V' (cf. 9.1.8). 11.1.3 = H is precompact in C,.(X,Y) = H
is precompact in C.(X,Y) (see 11.1.5 (i)). Thus there exists a finite cover of H
with sets that are small of order W (K, V), ie: 3IMy,..., M, C C(X,Y) with
M; x M; C W(K,V) and H C |J; M;. Fix some f; € M; for 1 < i < n. If
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feH=3ie{l,....n} with f € M; = (f, f;) € W(K,V), ie. (f(z),fi(z)) €
VVvreK.

fi continuous = 3 neighborhood U; of xy such that f;(z) € V(fi(xo)), i.e. (fi(z),
fi(zo) eV Vz eU;. Let U:=N_,U;NK, z€Uand f € H=3ie{l,...,n}
with (f, fi) € W(K, V). Then since x,z9 € K and = € U; we have

(f(2), fi(x)) € Vi (fi(x), fizo)) € Vi (filwo), f(w0)) € V.

Consequently, (f(zo), f(z)) € V3 C V' = f(z) € V'(f(xo)) Yz € U = f(U) C
V'(f(z0)) Vf € H, i.e.: H is equicontinuous in zg = H is equicontinuous.

(ii) = (i): H is equicontinuous, so by 12.3.3 also 7 is equicontinuous, and 12.3.4
implies that Ueclzo, = Uslgo, = Oclgo, = Oslzo. = we may view H as a
topological subspace of HY and thereby of [],cx Y = Y¥. Then 12.1.11 (iv)

gives:
ac ] pt)= ] @) < [] H@.
zeX zeX rzeX
which is compact by 5.1.14 and 5.1.15. It follows that ﬁos is compact with respect
to Os, so Fos is compact with respect to O, and thereby H is relatively compact
in C.(X,Y). O

For applications in Analysis and Functional Analysis the case where C.(X,Y) is
metrizable is of the greatest importance. The following result provides a sufficient
condition for this:

12.3.7 Proposition. Let X be o-compact and let (Y,V) be a metrizable uniform
space. Then F.(X,Y) and therefore also C.(X,Y) are metrizable.

Proof. By 5.2.13, there exist K, compact in X such that X = {J,,», K, K, C
K,i1. Let d be a metric on Y that induces the uniform structure V of Y. For
m > 1, let

Vi :={(y1,92) €Y x Y [ d(y1,12) < %} =d! <[O’ ;)) :

Then (Vin)m>1 is a fundamental system of entourages of V, so W(Ky,Vy,) € U
(the uniform structure of F.(X,Y)).

Then {W (K, Vi) | n,m > 1} is a fundamental system of entourages for U,. Indeed,
let VeV, K C X compact = Im with V,,, C V, dn with K C K,,. Hence
W (Kpn, Vi) CW(K,V).

Finally, F.(X,Y) is T, by 12.1.14. Hence by 9.4.9 F.(X,Y) is metrizable. O

12.3.8 Corollary. Let X be o-compact, (Y,V) a metrizable uniform space and
HCC(X,Y). TFAE:

(i) Any sequence in H possesses a subsequence that converges uniformly on com-
pact subsets of X.

(i) H is equicontinuous and H(x) is relatively compact in' Y Va € X.
The limit of the sequence from (i) then is continuous, i.e. € C(X,Y).

Proof. C.(X,Y) is metrizable by 12.3.7 and by 12.1.11 (iii) we have (i) < any
sequence in H possesses a subsequence converging in F.(X,Y). By 12.1.16 this is
the case if and only if any sequence in H possesses a subsequence converging in
C.(X,Y), which, by 11.2.9 holds if and only if H is relatively compact in C.(X,Y).
By 12.3.6, this is equivalent to (ii). The final claim is immediate from 12.1.16. O
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12.3.9 Remark. For Y = R", ‘relatively compact’ can be replaced by ‘bounded’
in 12.3.8 (ii). (cf. 5.1.16).

Finally we consider two typical applications:

12.3.10 Example. (Peano’s theorem) Let f : [0,1] x R — R be continuous and
bounded. Then there exists at least one solution of the initial value problem

{ y'(t) = ft,yt)) (t€0,1])
y(0) = yo

Proof. By the fundamental theorem of calculus, it suffices to find a continuous
solution of the integral equation

t
vty =+ [ fsu(s)ds (e o.1) (12.3.2)
0
Let a > 0 and set
L Yo for ¢ S 0
Yal(t) = { Yo + fot f(s,9a(s—a))ds for0<t<1 (12.3.3)

This is well-defined: For 0 < ¢ < « we have y,(t — &) = yqg, so the integral can be
calculated. Hence y, can be determined for a <t < 2q, then for 2a <t < 3a, etc.
Also, Yuljo,1) is continuous.

Claim: H := {y, | @ > 0} is equicontinuous.
Let K be such that |f(z,y)] < K Vz € [0,1] Yy € R = |y, (¢) |< K Vt € [0,1] and
therefore:

|ya(t1) - ya(t2)| < K‘tl - t2| (tl,t? € [O, 1])
Since f is bounded, H(t) is relatively compact in R V¢ € [0,1]. Thus by 12.3.6 H
is relatively compact in C.([0,1],R) (= Cy([0,1],R), because [0, 1] is compact). By
12.3.8, (y1)n>1 possesses a subsequence ¥y := Yo, (With ay — 0) that converges in
C.([0,1],R). Let y := limy 00 Yo, - Then:

lyk(t = ar) —y(O)] < lyr(t — ar) = yu (O] + [yr(t) — y()] < Kag +[ye(t) — y(0)]-

Hence yi(. — ax) — y in Cy([0,1],R). Letting k¥ — oo in (12.3.3) it follows that y
solves (12.3.2).

12.3.11 Example. (Montel’s theorem) Let (f;);en be a locally bounded sequence
of holomophic functions on an open and connected domain U C C. Then (f;);en
has a locally uniformly convergent subsequence.

Proof. As C is locally compact, the word ‘locally’ can be replaced here by ‘on any
compact set’.

We first show that H := (f;)jen is locally equicontinuous. To this end, let a €

U, Br(a) C U and |f(z)| < C Vo € B.(a) Vf € H. Set D := Bz(a) and let
21,20 € D, f € H. Then

fea) - sl =| [ e

[21,22]

< — "(2)].
< |22 zl\gleagﬁ(z)\

Furthermore,

C
(r/2)?

oy = | Q) _wc
rOI=lag [, et S = D
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Now let e > 0 and 0 := j§ = if 21,20 € D, |20 — 21| < d then [f(22) — f(21)| < e =
{flp | f € H} is equicontinuous, i.e.: H is locally equicontinuous. By 12.3.8, for any
K C U compact, the sequence f;|x possesses a uniformly convergent subsequence.
Since U is a countable union compact sets (K, )men (cf. 5.2.11 (ii)) we may extract
from the sequences that converge uniformly on the K,, a diagonal sequence that
converges locally uniformly on U.
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uniformity, 70
uniformizable, 77
uniformization, 77
uniformly continuous, 74
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