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ABSTRACT. We present a conjectural parity bias in the character values of the symmetric

group. The main conjecture says that a character value chosen uniformly at random from

the character table of Sn is congruent to 0 mod 2 with probability ! 1 as n ! 1.

A more general conjecture says that the same is true for all primes p, not only p D 2.

We relate these conjectures to zeros, give generating functions for computing lower bounds,

and present some computational data in support of the main conjecture.

1. Introduction

This note is a sequel to [11] where we studied zeros and random character values of the

symmetric group Sn. By character we mean irreducible character. The purpose of this short

note is to present two conjectures. The first and main conjecture (Conjecture 1) says that a

character value chosen uniformly at random from the character table of Sn is congruent to

0 mod 2 with probability ! 1 as n ! 1. The second conjecture (Conjecture 2) says that

the same is true for all primes p, not only p D 2. It should be stated here at the start that

we are unable to prove these conjectures.

1.1. Character values of Sn. Given an integer partition � of n, let �� be the correspond-

ing irreducible character of Sn, and let ��.�/ be short for the value of �� at any g with

cycle type �, so that the matrix Œ��.�/��;� is the character table of Sn [8]. These values

can be computed for small n with the formulas of Frobenius and Murnaghan–Nakayama.

Frobenius [3] says

��.�/ D coeff. of x
nC�1�1
1 x

nC�2�2
2 : : : x�n

n in �.x/P�.x/ (1)

where �.x/ D
Q

1�i<j �n.xi � xj / and P�.x/ D P�1
.x/P�2

.x/ : : : P�n
.x/, P0.x/ D 1,

Pk.x/ D xk
1 C xk

2 C : : : C xk
n for k � 1. Murnaghan–Nakayama says

��.�/ D
X

.�1/ht.�/��n�.�/ (2)

for any � obtained by removing a nonzero part from �, where the sum is over all rim hooks

� in � of size j�j�j�j, and ht.�/ is one less than the number of rows occupied by �, see [8].

1.2. Background. The study of zeros of irreducible characters goes back to Burnside [2],

who proved that each nonlinear irreducible character of a finite group is zero on some class.

J. G. Thompson modified Burnside’s argument to prove that for each irreducible character

the values are roots of unity or zero on more than a third of the group [7, p. 46]. P. X. Gal-

lagher proved similarly that on a larger than average class some irreducible character is

zero [4], and that on a larger than average class the character values are roots of unity or

zero for more than a third of the irreducible characters [5].

What can be said about a random character value of the symmetric group? Here there

are two natural ways to choose a character value. The first is to choose � uniformly at
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random from the irreducible characters and g uniformly at random from the group, and

then evaluate �.g/. The main result of [11] is the remarkable fact that for the symmetric

group Sn the probability that �.g/ equals 0 goes to 1 as n ! 1 [11, Theorem 1].

The other natural way to choose a character value of Sn is to choose an entry ��.�/

uniformly at random from the character table. That is, choose � and � uniformly at random

from the partitions of n, and then evaluate ��.�/. In this scheme the asymptotic behavior

of Prob.��.�/ D 0/ is not known, and experiments do not suggest a limit of 1. See Table 3

in Section 4 and cf. [11, Question 2 and p. 1015].

1.3. Working modulo 2. The present note considers zeros of Sn character values mod 2.

In particular, we are interested in the asymptotic behavior of Prob.��.�/ � 0 .mod 2//.

What we find experimentally is a striking parity bias. See Figure 1.
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FIGURE 1. Prob.��.�/ � 0 .mod 2// for 1 � n � 76.

Conjecture 1. Prob.��.�/ � 0 .mod 2// ! 1 as n ! 1.

Our second conjecture extends the first to other primes.

Conjecture 2. Prob.��.�/ � 0 .mod p// ! 1 as n ! 1 for every prime p.

Numerical evidence for Conjectures 1 and 2 is given in Section 4 in Tables 1 and 2.

Table 1 lists the number of even entries in the character table of Sn for 1 � n � 76. Ta-

ble 2 lists Prob.��.�/ � 0 .mod q// for some small prime powers q and 1 � n � 38.

In Section 2 we relate Conjecture 1 and Conjecture 2 to zeros in the character table of Sn.

We use a small set of well-understood zeros to obtain generating functions for computing

lower bounds for the number of ��.�/’s congruent to 0 mod p. These crude bounds are

surprisingly good. However, it seems that new tools will be needed in order to establish a

parity bias, see Remark 1. In Section 3 we make two more remarks. The first remark refor-

mulates Conjecture 1 as a problem in tableau enumeration, see Conjecture 10. This gives

another possible approach to Conjecture 1. The second remark explains why in Table 1 we

find that the number of even entries in the character table of Sn is always even.

2. Zeros and a lower bound

2.1. The following is a well-known result for dealing with characters of Sn modulo a prime

number p. See [12, ÷3] and [10, Proof of Theorem].

Proposition 1. Let � be a character of Sn, and let p be a prime number. Suppose that �

and � are partitions of n such that � is obtained from � by replacing p parts of size k with

a single part of size pk. Then �.�/ � �.�/ .mod p/.
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Proof. This follows from Frobenius (1) and .x C y/p D xp C yp over Z=pZ. �

2.2. Consider the graph �p.n/ whose vertices are the partitions � of n, and whose edges

are the pairs f�; �g where � is obtained from � by exchanging p parts of size k for a part

of size pk. Let

Par.n/ D fpartitions of ng; (3)

�p.n/ D fpartitions of n into parts not divisible by pg; (4)

�p.n/ D fpartitions of n with no part appearing p or more timesg: (5)

Each connected component of �.n/ contains a unique representative � 2 �p.n/ and a

unique representative �� 2 �p.n/. The partition �� is obtained from � by replacing each

part pkd (p − d ) by pk parts of size d , and this mapping � 7! �� is a bijection from

�p.n/ onto �p.n/. (The p D 2 case of this is the odd–distinct bijection of Euler [1].)

Write Kp.�/ (� 2 �p.n/) for the set of partitions in the same component as �, so that

Par.n/ D
[

�2�p.n/

Kp.�/ (6)

as a disjoint union, and �; �� 2 Kp.�/. Let kp.�/ D jKp.�/j and let

Np.n/ D #f.�; �/ 2 Par.n/ � Par.n/ W ��.�/ � 0 .mod p/g; (7)

zp.�/ D #f� 2 Par.n/ W ��.�/ � 0 .mod p/g; (8)

z.�/ D #f� 2 Par.n/ W ��.�/ D 0g: (9)

Proposition 2.

Np.n/ D
X

�2�p.n/

kp.�/zp.�/ (10)

and

Np.n/ �
X

�2�p.n/

kp.�/z.�/: (11)

Proof. Proposition 1 implies (10), and (11) follows. �

What makes Proposition 2 useful is: �p.n/ is much smaller than Par.n/, the numbers

kp.�/ are straightforward to compute (Proposition 3), and even crude lower bounds on the

number of zeros z.�/ in the � column of the character table of Sn result in good lower

bounds on the number Np.n/ of p-divisible entries in the character table (Theorem 1).

2.3. Let � D 1m12m2 : : : nmn be shorthand for the partition � with m1 many 1’s, m2 many

2’s, and so on. Let ap.n/ be the number of partitions of n into powers of p, so that

1
X

nD0

ap.n/qn D

1
Y

j D0

1

1 � qpj
(12)

and ap.n/ is given by the recurrence relation

ap.n/ D

(

ap.n � 1/ if n 6� 0 .mod p/;

ap.n � 1/ C ap.n=p/ if n � 0 .mod p/;
(13)

where ap.0/ D ap.1/ D : : : D ap.p � 1/ D 1. See [13]. Then we have the following

formula for kp.�/.
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Proposition 3. Let � 2 �p.n/ and write �� D 1m12m2 : : : nmn . Then

kp.�/ D ap.m1/ap.m2/ : : : ap.mn/: (14)

Proof. Define

� W Par.n/ ! �p.n/; 1s12s2 : : : nsn 7!
Y

p−k

k
skCpskpCp2s

kp2 C:::
: (15)

Then

Kp.�/ D ��1.��/ (16)

and the elements of ��1.��/ are in bijection with the tuples .�1; �2; : : : ; �n/ where �k is a

partition of mk into powers of p (sk many 1’s, skp many p’s, and so on). �

2.4. By t -core we mean a partition � with no rim hook of size t , which is the same as

saying that � has no hook of size t (cf. [8, pp. 76 and 56]), or equivalently � has no hook of

size divisible by t [8, p. 86]. Let ct .n/ be the number of t -core partitions of n. Then [6, 9]

1
X

nD0

ct .n/qn D

1
Y

nD1

.1 � qtn/t

.1 � qn/
: (17)

Theorem 1.

Np.n/ �

n
X

tD1

ct .n/
X

�2�p.n/
�1Dt

kp.�/: (18)

Proof. Let �; � 2 Par.n/. If � is a t -core and � has a part of size t , then by the Murnaghan–

Nakayama rule ��.�/ D 0. In particular, the number of 0’s in column � of the Sn character

table is bounded below by the number of �1-core partitions of n. In other words, z.�/ �

c�1
.n/. This inequality and the one in (11) together give the result. �

Remark 1. We suspect that Theorem 1 can be used to obtain nontrivial asymptotic lower

bounds for Prob.��.�/ � 0 .mod 2//. For example, for n D 30; 60; 90; 120 the respective

lower bounds for Prob.��.�/ � 0 .mod 2// given by Theorem 1 are approximately

0:45369, 0:47022, 0:47883, and 0:46521. Unfortunately, at least from these computations,

Theorem 1 does not seem sufficient for a provable parity bias in the sense that there exists

an � > 0 such that Prob.��.�/ � 0 .mod 2// � 1=2 C � for n sufficiently large.

3. Remarks

3.1. Conjecture 1 can be reformulated as a problem in tableau enumeration. Let N�� be

the number of rim hook tableaux of shape � and content �, see [14].

Proposition 4. ��.�/ � N�� .mod 2/.

Proof. By the Murnaghan–Nakayama rule (2). �

Hence the following enumerative reformulation of Conjecture 1.

Conjecture 10. Prob.N�� is even/ ! 1 as n ! 1.
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3.2. We are aware of one previous parity result for the character table of Sn. It is an enu-

merative result on the number of odd entries in the column of degrees ��.1n/. J. McKay [10]

proved that the number of odd entries in this column is a certain power of 2. It is natural

to wonder about a similar result for the entire character table. Table 1 suggests that the

number of even entries is always even. This is in fact true.

Theorem 2. The number of even entries ��.�/ in the character table of Sn is even.

Recall that the conjugate of � is the partition �0 whose parts are �0
i D #fj W i � �j g for

1 � i � �1. Conjugation is the involution � 7! �0. The fixed points of this involution are

self-conjugate partitions. Self-conjugate partitions � of n are in one-to-one correspondence

with partitions � of n into odd distinct parts via � 7! � where �i D 2.�i � i/ C 1 for i

such that 1 � i � �i .

Proof of Theorem 2. Let On be the number of odd entries in the character table of Sn. Then

On �
X

�

X

�

��.�/ �
X

�

X

�

��.�/2 .mod 2/ (19)

where the sums are over all partitions of n. By one of the orthogonality relations [3]
X

�

��.�/2 D 1m1m1Š2m2m2Š : : : nmnmnŠ (20)

where mi is the number of i ’s in �. Together (19) and (20) imply that

On � ODn .mod 2/ (21)

where ODn is the number of partitions of n into odd distinct parts. Let SCn be the number

of self-conjugate partitions of n so that SCn D ODn and hence

On � SCn .mod 2/: (22)

Let En be the number of even entries in the character table of Sn. Then

On C En D p2
n � pn .mod 2/ (23)

where pn is the number of partitions of n. Together (22) and (23) imply that

En � pn � SCn .mod 2/: (24)

But pn � SCn � 0 .mod 2/ because conjugation restricts to a fixed-point-free involution

on the set of non-self-conjugate partitions of n. �

4. Tables

The probabilities in Tables 2 and 3 are rounded to the number of digits shown.
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TABLE 1. Number of even entries and number of odd entries in the char-

acter table of Sn for 1 � n � 76.

n no. of evens no. of odds

1 0 1

2 0 4

3 2 7

4 6 19

5 16 33

6 44 77

7 90 135

8 266 218

9 508 392

10 966 798

11 1824 1312

12 3548 2381

13 6094 4107

14 11586 6639

15 19254 11722

16 37492 15869

17 61876 26333

18 103110 45115

19 170932 69168

20 286916 106213

21 456554 170710

22 759962 244042

23 1190034 384991

24 1887766 592859

25 2937820 895944

26 4608084 1326012

27 7004646 2055454

28 10938762 2884762

29 16372732 4466493

30 24851432 6553384

31 37014368 9798596

32 56368810 13336991

33 82688102 20192347

34 122855526 28680574

35 179808396 41695293

36 263406424 59766105

37 381814902 86344867

38 557951490 118828735

n no. of evens no. of odds

39 799580980 172923245

40 1152977342 241148902

41 1644080076 343563813

42 2352923494 474550782

43 3324344208 677609913

44 4732761850 918518775

45 6639049122 1305820834

46 9351080036 1791411328

47 13067332410 2496228106

48 18309958344 3379378185

49 25390864566 4720061059

50 35331180090 6377078986

51 48786461562 8786181687

52 67367826002 11924538919

53 92571070272 16283394489

54 127268025536 21847658489

55 173744388742 29905639434

56 237567368138 39975105191

57 323002974632 54182161084

58 439208932802 72330715598

59 594363393060 97561119340

60 804101537262 129956924827

61 1082902860136 174870604889

62 1458789177232 231616447104

63 1956705210484 309822028517

64 2625259647972 408015408928

65 3505898738012 544490965352

66 4679753246976 718991943424

67 6226771093726 953962042995

68 8285512851154 1248594579071

69 10979998587386 1653369791639

70 14541318538948 2170163830076

71 19209876952108 2853857859917

72 25351409083192 3730699401897

73 33363529811282 4899218593439

74 43886589872232 6374420377768

75 57554118617836 8352091755860

76 75434276878574 10852934727707
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TABLE 2. Prob.��.�/ � 0 .mod q// for some q’s and 1 � n � 38.

n q D 2 q D 22 q D 23 q D 3 q D 32 q D 33 q D 5 q D 52 q D 53

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 0.222 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111

4 0.240 0.160 0.160 0.240 0.160 0.160 0.160 0.160 0.160

5 0.327 0.245 0.204 0.224 0.204 0.204 0.245 0.204 0.204

6 0.364 0.248 0.248 0.322 0.256 0.240 0.289 0.240 0.240

7 0.400 0.271 0.244 0.324 0.244 0.244 0.284 0.244 0.244

8 0.550 0.386 0.333 0.374 0.322 0.316 0.368 0.316 0.316

9 0.564 0.409 0.359 0.473 0.359 0.350 0.373 0.341 0.341

10 0.548 0.386 0.350 0.455 0.353 0.334 0.412 0.340 0.333

11 0.582 0.406 0.348 0.464 0.348 0.329 0.389 0.328 0.325

12 0.598 0.459 0.414 0.529 0.405 0.387 0.450 0.382 0.376

13 0.597 0.444 0.388 0.518 0.382 0.355 0.427 0.351 0.348

14 0.636 0.463 0.409 0.548 0.409 0.386 0.457 0.386 0.378

15 0.622 0.454 0.395 0.547 0.407 0.378 0.458 0.371 0.363

16 0.703 0.520 0.446 0.556 0.422 0.395 0.475 0.395 0.387

17 0.701 0.512 0.433 0.564 0.420 0.391 0.478 0.389 0.379

18 0.696 0.521 0.448 0.598 0.445 0.409 0.490 0.402 0.392

19 0.712 0.527 0.443 0.583 0.428 0.390 0.483 0.389 0.377

20 0.730 0.547 0.468 0.599 0.449 0.411 0.504 0.407 0.396

21 0.728 0.544 0.460 0.607 0.441 0.401 0.494 0.396 0.383

22 0.757 0.567 0.477 0.615 0.454 0.412 0.509 0.409 0.396

23 0.756 0.562 0.470 0.615 0.447 0.404 0.505 0.400 0.386

24 0.761 0.577 0.485 0.627 0.460 0.413 0.513 0.409 0.394

25 0.766 0.577 0.479 0.623 0.449 0.401 0.509 0.397 0.382

26 0.777 0.591 0.493 0.635 0.465 0.415 0.521 0.411 0.394

27 0.773 0.583 0.483 0.636 0.456 0.403 0.515 0.399 0.381

28 0.791 0.603 0.501 0.641 0.465 0.412 0.524 0.408 0.390

29 0.786 0.597 0.493 0.644 0.463 0.407 0.523 0.402 0.383

30 0.791 0.605 0.501 0.648 0.465 0.409 0.524 0.403 0.385

31 0.791 0.602 0.495 0.649 0.463 0.404 0.524 0.399 0.378

32 0.809 0.619 0.509 0.654 0.470 0.410 0.530 0.405 0.384

33 0.804 0.611 0.500 0.655 0.464 0.401 0.526 0.396 0.374

34 0.811 0.621 0.509 0.658 0.469 0.407 0.531 0.401 0.379

35 0.812 0.619 0.504 0.662 0.469 0.403 0.530 0.397 0.374

36 0.815 0.626 0.511 0.662 0.468 0.402 0.531 0.397 0.373

37 0.816 0.625 0.508 0.666 0.469 0.400 0.532 0.394 0.370

38 0.824 0.635 0.516 0.669 0.472 0.403 0.533 0.396 0.371
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TABLE 3. Number of zeros in the character table of Sn for 1 � n � 38.

n no. of zeros Prob.��.�/ D 0/

1 0 0.0000

2 0 0.0000

3 1 0.1111

4 4 0.1600

5 10 0.2041

6 29 0.2397

7 55 0.2444

8 153 0.3161

9 307 0.3411

10 588 0.3333

11 1018 0.3246

12 2230 0.3761

13 3543 0.3473

14 6878 0.3774

15 11216 0.3621

16 20615 0.3863

17 33355 0.3781

18 57980 0.3912

19 90194 0.3757

n no. of zeros Prob.��.�/ D 0/

20 155176 0.3947

21 239327 0.3815

22 395473 0.3939

23 604113 0.3836

24 970294 0.3911

25 1453749 0.3792

26 2323476 0.3915

27 3425849 0.3781

28 5349414 0.3870

29 7905133 0.3793

30 11963861 0.3810

31 17521274 0.3743

32 26472001 0.3798

33 38054619 0.3699

34 56756488 0.3745

35 81683457 0.3688

36 119005220 0.3682

37 170498286 0.3642

38 247619748 0.3659
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