ON PARITY AND CHARACTERS OF SYMMETRIC GROUPS

ALEXANDER R. MILLER

Abstract

We present a conjectural parity bias in the character values of the symmetric group. The main conjecture says that a character value chosen uniformly at random from the character table of S_{n} is congruent to 0 mod 2 with probability $\rightarrow 1$ as $n \rightarrow \infty$. A more general conjecture says that the same is true for all primes p, not only $p=2$. We relate these conjectures to zeros, give generating functions for computing lower bounds, and present some computational data in support of the main conjecture.

1. Introduction

This note is a sequel to [11] where we studied zeros and random character values of the symmetric group S_{n}. By character we mean irreducible character. The purpose of this short note is to present two conjectures. The first and main conjecture (Conjecture 1) says that a character value chosen uniformly at random from the character table of S_{n} is congruent to $0 \bmod 2$ with probability $\rightarrow 1$ as $n \rightarrow \infty$. The second conjecture (Conjecture 2) says that the same is true for all primes p, not only $p=2$. It should be stated here at the start that we are unable to prove these conjectures.
1.1. Character values of $\mathbf{S}_{\mathbf{n}}$. Given an integer partition λ of n, let χ_{λ} be the corresponding irreducible character of S_{n}, and let $\chi_{\lambda}(\mu)$ be short for the value of χ_{λ} at any g with cycle type μ, so that the matrix $\left[\chi_{\lambda}(\mu)\right]_{\lambda, \mu}$ is the character table of S_{n} [8]. These values can be computed for small n with the formulas of Frobenius and Murnaghan-Nakayama. Frobenius [3] says

$$
\begin{equation*}
\chi_{\lambda}(\mu)=\text { coeff. of } x_{1}^{n+\lambda_{1}-1} x_{2}^{n+\lambda_{2}-2} \ldots x_{n}^{\lambda_{n}} \text { in } \Delta(x) P_{\mu}(x) \tag{1}
\end{equation*}
$$

where $\Delta(x)=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$ and $P_{\mu}(x)=P_{\mu_{1}}(x) P_{\mu_{2}}(x) \ldots P_{\mu_{n}}(x), P_{0}(x)=1$, $P_{k}(x)=x_{1}^{k}+x_{2}^{k}+\ldots+x_{n}^{k}$ for $k \geq 1$. Murnaghan-Nakayama says

$$
\begin{equation*}
\chi_{\lambda}(\mu)=\sum(-1)^{\mathrm{ht}(\rho)} \chi_{\lambda \backslash \rho}(\nu) \tag{2}
\end{equation*}
$$

for any v obtained by removing a nonzero part from μ, where the sum is over all rim hooks ρ in λ of size $|\mu|-|\nu|$, and $\operatorname{ht}(\rho)$ is one less than the number of rows occupied by ρ, see [8].
1.2. Background. The study of zeros of irreducible characters goes back to Burnside [2], who proved that each nonlinear irreducible character of a finite group is zero on some class. J. G. Thompson modified Burnside's argument to prove that for each irreducible character the values are roots of unity or zero on more than a third of the group [7, p. 46]. P. X. Gallagher proved similarly that on a larger than average class some irreducible character is zero [4], and that on a larger than average class the character values are roots of unity or zero for more than a third of the irreducible characters [5].

What can be said about a random character value of the symmetric group? Here there are two natural ways to choose a character value. The first is to choose χ uniformly at

[^0]random from the irreducible characters and g uniformly at random from the group, and then evaluate $\chi(g)$. The main result of [11] is the remarkable fact that for the symmetric group S_{n} the probability that $\chi(g)$ equals 0 goes to 1 as $n \rightarrow \infty$ [11, Theorem 1].

The other natural way to choose a character value of S_{n} is to choose an entry $\chi_{\lambda}(\mu)$ uniformly at random from the character table. That is, choose λ and μ uniformly at random from the partitions of n, and then evaluate $\chi_{\lambda}(\mu)$. In this scheme the asymptotic behavior of $\operatorname{Prob}\left(\chi_{\lambda}(\mu)=0\right)$ is not known, and experiments do not suggest a limit of 1 . See Table 3 in Section 4 and cf. [11, Question 2 and p. 1015].
1.3. Working modulo 2. The present note considers zeros of S_{n} character values mod 2 . In particular, we are interested in the asymptotic behavior of $\operatorname{Prob}\left(\chi_{\lambda}(\mu) \equiv 0(\bmod 2)\right)$. What we find experimentally is a striking parity bias. See Figure 1.

Figure 1. $\operatorname{Prob}\left(\chi_{\lambda}(\mu) \equiv 0(\bmod 2)\right)$ for $1 \leq n \leq 76$.

Conjecture 1. $\operatorname{Prob}\left(\chi_{\lambda}(\mu) \equiv 0(\bmod 2)\right) \rightarrow 1$ as $n \rightarrow \infty$.
Our second conjecture extends the first to other primes.
Conjecture 2. $\operatorname{Prob}\left(\chi_{\lambda}(\mu) \equiv 0(\bmod p)\right) \rightarrow 1$ as $n \rightarrow \infty$ for every prime p.
Numerical evidence for Conjectures 1 and 2 is given in Section 4 in Tables 1 and 2. Table 1 lists the number of even entries in the character table of S_{n} for $1 \leq n \leq 76$. Table 2 lists $\operatorname{Prob}\left(\chi_{\lambda}(\mu) \equiv 0(\bmod q)\right)$ for some small prime powers q and $1 \leq n \leq 38$. In Section 2 we relate Conjecture 1 and Conjecture 2 to zeros in the character table of S_{n}. We use a small set of well-understood zeros to obtain generating functions for computing lower bounds for the number of $\chi_{\lambda}(\mu)$'s congruent to $0 \bmod p$. These crude bounds are surprisingly good. However, it seems that new tools will be needed in order to establish a parity bias, see Remark 1. In Section 3 we make two more remarks. The first remark reformulates Conjecture 1 as a problem in tableau enumeration, see Conjecture 1^{\prime}. This gives another possible approach to Conjecture 1. The second remark explains why in Table 1 we find that the number of even entries in the character table of S_{n} is always even.

2. Zeros and a lower bound

2.1. The following is a well-known result for dealing with characters of S_{n} modulo a prime number p. See [12, §3] and [10, Proof of Theorem].
Proposition 1. Let χ be a character of S_{n}, and let p be a prime number. Suppose that μ and v are partitions of n such that v is obtained from μ by replacing p parts of size k with a single part of size $p k$. Then $\chi(\mu) \equiv \chi(\nu)(\bmod p)$.

Proof. This follows from Frobenius (1) and $(x+y)^{p}=x^{p}+y^{p}$ over $\mathbf{Z} / p \mathbf{Z}$.
2.2. Consider the graph $\Gamma_{p}(n)$ whose vertices are the partitions μ of n, and whose edges are the pairs $\{\mu, \nu\}$ where v is obtained from μ by exchanging p parts of size k for a part of size $p k$. Let

$$
\begin{align*}
& \operatorname{Par}(n)=\{\text { partitions of } n\} \tag{3}\\
& \Omega_{p}(n)=\{\text { partitions of } n \text { into parts not divisible by } p\} \tag{4}\\
& \Delta_{p}(n)=\{\text { partitions of } n \text { with no part appearing } p \text { or more times }\} \tag{5}
\end{align*}
$$

Each connected component of $\Gamma(n)$ contains a unique representative $\mu \in \Delta_{p}(n)$ and a unique representative $\mu^{*} \in \Omega_{p}(n)$. The partition μ^{*} is obtained from μ by replacing each part $p^{k} d(p \nmid d)$ by p^{k} parts of size d, and this mapping $\mu \mapsto \mu^{*}$ is a bijection from $\Delta_{p}(n)$ onto $\Omega_{p}(n)$. (The $p=2$ case of this is the odd-distinct bijection of Euler [1].) Write $K_{p}(\mu)\left(\mu \in \Delta_{p}(n)\right)$ for the set of partitions in the same component as μ, so that

$$
\begin{equation*}
\operatorname{Par}(n)=\bigcup_{\mu \in \Delta_{p}(n)} K_{p}(\mu) \tag{6}
\end{equation*}
$$

as a disjoint union, and $\mu, \mu^{*} \in K_{p}(\mu)$. Let $k_{p}(\mu)=\left|K_{p}(\mu)\right|$ and let

$$
\begin{align*}
N_{p}(n) & =\#\left\{(\lambda, \mu) \in \operatorname{Par}(n) \times \operatorname{Par}(n): \chi_{\lambda}(\mu) \equiv 0(\bmod p)\right\} \tag{7}\\
z_{p}(\mu) & =\#\left\{\lambda \in \operatorname{Par}(n): \chi_{\lambda}(\mu) \equiv 0(\bmod p)\right\} \tag{8}\\
z(\mu) & =\#\left\{\lambda \in \operatorname{Par}(n): \chi_{\lambda}(\mu)=0\right\} \tag{9}
\end{align*}
$$

Proposition 2.

$$
\begin{equation*}
N_{p}(n)=\sum_{\mu \in \Delta_{p}(n)} k_{p}(\mu) z_{p}(\mu) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{p}(n) \geq \sum_{\mu \in \Delta_{p}(n)} k_{p}(\mu) z(\mu) \tag{11}
\end{equation*}
$$

Proof. Proposition 1 implies (10), and (11) follows.
What makes Proposition 2 useful is: $\Delta_{p}(n)$ is much smaller than $\operatorname{Par}(n)$, the numbers $k_{p}(\mu)$ are straightforward to compute (Proposition 3), and even crude lower bounds on the number of zeros $z(\mu)$ in the μ column of the character table of S_{n} result in good lower bounds on the number $N_{p}(n)$ of p-divisible entries in the character table (Theorem 1).
2.3. Let $\mu=1^{m_{1}} 2^{m_{2}} \ldots n^{m_{n}}$ be shorthand for the partition μ with m_{1} many 1 's, m_{2} many 2's, and so on. Let $a_{p}(n)$ be the number of partitions of n into powers of p, so that

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{p}(n) q^{n}=\prod_{j=0}^{\infty} \frac{1}{1-q^{p^{j}}} \tag{12}
\end{equation*}
$$

and $a_{p}(n)$ is given by the recurrence relation

$$
a_{p}(n)= \begin{cases}a_{p}(n-1) & \text { if } n \not \equiv 0(\bmod p) \tag{13}\\ a_{p}(n-1)+a_{p}(n / p) & \text { if } n \equiv 0(\bmod p)\end{cases}
$$

where $a_{p}(0)=a_{p}(1)=\ldots=a_{p}(p-1)=1$. See [13]. Then we have the following formula for $k_{p}(\mu)$.

Proposition 3. Let $\mu \in \Delta_{p}(n)$ and write $\mu^{*}=1^{m_{1}} 2^{m_{2}} \ldots n^{m_{n}}$. Then

$$
\begin{equation*}
k_{p}(\mu)=a_{p}\left(m_{1}\right) a_{p}\left(m_{2}\right) \ldots a_{p}\left(m_{n}\right) \tag{14}
\end{equation*}
$$

Proof. Define

$$
\begin{equation*}
\pi: \operatorname{Par}(n) \rightarrow \Omega_{p}(n), \quad 1^{s_{1}} 2^{s_{2}} \ldots n^{s_{n}} \mapsto \prod_{p \nmid k} k^{s_{k}+p s_{k p}+p^{2} s_{k p^{2}}+\ldots} \tag{15}
\end{equation*}
$$

Then

$$
\begin{equation*}
K_{p}(\mu)=\pi^{-1}\left(\mu^{*}\right) \tag{16}
\end{equation*}
$$

and the elements of $\pi^{-1}\left(\mu^{*}\right)$ are in bijection with the tuples $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ where v_{k} is a partition of m_{k} into powers of $p\left(s_{k}\right.$ many 1 's, $s_{k p}$ many p 's, and so on).
2.4. By t-core we mean a partition λ with no rim hook of size t, which is the same as saying that λ has no hook of size t (cf. [8, pp. 76 and 56]), or equivalently λ has no hook of size divisible by t [8, p. 86]. Let $c_{t}(n)$ be the number of t-core partitions of n. Then [6, 9]

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{t}(n) q^{n}=\prod_{n=1}^{\infty} \frac{\left(1-q^{t n}\right)^{t}}{\left(1-q^{n}\right)} \tag{17}
\end{equation*}
$$

Theorem 1.

$$
\begin{equation*}
N_{p}(n) \geq \sum_{t=1}^{n} c_{t}(n) \sum_{\substack{\mu \in \Delta_{p}(n) \\ \mu_{1}=t}} k_{p}(\mu) . \tag{18}
\end{equation*}
$$

Proof. Let $\lambda, \mu \in \operatorname{Par}(n)$. If λ is a t-core and μ has a part of size t, then by the MurnaghanNakayama rule $\chi_{\lambda}(\mu)=0$. In particular, the number of 0 's in column μ of the S_{n} character table is bounded below by the number of μ_{1}-core partitions of n. In other words, $z(\mu) \geq$ $c_{\mu_{1}}(n)$. This inequality and the one in (11) together give the result.

Remark 1. We suspect that Theorem 1 can be used to obtain nontrivial asymptotic lower bounds for $\operatorname{Prob}\left(\chi_{\lambda}(\mu) \equiv 0(\bmod 2)\right)$. For example, for $n=30,60,90,120$ the respective lower bounds for $\operatorname{Prob}\left(\chi_{\lambda}(\mu) \equiv 0(\bmod 2)\right)$ given by Theorem 1 are approximately $0.45369,0.47022,0.47883$, and 0.46521 . Unfortunately, at least from these computations, Theorem 1 does not seem sufficient for a provable parity bias in the sense that there exists an $\epsilon>0$ such that $\operatorname{Prob}\left(\chi_{\lambda}(\mu) \equiv 0(\bmod 2)\right) \geq 1 / 2+\epsilon$ for n sufficiently large.

3. Remarks

3.1. Conjecture 1 can be reformulated as a problem in tableau enumeration. Let $N_{\lambda \mu}$ be the number of rim hook tableaux of shape λ and content μ, see [14].

Proposition 4. $\chi_{\lambda}(\mu) \equiv N_{\lambda \mu}(\bmod 2)$.
Proof. By the Murnaghan-Nakayama rule (2).

Hence the following enumerative reformulation of Conjecture 1.
Conjecture 1'. $\operatorname{Prob}\left(N_{\lambda \mu}\right.$ is even $) \rightarrow 1$ as $n \rightarrow \infty$.
3.2. We are aware of one previous parity result for the character table of S_{n}. It is an enumerative result on the number of odd entries in the column of degrees $\chi_{\lambda}\left(1^{n}\right)$. J. McKay [10] proved that the number of odd entries in this column is a certain power of 2. It is natural to wonder about a similar result for the entire character table. Table 1 suggests that the number of even entries is always even. This is in fact true.
Theorem 2. The number of even entries $\chi_{\lambda}(\mu)$ in the character table of S_{n} is even.
Recall that the conjugate of λ is the partition λ^{\prime} whose parts are $\lambda_{i}^{\prime}=\#\left\{j: i \leq \lambda_{j}\right\}$ for $1 \leq i \leq \lambda_{1}$. Conjugation is the involution $\lambda \mapsto \lambda^{\prime}$. The fixed points of this involution are self-conjugate partitions. Self-conjugate partitions λ of n are in one-to-one correspondence with partitions μ of n into odd distinct parts via $\lambda \mapsto \mu$ where $\mu_{i}=2\left(\lambda_{i}-i\right)+1$ for i such that $1 \leq i \leq \lambda_{i}$.

Proof of Theorem 2. Let O_{n} be the number of odd entries in the character table of S_{n}. Then

$$
\begin{equation*}
O_{n} \equiv \sum_{\mu} \sum_{\lambda} \chi_{\lambda}(\mu) \equiv \sum_{\mu} \sum_{\lambda} \chi_{\lambda}(\mu)^{2}(\bmod 2) \tag{19}
\end{equation*}
$$

where the sums are over all partitions of n. By one of the orthogonality relations [3]

$$
\begin{equation*}
\sum_{\lambda} \chi_{\lambda}(\mu)^{2}=1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\ldots n^{m_{n}} m_{n}! \tag{20}
\end{equation*}
$$

where m_{i} is the number of i 's in μ. Together (19) and (20) imply that

$$
\begin{equation*}
O_{n} \equiv O D_{n}(\bmod 2) \tag{21}
\end{equation*}
$$

where $O D_{n}$ is the number of partitions of n into odd distinct parts. Let $S C_{n}$ be the number of self-conjugate partitions of n so that $S C_{n}=O D_{n}$ and hence

$$
\begin{equation*}
O_{n} \equiv S C_{n}(\bmod 2) \tag{22}
\end{equation*}
$$

Let E_{n} be the number of even entries in the character table of S_{n}. Then

$$
\begin{equation*}
O_{n}+E_{n}=p_{n}^{2} \equiv p_{n}(\bmod 2) \tag{23}
\end{equation*}
$$

where p_{n} is the number of partitions of n. Together (22) and (23) imply that

$$
\begin{equation*}
E_{n} \equiv p_{n}-S C_{n}(\bmod 2) \tag{24}
\end{equation*}
$$

But $p_{n}-S C_{n} \equiv 0(\bmod 2)$ because conjugation restricts to a fixed-point-free involution on the set of non-self-conjugate partitions of n.

4. Tables

The probabilities in Tables 2 and 3 are rounded to the number of digits shown.

TABLE 1. Number of even entries and number of odd entries in the character table of S_{n} for $1 \leq n \leq 76$.

n	no. of evens	no. of odds	n	no. of evens	no. of odds
1	0	1	39	799580980	172923245
2	0	4	40	1152977342	241148902
3	2	7	41	1644080076	343563813
4	6	19	42	2352923494	474550782
5	16	33	43	3324344208	677609913
6	44	77	44	4732761850	918518775
7	90	135	45	6639049122	1305820834
8	266	218	46	9351080036	1791411328
9	508	392	47	13067332410	2496228106
10	966	798	48	18309958344	3379378185
11	1824	1312	49	25390864566	4720061059
12	3548	2381	50	35331180090	6377078986
13	6094	4107	51	48786461562	8786181687
14	11586	6639	52	67367826002	11924538919
15	19254	11722	53	92571070272	16283394489
16	37492	15869	54	127268025536	21847658489
17	61876	26333	55	173744388742	29905639434
18	103110	45115	56	237567368138	39975105191
19	170932	69168	57	323002974632	54182161084
20	286916	106213	58	439208932802	72330715598
21	456554	170710	59	594363393060	97561119340
22	759962	244042	60	804101537262	129956924827
23	1190034	384991	61	1082902860136	174870604889
24	1887766	592859	62	1458789177232	231616447104
25	2937820	895944	63	1956705210484	309822028517
26	4608084	1326012	64	2625259647972	408015408928
27	7004646	2055454	65	3505898738012	544490965352
28	10938762	2884762	66	4679753246976	718991943424
29	16372732	4466493	67	6226771093726	953962042995
30	24851432	6553384	68	8285512851154	1248594579071
31	37014368	9798596	69	10979998587386	1653369791639
32	56368810	13336991	70	14541318538948	2170163830076
33	82688102	20192347	71	19209876952108	2853857859917
34	122855526	28680574	72	25351409083192	3730699401897
35	179808396	41695293	73	33363529811282	4899218593439
36	263406424	59766105	74	43886589872232	6374420377768
37	381814902	86344867	75	57554118617836	8352091755860
38	557951490	118828735	76	75434276878574	10852934727707

TABLE 2. $\operatorname{Prob}\left(\chi_{\lambda}(\mu) \equiv 0(\bmod q)\right)$ for some q 's and $1 \leq n \leq 38$.

n	$q=2$	$q=2^{2}$	$q=2^{3}$	$q=3$	$q=3^{2}$	$q=3^{3}$	$q=5$	$q=5^{2}$	$q=5^{3}$
1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	0.222	0.111	0.111	0.111	0.111	0.111	0.111	0.111	0.111
4	0.240	0.160	0.160	0.240	0.160	0.160	0.160	0.160	0.160
5	0.327	0.245	0.204	0.224	0.204	0.204	0.245	0.204	0.204
6	0.364	0.248	0.248	0.322	0.256	0.240	0.289	0.240	0.240
7	0.400	0.271	0.244	0.324	0.244	0.244	0.284	0.244	0.244
8	0.550	0.386	0.333	0.374	0.322	0.316	0.368	0.316	0.316
9	0.564	0.409	0.359	0.473	0.359	0.350	0.373	0.341	0.341
10	0.548	0.386	0.350	0.455	0.353	0.334	0.412	0.340	0.333
11	0.582	0.406	0.348	0.464	0.348	0.329	0.389	0.328	0.325
12	0.598	0.459	0.414	0.529	0.405	0.387	0.450	0.382	0.376
13	0.597	0.444	0.388	0.518	0.382	0.355	0.427	0.351	0.348
14	0.636	0.463	0.409	0.548	0.409	0.386	0.457	0.386	0.378
15	0.622	0.454	0.395	0.547	0.407	0.378	0.458	0.371	0.363
16	0.703	0.520	0.446	0.556	0.422	0.395	0.475	0.395	0.387
17	0.701	0.512	0.433	0.564	0.420	0.391	0.478	0.389	0.379
18	0.696	0.521	0.448	0.598	0.445	0.409	0.490	0.402	0.392
19	0.712	0.527	0.443	0.583	0.428	0.390	0.483	0.389	0.377
20	0.730	0.547	0.468	0.599	0.449	0.411	0.504	0.407	0.396
21	0.728	0.544	0.460	0.607	0.441	0.401	0.494	0.396	0.383
22	0.757	0.567	0.477	0.615	0.454	0.412	0.509	0.409	0.396
23	0.756	0.562	0.470	0.615	0.447	0.404	0.505	0.400	0.386
24	0.761	0.577	0.485	0.627	0.460	0.413	0.513	0.409	0.394
25	0.766	0.577	0.479	0.623	0.449	0.401	0.509	0.397	0.382
26	0.777	0.591	0.493	0.635	0.465	0.415	0.521	0.411	0.394
27	0.773	0.583	0.483	0.636	0.456	0.403	0.515	0.399	0.381
28	0.791	0.603	0.501	0.641	0.465	0.412	0.524	0.408	0.390
29	0.786	0.597	0.493	0.644	0.463	0.407	0.523	0.402	0.383
30	0.791	0.605	0.501	0.648	0.465	0.409	0.524	0.403	0.385
31	0.791	0.602	0.495	0.649	0.463	0.404	0.524	0.399	0.378
32	0.809	0.619	0.509	0.654	0.470	0.410	0.530	0.405	0.384
33	0.804	0.611	0.500	0.655	0.464	0.401	0.526	0.396	0.374
34	0.811	0.621	0.509	0.658	0.469	0.407	0.531	0.401	0.379
35	0.812	0.619	0.504	0.662	0.469	0.403	0.530	0.397	0.374
36	0.815	0.626	0.511	0.662	0.468	0.402	0.531	0.397	0.373
37	0.816	0.625	0.508	0.666	0.469	0.400	0.532	0.394	0.370
38	0.824	0.635	0.516	0.669	0.472	0.403	0.533	0.396	0.371

TABLE 3. Number of zeros in the character table of S_{n} for $1 \leq n \leq 38$.

n	no. of zeros	$\operatorname{Prob}\left(\chi_{\lambda}(\mu)=0\right)$	n	no. of zeros	$\operatorname{Prob}\left(\chi_{\lambda}(\mu)=0\right)$
1	0	0.0000	20	155176	0.3947
2	0	0.0000	21	239327	0.3815
3	1	0.1111	22	395473	0.3939
4	4	0.1600	23	604113	0.3836
5	10	0.2041	24	970294	0.3911
6	29	0.2397	25	1453749	0.3792
7	55	0.2444	26	2323476	0.3915
8	153	0.3161	27	3425849	0.3781
9	307	0.3411	28	5349414	0.3870
10	588	0.3333	29	7905133	0.3793
11	1018	0.3246	30	11963861	0.3810
12	2230	0.3761	31	17521274	0.3743
13	3543	0.3473	32	26472001	0.3798
14	6878	0.3774	33	38054619	0.3699
15	11216	0.3621	34	56756488	0.3745
16	20615	0.3863	35	81683457	0.3688
17	33355	0.3781	36	119005220	0.3682
18	57980	0.3912	37	170498286	0.3642
19	90194	0.3757	38	247619748	0.3659

References

1. G. E. Andrews, The Theory of Partitions. Encyclopedia of Mathematics and its Applications, Vol. 2, AddisonWesley, Reading, MA, 1976.
2. W. Burnside, On an arithmetical theorem connected with roots of unity, and its application to groupcharacteristics. Proc. London Math. Soc. 1 (1904) 112-116.
3. G. Frobenius, Über die Charaktere der symmetrischen Gruppe. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, 1900, 516-534.
4. P. X. Gallagher, Group characters and commutators. Math. Z. 79 (1962) 122-126.
5. P. X. Gallagher, Degrees, class sizes and divisors of character values. J. Group Theory 15 (2012) 455-467.
6. F. Garvan, D. Kim, and D. Stanton, Cranks and t-cores. Invent. Math. 101 (1990) 1-17.
7. I. M. Isaacs, Character theory of finite groups. Dover, New York, 1994.
8. G. James and A. Kerber, The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and its Applications, Vol. 16, Addison-Wesley, Reading, MA, 1981.
9. A. A. Klyachko, Modular forms and representations of symmetric groups. J. Soviet Math. 26 (1984) 18791887.
10. J. McKay, Irreducible representations of odd degree. J. Algebra 20 (1972) 416-418.
11. A. R. Miller, The probability that a character value is zero for the symmetric group. Math. Z. 277 (2014) 1011-1015.
12. A. M. Odlyzko and E. M. Rains, "On longest increasing subsequences in random permutations" in Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis (Philadelphia, 1998), Contemp. Math. 251, Amer. Math. Soc., Providence, 2000, 439-451.
13. N. J. A. Sloane and J. A. Sellers, On non-squashing partitions. Discrete Math. 294 (2005) 259-274.
14. D. W. Stanton and D. E. White, A Schensted algorithm for rim hook tableaux. J. Combin. Theory Ser. A 40 (1985) 211-247.

[^0]: The author was partially supported by FWF grant SFB F50.

