
Foulkes characters for complex reflection groups

ALEXANDER R. MILLER

Abstract We investigate Foulkes characters for a wide class of reflection groups

which contains all finite Coxeter groups. In addition to new results, our general

approach unifies, explains, and extends previously known (type A) results due to

Foulkes, Kerber–Thürlings, Diaconis–Fulman, and Isaacs.

Introduction

Foulkes discovered a marvelous set of characters for the symmetric group by sum-

ming Specht modules of certain ribbon shapes according to height. These characters

have many remarkable properties and have been the subject of many investigations,

including a recent one [2] by Diaconis and Fulman, which established some new

formulas, a conjecture of Isaacs, and a connection with Eulerian idempotents.

We widen our consideration to complex reflection groups and find ourselves

equipped from the start with a simple formula for (generalized) Foulkes characters

which explains and extends these properties. In particular, it gives a factorization of

the Foulkes character table which explains Diaconis and Fulman’s formula for the

determinant, their link to Eulerian idempotents, and their formula for the inverse.

We present a natural extension of a conjecture of Isaacs, and then use properties of

Foulkes characters which resemble those of supercharacters to establish the result.

We also discover a remarkable refinement of Diaconis and Fulman’s determinantal

formula by considering Smith normal forms.

Classic type A Foulkes characters have connections with adding random num-

bers, shuffling cards, the Veronese embedding, and combinatorial Hopf algebras

[2, 7]. Our formula brings Orlik–Solomon coexponents from [12] the cohomology

theory of [10] complements into the picture with the geometry of the Milnor fiber

complex [8], and it gives rise to a curious classification at the end of the paper.

The paper is structured as follows. Section 1 introduces Foulkes characters for

Shephard and Coxeter groups. Key properties are quickly gathered, including our

main formula. In Section 2, properties of type A Foulkes characters are explained

and extended from the symmetric group to the infinite family of wreath products. In

Section 3, Isaacs’ type A conjecture is sharpened for the Coxeter–Shephard–Koster

family. Diaconis and Fulman’s type A determinantal formula is also extended here.

Lastly, we determine exactly when the Foulkes characters are a basis for the space

of class functions �.g/ that depend only on the dimension of the fixed space of g.
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1 Foulkes characters for complex reflection groups

Let V be an `-dimensional C vector space, and let W be a finite group of the form

hr1; r2; : : : ; r` j r
pi

i D 1; ri rj ri � � � D rj ri rj � � � 8 i < j i (?)

with mij � 2 factors on both sides of the second relation, pi � 2, and pi D pj

whenever mij is odd1. Finite Coxeter groups are the ones where every pi is 2, and

each has a canonical faithful representation W � GL.V / as a (complex) reflection

group, by which we mean that the ri ’s act on V as reflections in the sense that the

fixed spaces ker.1 � ri / are hyperplanes. This familiar picture for Coxeter groups

extends [3] to all W presented above, and we agree to identify the abstract group

with its faithful representation as a reflection group. Henceforth, assume that this

representation is irreducible. When W is not a Coxeter group, it is known as a Shep-

hard group (the symmetry group of an object called a regular complex polytope).

Write R D fr1; r2; : : : ; r`g and call ` the rank of W .

For each Shephard and Coxeter group W there exists [8] a simplicial complex �

called the Milnor fiber complex (which is a strong deformation retract of a Milnor

fiber and) whose faces are indexed by [9] the cosets wWI (I � R) of standard

parabolic subgroups WI D hI i ordered by inclusion. In the case of Coxeter groups,

this simplicial complex is the Coxeter complex, which is the intersection of the real

sphere S`�1 with the polyhedral pieces cut out in R` by the reflecting hyperplanes

of a real form of the group. In general, each type-selected subcomplex �S (S � R)

is homotopy equivalent to a bouquet of spheres, and the CW -module on the top

homology group is called a ribbon representation. Its character �S has the following

description as an alternating sum of induced principal characters:

�S D
X

I
.�1/jSnI j 1

x

?

WRnI

where the sum ranges over all subsets I of S ; see [5] for details and history.

In the special case when W is the symmetric group, a ribbon representation is a

Specht module of a certain skew ribbon shape [8] and Foulkes’ construction for the

symmetric group translates to summing the �S according to cardinality jS j.

Main Definition For a Shephard or Coxeter group with generators R as in (?), and

for any integer s with 0 � s � `, the Foulkes character �s is the sum of all ribbon

characters �S for subsets S � R with jS j D s.

The main tools of this paper are ÷1.1, and an explicit formula in ÷1.2 for Foulkes

characters, which gives a factorization of the (resp. reduced) Foulkes character ta-

ble in ÷1.3. Our main results will follow from this factorization. In particular, it

elucidates the type A theory, which previously rested on ad hoc proofs by induction.

Our formula for �s.g/ will depend on the fixed space of g, and we will be par-

ticularly interested in the case when it depends only on the dimension of the fixed

space. When this happens the Foulkes character table reduces to a remarkable square

matrix called the reduced Foulkes character table.

1The braid relation says that .ri rj /.mij �1/=2ri D rj .ri rj /.mij �1/=2, and so r1; r2 are conjugate.
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1.1 A decomposition of the regular character

Let �i denote the character of the i th exterior power of the irreducible reflection

representation V , so that �i is irreducible for 0 � i � ` by a theorem of Steinberg.

The following properties are corollaries of [5, Theorem 12.1 and Theorem 12.2]

(after the Coxeter case [15]), two finer results for individual ribbon representations.

� The sum �0 C �1 C : : : C �` is the character of the regular representation.

� The �i -isotypic component of the regular character is a constituent of �i .

In this way, Foulkes characters bear resemblance to supercharacters; cf. [2, p. 429].

1.2 A formula for Foulkes characters

Theorem 1 Let g 2 W and consider its fixed space X D fv 2 V j gv D vg. Then

�s.g/ D
X

i
.�1/s�i

�

` � i

s � i

�

fi�1.� \ X/ (1)

where fi�1.� \ X/ denotes the number of .i � 1/-dimensional faces of � \ X .

Proof Write �s in terms of the �’s, and the �’s in terms of cosets, so that

�s.g/ D
X

jS jDs

X

I�S

.�1/jSnI j 1
x

?

WRnI
.g/

D
X

i

X

jI jDi

.�1/s�i

�

` � i

s � i

�

1
x

?

WRnI
.g/

D
X

i

.�1/s�i

�

` � i

s � i

�

X

jI jDi

1
x

?

WRnI
.g/:

The inner sum is the number of .i � 1/-faces of � that are stabilized by g. Since �

is a balanced simplicial complex (see [5]), it follows that a face is stabilized by g if

and only if it is fixed pointwise by g, or in other words, is a face of � \ X . �

A formula for calculating the face numbers fi�1.� \ X/

Let L be the collection of all intersections of reflecting hyperplanes of W ordered by

reverse inclusion, and write � for its usual Möbius function. For each X 2 L define

a polynomial BX .t/ 2 ZŒt � by BX .t/ D .�1/dimX
P

Y �X �.X; Y /.�t /dimY . Also

associated with W is a set of numbers called exponents, the smallest of which is

denoted by m1; we will review these numbers in ÷3.2 below. Orlik [8] (after Orlik–

Solomon in the Coxeter case) showed that

fi�1.� \ X/ D
X

Y
BY .m1/ (2)

where Y varies over all i -dimensional subspaces that lie above X in L. Note that

fi�1.� \ X/ and BX .t/ are determined by the restriction

LX D fY 2 L j Y � Xg:
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1.3 The Foulkes character table

Define the Foulkes character table of W to be the matrix ˆ D Œ�i .gj /�ij with rows

indexed by �0; �1; : : : ; �` and columns indexed by (conjugacy) class representa-

tives g0; g1; : : : ; gc , ordered in such a way that respects fixed space codimension;

in particular, g0 D 1 fixes the whole space and gc fixes only the origin. The Foulkes

character table factors according to Theorem 1.

Corollary 1.1 The Foulkes character table has the following factorization:

ˆik D

�

.�1/i�j

�

` � j

i � j

��

ij

�

�

fj �1.� \ Xk/

�

jk

(3)

where 0 � i; j � ` and Xk is the (pointwise) fixed space of representative gk .

Example 1.1 The Foulkes character table of the symmetric group S4 is

.1/.2/.3/.4/ .12/.3/.4/ .12/.34/ .123/.4/ .1234/

�0 1 1 1 1 1

�1 11 3 �1 �1 �3

�2 11 �3 �1 �1 3

�3 1 �1 1 1 �1

The (pointwise) fixed subcomplexes � \ X and their cell counts are as follows:

f�1 1 1 1 1 1

f0 14 6 2 2

f1 36 6

f2 24

In this way, equation (3) predicts this factorization of the Foulkes character table:

2

6

6

6

6

6

4

1 1 1 1 1

11 3 �1 �1 �3

11 �3 �1 �1 3

1 �1 1 1 �1

3

7

7

7

7

7

5

D

2

6

6

6

6

6

4

.3
0/

�.3
1/ .2

0/

.3
2/ �.2

1/ .1
0/

�.3
3/ .2

2/ �.1
1/ .0

0/

3

7

7

7

7

7

5

2

6

6

6

6

6

4

1 1 1 1 1

14 6 2 2

36 6

24

3

7

7

7

7

7

5

The reduced Foulkes character table

Example 1.1 shows that some groups have characters �i .g/ which depend only on

the dimension of the fixed space of g. When this happens we consider the reduced

Foulkes character table Œ�i .gj /�, whose columns are indexed by a subset of class
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representatives g0; g1; : : : ; g` subject to the condition that the fixed space of gi has

codimension i , so that g0 D 1 fixes the whole space and g` fixes only the origin.

The reduced table stores the same information as the full table, and is obtained by

deleting redundant columns. In particular, it also factors according to (3); this will

be the key to understanding the determinant and inverse formulas of Diaconis and

Fulman in the next section.

Example 1.2 The reduced Foulkes character table of the symmetric group S4 is

2

6

6

6

6

6

4

1 1 1 1

11 3 �1 �3

11 �3 �1 3

1 �1 1 �1

3

7

7

7

7

7

5

D

2

6

6

6

6

6

4

.3
0/

�.3
1/ .2

0/

.3
2/ �.2

1/ .1
0/

�.3
3/ .2

2/ �.1
1/ .0

0/

3

7

7

7

7

7

5

2

6

6

6

6

6

4

1 1 1 1

14 6 2

36 6

24

3

7

7

7

7

7

5

The first column gives the values �i .g/ for any permutation g with exactly four

cycles (namely the identity), the second column gives the values for any permutation

with exactly three cycles, and so on. It is gotten from the full table of Example 1.1

by deleting one of the two columns indexed by an element with exactly two cycles.

2 Foulkes characters for wreath products

Fix W D Zr oSn, so that ` D n if r > 1, and ` D n�1 in the case when W D Sn.

Write Lp for the intersection lattice of Zr o Sp , so that Ln D L.

2.1 Dimension dependence and basis result

It is well known that in this case LX ' Ln�k for X 2 L of codimension k; see [12].

Theorem 2 �s.g/ depends only on the dimension of the fixed space of g.

Proof Let X be the fixed space of g. The dimension of X determines LX , and hence

the cell counts of (2). Now (1) implies the result. �

Theorem 3 The Foulkes characters �0; �1; : : : ; �` form a Q basis for the space of

class functions � that depend only on the dimension of the fixed space. Moreover,

� D
X

i

h � ; �i i

dim �i
�i (4)

where �i is the character of the i th exterior power of V (so dim �i D
�

`
i

�

).

Proof Recall ÷1.1 that �i is irreducible for 0 � i � `, and that it is a constituent of

�j if and only if i D j . Hence the Foulkes characters are linearly independent, and

the basis claim follows from Theorem 2. In turn, the second claim follows from the

fact that �i appears in �i with multiplicity equal to its dimension. �
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2.2 Explicit formulas and a second factorization

Another consequence is the following explicit formula for the cell counts appearing

in Theorem 1, which in turn gives an explicit formula for the character values �s.g/.

Proposition 4 Let X 2 L and let k denote the codimension of X . Then

fi�1.� \ X/ D
X

j
.�1/i�j

�

n � ` C i

i � j

�

.rj C 1/n�k : (5)

In particular, fi�1.�\X/ D fi�1.�n�k/where�n�k is the complex forZr oSn�k .

Proof For Y 2 L of dimension i one has LY ' Ln�`Ci , and so (2) tells us that

BY .m1/ is the number of top cells in the Milnor fiber complex of Zr o Sn�`Ci .

These top cells are indexed by the elements of the group, and so (2) further implies

fi�1.� \ X/ D #fi -dimensional Y 2 LX g � rn�`Ci .n � ` C i/Š:

The first factor is a Whitney number of the Dowling lattice LX ' Ln�k , and has a

well-known expression (see [12]) which can be written as [1, Eq. 6]

1

r i i Š

X

j
.�1/i�j

�

i

i � j

�

.rj C 1/`�k :

Equation (5) follows if r > 1, when one has n D `. In the case when r D 1, so that

n D ` C 1, equation (5) follows from the identity .i C 1/
�

i
i�j

�

D
�

1Ci
i�j

�

.j C 1/. �

Proposition 4 gives the following formula for the character values �s.g/.

Theorem 5 Let g 2 W and let k be the codimension of the fixed space of g. Then

�s.g/ D
X

j
.�1/s�j

�

n C 1

s � j

�

.rj C 1/n�k : (6)

Proof Let X denote the fixed space of g, so that by (1) and (5) one has

�s.g/ D
X

i
.�1/s�i

�

` � i

s � i

�

X

j
.�1/i�j

�

n � ` C i

i � j

�

.rj C 1/n�k :

Now switch the order of summation to get

X

j
.�1/s�j .rj C 1/n�k

X

i

�

` � i

` � s

��

n � .` � i/

n � ` C j

�

and note that the inside sum is equal to
�

nC1
s�j

�

, since n � `. �

The second part of Proposition 4 sharpens our main factorization (3), while Theo-

rem 5 gives a new, second factorization that involves a special Vandermonde matrix.

We collect these special factorizations for Zr o Sn in the following corollary.

6



Corollary 5.1 Maintain the notation of this section. In particular, W D Zr o Sn.

Then the reduced Foulkes character table ˆ has the following factorizations:

(F1) ˆ D
h

.�1/i�j
�

`�j
i�j

�

i

ij
�

h

fj �1.�n�k/
i

jk
(0 � i; j; k � `)

(F2) ˆ D
h

.�1/i�j
�

nC1
i�j

�

i

ij
�

h

.rj C 1/n�k
i

jk
(0 � i; j; k � `)

The second factor of (F2) is a special instance of a Vandermonde matrix. �

Example 5.1 In the case of Weyl group A2 D Z1 o S3 one has

ˆ D

2

4

.2
0/

�.2
1/ .1

0/

.2
2/ �.1

1/ .0
0/

3

5

2

4

1 1 1

6 2

6

3

5

D

2

4

.4
0/

�.4
1/ .4

0/

.4
2/ �.4

1/ .4
0/

3

5

2

4

1 1 1

23 22 2

33 32 3

3

5

Example 5.2 In the case of Weyl group B3 D Z2 o S3 one has

ˆ D

2

6

6

4

.3
0/

�.3
1/ .2

0/

.3
2/ �.2

1/ .1
0/

�.3
3/ .2

2/ �.1
1/ .0

0/

3

7

7

5

2

6

6

4

1 1 1 1

26 8 2

72 8

48

3

7

7

5

D

2

6

6

4

.4
0/

�.4
1/ .4

0/

.4
2/ �.4

1/ .4
0/

�.4
3/ .4

2/ �.4
1/ .4

0/

3

7

7

5

2

6

6

4

1 1 1 1

33 32 3 1

53 52 5 1

73 72 7 1

3

7

7

5

2.3 The determinant of the Foulkes character table

In the case of the symmetric group, Isaacs conjectured [2, p. 429] that the determi-

nant of ˆ is divisible by nŠ. Diaconis and Fulman confirmed this by in fact showing

that the determinant is equal to nŠ.n � 1/Š � � � 2Š. They argued by induction. Our first

factorization (F1) elucidates and extends this formula for the determinant: the left

triangular factor of (F1) has 1’s along its diagonal, while along the right diagonal

we find the group cardinalities ftop.�i / D jZr o Si j. Alternatively, one may use our

second factorization (F2) and the well-known Vandermonde determinant formula.

Theorem 6 detˆ D rn.nC1/=2 nŠ.n � 1/Š � � � 2Š. �

2.4 The branching rule and a recursion for Foulkes characters

The next theorem gives a recursion for the Foulkes character tables and follows from

either one of our factorizations (F1) or (F2). Write ˆ.p/ for the (reduced) Foulkes

character table of Zr o Sp , so that ˆ.n/ D ˆ.
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Theorem 7 ˆ
.n/

i;k
D ˆ

.n�1/

i;k�1
� ˆ

.n�1/

i�1;k�1
for k > 0.

Proof Factor ˆ.n�1/ according to (F2), so that the row subtraction takes place in

the left binomial factor, while the right, Vandermonde factor is unchanged. Now the

claim follows from the identity
�

nC1
i�j

�

D
�

n
i�j

�

C
�

n
i�1�j

�

. �

The following branching rule says that the Foulkes characters �s satisfy the re-

currence [16, Lemma 16] for Steingrı́msson’s colored Eulerian numbers E.n; r; s/,

i.e., E.n; r; s/ D .r.n C 1/ � .rs C 1//E.n � 1; r; s � 1/ C .rs C 1/E.n � 1; r; s/.

Theorem 8 �s
?

y

Zr oSn�1
D .r.n C 1/ � .rs C 1//�s�1 C .rs C 1/�s .

Proof The formula translates to

ˆ
.n/

s;k
D .r.n C 1/ � .rs C 1//ˆ

.n�1/

s�1;k
C .rs C 1/ˆ

.n�1/

s;k
; k < `:

Equation (6) tells us that the right side is equal to

.r.n C 1/ � .rs C 1//

s�1
X

j D0

.�1/s�1�j .rj C 1/n�1�k

�

n

s � j � 1

�

C .rs C 1/

s
X

j D0

.�1/s�j .rj C 1/n�1�k

�

n

s � j

�

:

(7)

Consider the terms indexed by j and observe that

�r.nC1/

�

n

s � j � 1

�

C.rsC1/

��

n

s � j � 1

�

C

�

n

s � j

��

D .rj C1/

�

n C 1

s � j

�

:

It follows that (7) is equal to
P

j .�1/s�j .rj C 1/n�k
�

nC1
s�j

�

, which is precisely our

expression (6) for ˆ
.n/

sk
. Hence the result. �

Corollary 8.1 �s.1/ is the Eulerian number E.n; r; s/. �

2.5 The inverse of the Foulkes character table & Eulerian idempotents

For the symmetric group, Diaconis and Fulman showed [2, Thm. 3.1, Cor. 3.2] that

the rows of the inverse of the Foulkes character table are evaluations of Eulerian

idempotents. They accomplished this by first verifying an explicit formula for the

inverse, then comparing coefficients in order to connect with Eulerian idempotents.

We take the opposite approach and give a simple reason for why Eulerian idem-

potents appear, then get the formula for the inverse for free. The key is our second

factorization (F2). There are three bases in [4] Loday’s classic treatment of Eulerian

idempotents, and what Diaconis and Fulman showed is that the transpose of ˆ is the
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transition matrix between two of them, known as the c’s and e’s. Our factorization

elucidates this by passing through the third, known as the � basis.

Eulerian idempotents e0; e1; : : : ; e` were introduced by Reutenauer and extended

to Zr o Sn by Moynihan [6, p. 94], after Bergeron–Bergeron in the type B case.

They are defined according to the formula

X

i

�

n C x�1
r

� i

n

�

ci D
X

k
xn�ke`�k (8)

where i; k D 0; 1; : : : ; ` and the c’s are certain sums in the group algebra ZW .

Define a third set of elements �j by evaluating at x D rj C 1:

�j D
X

i

�

n C j � i

n

�

ci (9)

or equivalently

�j D
X

k
.rj C 1/n�ke`�k : (10)

The transition matrix from the �j ’s to the ci ’s is upper triangular with ones along its

diagonal, and its inverse is given by [4, Eq. 1.6.1] the formula

ci D
X

j
.�1/i�j

�

n C 1

i � j

�

�j : (11)

It follows from (11) and (10) that the transition matrix from the ci ’s to the e`�k’s is
h

.rj C 1/n�k
i

kj
�

h

.�1/i�j
�

nC1
i�j

�

i

j i
(12)

which is precisely the transpose of ˆ from (F2). Hence the following theorem.

Theorem 9 The transpose of ˆ is the transition matrix from the ci ’s to the e`�j ’s.

Equivalently, ˆ�T is the transition matrix from the e`�j ’s to the ci ’s. �

Corollary 9.1 Let s.k; l/ denote the Stirling numbers of the first kind. Then

ˆ�1
ij D

X

k;l

s.k; l/.�1/n�i�l

kŠr l

�

l

n � i

��

n � j

n � k

�

:

Proof Theorem 9 and equation (8) tell us that the i; j entry of the inverse is equal

to the coefficient of xn�i in
�

nC.x�1/=r�j
n

�

. Now write

�

n C x�1
r

� j

n

�

D
X

k

�

x�1
r

k

��

n � j

n � k

�

D
X

k

�

n � j

n � k

�

1

kŠ

X

l
s.k; l/

�

x � 1

r

�l

and use the binomial theorem to get the desired formula; cf. [2, Thm. 3.1 proof]. �
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3 General results for Shephard & Coxeter groups

In this section we sharpen and generalize Theorem 6, which gave a formula for the

determinant of the reduced Foulkes character table for a wreath product. In general,

however, the full table may not reduce to a square matrix; exactly when this happens

is the subject of ÷3.3. Here we consider a finer invariant called the Smith normal

form, which exists for any matrix with integer entries.

Let M be an .` C 1/ � .n C 1/ matrix with integer entries. The Z-module

ZnC1=.Z row space of M/ decomposes as Z=s0Z ˚ Z=s1Z ˚ : : : ˚ Z=snZ for

a unique sequence of nonnegative integers s0; s1; : : : ; sn subject to the condition

that si divides siC1 for all i . Recall that the Smith normal form of M encodes the

same information. An integral matrix D D Œdij � is said to be in Smith form if it is

diagonal in the sense that dij D 0 whenever i ¤ j , and its diagonal entries di i are

nonnegative and satisfy the condition d00 j d11 j : : : j dmin.`;n/. The matrix M can

be brought into Smith form by an appropriate change of basis, i.e., there exist ma-

trices P 2 GL`C1.Z/ and Q 2 GLnC1.Z/ such that PMQ D D is in Smith form.

The resulting Smith form is unique and its diagonal entries are given by di i D si .

These entries s0; s1; : : : ; smin.`;n/ are called the Smith entries of M . Note that if M

is square, then detM D ˙s0s1 � � � s`.

3.1 A sharp generalization of Isaacs’ conjecture

Isaacs conjectured that the determinant of the Foulkes character table for the sym-

metric group is always divisible nŠ. A stronger conjecture would be that the last

Smith entry s` is divisible by nŠ, or perhaps even equal to nŠ. This is in fact true.

Theorem 10 Let W be an irreducible Coxeter or Shephard group. Then the last

Smith entry of the Foulkes character table ˆ is equal to jW j.

Proof Let CLZ denote the Z-valued class functions on W . Recall that the Foulkes

characters of W are linearly independent, and so the last Smith entry s` is the small-

est positive integer s such that the following holds: whenever
P

qi �
i 2 CLZ for

some qi 2 Q, then one has that sqi 2 Z. We show that s is the order of the group.

To see that jW j divides s, recall that the sum of the �i is the regular representa-

tion, or in other words

1

jW j
.�0 C �1 C : : : C �`/ D ıid

for ıK the class function that is 1 on the elements of class K, and 0 elsewhere.

To see that s divides jW j, suppose that
P

qi �
i 2 CLZ for some qi 2 Q. Write

X

i
qi �

i D
X

K
zKıK (13)

for integers zK indexed by conjugacy classes K. We want to show that jW jqi 2 Z.

Equivalently, jW jqi is an algebraic integer, since it is a priori a rational number.

10



Recall ÷1.1 the character �i of the i th exterior power of the reflection representation.

Apply h �i ; � i to both sides of (13) to get

�i .1/ � qi D
X

K
zK

jKj �i .gK/

jW j

or equivalently

jW j � qi D
X

K
zK

jKj �i .gK/

�i .1/

for gK 2 K. Since �i is an irreducible character of a finite group, a well-known

result from character theory tells us that the terms on the right are algebraic integers.

Hence jW jqi is an algebraic integer, as desired. �

3.2 A sharp generalization of the Diaconis–Fulman formula

Diaconis and Fulman confirmed Isaacs’ conjecture by showing that in fact the deter-

minant of the Foulkes character table for Sn is equal to nŠ.n � 1/Š � � � 2Š via induc-

tion; see [2, p. 429]. We give a remarkable generalization that holds whenever the

determinant is available, that is, whenever the full table reduces to a square matrix.

Recall that the group acts on polynomial functions on V by gp.v/ D p.g�1v/,

and there exists a set of homogeneous polynomials p1; p2; : : : ; p` such that the

subalgebra of W -invariant polynomials is given by CŒp1; p2; : : : ; p`�. The degrees

di D deg.pi / are uniquely determined by the group, and we agree to number them

so that d1 � d2 � : : : � d`. For example, when W is the symmetric group acting

irreducibly on the subspace of Cn where x1Cx2C: : :Cxn D 0, then the elementary

symmetric functions e2; e3; : : : ; en form such a set of homogeneous polynomials,

and so the degrees are 2; 3; : : : ; n. In general, one has that jW j D d1d2 � � � d`.

Theorem 11 Let W be an irreducible Coxeter or Shephard group. Assume that

each �i .g/ depends only on the dimension of the fixed space of g. Then

detˆ D d 1
1 d 2

2 � � � d `
` :

A much sharper result is the following.

Theorem 12 Let W be an irreducible Coxeter or Shephard group. Assume that

each �i .g/ depends only on the dimension of the fixed space of g. Then the Smith

entries s0; s1; : : : ; s` of the Foulkes character table are given by

si D d1d2 � � � di :

The empty product that occurs when i D 0 is defined to be 1.

Theorem 11 and Theorem 12 will follow from Theorem 1 and the next propo-

sition. The proof of the proposition relies on classic results of Orlik and Solomon

[11, 12, 13], which were established using the Shephard–Todd classification [14]

11



and nontrivial calculations showing that for every X 2 L of dimension p there exist

positive integers bX
1 � bX

2 � : : : � bX
p such that

BX .t/ D .t C bX
1 /.t C bX

2 / � � � .t C bX
p /:

Call these positive integers Orlik–Solomon coexponents. When X D V they are the

usual coexponents n1; n2; : : : ; n` from the invariant theory of the group, which in

the case of Shephard and Coxeter groups satisfy a remarkable duality involving the

exponents m1; m2; : : : ; m` (defined as mi D di � 1) which says that m1 C ni D di .

Proposition 13 Let W be an irreducible Coxeter or Shephard group such that each

�i .g/ depends only on the dimension of the fixed space of g. Let X 2 L and write

p D dimX . Then the following hold:

(i) The cell counts fi .� \ X/ depend only on p.

(ii) fp�1.� \ X/ D d1d2 � � � dp .

Proof For (i), suppose otherwise and choose a p-dimensional Y 2 L such that

fs�1.� \ X/ ¤ fs�1.� \ Y / for some s. Fix s to be the smallest such number, and

choose g; h 2 W with fixed spaces X; Y . Then (1) implies that �s.g/ ¤ �s.h/.

For (ii), recall that fp�1.� \ X/ D BX .m1/, and hence

fp�1.� \ X/ D .m1 C bX
1 /.m1 C bX

2 / � � � .m1 C bX
p /:

Orlik and Solomon observed that for each Shephard and Coxeter group there exists

some p-dimensional Y 2 L such that bY
i D ni for 1 � i � p. Since (i) tells us that

fp�1.� \ X/ D fp�1.� \ Y /, it follows that

fp�1.� \ X/ D .m1 C n1/.m1 C n2/ � � � .m1 C np/:

Now use the duality m1 C ni D di to rewrite the product as d1d2 � � � dp . �

Proof of Theorem 11 and Theorem 12 Choose a sequenceX0; X1; : : : ; X` 2 L such

that dimXi D i . Define ˆ0 D Œfi�1.� \ Xj /�ij where 0 � i; j � `. Note that the

left factor of (3) is square and has determinant equal to 1. Hence ˆ and ˆ0 have the

same determinant and the same Smith normal form.

Theorem 11 follows from Proposition 13(ii), which says ˆ0 has diagonal entries

fi�1.� \ Xi / D d1d2 � � � di :

These diagonal entries are the claimed Smith entries, and so for Theorem 12 it suf-

fices to show that each diagonal entry divides the entries to its right in ˆ0, that is,

fi�1.� \ Xi / divides fi�1.� \ Xj / whenever i � j ; indeed, (2) tells us that

fi�1.� \ Xj / D
X

X
fi�1.� \ X/

D
X

X
fi�1.� \ Xi /;

where the sums are over all i -dimensional subspaces X 2 L that lie above Xj , and

the second equality follows from Proposition 13(i). �
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3.3 A curious classification

Theorem 14 Let W be an irreducible Coxeter or Shephard group.

Then the following are equivalent.

(a) The characters �i .g/ depend only on the dimension of the fixed space of g.

(b) The characters �0; �1; : : : ; �` form a Q basis for the space of class functions

� that depend only on the dimension of the fixed space, and (4) holds.

(c) The reduced Foulkes character table ˆ is square and detˆ D d 1
1 d 2

2 � � � d `
`
.

(d) The Smith entries s0; s1; : : : ; s` of the table ˆ are given by si D d1d2 � � � di .

(e) The isomorphism class of LX depends only on the dimension of X .

(f) The cell counts fi .� \ X/ depend only on the dimension of X .

(g) The numbers BX .m1/ depend only on the dimension of X .

(h) The Orlik–Solomon coexponents bX
i depend only on the dimension of X .

(i) The coexponent sequence n1; n2; : : : ; n` is arithmetic.

(j) The degree sequence d1; d2; : : : ; d` is arithmetic.

(k) The group W is not F4; H4; E6; E7; E8; or D` for ` � 4.

Proof The proof of Theorem 3 gives the forward implication of (a),(b); the con-

verse is trivial. (a),(c) follows from Theorem 11. (a))(d) is Theorem 12. The

proof of Theorem 2 gives the implication (e))(a).

(i),(j),(k). These equivalences follow from [11, Table 2].

(a),(f))(g). The implication (a))(f) is Proposition 13(i), and the converse

follows from equation (1). The implication (f))(g) follows from the special case

fdimX�1.� \ X/ D BX .m1/ of equation (2).

(g),(h),(i). The exceptional cases follow from the tables of [12, 13]. When

W is a dihedral group, the rank is 2, and properties (g)–(i) follow immediately.

There are two other nonexceptional cases: Zr o Sn and the Weyl group D` when

` � 4. In the case when W D Zr o Sn, property (i) follows from [11, Table 2],

while (g) and (h) follow from the fact that LX , and hence BX .t/, is determined by

the dimension of X . When W D D`, [11, Table 2] tells us that the coexponent

sequence is not arithmetic, and we claim that (g) and (h) fail in this case as well.

In usual coordinates [13], let X be the codimension-2 space where x1 D x2 and

x3 D x4, and let Y be the space where x1 D x2 D x3. Then by [13, Prop. 2.6]

BY .m1/ < BX .m1/ D d1d2 � � � d`�2, and the claim follows.

(d))(g). Assume that (g) fails. We claim that s1s2 � � � s` < d 1
1 d 2

2 � � � d `
`
. As in the

previous proof, it suffices to consider the matrix ˆ0 D Œfi�1.� \ Y /�i;Y , Y 2 L.

Recall Orlik and Solomon’s observation that for each Shephard and Coxeter group,

and for each integer p with 0 � p � `, there exists a p-dimensional Y 2 L such

that bY
i D ni for 1 � i � p. From the tables of [12, 13] and the previous paragraph,

it follows that there exists a sequence X0; X1; : : : ; X` 2 L such that dimXi D i and

BXi
.m1/ � d1d2 � � � di , with at least one strict inequality. Hence the determinant of

the submatrix Œfi�1.� \ Xj /�ij is strictly less than d 1
1 d 2

2 � � � d `
`
by triangularity.

The claim now follows from a well-known result about Smith forms which says that

s0s1 � � � si�1 is the greatest common divisor of all i � i subdeterminants.

To end, it suffices to show that (k))(e). Since (e) is a well-known property of
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the infinite family Zr o Sn, let us suppose that W is dihedral or exceptional of

rank `. The cases dimX D `; 1; 0 are trivial, and when dimX D 2, the structure

of LX is determined by BX .t/ D .t C bX
1 /.t C bX

2 /, which apparently depends

only on the dimension of X by (k))(h). Having dispensed with the case when

` � 3, the Shephard–Todd classification tells us that the only remaining case is

when ` D 4 and W is the group known as G32. We need only consider the case

when X is a reflecting hyperplane, and this case follows from the fact that G32

acts transitively on its reflecting hyperplanes; indeed, each reflection of a reflection

group is conjugate to a power of some generating reflection ri , and in the case of

G32, all of the generating reflections are clearly conjugate. �
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