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Abstract. Recent results of Ayyer–Prasad–Spallone and Isaacs–Navarro–Olsson–Tiep on odd-

degree character restrictions for symmetric groups are extended to reflection groups G(r, p, n).

Introduction

Fix some integers m ≥ 0 and n ≥ 1. Recently Ayyer, Prasad, and Spallone [1, Theorem 1] proved

that if χ is an odd-degree irreducible character of the symmetric group Sn, then the restriction

of χ to Sn−1 contains a unique odd-degree irreducible constituent. Isaacs, Navarro, Olsson, and

Tiep [4] proved a stronger result which incorporates multiplicities. They proved [4, Theorem A]

that if n ≥ 2m and χ is an odd-degree irreducible character of Sn, then the restriction of χ to

Sn−2m contains a unique odd-degree irreducible constituent of odd multiplicity.

The object of the present paper is to extend these recent results to reflection groups G(r, p, n).

This includes Coxeter groups of type An−1, Bn, Dn, which are G(1, 1, n), G(2, 1, n), G(2, 2, n).

Denote by Irr2′(G) the set of odd-degree irreducible characters of a finite group G, and let

k(m, p) =







2m if p is odd,

2m+1 + 2m + 1 if p is even.

Theorem A. If χ ∈ Irr2′(G(r, p, n)) and n ≥ k(m, p), then the restriction of χ to G(r, p, n−2m)

contains a unique odd-degree irreducible constituent of odd multiplicity.

Theorem B. If χ ∈ Irr2′(G(r, p, n)) and n ≥ k(0, p), then the restriction of χ to G(r, p, n− 1)

contains a unique odd-degree irreducible constituent.

Remark. The inequalities n ≥ k(m, p) and n ≥ k(0, p) can not be relaxed, for if n = 3×2m and

p is even, then there exists an odd-degree irreducible character of G(r, p, n) whose restriction to

G(r, p, n− 2m) contains at least three odd-degree irreducible constituents of multiplicity 1.

Theorems A and B are proved in §2 after some preliminaries in §1 which includes extensions

of [1, Theorem 1] and [4, Theorem A] to wreath products G ≀ Sn (Theorems 1.5 and 1.6).

§3 remarks on a surjectivity result for the map Irr2′(G(r, p, n)) → Irr2′(G(r, p, n− 2m)) which

sends χ to the unique odd-degree irreducible constituent of odd multiplicity in the restriction of

χ to G(r, p, n− 2m).
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1. Preliminaries

1.1. Partitions and binomials.

1.1.1. Denote by Par(n) the set of integer partitions λ of n, viewed as Young diagrams, and

write |λ| = n. By µ ≺ λ we mean that µ is obtained from λ by removing a single box. By µ ≤ λ

we mean that µ is obtained from λ by removing a collection of boxes. Denote by Parλ(k) the

set of all µ ∈ Par(k) such that µ ≤ λ.

Given a positive integer r we denote by Parr(n) the set of all r-tuples λ = (λ1, λ2, . . . , λr)

where each λi is a partition and
∑

|λi| = n. By µ ≺ λ we mean that µ ∈ Parr(n−1) is obtained

from λ by removing a single box from some λi. By µ ≤ λ we mean that µ is obtained from λ by

removing collections of boxes from the partitions λi in λ. Finally let Parλ(k) = {µ ∈ Parr(k) :

µ ≤ λ}.

1.1.2. For λ ∈ Parr(n) and µ ∈ Parλ(n− k) (0 ≤ k ≤ n) we define multinomial coefficients

cλ =

(

n

|λ1| , |λ2| , . . . , |λr|

)

, cλµ =

(

k

|λ1| − |µ1| , |λ2| − |µ2| , . . . , |λr| − |µr|

)

.

Recall
(

n
n1,n2,...,nr

)

= n!/n1!n2! . . . nr! where the ni’s are nonnegative integers that add up to n.

Two nonnegative integers a and b are said to be 2-disjoint if there is no common summand in

their 2-adic decompositions. This is the same as saying that no carries occur when a is added

to b in base 2. The following well-known result goes back to Kummer [6, p. 116].1

Lemma 1.1. Let k be the largest nonnegative integer such that 2k divides cλ. Then k equals the

number of carries that occur when adding up the |λi|’s in base 2. In particular, cλ is odd if and

only if the |λi|’s are 2-disjoint. �

Lemma 1.2. If cλ, cµ, cλµ are odd for λ ∈ Parr(n) and µ ∈ Parλ(n−2m), then λ and µ differ

in exactly one component, say the k-th component. Moreover, k is determined by λ and m. Let

2s be the smallest term in the 2-adic decomposition of n such that 2s ≥ 2m. Then k is the unique

index where 2s appears in the 2-adic decomposition of |λk|.

Proof. The first part follows from cλµ being odd and Lemma 1.1. The second part follows from

Lemma 1.1 and the first part by noting that at the level of the 2-adic decomposition of |λk|,

subtracting 2m from |λk| replaces the smallest term 2s ≥ 2m by 2s−1 + 2s−2 + . . .+ 2m. �

1.2. Symmetric groups. The irreducible characters of Sn are indexed by partitions of n [5].

Denote by χλ the character indexed by λ in the usual way. When we talk of Sn−k as a subgroup

of Sn we mean the pointwise stabilizer of k points in {1, 2, . . . , n}. The restriction of χλ to

Sn−k is denoted by χλ|Sn−k
. The branching rule for restricting from Sn to Sn−1 is given by

χλ|Sn−1
=

∑

µ≺λ χ
µ.

1.3. Wreath products. Fix a finite group G. Then the wreath product G ≀ Sn has elements

(g1, g2, . . . , gn;σ) where gi ∈ G and σ ∈ Sn, and multiplication is given by

(g1, g2, . . . , gn;σ).(h1, h2, . . . , hn; τ) = (g1hσ−1(1), g2hσ−1(2), . . . , gnhσ−1(n);στ).

1Kummer [6, p. 116] proved that if p is a prime and N is the largest nonnegative integer such that pN divides
(

a+b

b

)

, then N equals the number of carries that occur when a is added to b in base p. The extension to multinomial

coefficients and r-fold sums follows by writing
(

n

n1,n2,...,nr

)

=
∏r

i=1

(

n1+n2+...+ni

ni

)

.
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1.3.1. Fix a numbering γ1, γ2, . . . , γr of the irreducible characters of G. Then the irreducible

characters Xλ of G ≀ Sn are indexed by r-tuples λ = (λ1, λ2, . . . , λr) ∈ Parr(n) as follows [8].

Let Wi be the CG-module affording γi, and let Vλi
be the CS|λi|-module affording χλi . Let

Sλ = S|λ1| ×S|λ2| × . . .×S|λr | ≤ Sn, and define C(G ≀Sλ)-modules

Vλ = Vλ1
⊗ Vλ2

⊗ . . .⊗ Vλr
, Wλ = W

⊗|λ1|
1 ⊗W

⊗|λ2|
2 ⊗ . . .⊗W⊗|λr|

r ,

where for gi ∈ G and σ = σ1σ2 . . . σr ∈ Sλ

(g1, g2, . . . , gn;σ)(v1 ⊗ v2 ⊗ . . .⊗ vr) = σ1v1 ⊗ σ2v2 ⊗ . . .⊗ σrvr,

(g1, g2, . . . , gn;σ)(w1 ⊗ w2 ⊗ . . .⊗ wn) = g1wσ−1(1) ⊗ g2wσ−1(2) ⊗ . . .⊗ gnwσ−1(n).

Then Xλ is the irreducible character of G ≀Sn afforded by C(G ≀Sn)⊗C(G≀Sλ) (Vλ ⊗Wλ).

1.3.2. The branching rule [8, Theorem 4.1] says

Xλ|G≀Sn−1
=

r
∑

i=1

∑

µi≺λi

γi(1)X
(λ1,...,λi−1,µi,λi+1,...,λr). (1)

Iterating the rule gives a general one which is well known.

Theorem 1.3. Xλ|G≀Sn−k
=

∑

cλµmλµdλµX
µ over all µ ∈ Parλ(n− k), where

mλµ =
∏

1≤i≤r

〈χλi |S|µi|
, χµi〉, dλµ =

∏

1≤i≤r

γi(1)
|λi|−|µi|.

Proof. Repeatedly apply (1) in order to restrict Xλ from G ≀ Sn down to G ≀ Sn−k, and note

that cλµmλµ counts the number of ways to go from λ to µ by successively removing boxes. �

1.3.3. The construction of Xλ implies the following basic fact.

Lemma 1.4. Xλ(1) = cλ
∏r

i=1 γi(1)
|λi|χλi(1) for λ ∈ Parr(n). In particular Xλ(1) is odd if and

only if the |λi|’s are 2-disjoint, the degrees χλi(1) are odd, and |λi| = 0 when γi(1) is even. �

1.4. Odd-degree character restrictions and wreath products. Here we extend [1, Theo-

rem 1] and [4, Theorem A] from Sn to G ≀Sn. Recall [4, Theorem A] says that if χλ ∈ Irr2′(Sn)

and n ≥ 2m, then there is a unique χλ⋆
∈ Irr2′(Sn−2m) of odd multiplicity in χλ|Sn−2m

.

Theorem 1.5. If X ∈ Irr2′(G ≀ Sn) and n ≥ 2m, then the restriction of X to G ≀ Sn−2m

contains a unique odd-degree irreducible constituent Xµ of odd multiplicity. Moreover µ equals

(λ1, . . . , λk−1, λ
⋆
k, λk+1, . . . , λr) where k is the number determined by λ and m in Lemma 1.2.

Proof. AssumeXλ(1) is odd. Then there exists an odd-degree constituentXµ of odd multiplicity

in the restriction of Xλ to G ≀Sn−2m . The aim is to show that µ is as claimed.

Theorem 1.3 tells us that cλµmλµdλµ is the multiplicity of Xµ in Xλ|G≀Sn−2m
. Since cλµ is

odd, and since both cλ and cµ are odd by Lemma 1.4, we conclude from Lemma 1.2 that there

is a unique index k (as described in the statement) such that |µk| = |λk| − 2m and |µi| = |λi| for

i 6= k. Since µ ≤ λ it follows that µi = λi for i 6= k. Hence mλµ = 〈χλk |Sn−2m
, χµk〉. Since mλµ

is odd, and both χλk(1) and χµk(1) are odd (by Lemma 1.4), it follows from [4, Theorem A]

that µk = λ⋆
k. �

Theorem 1.6. If X ∈ Irr2′(G ≀ Sn), then the restriction of X to G ≀Sn−1 contains a unique

odd-degree irreducible constituent.
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Proof. Assume Xλ(1) is odd. Then by (1) and Lemma 1.4, all irreducible constituents of the

restriction Xλ|G≀Sn−1
have odd multiplicity. It follows by Theorem 1.5 that Xλ|G≀Sn−1

has a

unique odd-degree irreducible constituent. �

1.5. The reflection groups G(r,p,n). Fix positive integers r and p such that p divides r. Then

G(r, 1, n) ≤ GL(n,C) is the group of all n-by-n monomial matrices (one nonzero entry in each

row and column) with r-th roots of unity for nonzero entries. The normal subgroup G(r, p, n)

consists of all x ∈ G(r, 1, n) for which the product of the nonzero entries is an r/p-th root of

unity. The quotient G(r, 1, n)/G(r, p, n) is cyclic of order p. When we speak of G(r, p, n − k)

as a subgroup of G(r, p, n) we mean the pointwise stabilizer in G(r, p, n) of k of the column

vectors e1, e2, . . . , en, where ei is the standard column vector in Cn with 1 in the i-th spot and

0’s elsewhere. For the purposes of the present paper, we define G(r, p, 0) to be the trivial group.

1.5.1. Let Zr be the cyclic group of r-th roots of unity. Then ϕ : Zr ≀Sn → GL(n,C) defined

by ϕ((z1, z2, . . . , zn;σ))ei = zσ(i)eσ(i) (0 ≤ i ≤ n) takes Zr ≀ Sn isomorphically onto G(r, 1, n).

From this identification G(r, 1, n) ≃ Zr ≀Sn and the construction of the irreducible characters

Xλ of a general wreath product G ≀Sn we obtain the irreducible characters χλ of G(r, 1, n). In

particular, the characters χλ of G(r, 1, n) are indexed by the r-tuples λ ∈ Parr(n).

By Theorem 1.3 we have the following well-known branching rule for G(r, 1, n):

χλ|G(r,1,n−k) =
∑

µ∈Parλ(n−k)

cλµmλµχ
µ, mλµ =

∏

1≤i≤r

〈χλi |S|µi|
, χµi〉. (2)

By Lemma 1.4 we also have the following formula for χλ(1).

Lemma 1.7. χλ(1) = cλχ
λ1(1)χλ2(1) . . . χλr(1) for λ ∈ Parr(n). In particular χλ(1) is odd if

and only if the |λi|’s are 2-disjoint and the degrees χλi(1) are odd. �

1.5.2. Write r = dp and consider the cyclic group Cp = 〈ωd〉 where ω is the r-cycle (1 2 3 . . . r).

Cp acts on Parr(n) by permuting coordinates

σ.(λ1, λ2, . . . , λr) = (λσ−1(1), λσ−1(2), . . . , λσ−1(r))

and we denote by λ the orbit of λ under the action of Cp. Define

Pard,p(n) = {λ : λ ∈ Parr(n)}, Aut(λ) = {σ ∈ Cp : σλ = λ} ≤ Cp.

Then the irreducible characters of G(r, p, n) are indexed by the pairs (λ, i) where λ ∈ Pard,p(n)

and 0 ≤ i ≤ |Aut(λ)| − 1, and the indexing is such that [3, 7]

χλ|G(r,p,n) =
∑

0≤i≤|Aut(λ)|−1

χ(λ,i) for χλ ∈ Irr(G(r, 1, n)). (3)

In particular, the summands χ(λ,i) are all conjugate and of degree

χ(λ,i)(1) = |Aut(λ)|−1 χλ(1) = |Aut(λ)|−1 cλ χλ1(1)χλ2(1) . . . χλr(1). (4)

The branching rule for G(r, p, n) says that [7, Proposition 3.2]

〈χ(λ,i)|G(r,p,n−1), χ
(µ,j)〉 = |Aut(λ)|−1 × |{ν ≺ λ : ν = µ}|. (5)
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1.5.3. We end with some basic observations. Recall that n ≥ 1.

Lemma 1.8. Let λ ∈ Parr(n).

(i) |Aut(λ)| divides p.

(ii) If |Aut(λ)| = k and λi ∈ λ, then λi appears k × l times in λ for some l ≥ 1.

(iii) If χλ(1) is odd , then |Aut(λ)| = 1.

Proof. (i) and (ii) follow from Aut(λ) being a subgroup of Cp. Consider (iii). If |Aut(λ)| 6= 1,

then by (ii) the |λi|’s are not 2-disjoint, and therefore χλ(1) is even by Lemma 1.7. �

2. Proofs of Theorems A and B

After two results in §2.1 we prove Theorems A and B in §2.2 and §2.3. Note that Theorems A

and B for G(r, 1, n) are consequences of Theorems 1.5 and 1.6 with G = Z/rZ.

2.1. The following general branching rule for G(r, p, n) will be useful in the sequel.

Theorem 2.1. Let 0 ≤ k < n. Let λ ∈ Parr(n) and µ ∈ Parr(k). Write aλν = 〈χλ|G(r,1,k), χ
ν〉

for ν ∈ Parr(k). Then for all i and j,

〈χ(λ,i)|G(r,p,k), χ
(µ,j)〉 =

1

|Aut(λ)|

∑

ν

aλν (6)

where the sum is over all ν ∈ Parλ(k) such that ν = µ. Equivalently,

χ(λ,i)|G(r,p,k) =
1

|Aut(λ)|

∑

ν

aλνχ
ν |G(r,p,k) =

1

|Aut(λ)|

∑

ν

∑

j

aλνχ
(ν,j) (7)

where the first two sums are over ν ∈ Parλ(k) and the third sum goes from 0 to |Aut(ν)| − 1.

Proof. The right-hand side of the branching rule (5) does not depend on i, and so the restriction

χ(λ,i)|G(r,p,k) = χ(λ,i)|G(r,p,n−1)|G(r,p,k) does not depend on i. Hence by (3)

χλ|G(r,p,k) = χλ|G(r,p,n)|G(r,p,k) =
∑

t

χ(λ,t)|G(r,p,k) = |Aut(λ)| · χ(λ,i)|G(r,p,k)

where t goes from 0 to |Aut(λ)| − 1. On the other hand χλ|G(r,p,k) = χλ|G(r,1,k)|G(r,p,k) implies

χλ|G(r,p,k) =
∑

ν

aλνχ
ν |G(r,p,k) =

∑

ν

∑

j

aλνχ
(ν,j)

where ν runs over Parλ(k) and j runs from 0 to |Aut(ν)| − 1. Hence

χ(λ,i)|G(r,p,k) =
1

|Aut(λ)|

∑

ν

∑

j

aλνχ
(ν,j)

were the sums are as before. This completes the proof. �

The next result determines the odd-degree irreducible characters of G(r, p, n) in terms of the

odd-degree characters of G(r, 1, n) and S2s .

Proposition 2.2. Let λ ∈ Parr(n) and consider an irreducible constituent χ(λ,i) of χλ|G(r,p,n).

Then χ(λ,i)(1) is odd if and only if either

(i) χλ(1) is odd, or

(ii) χλ(1) is even, p is even, |Aut(λ)| = 2, and λ = (∅, . . . ,∅, λ,∅, . . . ,∅, λ,∅, . . . ,∅) for

some λ such that χλ(1) is odd and |λ| = 2s for some s ≥ 0.
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Proof. If (i) holds, then |Aut(λ)| = 1 by Lemma 1.8(iii). Hence by (3) we have i = 0 and in

turn χ(λ,i)(1) = χλ(1) is odd. If (ii) holds, then χ(λ,i)(1) is odd by (4) and Lemma 1.1.

Suppose χ(λ,i)(1) is odd and χλ(1) is even. Then by comparing degrees in (4) and Lemma 1.7,

|Aut(λ)| = 2k for some positive integer k. Fix some nonempty λ ∈ λ. Lemma 1.8(ii) tells us

that λ must occur at least 2k times in λ. Let a = |λ|. At least 1 carry occurs when adding a

to a in base 2, and in turn at least 2 carries occur when adding up 4 copies of a in base 2, and

so on. In general, at least k carries occur in adding up 2k copies of a in base 2. Hence cλ is a

multiple of 2k by Lemma 1.1. Since

χ(λ,i)(1) = (2k)−1cλχ
λ1(1)χλ2(1) . . . χλr(1) ≡ 1 (mod 2) (8)

and 2k ≤ 2k with equality if and only if k = 1, we conclude that |Aut(λ)| = 2. From (8) with

k = 1, it follows that cλ is divisible by 2 but not 4. By Lemma 1.1 this is the same as saying

that exactly 1 carry occurs in adding up the |λi|’s. Since already λ 6= ∅ occurs at least twice in

λ, it follows that λ occurs exactly twice, |λ| = 2s for some s ≥ 0, and the only other partition

that occurs in λ is the empty one. Finally, p is even by Lemma 1.8(i). �

2.2. We now prove Theorem A.

Proof of Theorem A. Fix G(r, p, n) and recall that the integers m and n satisfy m ≥ 0 and

n ≥ 1. Assume n ≥ k(m, p), so that n is at least 2m if p is odd, and at least 3 × 2m + 1 if

p is even. Since the assertion is trivial if n = 2m, we may further assume that n > 2m if p is

odd. Fix χλ ∈ Irr(G(r, 1, n)) so that λ ∈ Parr(n). Fix an irreducible constituent χ(λ,i) of the

restriction χλ|G(r,p,n) and abbreviate it to χλ. The object is to show that if χλ(1) is odd, then

the restriction χλ|G(r,p,n−2m) has a unique odd-degree irreducible constituent of odd multiplicity.

Henceforth we call an r-tuple µ odd if χµ(1) is odd, and even if χµ(1) is even. Assume that

χλ(1) is odd.

Case 1. Suppose χλ(1) is odd. Then |Aut(λ)| = 1 by Lemma 1.8(iii). Hence by (7)

χλ|G(r,p,n−2m) =
∑

µ∈Parλ(n−2m)

aλµ χµ|G(r,p,n−2m) for aλµ = 〈χλ|G(r,1,n−2m), χ
µ〉. (9)

If µ ∈ Parλ(n − 2m) is even, then all irreducible constituents of χµ|G(r,p,n−2m) are of even

degree. Suppose otherwise. Then Proposition 2.2 tells us that |Aut(µ)| = 2,

µ = (∅, . . . ,∅, µ,∅, . . . ,∅, µ,∅, . . . ,∅), |µ| = 2s for some s ≥ 0,

and p is even. Since p is even, we assume n ≥ 3 × 2m + 1. Since n = 2 × 2s + 2m we conclude

that s ≥ m + 1. Since µ ≤ λ ∈ Parr(n) it follows that 2s is a summand in two of the 2-adic

decompositions of the |λi|’s. By Lemma 1.7, this contradicts λ being odd.

If µ ∈ Parλ(n − 2m) is odd, then |Aut(µ)| = 1 by Lemma 1.8(iii). Hence χµ|G(r,p,n−2m) =

χ(µ,0). We conclude by the previous paragraph that the odd-degree irreducible constituents of

χλ|G(r,p,n−2m) are precisely the characters χ(µ,0) = χµ|G(r,p,n−2m) where µ ∈ Parλ(n − 2m) is

odd. It follows then from (6) that the multiplicity of such a constituent is given by

〈χλ |G(r,p,n−2m), χ
(µ,0)〉 =

∑

aλν , aλν = 〈χλ|G(r,1,n−2m), χ
ν〉, (10)

where the sum is over all odd ν ∈ Parλ(n − 2m) such that ν = µ. By Theorem 1.5 applied to

G(r, 1, n) there exists a unique odd µ⋆ ∈ Parλ(n−2m) such that aλµ⋆ is odd. In particular, aλµ

is even for all other odd µ ∈ Parλ(n − 2m). Therefore χ(µ⋆,0) is by (10) the unique odd-degree

irreducible constituent of odd multiplicity in the restriction of χλ to G(r, p, n− 2m).
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Case 2. Suppose χλ(1) is even. Since χλ(1) is odd, Proposition 2.2 tells us that p is even,

|Aut(λ)| = 2, λ = (∅, . . . ,∅, λ,∅, . . . ,∅, λ,∅, . . . ,∅), χλ(1) odd, |λ| = 2s with s ≥ 0. (11)

Since p is even, we assume n ≥ 3×2m+1. Since (11) implies n = 2s+1, it follows that s ≥ m+1.

From (7) with |Aut(λ)| = 2, we have

χλ|G(r,p,n−2m) =
1

2

∑

µ∈Parλ(n−2m)

〈χλ|G(r,1,n−2m), χ
µ〉χµ|G(r,p,n−2m)

where the µ ∈ Parλ(n− 2m) are precisely those sequences in Parr(n− 2m) of the form

µ = (∅, . . . ,∅, ν1,∅, . . . ,∅, ν2,∅, . . . ,∅), ∅ < ν1, ν2 ≤ λ, (12)

where ν1 and ν2 occupy the same two positions occupied by the λ’s in λ. Fix such a µ.

If µ differs from λ in exactly two places, then we claim that all irreducible constituents of

χµ|G(r,p,n−2m) are of even degree. To this end, suppose µ differs from λ in exactly two places.

Then |ν1| = 2s− a and |ν2| = 2s− (2m− a) for some 0 < a < 2m. Since s ≥ m+1 it follows that

2m, 2m+1, . . . , 2s−1 are summands in the 2-adic decompositions of |ν1| and |ν2|. It follows that

if |Aut(µ)| = 1, then χµ|G(r,p,n−2m) is irreducible of even degree by Lemma 1.7. Assume now

|Aut(µ)| = 2. Then a = 2m−1 and |ν1| = |ν2| = 2s − 2m−1 = 2s−1 + 2s−2 + . . . + 2m−1. Hence

s−m+ 1 carries occur when |ν1| is added to |ν2| in base 2. Since s−m+1 ≥ 2, it follows from

(4) and Lemma 1.1 that all irreducible constituents of χµ|G(r,p,n−2m) are of even degree.

If µ differs from λ in exactly one place, then we claim that χµ|G(r,p,n−2m) is irreducible and

〈χλ|G(r,p,n−2m), χ
µ|G(r,p,n−2m)〉 = 〈χλ|G(r,1,n−2m), χ

µ〉. (13)

To this end, suppose µ differs from λ in exactly one place. Then |Aut(µ)| = 1, and therefore

χµ|G(r,p,n−2m) = χ(µ,0). Hence by (6)

〈χλ|G(r,p,n−2m), χ
µ|G(r,p,n−2m)〉 =

1

2

∑

ν

〈χλ|G(r,1,n−2m), χ
ν〉

where the sum is over ν ∈ Parλ(n−2m) such that ν = µ. Since there are exactly two summands

and both equal 〈χλ|G(r,p,n−2m), χ
µ〉, we obtain the claimed equality (13).

We conclude that the odd-degree irreducible constituents of odd multiplicity in χλ|G(r,p,n−2m)

are precisely the restrictions χµ|G(r,p,n−2m) = χ(µ,0) for µ ∈ Parλ(n− 2m) such that

(i) µ differs from λ in exactly one place,

(ii) χµ(1) is odd,

(iii) 〈χλ|G(r,1,n−2m), χ
µ〉 is odd.

Recall |λ| = 2s and m+ 1 ≤ s, so that 2m < 2s. The µ ∈ Parλ(n− 2m) that differ from λ in

exactly one place are the sequences of the form

µ1(ν) = (∅, . . . ,∅, ν,∅, . . . ,∅, λ,∅, . . . ,∅), µ2(ν) = (∅, . . . ,∅, λ,∅, . . . ,∅, ν,∅, . . . ,∅),

where ν ∈ Parλ(2
s−2m) and where ν and λ occupy the same positions occupied by the λ’s in λ.

By Equation (2) we have

〈χλ|G(r,1,n−2m), χ
µ1(ν)〉 = 〈χλ|G(r,1,n−2m), χ

µ2(ν)〉 = 〈χλ|Sn−2m
, χν〉. (14)

Since χλ(1) is odd and the numbers |ν| = 2s − 2m and |λ| = 2s are 2-disjoint, by Lemma 1.7 we

also have

χµ1(ν)(1) is odd ⇔ χµ2(ν)(1) is odd ⇔ χν(1) is odd. (15)
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Since 2m < 2s and χλ(1) is odd, [4, Theorem 1] says there exists a unique ν⋆ ∈ Parλ(2
s − 2m)

such that χν⋆(1) and 〈χλ|S2s−2m
, χν⋆〉 are odd. By (14) and (15) we conclude that µ1(ν

⋆) and

µ2(ν
⋆) are the unique elements of Parλ(n− 2m) that satisfy (i)–(iii). Therefore the restrictions

χµ1(ν⋆)|G(r,p,n−2m) = χ(µ1(ν⋆),0) and χµ2(ν⋆)|G(r,p,n−2m) = χ(µ2(ν⋆),0)

are the only odd-degree irreducible constituents of odd multiplicity in χλ|G(r,p,n−2m). But the

equality |Aut(λ)| = 2 implies µ1(ν⋆) = µ2(ν⋆) and hence χ(µ1(ν⋆),0) = χ(µ2(ν⋆),0). So there is

exactly one odd-degree irreducible constituent of odd multiplicity in χλ|G(r,p,n−2m). �

2.3. The proof of Theorem B is similar to the proof of Theorem A in the special case m = 0.

Proof of Theorem B. Fix G(r, p, n). Since the assertion is trivial if n = 1, we may assume n ≥ 2.

Let χ(λ,i) ∈ Irr2′(G(r, p, n)) so that χ(λ,i) is an irreducible constituent of χλ|G(r,p,n) for some

fixed λ ∈ Parr(n). Abbreviate χ(λ,i) to χλ.

Case 1. Suppose χλ(1) is even. Then Proposition 2.2 tells us that |Aut(λ)| = 2 and λ is of

the form (∅, . . . ,∅, λ,∅, . . . ,∅, λ,∅, . . . ,∅) for some λ. From Theorem 2.1 it follows that all

irreducible constituents of χλ|G(r,p,n−1) have multiplicity 1. Theorem A tells us that χλ|G(r,p,n−1)

has a unique odd-degree irreducible constituent of odd multiplicity. Hence χλ|G(r,p,n−1) has a

unique odd-degree irreducible constituent.

Case 2. Suppose χλ(1) is odd. Then χλ = χλ|G(r,p,n) by Lemma 1.8(iii). Hence

χλ|G(r,p,n−1) =
∑

µ≺λ

χµ|G(r,p,n−1).

By Theorem 1.6 applied to G(r, 1, n) there is a unique µ⋆ ≺ λ such that χµ⋆

(1) is odd. Since

µ⋆ is odd, |Aut(µ⋆)| = 1 by Lemma 1.8(iii), and so χ(µ⋆,0) = χµ⋆

|G(r,p,n−1) is an odd-degree

irreducible constituent of χλ|G(r,p,n−1). To end, we claim that if µ ≺ λ is even, then χµ|G(r,p,n−1)

has only even-degree irreducible constituents. Suppose otherwise, so that for some even µ ≺ λ

the restriction χµ|G(r,p,n−1) has odd-degree irreducible constituents. Then Proposition 2.2 tells

us that p is even, |Aut(µ)| = 2, and µ = (∅, . . . ,∅, µ,∅, . . . ,∅, µ,∅, . . . ,∅) where |µ| = 2s for

some s ≥ 0. Since p is even, our assumption is n > 3. Since n = 2 × 2s + 1, then s > 0. It

follows that 2s is a summand in two of the 2-adic decompositions of the |λi|’s. By Lemma 1.7

this contradicts λ being odd. �

3. Remarks

Here we remark on some surjectivity results of [4] and [2] and their extensions to G ≀ Sn and

G(r, p, n). The extensions are stated in Theorems 3.1 and 3.2.

Suppose that n ≥ 2m and let f : Irr2′(Sn) → Irr2′(Sn−2m) be the map that takes an odd-

degree irreducible character χ of Sn to the unique odd-degree irreducible character f(χ) of

odd multiplicity in the restriction of χ to Sn−2m . Isaacs, Navarro, Olsson, and Tiep proved [4,

Proposition 4.5] that if 2m is a summand in the 2-adic decomposition of n, then f is a 2m-to-1

surjection. Bessenrodt, Giannelli, and Olsson later proved [2, Theorem A] that f is surjective if

and only if either m > 0 and at least one of the powers 2m, 2m+1 is a summand in the 2-adic

decomposition of n, or m = 0 and at least one of the powers 2m, 2m+1, 2m+2 is a summand in

the 2-adic decomposition of n. Moreover [2, Theorem 3.5] if f is surjective, then f is 2m-to-1 if

2m is a summand in the 2-adic decomposition of n, and is 2-to-1 otherwise.
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3.1. The following theorem extends [4, Proposition 4.5] and [2, Theorem 3.5] from Sn to G ≀Sn.

The proof is omitted as a straightforward application of Theorem 1.5, [4, Proposition 4.5], and

[2, Theorem 3.5].

Theorem 3.1. Suppose that n ≥ 2m and |G| 6= 1. Let F : Irr2′(G ≀Sn) → Irr2′(G ≀Sn−2m) be

the map where F (X) is the unique odd-degree irreducible constituent of odd multiplicity in the

restriction of X to G ≀Sn−2m. Then the following hold.

(i) F is surjective if and only if 2m or 2m+1 is a summand in the 2-adic decomposition of n.

(ii) If 2m is a summand in the 2-adic decomposition of n, then

F−1(Xµ) = {Xλ : λ = (µ1, . . . , µi−1, λi, µi+1, . . . , µr), χλi ∈ f−1(χµi), γi(1) odd} (16)

and F is a 2m|Irr2′(G)|-to-1 surjection.

(iii) If 2m is not a summand in the 2-adic decomposition of n and 2m+1 is a summand in the

2-adic decomposition of n, then F is a 2-to-1 surjection and

F−1(Xµ) = {Xλ : λ = (µ1, . . . , µk−1, λk, µk+1, . . . , µr), χλk ∈ f−1(χµk)} (17)

where k is the index such that 2m is a summand in the 2-adic decomposition of |µk|. �

3.2. The next theorem extends [4, Proposition 4.5] and [2, Theorem 3.5] from Sn to G(r, p, n).

The proof is omitted as a straightforward application of Theorem A, Theorem 3.1, [4, Proposi-

tion 4.5], and [2, Theorem 3.5].

Theorem 3.2. Suppose that n ≥ k(m, p) and r 6= 1. Let Φ : Irr2′(G(r, p, n)) → Irr2′(G(r, p, n−

2m)) be the map where Φ(χ) is the unique odd-degree irreducible constituent of odd multiplicity

in the restriction of χ to G(r, p, n− 2m). If p is even and n− 2m is a power of 2, then Φ is not

surjective. If it is not the case that both p is even and n− 2m is a power of 2, then the following

hold.

(i) Φ is surjective if and only if at least one of the powers 2m, 2m+1 is a summand in the

2-adic decomposition of n, or (n,m, r, p) = (4, 0, 2, 2).

(ii) If 2m is a summand in the 2-adic decomposition of n, then Φ is a 2mr-to-1 surjection.

(iii) If 2m is not a summand in the 2-adic decomposition of n, and 2m+1 is a summand in the

2-adic decomposition of n, then Φ is a 2-to-1 surjection.

(iv) If (n,m, r, p) = (4, 0, 2, 2), then Φ is a 2-to-1 surjection. �
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