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Abstract. For a real reflection group the reflecting hyperplanes cut
out on the unit sphere a simplicial complex called the Coxeter com-
plex. Abramenko showed that each reflecting hyperplane meets the
Coxeter complex in another Coxeter complex if and only if the Cox-
eter diagram contains no subdiagram of type D4, F4, or H4. The
present paper extends Abramenko’s result to a wider class of com-
plex reflection groups. These groups have a Coxeter-like presentation
and a Coxeter-like complex called the Milnor fiber complex. Our first
main theorem determines the groups where each reflecting hyperplane
meets the Milnor fiber complex in another Milnor fiber complex. To
understand better the walls that are not Milnor fiber complexes we
introduce Milnor walls. Our second main theorem generalizes Abra-
menko’s result in a second way. It says that each wall of a Milnor
fiber complex is a Milnor wall if and only if the diagram contains no
subdiagram of type D4, F4, or H4.
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Introduction

Consider a finite group of isometries of Euclidean space generated by reflec-
tions. Each reflection in the group is a reflection through a hyperplane, and
together these reflecting hyperplanes cut out on the unit sphere a simplicial
complex called the Coxeter complex. Intersecting the complex with a reflect-
ing hyperplane gives a subcomplex called a wall. Abramenko [1] showed that
each wall of the Coxeter complex is again a Coxeter complex if and only if the
Coxeter diagram contains no subdiagram of type D4, F4, or H4.
The present paper extends Abramenko’s result to a wider class of reflection
groups. These groups have a Coxeter-like presentation and a Coxeter-like com-
plex called the Milnor fiber complex. Our first main theorem (Theorem 1)

1The author was supported in part by the Austrian Science Foundation.
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Figure 1. The Coxeter complex of type A3 and one of its walls.

determines the groups where each wall of the Milnor fiber complex is again a
Milnor fiber complex.
To understand better the walls that are not Milnor fiber complexes we introduce
Milnor walls. These walls contain a Milnor fiber complex as a full-dimensional
subcomplex, and in a Coxeter complex they are precisely the walls that are
Coxeter complexes. Our second main theorem (Theorem 2) generalizes Abra-
menko’s result in a second way and says that each wall of a Milnor fiber complex
is a Milnor wall if and only if the diagram contains no subdiagram of type D4,
F4, or H4.
As a benefit of Theorem 2 we find that Abramenko’s result extends to give a
new characterization of a family of reflection groups that recently arose in the
study of some remarkable group characters constructed from certain homology
groups [5, 6, 7]. Ten other characterizations were given in [6, Theorem 14], see
Remark 1.

1. Preliminaries and main theorems

Fix a nonnegative integer n ≥ 0 and a finite group G of the form

〈 r1, r2, . . . , rn | rpi

i = 1, rirjri . . . = rjrirj . . . i 6= j 〉 (1)

where pi ≥ 2, the number of terms on both sides of the braid relation is
mij = mji ≥ 2, and pi equals pj if mij is odd2. The empty set (when n = 0)
generates the trivial group.

1.1. Call a group presentation of the form (1) admissible. Koster [4] classi-
fied admissible presentations and found that the groups are precisely the finite
direct products of finite irreducible Coxeter groups and Shephard groups (re-
called below, cf. [10, 13]). The classification implies no group has two different
admissible presentations. Write R = {r1, r2, . . . , rn} and call n the rank of G.

1.1.1. The classification uses a graphical notation for admissible presentations.
The diagram Γ of (1) has for each ri a vertex labeled pi, and for each pair ri, rj
with mij > 2 an edge labeled mij that connects ri and rj . We agree to suppress
the minimal labels (2’s on vertices and 3’s on edges). We say Γ is connected if
it has exactly one connected component; the diagram with no vertices is not

2For mij odd the braid relation says (rirj)
(mij−1)/2

ri = rj(rirj)
(mij−1)/2 so that ri is

conjugate to rj .

Documenta Mathematica 23 (2018) 1247–1261



Walls in Milnor Fiber Complexes 1249

connected. By subdiagram of Γ we mean a diagram gotten from Γ by removing
any number of vertices and all their incident edges.

1.1.2. Write G = G(Γ) and let Γ1,Γ2, . . . ,ΓN be the connected components
of Γ. Then

G = G1 ×G2 × . . .×GN , Gi = G(Γi) (2)

where the empty product is the trivial group. It follows that admissible dia-
grams are the unions of connected ones. Koster classified the connected ones.
Table 1 lists them. The groups are the finite irreducible Coxeter groups and
Shephard groups. Each comes from just one diagram. Finite irreducible Cox-
eter groups are the ones with all vertices 2. Shephard groups are the ones with
linear diagram

q1 q2 qn−1p1 p2 p3 pn−1 pn. . . (3)

The symbol p1[q1]p2[q2]p3 . . . pn−1[qn−1]pn (unique up to reversing term order)
is shorthand for the linear diagram (3).

1.1.3. G has a representation analogous to the canonical one for Coxeter
groups. Fix a vector space V over C of dimension n. A reflection in GL(V )
is an element of finite order whose fixed space V r = ker(r− 1) is a hyperplane,
and a finite (complex) reflection group is a finite group generated by reflections;
useful references include [3, 13]. Finite Coxeter groups have a canonical repre-
sentation as a real reflection group that we view as a complex reflection group
by extending the base field. In general the diagram Γ encodes a canonical faith-
ful representation of G as a reflection group G ⊂ GL(V ) in which each r ∈ R
is a reflection [4]. With this identification the reflections in G are precisely the
non-identity elements that are conjugate to a power of a generator r ∈ R. Call
G irreducible if the CG-module V is irreducible. This happens if and only if Γ
is connected. Shephard groups are irreducible; the trivial group is not.

1.1.4. Shephard and Todd [14] classified the finite irreducible reflection groups
and named exceptional ones G4, G5, . . . , G37. Not all of them are Coxeter or
Shephard groups. The Coxeter ones have another set of names that we also use.
For example H3 and G23 both refer to the same Shephard group in Table 1.

1.1.5. Finite reflection groups on V are also the finite groups acting linearly
on V whose algebra of invariant polynomial functions P on V (with respect to
gP (v) = P (g−1v)) is generated by n = dim V homogeneous algebraically inde-
pendent polynomials Pi. The basic degrees di = degPi are unique and numbered
so that d1 ≤ d2 ≤ . . . ≤ dn. If G is irreducible, then by the classification (see
Table 1):

(i) d1 ≥ 2 with equality if and only if G is a Coxeter group.
(ii) d1 < d2 so that P1 is unique up to a constant factor.

If G is irreducible, then FG = P−1
1 (1) is called the Milnor fiber of G.
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1.1.6. According to details in §2.1 there is a unique (up to G-isomorphism) ab-
stract simplicial complex ∆ = ∆(G,R) with simplices (labeled by) the cosets
gGI of standard parabolic subgroups GI = 〈I〉 (I ⊂ R) with face relation
“gGI is a face of hGJ” ⇔ gGI ⊃ hGJ , and with G acting on ∆ by left trans-
lation g.hGI = ghGI . This is the classical abstract description of the Coxeter
complex when G is a Coxeter group [15]. Call ∆ the Milnor fiber complex of G.
It has an explicit geometric realization in V that is G-homeomorphic to an equi-
variant strong deformation retract of the Milnor fiber FG if G is irreducible [8].
In general it is described in §2.1 as the join of the Milnor fiber complexes of
the irreducible factors Gi of G.
Maximal simplices in ∆ have dimension n−1 and any two can be connected by
a sequence of them in which consecutive terms share a face of codimension 1
so that ∆ is a chamber complex and maximal simplices are called chambers. A
general simplex gGR\I has vertex set {gGR\{r} : r ∈ I} and dimension |I| − 1.
The set I ⊂ R is uniquely determined by gGR\I . Call I the type of gGR\I and
write type (gGR\I) = I.

1.1.7. The simplices of ∆ that are fixed pointwise by a reflection of G form a
subcomplex we call a wall. Since an element g ∈ G fixing a simplex hGR\I ∈ ∆
effects a type-preserving permutation of the vertices hGR\{r} (r ∈ I) the sim-
plex is in fact fixed pointwise by g and so the walls of ∆ are

∆r = {σ ∈ ∆ : rσ = σ}, r ∈ G a reflection. (4)

1.2. Our first theorem extends Abramenko’s result to Milnor fiber complexes.

Theorem 1. Each wall of the Milnor fiber complex ∆ is again a Milnor fiber
complex if and only if the diagram of G contains no subdiagram of type D4, F4,
H4, G25, or G26.

We prove Theorem 1 in Section 2 by first reducing to the case where G is
irreducible and then using the classification together with some enumerative
and topological results about ∆ that relate to the invariant theory of G.

1.2.1. We recover Abramenko’s result from Theorem 1 by Proposition 10,
which tells us that for Coxeter complexes all walls that are Milnor fiber com-
plexes must be Coxeter complexes.

Corollary (Abramenko). Each wall of a Coxeter complex is again a Coxeter
complex if and only if the diagram contains no subdiagram of type D4, F4,
or H4. �

1.3. Our second theorem generalizes Abramenko’s result in another way. The
observation is that walls in Milnor fiber complexes can properly contain Milnor
fiber complexes of the same dimension. We make this precise with the definition
of Milnor wall in Section 3, and then we prove the following theorem which also
implies Abramenko’s result.

Theorem 2. Each wall of the Milnor fiber complex ∆ is a Milnor wall if and
only if the diagram of G contains no subdiagram of type D4, F4, or H4.
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Remark 1. In [6, Theorem 14] we proved that if G is irreducible, then the
diagram of G contains no subdiagram of type D4, F4, or H4 if and only if the
Foulkes characters φ0, φ1, . . . , φn for G depend only on fixed-space dimension in
the sense that φi(g) = φi(h) whenever dimV g = dimV h. See [6, Theorem 14]
for 9 other equivalent conditions.

2. Milnor fiber complexes

In this section we prove Theorem 1 after some preliminaries. §2.1 defines the
Milnor fiber complex. §2.2 defines walls. §2.3 develops some topological results.
§2.4 develops some enumerative results. §2.5 gives a combinatorial description
of the Milnor fiber complex for the full monomial groups. Then in §2.6 we prove
Theorem 1.
Recall that the connected components Γi of Γ partition R into disjoint sets Ri

so that
G = G1 ×G2 × . . .×GN , Gi = 〈Ri〉. (5)

Let ni and δi be the rank and smallest basic degree of Gi, so that ni = |Ri| ≥ 1,
n = n1 + . . .+ nN , and δi ≥ 2 with equality if and only if Gi is a Coxeter group.

2.1. The Milnor fiber complex. We define the Milnor fiber complex of G
to be the complex ∆ described by the following theorem. The definition is
in terms of cosets gGI of standard parabolic subgroups GI = 〈I〉 (I ⊂ R).
If G is a Coxeter group, then the definition is the standard abstract one for
the Coxeter complex of G and the properties that we list are well known,
see [15]. The geometric construction of the Coxeter complex was generalized to
include Shephard groups by Orlik [8]. He called this more general complex the
Milnor fiber complex. The abstract definition of the Coxeter complex was later
shown to hold for the Milnor fiber complex in the Shephard case [9]. For details
about the extension of the definition and the properties to the Shephard case
see [5]. The general case of the following theorem follows from the Coxeter and
Shephard cases.

Theorem 3. The standard parabolic cosets gGI (g ∈ G, I ⊂ R) with face
relation

“gGI is a face of hGJ” ⇔ gGI ⊃ hGJ

is a simplicial complex ∆. Moreover ∆ is a chamber complex with the following
structure:

(i) G acts on ∆ by left translation g.hGI = ghGI.
(ii) ∆ has a G-invariant type function ∆ → {subsets of R} given by

type (hGR\I) = I.
(iii) There exists a type-preserving G-equivariant isomorphism

∆ ∼= ∆1 ∗∆2 ∗ . . . ∗∆N , ∆k = ∆(Gk, Rk) (6)

where type (h1GR1\I1 ∗ . . . ∗ hNGRN\IN ) = I1 ∪ . . . ∪ IN and

g.(h1GI1 ∗ . . . ∗ hNGIN ) = g1h1GI1 ∗ . . . ∗ gNhNGIN

for g = g1g2 . . . gN , gi ∈ Gi, Ii ⊂ Ri.
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Proof. For the case where G is a Coxeter or Shephard group see [15] and [5].
For the general case it suffices to prove (iii). To this end note that the mapping

h1GI1 ∗ h2GI2 ∗ . . . ∗ hNGIN 7→ h1h2 . . . hNGI1∪I2∪...∪IN

takes ∆1 ∗∆2 ∗ . . . ∗∆N bijectively onto ∆ in a type-preserving fashion, and is
compatible with the face relation and G-action. In particular ∆ is a simplicial
complex. �

We require the following lemma [5, Lemma 3.14 with T = R \ U ] which tells
us that each link in a Milnor fiber complex is again a Milnor fiber complex.

Proposition 4. The link of a simplex gGI in ∆ is isomorphic to ∆(GI , I). �

2.2. The walls of the Milnor fiber complex. The simplices of ∆ that
are fixed pointwise by a reflection of G form a subcomplex we call a wall. The
following proposition says that a simplex σ ∈ ∆ is fixed pointwise by g ∈ G if
and only if gσ = σ. Write

∆g = {σ ∈ ∆ : gσ = σ}, g ∈ G. (7)

Proposition 5. ∆g = {σ ∈ ∆ : σ fixed pointwise by g}.

Proof. An element g ∈ G fixing a simplex hGR\I ∈ ∆ effects a type-preserving
permutation of the vertices hGR\{r} (r ∈ I) of the simplex. Since no two of these
vertices have the same type, the element g must fix each of the vertices. �

Proposition 5 gives the following description of walls.

Proposition 6. The walls of ∆ are

∆r = {σ ∈ ∆ : rσ = σ}, r ∈ G a reflection. (8)

Equivalently, the walls of ∆ are (up to isomorphism)

∆(G1, R1) ∗ . . . ∗∆(Gi, Ri)
t ∗ . . . ∗∆(GN , RN ), t ∈ Gi a reflection. (9)

Proof. The first part is by Proposition 5. The second part follows by Theo-
rem 3(iii). �

As a benefit of (9) we have the following result that reduces the problem of
determining when the walls of ∆ are Milnor fiber complexes to the case where
G is irreducible.

Proposition 7. Each wall of ∆(G,R) is a Milnor fiber complex if and only if
each wall of each ∆(Gi, Ri) is a Milnor fiber complex.

Proof. If the wall in (9) is a Milnor fiber complex, then it follows from Propo-
sition 4 that the wall ∆(Gi, Ri)

t of ∆(Gi, Ri) is a Milnor fiber complex. Con-
versely, if the wall ∆(Gi, Ri)

t of ∆(Gi, Ri) is a Milnor fiber complex ∆(G′
i, R

′
i),

then the wall in (9) is the Milnor fiber complex of G1× . . .×G′
i× . . .×GN . �
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2.3. Topological results. The following theorem tells us the homotopy
type of the subcomplex ∆g for any element g ∈ G. In particular, it tells us the
homotopy type of any wall ∆r. It is due to Orlik [8] and appears in the proof of
his Theorem 4.1 on p. 145 where he observes that ∆g is a deformation retract
of the intersection of the fixed space V g and the Milnor fiber of G, which has
an isolated critical point at the origin.

Theorem (Orlik). If G is irreducible and g ∈ G, then the subcomplex ∆g is
homotopy equivalent to a bouquet of (d1 − 1)p many (p − 1)-spheres, where
p = dimV g.

If G is reducible, then the homotopy type of a given ∆g is read off from Orlik’s
result and (6). We highlight the case g = 1. This case is used in the proof of
Theorem 1 to help determine if a wall ∆r is a Milnor fiber complex ∆(W,S)
for some possibly reducible W .

Proposition 8. Let ni and δi be the rank and smallest basic degree of the irre-
ducible factor Gi, so that n = n1+n2+ . . .+nN . Then the Milnor fiber complex
of G is homotopy equivalent to a bouquet of (δ1 − 1)n1(δ2 − 1)n2 . . . (δN − 1)nN

many (n− 1)-spheres.

Proof. The Milnor fiber complex is the join ∆1 ∗∆2 ∗ . . .∗∆N of the complexes
∆i of the irreducible factors Gi, and Orlik’s theorem with g = 1 tells us that
∆i is a bouquet of (δi − 1)ni many (ni − 1)-spheres. Hence the result. �

From Proposition 8 we get the following characterization of Coxeter complexes
as Milnor fiber complexes that are spheres.

Proposition 9. A Milnor fiber complex is a Coxeter complex if and only if
it is a sphere.

Proof. Proposition 8 says ∆ is a bouquet of (δ1 − 1)n1(δ2 − 1)n2 . . . (δN − 1)nN

many (n − 1)-spheres. If N = 0, then ∆ is a single (−1)-sphere and G is the
trivial Coxeter group 〈∅〉. If N > 0, then the inequalities ni ≥ 1 and δi ≥ 2
imply that the number of spheres equals 1 if and only if each δi equals 2. Hence
by §1.1.5(i) the Milnor fiber complex ∆ is a single sphere if and only if each Gi

is a Coxeter group, i.e., if and only if G is a Coxeter group. �

As a corollary of Proposition 9 we have the following.

Proposition 10. A wall of a Coxeter complex is a Milnor fiber complex if and
only if it is a Coxeter complex.

Proof. Consider a wall of a Coxeter complex. If it is a Coxeter complex, then
it is a Milnor fiber complex. If it is a Milnor fiber complex, then because it is
also a sphere (being the equator of a sphere) Proposition 9 tells us that it is a
Coxeter complex. �
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2.4. Enumerative results. We require some enumerative results about the
number of chambers of a wall. Denote by fk(Σ) the number of k-simplices in a
complex Σ so that

fk(Σ) = #{σ ∈ Σ : dimσ = k}.

The chambers of ∆ are indexed by elements of G, and the number of elements
of G equals the product of basic degrees d1, d2, . . . , dn. Hence fn−1(∆) equals
d1d2 . . . dn. Suppose for the rest of §2.4 that G is irreducible. Then Eq. (13)
below tells us that fn−2(∆

r) equals d1d2 . . . dn−1 for any reflection r in G. It is
natural to wonder then if a similar formula holds for elements g where dimV g

equals n − 2, n − 3, and so on. Remarkably this turns out to be the case if
and only if the diagram of G does not contain any subdiagram of type D4,
F4, or H4. This is Theorem 11 below. It is a consequence of a collection of
observations from [6] about Orlik–Solomon coexponents.
Continue to suppose that G is irreducible. Let L be the collection of all fixed
spaces V g ordered by reverse inclusion, so that V is at the bottom. This is
the same as the lattice of intersections of reflecting hyperplanes. Let µ be the
Möbius function of L, so that µ(X,X) = 1 and µ(X,Y ) = −

∑

X≤Z<Y µ(X,Z)

for X < Y . Associate to each X ∈ L a polynomial BX(t) ∈ Z[t] defined by
BX(t) = (−1)dimX

∑

Y≥X µ(X,Y )(−t)dimY . Then Orlik [8] (following Orlik–

Solomon in the Coxeter case) showed that

fk−1(∆
g) =

∑

BY (d1 − 1) (10)

where the sum is over all k-dimensional subspaces Y that lie above V g in L.
In particular

fp−1(∆
g) = BX(d1 − 1) (11)

for X = V g and p = dimX . Furthermore for X ∈ L of dimension p there exist
positive integers bX1 ≤ bX2 ≤ . . . ≤ bXp such that

BX(t) = (t+ bX1 )(t+ bX2 ) . . . (t+ bXp ). (12)

Orlik and Solomon determined the bXi ’s for all irreducible Coxeter and Shep-
hard groups. The tables in [11, 12] list the bXi ’s for each X ∈ L when G is
an exceptional group of rank at least 3. Following [6] we make the following
remarkable observation.

Theorem 11. If G is an irreducible Coxeter or Shephard group, then

fn−2(∆
r) = d1d2 . . . dn−1 (13)

for any reflection r ∈ G, and the following are equivalent:

(i) fn−3(∆
g) = d1d2 . . . dn−2 for g ∈ G such that dimV g = n− 2.

(ii) fp−1(∆
g) = d1d2 . . . dp for g ∈ G and p = dim V g.

(iii) The diagram of G contains no subdiagram of type D4, F4, or H4.

Proof. As stated above, this is a collection of observations from [6] about Orlik–
Solomon coexponents (see [6, Prop. 13(ii), Thm. 14(a)(k), Pf. of Thm. 14]) as we
now explain. For irreducible Coxeter groups, Eq. (13) was observed by Orlik and
Solomon [12, p. 271]. In general [6, Thm. 14(g)(k)] is the equivalence (ii)⇔(iii).
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So it remains to show that (i) fails for F4, H4, E6, E7, E8, and Dn (n ≥ 4).
This is implicit in the proof of [6, Thm. 14]. The exceptional cases F4, H4, E6,
E7, and E8 follow from (11) together with the tables of [12], and as explained
in the proof of [6, Thm. 14], (i) fails for Dn since there is a certain fixed space
Y defined by x1 = x2 = x3 such that BY (d1 − 1) < d1d2 . . . dn−2. �

2.5. Another description of the Milnor fiber complex of the full

monomial group. Fix an integer m > 1. The full monomial group G(m, 1, n)
is the group of all n-by-nmonomial matrices (one nonzero entry in each row and
column) whose nonzero entries arem-th roots of unity. Let ζ be a primitivem-th
root of unity and denote by ek the standard column vector inC

n with 1 in the k-
th spot and 0 elsewhere. In cycle notation, the standard generators r1, r2, . . . , rn
of G(m, 1, n) are the adjacent transpositions (1 2), (2 3), . . . , (n−1 n), together
with (n ζn), where for example (n ζn) is short for the n-by-n matrix whose i-th
column is ζei if i = n and ei otherwise. In general, a reflection is conjugate to
a power of a generating reflection. This gives a total of m conjugacy classes of
reflections: one indexed by (n−1 n) and the others by (n ζkn) for 1 ≤ k ≤ m−1.
The Milnor fiber complex ∆ of G(m, 1, n) is realized (see [8]) as the union
∆ = ∪gC of all translates gC of the simplex

C = {α1b1 +α2b2 + . . .+αnbn : α1 + . . .+αn = 1, αi nonnegative real} (14)

where bk = (e1+ . . .+ ek)/k. This leads to the following convenient description
of the Milnor fiber complex. The flag complex ∆(P ) of a finite poset P is the
simplicial complex with elements of P for vertices and flags {x1 < x2 < . . . <
xk : xi ∈ P} for simplices.

Proposition 12. Let ∆n be the Milnor fiber complex of G(m, 1, n). Let r be
a reflection in G(m, 1, n). Let Pn be the collection of sets {α1ei1 , . . . , αkeik}
ordered by inclusion, where the αi’s are m-th roots of unity, i1 < . . . < ik, and
1 ≤ k ≤ n− 1. Then

(i) ∆n is equivariantly isomorphic to the flag complex of Pn.
(ii) The subposet P r

n = {X ∈ Pn : rX = X} is isomorphic to Pn−1.

In particular, each wall of ∆n is isomorphic to ∆n−1.

Proof. As an abstract simplicial complex ∆n is generated by the trans-
lates of the chamber C = {b1, . . . , bn}. Consider the mapping that takes
bk = (e1 + . . .+ ek)/k to the set {e1, . . . , ek}, so that a face {bi1 , . . . , bik} of
C (where i1 < i2 < . . . < ik) goes to the flag

{e1, . . . , ei1} ⊂ {e1, . . . , ei2} ⊂ . . . ⊂ {e1, . . . , eik}.

Extend by the action of G(m, 1, n) to an isomorphism from ∆n onto ∆(Pn).
Hence (i).
The reflection r is conjugate to either t = (n− 1 n) or s = (n ξn) for some root
of unity ξ 6= 1. Hence P r

n is isomorphic to either P s
n or P t

n. We show that P s
n and

P t
n are isomorphic to Pn−1. ConsiderX ∈ Pn and writeX = {α1ei1 , . . . , αkeik}.

The reflection t fixes X if and only if either X contains both αen−1 and αen
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for some α ∈ C, or X contains neither αen−1 nor αen for any α ∈ C. Hence
the following is an isomorphism:

P t
n → Pn−1 given by X 7→ X \Cen.

The set X is fixed by s if and only if X = X \Cen, so P s
n is isomorphic to Pn−1

as well. Hence (ii). The last statement follows: ∆r
n

∼= ∆(P r
n)

∼= ∆(Pn−1) ∼=
∆n−1. �

2.6. Proof of Theorem 1. It suffices to assume that G is irreducible by
Proposition 7.

Coxeter diagram with no subdiagram of type D4, F4, or H4. In this case, Abra-
menko tells us that each wall is a Coxeter complex, and hence a Milnor fiber
complex.

Coxeter diagram with a subdiagram of type D4, F4, or H4. Since ∆ is a Coxeter
complex, Proposition 10 tells us that any wall of ∆ that is a Milnor fiber
complex must be a Coxeter complex. But Abramenko tells us that not all walls
of ∆ are Coxeter complexes. Hence not all walls of ∆ are Milnor fiber complexes.

Full monomial groups G(m, 1, n) (m ≥ 2). Proposition 12 says that any wall
of the Milnor fiber complex of G(m, 1, n) is isomorphic to the Milnor fiber
complex of G(m, 1, n− 1).

Groups of rank 1 and 2. This case is clear.

The remaining exceptional groups: G25, G26, G32. Here we use Orlik’s theorem
(see §2.3), Proposition 8, and the cell counts of Theorem 11.
Group G25. This is the rank-3 group with symbol 3[3]3[3]3. The basic degrees
are 6, 9, 12. Fix a wall ∆r. It is 1-dimensional with 54 chambers by (13), and it
has the homotopy type of a 52-fold bouquet of 1-spheres by Orlik’s theorem. If
the wall is a Milnor fiber complex ∆(W,S), then because ∆(W,S) has dimen-
sion |S|−1 with chambers indexed by the elements of W , the group W must be
a rank-2 group with 54 elements. If W is reducible, then it must therefore be of
the form Zj×Zk for some j, k ∈ N such that jk = 54 and (j−1)(k−1) = 52 by
Proposition 8. This is impossible. So W must be irreducible with basic degrees
d1, d2 satisfying d1d2 = 54 and (d1 − 1)2 = 52. But from the classification (see
Table 1) we find that there is no irreducible Coxeter or Shephard group of rank
2 whose basic degrees are 6 and 9. So no wall of the Milnor fiber complex of
G25 is again a Milnor fiber complex.
Group G26. This is the rank-3 group with symbol 3[3]3[4]2. The basic degrees
are 6, 12, 18. Consider the wall ∆r1 cut out by the generator r1 that commutes
with the one of order 2. It is 1-dimensional with 72 chambers and the homotopy
type of a 52-fold bouquet of 1-spheres. If it is a Milnor fiber complex ∆(W,S),
then W is a rank-2 group with 72 elements. W must be irreducible because
otherwise it is of the form Zj ×Zk and there are no integers j, k ∈ N such that
jk = 72 and (j − 1)(k− 1) = 52. Thus W is an irreducible rank-2 group whose
basic degrees d1, d2 satisfy d1d2 = 72 and (d1 − 1)2 = 52. Hence d1 = 6 and
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d2 = 12. According to the classification (see Table 1) there are only two such
groups: the group G5 whose symbol is 3[4]3, and the group G(6, 1, 2) whose
symbol is 2[4]6.
Vertices in ∆(W,S) are cosets w〈si〉 in W of the cyclic groups 〈si〉 for si ∈ S.
Edges of ∆(W,S) are the cosets {w} (w ∈ W ) and the incidence relation is
containment. So ∆(W,S) has |W |/|〈si〉| vertices of degree |〈si〉| for i = 1, 2, and
this accounts for all vertices. It follows from this discussion that the Milnor fiber
complex of G5 is 3-regular (all vertices have degree 3), and the Milnor fiber
complex of G(6, 1, 2) has 12 vertices of degree 6 and 36 vertices of degree 2.
We claim that these vertex-degree distributions are different from the vertex-
degree distribution in ∆r1 , and in turn ∆r1 is not a Milnor fiber complex. To
this end it is enough to show that there is a vertex of degree 4 in ∆r1 .
Consider the vertex of ∆ indexed by H = 〈r1, r2〉. This vertex is fixed (under
left multiplication) by r1 and therefore belongs to ∆r1 . We claim that it has
degree 4 in ∆r1 . In ∆ the edges incident to H are the cosets of 〈r2〉 and 〈r1〉
in H . The number of these cosets fixed by r1 therefore equals the degree of
H as a vertex in ∆r1 . Since H is the group G4 with symbol 3[3]3 whose basic
degrees are 4 and 6, Eq. (13) tells us that the number of these cosets in H fixed
by r1 equals 4. This concludes the present case.
Group G32. This is the rank-4 group with symbol 3[3]3[3]3[3]3 and basic de-
grees 12, 18, 24, 30. Fix a wall. It is 2-dimensional with 5184 chambers and the
homotopy type of a 113-fold bouquet of 2-spheres. Suppose that the wall is
a Milnor fiber complex ∆(W,S). Then W must be a rank-3 group with 5184
elements. It can not be a product of 3 rank-1 groups Zi × Zj × Zk because no
i, j, k ∈ N satisfy ijk = 5184 and (i− 1)(j− 1)(k− 1) = 113. And it can not be
the product of a rank-1 group Zk and an irreducible rank-2 group H because
then for d1 the smallest basic degree of H we would have that k|H | = 5184 and
(k − 1)(d1 − 1)3 = 113, so that k = 12, d1 = 12, and |H | = 432, while the only
irreducible rank-2 Coxeter or Shephard group with 432 elements is a dihedral
group whose smallest basic degree equals 2. Hence W must be an irreducible
rank-3 Coxeter or Shephard group. Therefore the smallest basic degree d1 of
W must satisfy (d1 − 1)3 = 113. But Table 1 shows that no irreducible rank-3
Coxeter or Shephard group has 5184 elements and smallest basic degree d1
equal to 12. �

3. Milnor walls

Write Ω = ∪σ∈Ω{τ ∈ ∆ : τ ⊂ σ} for the simplicial complex generated by a

family of simplices Ω ⊂ ∆. Let
(

R
k

)

be the set of all k-element subsets of R,
so that

(

R

k

)

= {typeσ : σ ∈ ∆, dim σ = k − 1}.

Definition 1. A wall ∆r of ∆ is a Milnor wall if for some F ⊂
(

R
n−1

)

the
subcomplex

(∆r)F = {σ ∈ ∆r : typeσ ∈ F} (15)
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is a Milnor fiber complex of dimension n− 2. A proper Milnor wall is a Milnor
wall that is not a Milnor fiber complex.

Any wall ∆r can be written as (∆r)F for F =
(

R
n−1

)

. Therefore walls that
are Milnor fiber complexes are Milnor walls. These are the non-proper Milnor
walls. They are the only kind of Milnor wall found in Coxeter complexes. This
is the following lemma.3

Lemma 13. Coxeter complexes have no proper Milnor walls.

Proof. Consider a wall of an (n − 1)-dimensional Coxeter complex and sup-
pose that it contains a proper subcomplex Σ. Then there is a proper inclusion
i : Σ → Sn−2 which factors through R

n−2. Since the induced homomorphism
i∗ : H̃n−2(Σ) → H̃n−2(S

n−2) factors through H̃n−2(R
n−2) = 0, it follows that

i∗ is 0 on H̃n−2(Σ). But the long exact homology sequence for the pair tells us

that i∗ is injective on H̃n−2(Σ), and so H̃n−2(Σ) = 0. Hence Σ is not homotopy
equivalent to a bouquet of one or more (n− 2)-spheres, and is therefore not a
Milnor fiber complex of dimension n− 2. �

Proposition 14. A wall of a Coxeter complex is a Milnor wall if and only if
the wall is a Coxeter complex.

Proof. Let Σ be a Milnor wall of a Coxeter complex. Then Lemma 13 implies
that Σ is a Milnor fiber complex. Since Σ is a wall of a Coxeter complex, it
follows from Proposition 10 that Σ is a Coxeter complex. The other direction
is clear: a wall of a Coxeter complex that is itself a Coxeter complex is a (non-
proper) Milnor wall. �

Proposition 15. Each wall of ∆(G,R) is a Milnor wall if and only if each
wall of each ∆(Gi, Ri) is a Milnor wall.

Proof. Consider a wall ∆r = ∆(G1, R1) ∗ . . . ∗∆(Gi, Ri)
t ∗ . . . ∗∆(GN , RN ), so

that t ∈ Gi is a reflection, and write ni = |Ri|.
Suppose that ∆(Gi, Ri)

t is a Milnor wall, so that (∆(Gi, Ri)
t)Fi

is a

Milnor fiber complex of dimension ni − 2 for some Fi ⊂
(

Ri

ni−1

)

. Put

F = {(R \Ri) ∪ S : S ∈ Fi}, so that

(∆r)F = ∆(G1, R1) ∗ . . . ∗ (∆(Gi, Ri)
t)Fi

∗ . . . ∗∆(GN , RN ). (16)

Since Theorem 3(iii) tells us that a join of Milnor fiber complexes is again
a Milnor fiber complex, it follows that (∆r)F is a Milnor fiber complex of
dimension n− 2. Hence ∆r is a Milnor wall.
Now suppose ∆r is a Milnor wall. Then (∆r)F is an (n−2)-dimensional Milnor

fiber complex for some F ⊂
(

R
n−1

)

. The subcomplex ∆(Gi, Ri)
t has dimension

|Ri| − 2, and hence no simplex of type Ri. So the wall ∆r has no simplex of
type R \ {s} for s ∈ Rj , j 6= i. Hence F ⊂ {R \ {s} : s ∈ Ri}. But then for
Fi = {S ∩ Ri : S ∈ F} we have (16). Since (∆r)F is an (n − 2)-dimensional
Milnor fiber complex in which (∆(Gi, Ri)

t)Fi
is the link of any simplex of

3I thank the referee for suggesting the present proof of Lemma 13.
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type R \Ri, it follows from Proposition 4 that (∆(Gi, Ri)
t)Fi

is a Milnor fiber
complex of dimension ni − 2. So ∆(Gi, Ri)

t is a Milnor wall. �

3.1. Proof of Theorem 2. It suffices to assume that G is irreducible by
Proposition 15.
Suppose that the diagram of G contains no subdiagram of type D4, F4, or H4,
and that G is not G25, G26, or G32. Then Theorem 1 tells us that each wall of
∆ is a Milnor fiber complex. Hence each wall of ∆ is a Milnor wall.
Suppose now the diagram of G contains a subdiagram of type D4, F4, or H4.
By the irreducibility of G and the classification (Table 1), G must be a Coxeter
group. Then Abramenko’s result tells us that not all walls of ∆ are Coxeter
complexes, and Proposition 14 tells us that the Milnor walls of ∆ are the walls
of ∆ that are again Coxeter complexes. So in this case we conclude that not
all walls of ∆ are Milnor walls.
Finally suppose G is G25, G26, or G32. The object is to show that all walls are
Milnor walls. The remainder of the proof explains how this claim follows from
Orlik’s original construction of the Milnor fiber complex ∆ together with some
observations made by Coxeter about the regular complex polytopes associated
to G25, G26, and G32.
A regular complex polytope [2, p. 115] is a certain collection P of affine sub-
spaces F inC

n with incidence relation given by proper inclusion subject to some
conditions. The elements F ∈ P are faces of P. The symmetry group of a reg-
ular complex polytope is a Shephard group, and the Milnor fiber complex of the
Shephard group is constructed in [8] as a geometric realization of the simplicial
complex ∆(P) whose k-simplices are the flags F = (F0 ( F1 ( . . . ( Fk) of
faces Fi ∈ P; see [8, Thm. 5.1]. Index the generators of the Shephard group
starting with 0 instead of 1, so that R = {r0, r1, . . . , rn−1}. Then a flag F cor-
responds in the Milnor fiber complex to a coset of 〈R \ {rdimF : F ∈ F}〉,
whose type is {rdimF : F ∈ F}; see [5].
Coxeter considered the section of P by a reflecting hyperplane H . This is the set

{F ∈ P : F ⊂ F ′ ⊂ H for some F ′ ∈ P such that dimF ′ = n− 2}. (17)

He observed the following [2, pp. 123, 132]: if G = G25, then each section
of P by a reflecting hyperplane is a regular complex polytope for G(3, 1, 2); if
G = G26, then each section of P by a reflecting hyperplane is a regular complex
polytope for either G(3, 1, 2) or G(6, 1, 2); and if G = G32, then each section
of P by a reflecting hyperplane is a regular complex polytope for G26. These
observations translate into the following statements about Σ = (∆(G,R)r)F
for F = {R \ {rn−1}} and r ∈ G a reflection.

a. If G = G25, then Σ is isomorphic to the Milnor fiber complex of G(3, 1, 2).
b. If G = G26, then Σ is isomorphic to the Milnor fiber complex of G(3, 1, 2)

or G(6, 1, 2).
c. If G = G32, then Σ is isomorphic to the Milnor fiber complex of G26.

Hence if G is G25, G26, or G32, then all walls of ∆(G,R) are Milnor walls. �
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G Symbol/diagram Basic degrees

Zm m m
I2(2m) 2[2m]2 2, 2m
I2(2m− 1) 2[2m− 1]2 2, 2m− 1
G4 3[3]3 4, 6
G5 3[4]3 6, 12
G6 3[6]2 4, 12
G8 4[3]4 8, 12
G9 4[6]2 8, 24
G10 4[4]3 12, 24
G14 3[8]2 6, 24
G16 5[3]5 20, 30
G17 5[6]2 20, 60
G18 5[4]3 30, 60
G20 3[5]3 12, 30
G21 3[10]2 12, 60
G23 (H3) 2[3]2[5]2 2, 6, 10
G25 3[3]3[3]3 6, 9, 12
G26 3[3]3[4]2 6, 12, 18
G28 (F4) 2[3]2[4]2[3]2 2, 6, 8, 12
G30 (H4) 2[3]2[3]2[5]2 2, 12, 20, 30
G32 3[3]3[3]3[3]3 12, 18, 24, 30

G35 (E6) 2, 5, 6, 8, 9, 12

G36 (E7) 2, 6, 8, 10, 12, 14, 18

G37 (E8) 2, 8, 12, 14, 18, 20, 24, 30

An 2[3]2 . . . 2[3]2[3]2 2, 3, . . . , n+ 1

Dn+1
. . . 2, 4, . . . , 2n, n+ 1

G(m, 1, n) 2[3]2 . . . 2[3]2[4]m m, 2m, . . . , nm

Table 1. (m ≥ 2) The finite irreducible Coxeter and Shep-
hard groups, their diagrams, and their basic degrees.
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