Conformal structures and holonomy Graham-Willse: Lifting and extending parallel tractors Equality of ambient and tractor holonomy

Ambient and Conformal Holonomy

Matthias Hammerl

University of Vienna

Workshop on Conformal and CR Geometry Banff International Research Station August 1 2012

Joint work with A. Čap (Univ. of Vienna), A.R. Gover (Auckland Univ.) and R. Graham (Univ. of Washington)

Plan

2 Graham-Willse: Lifting and extending parallel tractors

Equality of ambient and tractor holonomy

Conformal structures

Let (M, C) be a conformal structure of dimension $n \ge 3$. Here C = [g] denotes a conformal class of metrics, with g some representative.

Given that a transformation $g \rightarrow \hat{g} = e^{2f}g$ modifies the corresponding Levi-Civita covariant derivatives, there exists no torsion-free covariant derivative on the tangent bundle *TM* that preserves all metrics in C.

To associate a natural covariant derivative to \mathcal{C} one employs one of the following two techniques:

- Cartan resp. tractor approach (Élie Cartan, Tracy Thomas)
- 2 Ambient metric approach (Fefferman-Graham)

Conformal holonomy

Each approach delivers a covariant derivative (on some extended bundle or space) for C, and in particular yields a notion of conformal holonomy.

In this talk I am going to review both constructions and discuss a recently developed method to compare the resulting holonomy groups.

The conformal standard tractor bundle

The tractor approach associates a natural vector bundle \mathcal{T} to \mathcal{C} that is of dimension n + 2: it carries a metric h of signature (p + 1, q + 1) together with a compatible covariant derivative, the tractor covariant derivative $\nabla^{\mathcal{T}}$.

To construct this tractor bundle one has 3 options:

- Describe it as the associated bundle to the Cartan geometry that equivalently encodes (M, C).
- Sive its defining relations directly in terms of a g ∈ [g] = C and provide transformation formulas for g → $\hat{g} = e^{2f}g$.
- Realize it as a suitable space of tensors on the Fefferman-Graham ambient space.

Fefferman-Graham ambient metrics

The conformal structure C = [g] can be understood as the ray-subbundle $C \subset S^2 T^*M$ that consists of all metrics in the given conformal class. C carries a tautological symmetric form $g_0 \in S^2 T^*C$, and with respect to dilation $\delta_s^*(g) = s^2g$ for $g \in C$ this form is homogeneous of degree 2.

The Fefferman-Graham ambient metric \tilde{g} lives on the n+2 dimensional ambient space $\tilde{M} = C \times (-1, 1)$ and extends the degenerate form g_0 on C to a (p+1, q+1) metric on \tilde{M} that is homogeneous of degree 2.

Fefferman-Graham ambient metrics

To obtain a unique \tilde{g} it is necessary to employ a normalization condition:

- For n = p + q odd ğ is uniquely determined as an infinite order jet along C by the normalization condition that Ric(ğ) vanishes to infinite order along C.
- For n = p + q even, \tilde{g} is unique up addition of terms of order higher than $\frac{n}{2}$ under the normalization condition that $\operatorname{Ric}(\tilde{g})$ vanishes to order $\frac{n}{2} - 2$ along C and to order $\frac{n}{2} - 1$ in tangential directions along C.

Tractor holonomy vs. ambient holonomy

Tractor holonomy: The conformal holonomy of (M, C) is defined as the holonomy of the associated tractor covariant derivative: $Hol(C) := Hol(\nabla^{T}) \subset SO(p+1, q+1).$

In general it is not possible to form a conformally invariant holonomy group on the ambient level: Since the ambient covariant derivative $\tilde{\nabla}$ on $T\tilde{M}$ is only well-defined formally along the cone $\mathcal{C} \subset \tilde{M}$, forming the corresponding holonomy $\operatorname{Hol}(\tilde{\nabla})$ (even at a point in the cone) won't yield a conformally invariant object.

For a real-analytic conformal structure (M, C) in odd dimension n = p + q the ambient space (\tilde{M}, \tilde{g}) is a well-defined pseudo-Riemannian structure of signature (p + 1, q + 1), and in particular one can form $Hol(\tilde{\nabla}) \subset SO(p + 1, q + 1)$.

Realization of tractors as ambient vector fields

It is possible to recover the tractor bundle \mathcal{T} , the tractor metric h and the tractor covariant derivative ∇ in the ambient picture [Čap-Gover, '03]:

- A section $s \in \Gamma(\mathcal{T})$ corresponds to an ambient vector field $\tilde{s} \in \mathfrak{X}_{\mathcal{C}}(\tilde{M})$ along \mathcal{C} which is homogeneous of degree -1.
- The restriction of the ambient metric \tilde{g} to $\mathfrak{X}_{\mathcal{C}}$ corresponds to the tractor metric *h*.
- The tractor covariant derivative ∇_ξs of a tractor s ∈ Γ(T) in direction of a vector field ξ ∈ 𝔅(M) corresponds to the ambient covariant derivative of the ambient vector field š ∈ 𝔅_C(M̃) in direction of a homogeneous lift ξ̃ ∈ 𝔅(C).

Graham-Willse: Lifting of parallel tractors to parallel ambient tensors

Theorem (Graham-Willse, 2011)

Let (M, C) be a real-analytic conformal structure of signature (p, q), n = p + q odd. Let V be some tensor power of the conformal tractor bundle and $s \in \Gamma(V)$ a section of that bundle which is parallel with respect to the tractor connection. Then there exists a canonical lift of s to an ambient tensor field \tilde{s} that is well-defined in a neighborhood of the cone C and parallel with respect to the ambient Levi-Civita covariant derivative.

A truncated version of this theorem exists for the even-dimensional case and the result also holds formally (on the jet-level) at the cone $\mathcal{C} \subset \tilde{M}$ if \mathcal{C} is not necessarily real-analytic.

Example: Conformal structures induced by generic rank 2 distributions on 5-manifolds

Let M be a manifold of dimension 5 endowed with a generic rank 2 distribution $\mathcal{D} \subset TM$. Then, according to [Nurowski, '05], there exists a canonical conformal structure \mathcal{C} of signature (2,3) on M that is induced from \mathcal{D} .

In the framework of parabolic geometries this can be understood as an extension of structure group of the G_2 -structure \mathcal{D} to an SO(3,4)-structure on the same manifold via a generalized Fefferman-Type construction:

Conformal G₂-structures

It was shown in joint work [H.-Sagerschnig, '11] that one has:

Theorem

Let (M, C) be a conformal structure of signature (2, 3). Then the following are equivalent:

- (M, \mathcal{C}) is induced from a generic rank 2 distribution $\mathcal{D} \subset TM$
- The conformal holonomy $Hol(\mathcal{C}) \subset SO(3,4)$ is contained in $G_2 \subset SO(3,4)$.

Application of Graham-Willse's-result for conformal G_2 -structures

- Since G₂ ⊂ SO(3, 4) can be realized as the stabilizer of a suitable generic 3-vector in Λ³ℝ⁷, the holonomy reduction Hol(C) ⊂ G₂ can be equivalently characterized by the existence of a (suitably generic) parallel tractor 3-form Φ ∈ Λ³T.
- Employing Graham-Willse's result, this yields a canonical ambient 3-form on \tilde{M} that is parallel with respect to the ambient Levi-Civita derivative.
- In particular, $\operatorname{Hol}(\tilde{\nabla}) \subset G_2$.

We note however that it does not follow from this chain of reasoning that $Hol(\mathcal{C}) = G_2 \Rightarrow Hol(\tilde{\nabla}) = G_2$.

Infinitesimal holonomy

We have already discussed that the holonomy $\operatorname{Hol}(\tilde{g})$ of the ambient metric is in general not a conformally well-defined object since \tilde{g} is only conformally invariant as an infinite-order (or truncated) jet along the cone $\mathcal{C} \subset \tilde{M}$.

The natural type of holonomy one should therefore employ is infinitesimal ambient holonomy along the cone C:

$$\begin{split} \tilde{\mathfrak{hol}} &= \operatorname{span} \big(\big\{ \big(\tilde{\nabla}_{\xi_1} \cdots \tilde{\nabla}_{\xi_{l-2}} \tilde{R}(\xi_{l-1}, \xi_l) \big)_{|\mathcal{C}}, \xi_1, \dots, \xi_l \in \mathfrak{X}(\tilde{M}) \big\} \big) \\ &\subset \Gamma_{\mathcal{C}}(\operatorname{End}(T\tilde{M})). \end{split}$$

The corresponding invariant of the tractor bundle $(\mathcal{T}, \nabla^{\mathcal{T}})$ is infinitesimal tractor holonomy:

$$\mathfrak{hol} = \operatorname{span} \big(\big\{ \big(\nabla_{\xi_1} \cdots \nabla_{\xi_{l-2}} R(\xi_{l-1}, \xi_l) \big), \xi_1, \dots, \xi_l \in \mathfrak{X}(M) \big\} \big) \\ \subset \Gamma(\operatorname{End}(\mathcal{T})).$$

Equality of infinitesimal ambient holonomy with infinitesimal tractor holonomy:

Theorem

Let (M, C) be a conformal structure of signature (p, q) with n = p + q odd. Then infinitesimal tractor holonomy coincides with infinitesimal ambient holonomy: $\mathfrak{hol} = \mathfrak{hol}$.

- It follows in particular for C, and then also \tilde{g} , real-analytic, that then $\operatorname{Hol}(\mathcal{C}) = \operatorname{Hol}(\nabla^{\mathcal{T}}) = \operatorname{Hol}(\tilde{\nabla})$.
- For n = p + q even one has to employ a truncated version of infinitesimal ambient holonomy that only involves derivatives up to order ⁿ/₂ and can then show analogously that this space is contained in infinitesimal tractor holonomy hol.

Equality of ambient and tractor holonomy

That $\mathfrak{hol} \subset \mathfrak{hol}$. can be shown directly by invoking the realization of the tractor covariant derivative in terms of the ambient covariant derivative.

Outline of the inclusion $\tilde{\mathfrak{hol}} \subset \mathfrak{hol}$:

We first introduce the truncated infinitesimal holonomy spaces

$$\begin{split} &\tilde{\mathfrak{hol}}_{k} = \\ & \operatorname{span}\big(\{\big(\tilde{\nabla}_{\xi_{1}}\cdots\tilde{\nabla}_{\xi_{l-2}}\tilde{R}(\xi_{l-1},\xi_{l})\big)_{|\mathcal{C}}|\xi_{1},\ldots,\xi_{l}\in\mathfrak{X}(\tilde{M}), 2\leq l\leq k\}\big). \end{split}$$

and then proceed inductively:

Outline of the inclusion $\mathfrak{hol}_{\mathfrak{k}} \subset \mathfrak{hol}$:

- For k = 2 there are no derivatives of the ambient curvature tensor *R* involved, and it is possible to express the ambient curvature tensor *R* in terms of the tractor curvature tensor *R* and its covariant derivative *∇R*. It is then seen directly that the span of the image of *R* lies in the image of *R*, *∇R*. 'pause
- O The inductive step

$$\tilde{\mathfrak{hol}}_k \subset \mathfrak{hol} \Rightarrow \tilde{\mathfrak{hol}}_{k+1} \subset \mathfrak{hol} \tag{1}$$

is more involved:

Some ingredients for the proof of the inclusion $\mathfrak{hol}_{\mathfrak{k}} \subset \mathfrak{hol}$:

One needs to express the ambient covariant derivative $\tilde{\nabla}\tilde{R}$ of ambient curvature in terms of tractor data:

- This invokes a formula by [Gover-Peterson, '03] which expresses the ambient covariant derivative $\tilde{\nabla}$ of an arbitrary homogeneous ambient tensor \tilde{V} along the cone C in terms of the tractor covariant derivative ∇ and the fundamental D-operator.
- A detailed inspection of the resulting terms and invocation of the inductive hypothesis shows that they can either be written as tractor covariant derivatives $\nabla_{\xi_1} \cdots \nabla_{\xi_{l-2}} R(\xi_{l-1}, \xi_l) \in \mathfrak{hol}$ or as commutators (in the endomorphism-slot) of such terms. In the latter case, one employs that \mathfrak{hol} is a filtered Lie algebra: $[\mathfrak{hol}_i, \mathfrak{hol}_j] \subset \mathfrak{hol}_{i+j}$.

References:

C. Fefferman and C.R. Graham ('11) *The Ambient Metric.* American Mathematical Society.

A.R. Gover and L.J. Peterson ('03)
Conformally invariant powers of the Laplacian, *Q*-curvature, and tractor calculus.

Comm. Math. Phys., 235(2):339–378.

C.R. Graham and T. Willse ('11)

Parallel tractor extension and ambient metrics of holonomy split G_2 . arXiv:1109.3504