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Fefferman-Graham ambient spaces

e Let (M, [g]) be a conformal geometry of signature (p, q) with
p + g = m the dimension of M.
A Fefferman-Graham ambient space of (M, [g]) is a
(pseudo-)Riemannian space (M, g) of signature (p+ 1, g + 1) which is
Ricci-flat and gives an equivalent encoding of [g].

e This description has been fundamental for constructing and classify-
ing conformal invariants (Fefferman-Graham, 1984) and for construct-
ing and studying conformally invariant differential operators (Graham-
Jenne-Mason-Sparling, 1992).



Let g € [g] be some representative metric in the conformal class. The
Fefferman-Graham ambient space can then be written as
M=R, xMxR

—_——
(t,x,p)

where
e R, x M C M is regarded as the ray bundle of metrics in the
conformal class [g] parametrized by (t,x) +— t2g and
e p € R is a new transversal coordinate.

Let x denote local coordinates on M. Then an ansatz for the
Fefferman-Graham ambient metric g is
g = t2gji(x, p)dx' © dx! + 2pdt ® dt + 2tdt ® dp, (FG)

where o
g(x,0) = gjj(x,0)dx"dx’

is the representative metric g.

The Fefferman-Graham metric g is homogeneous of degree 2 with respect

to the Euler field t0; on M.
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To show existence of a Fefferman-Graham ambient metric g for given g,
the ansatz (FG) determines an iterative procedure to determine gji(x, p) as
a Taylor series in p satisfying

Ric(g) = 0 to infinite order at p = 0.

e For m odd existence (and a natural version of uniqueness) of g as an
infinity-order series expansion in p is guaranteed for general gj;(x).

e For m = 2n even, the procedure for determining the expansion in p for
gij(x, p) such that Ric(g) = 0 is generically obstructed at order n.

» Existence of gji(x, p) as an infinity order series expansion in p with
Ric(g) = 0 asymptotically at p = 0 is then equivalent to vanishing of
the Fefferman—Graham obstruction tensor @, which is a conformal
invariant.

» Existence of g for m = 2n even does not in general guarantee
uniqueness.

In general, it is not known whether a 'global’ ambient space (M, g) satisfying
Ric(g) = 0 on all on M and not only asymptotically exists always in the
odd-dimensional case or in the even, obstruction-flat situation.
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Results which provide global Fefferman—Graham ambient metrics, where g
can be constructed in a natural way from g and satisfies Ric(g) globally
and not just asymptotically at p = 0 are rare, both in the odd- and even-
dimensional situation.

e A special instance where ambient metrics can at least be shown to exist
properly occurs for g real-analytic, and m either being odd or m even
and with obstruction tensor O of g vanishing.

e The simplest case of geometric origin for which one has global ambient

metrics consists of locally conformally flat structures (M, [g]), where
(M, g) exists and is unique up to diffeomorphisms.

e A well known geometric case is formed by conformal structures (M, [g])
which contain an Einstein metric g: If Ric(g) = 2A(m — 1)g, then g
on Ry x M x R can be written directly in terms of g as

g = t2(1 4 \p)%g + 2pdt © dt + 2tdt © dp. (E)



In work by Thomas Leistner and Pawel Nurowski (2010) it was shown
that pp-waves admit global and explicit ambient metrics in the odd-
dimensional case and under specific conditions which guarantee van-
ishing of the Fefferman-Graham obstruction tensor O also in the even-
dimensional case.

Ambient metrics have also been constructed for

» ... families of conformal structures induced by generic 2-distributions
on 5-manifolds (Leistner-Nurowski 2012).

> ... families of conformal structures induced by generic 3-distributions
on 6 manifolds (Anderson-Leistner-Nurowski 2015).

» ... families of of conformal structures for which the equation Ric(g) =0
becomes a linear PDE (Anderson-Leistner—Lischewski-Nurowski 2016).

An explicit ambient metric for an example of an homogeneous confor-
mal structure was obtained by (Willse 2014).

We expand the geometric class of metrics for which canonical ambient
metrics exist globally and in a canonical realization to Patterson—Walker
metrics.



Patterson—\Walker metrics

e Let NV be a smooth manifold and p: T*N — N its co-tangent bundle.
The vertical subbundle V C T(T*N) of this projection is canonically
isomorphic to T*N.

e An affine connection D on N determines a complementary horizontal
distribution H C T(T*N) that is isomorphic to TN via the tangent
map of p.

The Patterson—Walker metric associated to a torsion-free affine connection
D on N is the pseudo-Riemannian split-signature (n, n)-metric g on T*N
fully determined by the following conditions:

e both V and H are isotropic with respect to g,
e the value of g with one entry from V' and another entry from H is
given by the natural pairing between V =2 T*N and H = TN.

~> It follows that V is parallel with respect to the Levi-Civita connection
of the just constructed metric. Hence Patterson—Walker metrics are
special cases of Walker metrics, which are metrics admitting a parallel
isotropic distribution.
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Local Formula for Patterson—\Walker metrics

e Let D be a torsion-free affine connection on N which preserves a
volume form.

e Denote local coordinates on N by x” and the induced canonical fibre
coordinates on T*N by pa.

o Let FACB denote the Christoffel symbols of D.

Then
g=2dx*©dpa—27,C5pc dx? @ dxB (PW)

is the Patterson—Walker metric induced on T*N by D.



Properties of the induced Patterson-Walker space (M, g):

e (M, g) carries a parallel pure spinor x € I'(S-),
5)( =0.

~» equivalent encoding of the parallel maximally isotropic distribution
VCTM.

e (M, g) carries a homothety k € X(M),

Ekg:2g.

e Any infinitesimal symmetry v of the affine connection D induces a
Killing field v@ of g.



Given an affine connection D on N we may weaken it to its projective
equivalence class [D] and regard (N, [D]) as a projective structure:

e For this, recall that two affine connections D, D’ on N are called pro-
Jjectively related if they have the same geodesics as unparameterized
curves. This is the case if and only if there exists a 1-form T € Q(N)
with

DyY =DxY + T(X)Y + T(Y)X (P)

for all X, Y € X(N).

It is an obviously interesting question to ask whether the association
N~ T*N, D~ g

from an affine connection to its Patterson—\Walker metric carries generalizes
to a natural association from projective to conformal structures.

e In general, for projectively related metrics D, D’, the associated
Patterson—Walker metrics on M = T*N will fail to be conformally invariant.

e While one could nevertheless study the conformal class of one given
Patterson—Walker metric, we will first lay out an adapted construction which
produces a conformal class of metrics which only depends on [D].
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Preliminaries: Projective Densities and Scales

For projective structures on an oriented manifold N it is often useful to
employ suitably calibrated projective density bundles of weight w,

E(w) := (A"TN) 7 .

For the special case of weight w = 1 we call the ray bundle
£4(1) c€(1)

the bundle of projective scales.

Let [D] be a projective class which contains volume-preserving (also called
special) connections. Then projective scales s € £, (1) correspond to a
special affine connections D € [g].

If D and D’ are special affine connectiosn corresponding to s and s’ = efs,

then D’ is projectively related to D via
DyY =DxY + T(X)Y + T(Y)X, (P)

where T = df.
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Conformal Patterson—Walker metrics

We define
M=T*N2)=T'N®£E&(2)

the (projectively) weighted co-tangent bundle of N.

Given a projective scale s € £.(1) we obtain a trivialization /identification
of T*N(2) = T*N. With D the special affine connection corresponding to
the scale s, we have the induced Patterson—-Walker metric gs on T*N(2).

f

If s’ = efs is another projective scale, then g = e/ g..

Thus, the projectively related affine connections D, D’ on N induce
conformally related Patterson—Walker metrics gs, g on M = T*N(2), and
we obtain a natural association

(N [D]) ~ (M, [g])-
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Properties of conformal Patterson—Walker metrics:

e (M, [g]) carries a pure twistor spinor x with (maximally isotropic,
n-dimensional) integrable kernel ker x.
e (M,[g]) carries a nowhere-vanishing conformal Killing field k € ker x

In addition, one can show the following:
e The Lie-derivative of x with respect to the conformal Killing field k is
Lov=—3(n+ Dx. L)
e The following integrability condition is satisfied for all v", w® € ker x:
Wabcdvawd =0. (W)
Then:

e These conditions characterize conformal Patterson—Walker metrics.

e Under those conditions there always exist (at least locally)
Patterson—Walker metrics g € [g], which satisfy Dx = 0.
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It will be interesting to analyze when the Patterson—Walker metric g
contains an Einstein metric in its conformal class [g]:

e If the affine connection D is Ricci-flat, then the induced
Patterson—Walker metric g is Ricci-flat.

e If the affine connection D allows an Euler-type vector field &
satisfying the projectively invariant equation

1
Dcé? = E(DPfP)(Sé’ PWpa S =0,

then the induced Patterson—Walker metric g_ is conformal to a
Ricci-flat metric g, = ag2g off the zero-set of a rescaling function o¢.

Conversely, if the Patterson—Walker metric g is conformal to an Einstein
metric o~2g, then there is a canonical decomposition

o=04+0_

such that both g_ = 0=2g and g} = ajrzg are Ricci-flat off the respective

zero-sets and correspond to the two types above.
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The Thomas cone connection

A much simpler analog of ambient spaces of conformal structures is
available for projective structures due to Tracy Thomas (1934):

e The Thomas cone associated to a projective manifold (N, D) is the
1
natural ray bundle C := &, (1)= (A"TN) n.
e The Thomas cone connection V is a canonical affine, Ricci-flat

connection on C.

Let s: N — &;(1) be the scale corresponding to an affine connection
D € [D], providing a trivialization £, (1) = R, x N via (x%, x) > s(x)x°.
In this trivialization the Thomas cone connection is given by

1
VXY:DXY—mRic(X, Y)Z, VZ =idr¢ (T)
where X, Y € X(N) and Z = x%0,0 is the Euler field on C.

It is in fact easy to see directly from formula (T) that the thus defined
affine connection V on the Thomas cone C is independent of the choice of

scale and Ricci-flat.
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Combining the constructions

e Given a projective structure (N, [D]) on an n-dimensional manifold N,
we can form the Thomas cone (C, V) and consider the associated
Patterson—Walker metric g on M = T*C = T*&,(1).

e Obviously: dim C = (n+1), so sig(g) = (n+1,n+1).

e Since V is Ricci-flat, so is its Patterson—Walker metric g.

In particular, we may be tempted to investigate whether (M, g) is in fact

the Fefferman—Graham ambient metric space associated to the conformal
class (M, [g]):

(C, V)~ (M,g) ... Ricci—flat, split—signature (n+ 1,n+ 1)

|

(N, [D]) ~= (M, [g]) ... conformal, split—signature (n, n)

We also have the induced homothety k on M, which might be suspected

to be a canonical candidate for the Euler-field of the ambient space.
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Procedure:

e Compute the Thomas cone connection V on C for given D.

e Compute the Patterson—Walker metric g on T*C associated to V.

e Perform (locally) an appropriate coordinate change which shows that
the resulting split-signature (n + 1, n + 1) pseudo-Riemannian metric
g is a Fefferman—Graham ambient metric.

Concretely:

e We use a local coordinate patch on N which induces coordinates
x?, ya on the co-tangent bundle T*N and coordinates x°, x4, ya, vo
on T"C = R4 x T*N x R.

e Then the Patterson—-Walker metric g associated to the Thomas cone
connection V is

4
g =2dx" © dya + 2dx° © dyy — Eygdxo ® dxB (1)

%0

— 2yl S gdx® ® dxB + 2 yol Ricag dx? @ dxB.

n J—
e We employ the change of coordinates t = x%, p = B, pa= (;"0*‘)2.
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Theorem (Local Statement)

For a given torsion—free, volume—preserving affine connection D with
Christoffel symbols T ,¢ z,

‘g = 2pdt O dt + 2tdt © dp, (PW-A)

2
+ t2(2dx* @ dpa — 2pcT 4,C gdx? @ dxB + 7p1 Ricag dx? © dx?),
n —
is the Fefferman—Graham ambient metric of the Patterson—\Walker metric

g = 2dx* © dpa — 2pcT 4C gdx” @ dxB. PW
A B

e Once one has the above formula, it can also be proved directly: One

checks Ricci-flatness of (PW-A) for any given Christoffel symbols
A o

5. satisfying rABC _ rACB7 aA’Y’.'DsP B (9B|_Ii\p
where the first condition corresponds to torsion—freeness of D and
second condition to volume—preservation of D.

e |t follows in particular that the Fefferman-Graham obstruction tensor
O vanishes for any Patterson—W;iléker metric.



Properties of the ambient metric g

As a Patterson—Walker metric (M, g) carries a naturally induced
homothety
k = 2pa0p, + 20,

of degree 2.
The infinitesimal affine symmetry Z of the affine connection V lifts to
the Killing field

£ =t0; — 2pAapA — 2p8p.
The Euler field of the Fefferman—Graham ambient metric g can be
written as the sum & 4 k of this Killing field and the homothety k:

TM carries the maximally isotropic (n + 1)-dimensional subspace
spanned by {0,,,0,} which is preserved by V. This subspace can be
equivalently described by a V-parallel pure spinor s on M.

In particular,
HO|(g) Q SL(n + ]_) X /\2Rn+1_n+1.
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Theorem (Global statement)
Given a projective structure (N, [D]) on an n-dimensional manifold N, the
geometric constructions indicated in the following diagram commute:
Thomas cone Ambient space
(C.V) (M, g)

L

(N, [D]) ~~= (M, [g])

In particular, the induced conformal structure [g] admits a globally
Ricci-flat Fefferman—Graham ambient metric g which is itself a
Patterson—Walker metric.
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Q-Curvature

e Q-curvature Qg of a given metric g on an even-dimensional manifold is
a Riemannian scalar invariant with a particularly simple (linear) trans-
formation law with respect to conformal change of metric (Thomas
Branson 1993).

e Computation of Q-curvature is notoriously difficult since it typically
requires knowledge of the Fefferman-Graham ambient metric:

» Formulas in terms of underlying data can in principle be obtained algo-
rithmically for each given dimension, but the resulting formulas are not
(at the moment) accessible to human inspection.

» An explicit form of a Fefferman—Graham ambient metric g for a given
metric g allows a computation of Qg. Using the fact that g is actually
a Patterson—Walker metric, this computation is particularly simple.
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Theorem

The Patterson—\Walker metric g associated to a volume—preserving,
torsion—free affine connection D has vanishing Q-curvature Q.

Computation:

e According to (Fefferman-Hirachi, 2003), we have to compute

Qe = (—A"10g(1)) |11y 7w 0y

» where A is the ambient Laplacian on M =R, x T*N x R,
» t: M — R, is the first coordinate projection and
> the subscript denotes restriction to T*N — M.

e To show that Q-curvature vanishes for g, it is in particular sufficient
to show that Alog(t) = 0.

e We observe that the function t : M — R, is horizontal since it is just
the pullback of the coordinate function x° : C — R, on the Thomas
cone C =Ry x N.

e The explicit formula for the Christoffel symbols of a Patterson—Walker
metric shows that A vanishes on any horizontal function. Thus in
particular A log(t) =0, and ther122a|so Qg =0.



The hidden machinery:
Parabolic geometries and the BGG-machinery

e The original oriented projective structure (M, [D]) and the conformal
spin structure (M, [g]) can both be equivalently described/encoded as
Cartan geometries.

This viewpoint can be used to relate the respective geometries via a
Fefferman-type construction, which is based on a group inclusion
SL(n+ 1) < Spin(n + 1, n+ 1) of the underlying (Cartan) structure
groups.

e » The Fefferman-type construction allows a systematic approach to find
the characterizing properties of the induced conformal spaces:
» It also allows a systematic approach to study special properties of the
induced spaces.
This requires applications of (parts of) the BGG-machinery for
parabolic geometries, which in particular relate parallel objects to
solutions of overdetermined equations.
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The Fefferman-type construction

Let sg, sp be complementary pure spinors in the spin-representation of
Spin(n+ 1, n+ 1) providing a decomposition

R — ker sg @ ker sp

into complementary, maximally isotropic subspaces. We obtain a canonical
embeddin
g SL(n+1) <= Spin(n+1,n+1)
as the joint stabilizer of sg and sf.

e This is an embedding of the structure group of a projective Cartan
geometry into the structure group of a conformal Cartan geometry.

e For a projective structure (M, [D]) encoded as a Cartan geometry we
can then perform a natural extension of structure group

(G,w) ~ (6,0)
to obtain a conformal structure encoded as a Cartan geometry.

e The induced Cartan connection form w needs to be
normalized to w™".
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Holonomy reduction

e Associated to the conformal Cartan bundle (G, &) we have the
associated spin tractor bundle S.

e The pure spinors sg,sp € A give rise to canonical
pure spin tractors sg, sg € I'(S) by defining constant, spinor
representation valued functions along the reduction

(G,w) = (G, ).

e The Cartan connection form w which is induced from (G, w) preserves

the spinors above and in particular has holonomy Hol(w) C SL(n+1).

After conformal normalization to w""
parallel. Consequently,

, only the tractor spinor sg remains

HOl([g]) - Ho'(@nor) - ker SF = SL(n + ]_) X /\2Rn+1,n+1.
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Induced BGG-Solutions
Let V' be Spin(n+ 1, n+ 1) representation.

e According to the general principles of the BGG-machinery

(Cap-Slovak-Soutek, 2001) one has a naturally associated
first BGG-operator / first BGG-equation,

©p(0) = 0.

e The associated tractor bundle V carries its canonically induced
tractor connection VY (and a prolongation connection VY-P specifically
associated to the underlying BGG-equation). One has:

{parallel sections of VV(Pr)} &L {solutions of associated BGG—equation}.

In particular, for a conformal structure induced via the extension
SL(n+ 1) ~» Spin(n+1,n+ 1):

e The parallel tractor sg € S corresponds to a pure twistor spinor x.
e Likewise, a canonical involution K on R™ 1.1 gives rise to a
conformal Killing field k.
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Decomposition of conformal solutions

Let V' be a Spin(n+ 1, n+ 1)-representation and let

be the decomposition of V into SL(n + 1)-representations.

A solution o of the first conformal BGG-equation ©g(c) =0
corresponds to a parallel conformal tractor s € V (either with respect to
the normal conformal tractor connection or, generally, the prolongation

connection).
Along the reduction of Cartan geometries

(G,w) = (G, )

we can decompose s € V into projective tractors

Ss=s5®---s, withs  €Vy, ..., s, €V,

and each term will correspond to a solution of a projective
BGG-equation, ©1(01) =0,...,0,(c,) = 0.
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Examples of decompositions of solutions

e The decomposition of Einstein metrics discussed above corresponds

to the decomposition
Rn+1,n+1

= ker sg @ ker sf.

~> The corresponding projective bundles are the standard and dual standard
projective tractor bundles. It follows in particular that Hol([D]) = SL(n + 1)
obstructs the existence of Einstein-metrics in the induced conformal class.

e We have a decomposition of conformal Killing fields which corresponds
to the decomposition of so(n+ 1,n+ 1) into its SL(n + 1)-irreducible
components,

R @ sl(n+1) @ AR @ A2(R™1)*,
In particular, each conformal Killing field gdecomposes uniquely into
E=vi+vi+Vv2+ck® where

> k? is the canonical homothety of the Patterson—-Walker metric g,
» v? corresponds to a symmetry of the projective structure [D].
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