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The original Fefferman construction [Fefferman,’76] describes a
natural conformal structure on a circle bundle over a CR-structure.
It was shown by Sparling and [Graham, ’87] that a conformal
structure is the Fefferman-space of some CR-structure if and only
if it admits a light-like conformal Killing field which also satisfies
additional (conformally invariant) properties.

The characterizing property can alternatively be understood as a
holonomy reduction of the conformal structure: It was shown in
[Čap-Gover, ’10] that a conformal structure (M, C) is locally the
Fefferman-space of a CR-structure if and only if its conformal
holonomy satisfies
Hol(C) ⊂ SU(p + 1, q + 1) ⊂ SO(2p + 2, 2q + 2).
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A generalization of the original Fefferman-construction was
described in [Čap, ’05], and in recent years a number of
constructions have been discussed in that framework:

The original construction was treated by [Čap-Gover, ’10]

A construction of [Biquard, ’00] of conformal structures from
quaternionic contact structures was treated by [Alt, ’10]

Nurowski’s conformal structures that are associated to generic
rank 2 distributions on 5-manifolds and Bryant’s [Bryant, ’06]
conformal structures associated to generic rank 3 distributions
on 6-manifolds were discussed in joint work [H.-Sagerschnig,
’10, ’11]
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In all cited cases the Fefferman-type construction is normal: a
usually non-trivial computation shows that the construction is
compatible with the canonical normalization condition one has for
a parabolic geometry.

This has immediate strong geometric consequences, since this
implies that the holonomy of the conformal structure reduces. It
also allows one to derive a holonomy-based characterization of the
induced Fefferman-spaces.

Via the BGG-machinery for parabolic geometries this
characterization can also be understood in terms of solutions of
natural overdetermined equations on the manifold.
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Basic facts about parabolic geometries

Parabolic geometries are Cartan geometries of type (G ,P), with P
a parabolic subgroup of a Lie group G : A parabolic geometry of
the given type on a manifold M is described by a principal
P-bundle G → M that is endowed with a Cartan connection form
ω ∈ Ω1(G, g).

The Cartan connection form ω ∈ Ω1(G, g) has to satisfy the usual
properties: it has to be P-equivariant, reproduce fundamental
vector fields of that P-action and provide an absolute parallelism
ω : TG ∼= G × g.

The curvature of ω can be regarded as a function
κ : G → Λ2(g/p)∗ ⊗ g, and the geometry is flat if and only if it is
locally isomorphic to the homogeneous model G/P.
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Example:
Conformal (spin) structures as parabolic geometries

When G = SO(p + 1, q + 1) and P the stabilizer of a null-ray
R ⊂ Rp+1,q+1, G/P ∼= Sp × Sq. With gp, gq the standard metrics
on Sp ⊂ Rp and gq ⊂ Rq, G/P is endowed with the conformal
class C of signature (p, q)-metrics which contains (gp,−gq). This
is the homogeneous model of conformal structures in that
signature.

If in addition one has a spin structure on the manifold, the
geometry is modeled on G = Spin(p + 1, q + 1) and P ⊂ G is
again the stabilizer of a null-ray.

If (M, C) is the conformal structure that is described by the Cartan
geometry (G, ω) of type (G ,P) on M, then flatness of ω implies
that (M, C) is locally isomorphic to (Sp × Sq, [gp,−gq]), which
says that C is locally conformally flat.
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Basic facts about parabolic geometries

The main feature of parabolic geometries is that they allow
uniform regularity and normality conditions: if these conditions are
satisfied, the parabolic structure is an equivalently description of
an underlying geometric structure, like a projective, conformal or
CR-structure.

This normalization condition employs the Kostant co-differential
∂∗ : Λk+1(g/p)∗ ⊗ g→ Λk(g/p)∗ ⊗ g: It is algebraic and defines a
complex, ∂∗ ◦ ∂∗ = 0. The Cartan connection ω is normal if and
only if κ : G → Λ2(g/p)∗ ⊗ g has values in the kernel of ∂∗.
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Fefferman-type constructions

A Fefferman-type construction [Čap, ’05] is a natural procedure
that starts with a parabolic geometry of a type (G ,P) on a
manifold M and associates a parabolic geometry of another type
(G̃ , P̃) on a (possibly larger) manifold M̃.

The algebraic input for this is an inclusion of Lie groups i : G ↪→ G̃
with the property that Q := G ∩ P̃ ⊂ P. The Fefferman-type
construction (G ,P) (G̃ , P̃) is always possible if G acts (locally)
transitive on the homogeneous space G̃/P̃.
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Example: The Fefferman-construction for CR-structures

To describe the original Fefferman construction we use that CR
structures (of hypersurface type) can be equivalently encoded as
parabolic geometries of type (G ,P) = (SU(p + 1, q + 1),P), where
P is the stabilizer of a complex null-line in Cp+1,q+1: for some
element r ∈ Cp+1,q+1 with 〈r , r〉 = 0, P is defined as the stabilizer
of Cr ⊂ Cp+1,q+1.

The Fefferman construction employs the standard embedding
G = SU(p + 1, q + 1) ↪→ SO(2p + 2, 2q + 2) = G̃ : recall that the
parabolic subgroup P̃ ⊂ G̃ can be described as the stabilizer of the
null-ray R+r ⊂ R2p+2,2q+2.

By linear algebra, G = SU(p + 1, q + 1) acts transitively on the
space G̃/P̃ of null-rays in R2p+2,2q+2: The isotropy subgroup in
SU(p + 1, q + 1) of this action is Q = G ∩ P̃, which is the
stabilizer in SU(p + 1, q + 1) of the null-ray R+r : thus P/Q = S1.
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Example: The Fefferman-construction for CR-structures

Now if (G, ω) is a parabolic geometry of type (SU(p + 1, q + 1),P)
that describes a CR-structure on M, then the Fefferman-space is
obtained as M̃ = G/Q = G ×P P/Q, which is an S1-bundle over
M.

G → M̃ is a Q-principal bundle, which can be extended to the
P̃-principal bundle G̃ = G ×Q P̃. It is easy to see that ω defines a
canonical Cartan connection form ω̃ on G by extension, and
therefore M̃ naturally carries a conformal structure C of signature
(2p + 1, 2q + 1).
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General procedure for a Fefferman-type construction

The first step is to form the correspondence space
M̃ := G/Q = G ×P P/Q. G → M̃ is then a Q-principal bundle
endowed with the Cartan connection form ω of type (G ,Q).

The second step is to form the extended Cartan bundle
G̃ = G ×Q P̃ and canonically extend ω to a Cartan connection form
ω̃ on G̃. Then (G̃, ω̃) is a Cartan geometry of type (G̃ , P̃) on M̃.

The Fefferman-type construction (G ,P) (G̃ , P̃) is called normal
if normality of ω automatically implies normality of ω̃. Normality is
a very strong condition, and if satisfied, the special (or
characterizing) properties of the structures induced by the
Fefferman-type construction can often be easily identified by
holonomy techniques:
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Background: the holonomy of a parabolic geometry

To form the holonomy Hol(ω) of a parabolic geometry (G, ω), one
extends G to a principal G -bundle Ĝ = G ×P G and canonically
extends ω to the a principal connection form ω̂ on Ĝ . Then
Hol(ω) := Hol(ω̂).

The geometric meaning of a reduced holonomy Hol(ω) ⊂ H ⊂ G
for some subgroup H ⊂ G is already visible on the homogeneous
(flat) model G/P: The holonomy-reduction to H ⊂ G decomposes
G/P into the disjoint union of its H-orbits,

G/P =
⋃

HgP∈H\G/P

H · gP/P.

Each orbit H · gP/P ∼= H/(H ∩ gPg−1) is again the homogeneous
model of a Cartan geometry of type (H,H ∩ gPg−1).
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Theorem (Čap-Gover-H., ’11)

Let (G, ω) be a parabolic geometry of type (G ,P) with
Hol(ω) ⊂ H ⊂ G . Then there exists a natural decomposition

M =
⋃

HgP∈H\G/P

MHgP

of M that is parametrized by the set of H-orbits on G/P, which is
the double co-set space H\G/P.
Each MHgP ⊂ M is an initial submanifold that carries a canonical
Cartan geometry of type (H,H ∩ gPg−1).

This decomposition is called the curved orbit decomposition of M
with respect to the given holonomy reduction. When H acts
transitively on G/P this shows that M carries a global reduced
geometry of type (H,H ∩ P).
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Holonomies of Fefferman spaces

We consider now a normal Fefferman-type construction
(G ,P) (G̃ , P̃): This starts with a geometry (G, ω) of type
(G ,P) and associates a geometry (G̃, ω̃) of type (G̃ , P̃).

It follows immediately from the construction that with î : Ĝ ↪→ ˆ̃G
the canonical embedding of the extended G -principal bundle into
the extended Ĝ -principal bundle, î∗(ˆ̃ω) = ω̂, and therefore
Hol(ω̃) = Hol(ω).

Of course this has geometric meaning only in the case where the
construction is normal: In this case, Hol(ω̃) is the well-defined
holonomy of the parabolic geometry on M̃. In particular, this
implies that if ω is non-flat, (G̃, ω̃) is a non-flat parabolic geometry
on M̃ with holonomy contained in G ⊂ G̃ .
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Induced solutions of BGG-equations

In many cases the inclusion G ↪→ G̃ is realized as the stabilizer of
an element in a G̃ -representation V . It is well known that the
tractor bundle V = G̃ ×P̃ V carries the tractor connection ∇ that
is naturally induced from the Cartan connection form ω̃. Then
Hol(ω̃) ⊂ G is equivalent to the existence of a parallel section
s ∈ Γ(V) of a suitable type.

By the general theory of BGG-operators on parabolic geometries as
developed by [Čap-Slovak-Souček, ’01], such a parallel section s is
equivalent to a normal solution of the first BGG-operator
Θ0 : H0 → H1 associated to V.

M. Hammerl (University of Vienna) Fefferman-type constructions for parabolic geometries



Introduction
Geometry of Fefferman-type spaces

A construction of split signature conformal spin structures

Example:
Characterization of the Fefferman-space of a CR-structure

Let J ∈ so(2p + 2, 2q + 2) be the orthogonal complex structure on
R2p+2,2q+2 corresponding to multiplication with i on Cp+1,q+1.
The isotropy group of J in SO(2p + 2, 2q + 2) is
SO(2p + 2, 2q + 2)J = U(p + 1, q + 1).

It was shown by [Čap-Gover, Leitner], that conformal holonomy
Hol(ω) ⊂ U(p + 1, q + 1) already implies locally that
Hol(ω) ⊂ SU(p + 1, q + 1). Therefore a parallel orthogonal
complex structure, which is a section of G̃ ×P̃ so(2p + 2, 2q + 2)
can be used to (locally) characterize SU(p + 1, q + 1)-holonomy:
the corresponding normal BGG-solution is a light-like conformal
Killing field on (M, C) that inserts trivially into Weyl curvature and
Cotton tensor.
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Summary of some constructions

SU(p + 1, q + 1) ↪→ SO(2p + 2, 2q + 2): [normal]
CR-structure  
signature (2p + 1, 2q + 1)-conformal structure on S1-bundle
+ lightlike conformal Killing field (with additional properties)

G2 ↪→ Spin(3, 4): [normal]
generic rank 2-distribution on 5-manifold  
signature (2, 3)-conformal spin structure + generic twistor
spinor

SL(n + 1) ↪→ Spin(n + 1, n + 1): [non-normal for n ≥ 3]
projective structure on n-manifold  
signature (n, n)-conformal spin structure + twistor spinor
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Projective  split signature conformal

This is recent joint work with K. Sagerschnig. The original
motivation for this Fefferman-type construction was work by
[Dunajski-Tod, ’10]:

Extending a construction due to [Walker, ’54], which associates a
pseudo-Riemannian split signature (n, n)-metric to an affine
torsion-free connection on an n-manifold, they associate a
conformal split signature (n, n)-metric to a projective class of
torsion-free affine connections on an n-manifold. Using a normal
form for the induced metrics it is also shown that they admit a
twistor spinor. For n = 2 this construction was also observed in
work by [Nurowski-Sparling, ’03]. The precise relation between the
cited works and the construction here has been shown recently by
[Šilhan-Žádńık, ’11].
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Projective  split signature conformal

This Fefferman-type construction is based on an inclusion
SL(n + 1) ↪→ Spin(n + 1, n + 1):

Denote by ∆ = ∆n+1,n+1
+ ⊕∆n+1,n+1

− the real 2n+1-dimensional

spin representation of G̃ = Spin(n + 1, n + 1). Then we fix two
pure spinors sF ∈ ∆n+1,n+1

− , sE ∈ ∆n+1,n+1
± with non-trivial pairing

- here sE lies in ∆n+1,n+1
+ if n is even or ∆n+1,n+1

− if n is odd.

These assumptions guarantee that the kernels E ,F ⊂ Rn+1,n+1 of
sE , sF with respect to Clifford multiplication are complementary
maximally isotropic subspaces.

Then
G := {g ∈ Spin(n +1, n +1) : g · sE = sE , g · sF = sF} ∼= SL(n +1),

defines an embedding G = SL(n + 1)
i
↪→ Spin(n + 1, n + 1).
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Induced structure

One computes M̃ = G ×Q P/Q ∼= (T ∗M ⊗ E [2])/{0}. Here we use
the notation E [w ] for suitably weighted (projective) version of the
density bundle.

The invariant spinors sE and sF give rise to pure spin
tractors: The spin tractor bundle of (M, C) is S = S+ ⊕ S−,
where S± = G̃ ×P̃ ∆n+1,n+1

± = G ×Q ∆n+1,n+1
± . Since

sE ∈ ∆n+1,n+1
± and sF ∈ ∆n+1,n+1

− are Q-invariant, they induce
canonical sections sE ∈ Γ(S±) and sF ∈ Γ(S−).
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Twistor spinors

With respect to a choice of metric g ∈ C the spin tractor bundle
can be written as the sum of weighted spin bundles:
[S]g = S [−1

2 ]⊕ S [ 1
2 ]. Parallel sections of S with respect to the

normal conformal tractor connection are in 1 : 1-correspondence
with solutions of of the twistor spinor equation χ 7→ Dχ+ 1

2nγD/χ:
If τ ⊕ χ is parallel, then χ is a twistor spinor, and converesely, if χ
satisfies the twistor spinor equation, then 1√

2n
D/χ⊕ χ is parallel.

The conformal Cartan connection ω̃ ∈ Ω1(G̃, g̃) obtained via the
Fefferman construction induces a tractor connection ∇ on each
conformal tractor bundle; by construction the spin tractors sE , sF
are parallel with respect to the induced tractor connections on the
respective spin tractor bundles. But these are not necessarily the
normal conformal tractor connections!
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The normal case n = 2:

Proposition

The Fefferman-type construction SL(3) ↪→ Spin(3, 3) is normal.

Corollary

The split-signature conformal structures obtained from
two-dimensional projective structures have the following properties:

1 The conformal holonomy Hol(ω̃) is contained in SL(3).

2 The spin tractor bundle has two sections sE and sF with
non-trivial pairing that are parallel with respect to the normal
tractor connection, i.e. ∇S+,norsE = 0 and ∇S−,norsF = 0.
Thus they correspond to two pure twistor spinors
χE ∈ Γ(S+[ 1

2 ]) and χF ∈ Γ(S−[ 1
2 ]).
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The non-normal case: n ≥ 3

Proposition

For n ≥ 3 The conformal Cartan connection form ω̃ ∈ Ω1(G̃, g̃)
induced by the normal projective Cartan connection form
ω ∈ Ω1(G, g) is normal if and only ω is flat, in which case also ω̃ is
flat.

Since for n ≥ 3 the induced Cartan connection form ω̃ ∈ Ω1(G̃, g̃)
is not already the normal conformal connection form, one needs a
modification Ψ ∈ Ω1(G̃, p̃) with the property that ω̃nor = ω̃ + Ψ is
normal. While it is difficult to obtain an explicit formula for this
modification Ψ, it is possible to show specific properties; in
particular, the normalized connection still preserves one of the pure
tractor spinors:
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The non-normal case: n ≥ 3

Theorem

sF ∈ Γ(S−) is parallel with respect to the normal conformal spin
tractor connection ∇S−,norsF = 0. In particular, the conformal spin
structure (M, C) carries a canonical (pure) twistor spinor
χF ∈ Γ(S−[ 1

2 ]).

Corollary

The conformal holonomy Hol(C) is contained in the isotropy
subgroup of sF ∈ ∆n+1,n+1

− in Spin(n + 1, n + 1); this is
SL(n + 1) n Λ2(Rn+1)∗ ⊂ Spin(n + 1, n + 1).
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Outlook

The following questions are currently treated in joint work with K.
Sagerschnig, J. Šilhan and V. Žádńık:

In the normal case n = 2: [Dunajski-Tod, ’10] showed that
the original projective structure on M is metrizable if and only
if the induced signature (2, 2) conformal structure includes a
Kähler or para-Kähler metric. Using the description of these
geometric solutions as parallel sections of suitably modified
tractor connections we show this correspondence as a direct
consequence of normality.

For the non-normal case n ≥ 3, it is an open problem to
characterize the induced conformal structures. The twistor
spinor described above will play a role in this, but additional
characterizing data is necessary.
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