Holography of BGG-Solutions

Matthias Hammerl

University of Greifswald

January 2016 - Srní Winter School Geometry and Physics

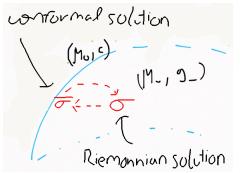
Joint work with Travis Willse (University of Vienna)

Introductory picture: Holography of solutions

Let $M = M_0 \cup M_-$ be a (real-analytic) *Poincaré-Einstein* manifold:

- (M_0, \mathbf{c}) is a conformal *n*-dimensional space.
- (M_-, g_-) an Einstein metric with $Ric(g_-) = -ng_-$.
- (M_0, \mathbf{c}) is the *conformal infinity* of (M_-, g_-) .

Our goal is to relate overdetermined differential equations on M_{-} with corresponding equations on the conformal infinity M_0 :



Conformally invariant overdetermined Equations on (M_0, \mathbf{c})

Conformally invariant overdeterimend equations on the boundary (M_0, \mathbf{c}) are governed by first BGG-operators

$$\overline{\Theta}_0: \Gamma(\overline{\mathcal{H}}_0) \to \Gamma(\overline{\mathcal{H}}_1).$$

Examples are:

• **Conformally-Einstein equation:** The equation governing the existence of an Einstein-metric in the conformal class:

$$\mathbf{tf}(\overline{D}_{a}\overline{D}_{b}\sigma + \overline{P}_{ab}\sigma) = 0.$$

• Conformal Killing form equation:

$$\overline{D}_{c}\overline{\varphi}_{a_{1}\cdots a_{k}} = \overline{D}_{[a_{0}}\overline{\varphi}_{a_{1}\cdots a_{k}]} + \frac{k}{n-k+1}\overline{g}_{c[a_{1}}\overline{g}^{pq}\overline{D}_{|p}\overline{\varphi}_{q|a_{2}\cdots a_{k}]}$$

• Twistor spinor equation:

$$\overline{D}_{c}\overline{\chi} + \frac{1}{n}\overline{\gamma}_{c}\overline{\not}D\overline{\chi} = 0.$$

Projectively invariant overdetermined Equations on (M_-, g_-)

We regard overdetermined equations on the Riemannian structure (M,g_-) which are projectively invariant and are therefore governed by first $\mathit{BGG-operators}\ \Theta_0: \Gamma(\mathcal{H}_0) \to \Gamma(\mathcal{H}_1)$ of the projective structure \mathbf{p} spanned by the Levi-Civita covariant derivative D of g_- . Examples are:

• **Projectively-Ricci-flat equation:** The equation governing the existence of a Ricci-flat affine connection in the projective class of the Levi-Civita-connection *D*:

$$D_{\alpha}D_{\beta}\sigma + \sigma P_{\alpha\beta} = 0$$

Killing form equation:

$$D_{\gamma}\varphi_{\alpha_{1}\cdots\alpha_{k}}=D_{[\alpha_{0}}\varphi_{\alpha_{1}\cdots\alpha_{k}]}$$

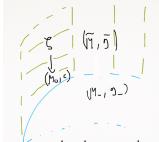
Killing spinor equation:

$$D_{\alpha}\chi = \lambda \gamma_{\alpha}\chi$$
 for some $\lambda \in \mathbb{R}$.

Ambient approach to holography

The conformal structure ${\bf c}$ can be understood as the ray-bundle ${\cal C}$ that consists of all metrics in the given conformal class.

For n odd and \mathbf{c} real-analytic, the Fefferman-Graham ambient metric \tilde{g} is a Ricci-flat signature (n+1,1) metric on an n+2 dimensional ambient space $\tilde{M} = \mathcal{C} \times (-1,1)$.



Since the ambient metric construction is natural, we obtain a (first, trivial) categorical holographic correspondence between symmetries:

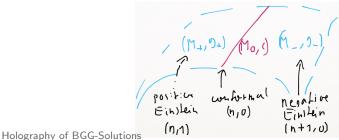
conformal Killing field $\overline{\xi}$ on $M_0 \Leftrightarrow$ Killing field ξ of g_- .

Klein-Einstein

Instead of working with Poincaré-Einstein structures, it will be useful for our purposes to work with the closely related class of *Klein-Einstein* structures, which are more directly related to Fefferman-Graham ambient metrics: (Fefferman-Graham, 2011; Čap-Gover-H., 2012)

Let $M = M_+ \cup M_0 \cup M_-$ be a (real-analytic) *Klein-Einstein* manifold:

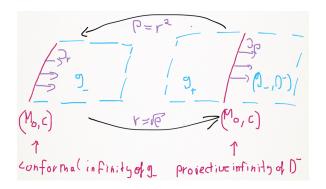
- (M_0, \mathbf{c}) is a conformal *n*-dimensional space.
- (M_+, g_+) an Einstein metric with $Ric(g_+) = ng_+$.
- (M_{-},g_{-}) an Einstein metric with $Ric(g_{-})=-ng_{-}$.
- (M_0, \mathbf{c}) is the *projective infinity* of (M_-, g_-) .



M. Hammerl

Relationship between Poincaré-Einstein and Klein-Einstein

One has that *even* Poincaré-Einstein structures correspond to Klein-Einstein structures via a "change of variables" (Fefferman-Graham, 2011).



Klein-Einstein manifolds as projective structures

Let M be an n+1-dimensional manifold endowed with a projective structure \mathbf{p} whose normal projective tractor connection $\nabla^{\mathcal{T}}$ preserves a signature (n+1,1) tractor metric \mathbf{g} . Equivalently, the projective holonomy is reduced to

$$\operatorname{\mathsf{Hol}}(\mathbf{p})\subseteq\operatorname{SO}(n+1,1)\subseteq\operatorname{SL}(n+2).$$

Via the general *curved orbit decomposition* ([Čap-Gover-H], 2014) for holonomy reduced structures, one obtains (generically) a decomposition of M with properites as above into *curved* $\mathrm{SO}(n+1,1)$ -orbits

 $(M_+, g_+) \cup (M_0, \mathbf{c}) \cup (M_-, g_-)$:

Holography of BGG-Solutions

(n+1/0)

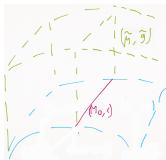
M. Hammerl

Cone construction over a Klein-Einstein manifold

Thomas cone construction: The projective n+1-dimensional structure (M,\mathbf{p}) can be equivalently encoded as a canonical Ricci-flat connection $\widetilde{\nabla}$ on an n+2-dimensional cone \widetilde{M} over M.

Metric cone: The (sub-)cone $\mathcal{C} \subset M$ over the conformal piece $M_0 \subset M$ can be identified with the *metric cone* formed by the conformal class of metrics \mathbf{c} .

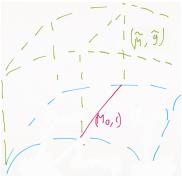
Metric on M: The signature (n+1,1) parallel tractor metric \mathbf{g} gives rise to a $\widetilde{\nabla}$ -parallel metric $\widetilde{\mathbf{g}}$ of the same signature on \widetilde{M} .



Fefferman-Graham ambient space

The Thomas cone over a Klein-Einstein structure thus provides a concrete realisation of:

- ullet A Fefferman-Graham ambient space M with
- Ricci-flat, $\widetilde{\nabla}$ -parallel Fefferman-Graham ambient metric \widetilde{g} .



The Klein-Einstein structure (M, \mathbf{p}) is an equivalent description of an (abstract) ambient space $(\widetilde{M}, \widetilde{g})$.

Holonomies

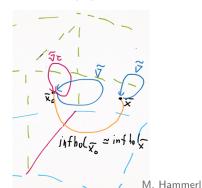
It was shown in (Čap-Gover-Graham-H. 2015) that 'infinitesimal ambient holonomy = infinitesimal conformal holonomy', which can be expressed in our (projective Klein-Einstein, 'abstract ambient' - setting) as:

$$\inf. \mathrm{hol.}_{x_0}^{M_0}(\overline{\nabla}^{\mathit{conf}}) = \inf. \mathrm{hol.}_{x_0}^{M}(\nabla^{\mathit{proj}}) \subset \mathfrak{so}(n+1,1)$$

at each point $x_0 \in M_0$ This infinitsimal holonomy subalgebra is naturally isomorphic to infinitesimal ambient holonomy $\inf. \operatorname{hol}.^{\widetilde{M}}(\widetilde{\nabla}).$

Since our structure is real analytic:

- Infinitesimal holonomy is already the full (Lie algebraic) holonomy, which generates (at least locally at every point) the full holonomy.
 - In particular, infinitesimal holonomy is the same (or naturally isomorphic) at every point.



Relationships between BGG-Solutions on M_0, M_-

Let V be an (irreducible) $\mathrm{SL}(n+2)$ -representation and $\overline{V} \subset V$ a $\mathrm{SO}(n+1,1)$ -submodule. Examples are:

- $\bar{V} = V = \mathbb{R}^{n+2}$
- $\bar{V} = \mathfrak{so}(n+1,1), \ V = \mathfrak{sl}(n+2)$
- $\bar{V} = V = \Lambda^{k+1} \mathbb{R}^{n+2}$
- $\bar{V} = S_0^2 \mathbb{R}^{n+2}$, $V = S^2 \mathbb{R}^{n+2}$.

By general tractor machinery and holonomy principles:

- \overline{V} gives rise to a conformal tractor bundle \overline{V} endowed with normal tractor connection $\overline{\nabla}^{\overline{V}}$ for (M_0, \mathbf{c}) , defined along M_0 .
- V gives rise to a projective tractor bundle $\mathcal V$ endowed with normal tractor connection $\nabla^{\mathcal V}$ on $(M,\mathbf p)$
- Since (M, \mathbf{p}) has holonmy reduced to SO(n+1,1), $\overline{\mathcal{V}}$ is globally defined on M, and then respective projective/conformal tractor connections on this bundle agree along M_0 (Čap-Gover-H., 2012).

BGG-Solutions

Via the general principles of the BGG-machinery (Čap-Slovak-Souček, 2001):

- $(\overline{\mathcal{V}}, \overline{\nabla}^{\mathcal{V}})$ gives rise to a conformally invariant (first) BGG-operator $\overline{\Theta}_0$.
- $(\mathcal{V}, \nabla^{\mathcal{V}})$ gives rise to a projectively invariant (first) BGG-operator Θ_0 .
- Normal solutions of the first BGG-operator $\overline{\Theta_0}$ resp. Θ_0 are defined as parallel sections of $\overline{\mathcal{V}}$ resp. \mathcal{V} :

$$\nabla^{\mathcal{V}} - \text{parallel sections}$$

$$\Pi_0 \bigg| \sum_{L_0} L_0$$

$$\{\text{normal solutions}\} \subset \ker \Theta_0^{\mathcal{V}}$$

• For general solutions, one can employ the HSSŠ-'prolongation connection' $\hat{\nabla}^{\mathcal{V}}$ (H.-Somberg-Souček-Šilhan, 2012):

$$\hat{\nabla}^{\mathcal{V}}$$
 – parallel sections $\Pi_0 \bigvee_{L_0} L_0$ ker $\Theta^{\mathcal{V}}$

Holography of BGG-Solutions

M. Hammerl

General Restriction & Extension for Normal BGG-Solutions

Since the connections $\overline{\nabla}^{\mathcal{V}}$ resp. $\nabla^{\mathcal{V}}$ are induced from the normal conformal resp. projective tractor connections, infinitesimal holonomies agree again:

$$\inf. \mathrm{hol.}_{x_0}^{M_0}(\overline{\nabla}^{\overline{\mathcal{V}}}) \cong \inf. \mathrm{hol.}_{x}^{M_{-}}(\nabla^{\mathcal{V}}) \quad (x_0 \in M_0, x \in M_{-}).$$

It follows in particular that

$$\{\overline{\nabla}^{\overline{\mathcal{V}}}-\text{paralllel sections on }M_0\}\cong\{\nabla^{\mathcal{V}}-\text{parallel sections of type }\overline{V}\text{ on }M_-\}$$
 and thus $\ker_{nor}\overline{\Theta}_0^{\overline{V}}\cong\ker_{nor,\overline{V}}\Theta_0^{V}$, and we have $1:1$ -correspondence between normal solutions of type \overline{V} on the interior and normal solutions on the boundary.

Examples

For some very simple classes of BGG-equations, every solution is normal, and in particular the correspondences between solutions can be considered:

$ar{V}$	\widetilde{M}	M_0	M_{-}
\mathbb{R}^{n+2}	Parallel field	Einstein metric \overline{g}_E in \mathbf{c}	Ricci-flat affine con-
			nection projectively
			equivalent to $D^{g_{-}}$
$\Delta^{n+1,1}$	Parallel spinor	twistor spinor $\overline{\chi}$	Killing spinor χ

We next discuss the case $\bar{V}=V=\Lambda^{k+1}$, which is the first interesting case of a BGG-operator with (generally) non-normal solutions. The corresponding solutions are *conformal Killing forms* on M_0 resp. Killing forms on M_0 .

Prolongations of Projective / Conformal Killing Forms

• According to (H.-Somberg-Souček-Šilhan, 2012), one has

$$\{\text{Killing forms}\} \cong \ker \Theta_0 \cong \{\hat{\nabla} - \mathrm{parallel\ tractors}\}$$

where $\hat{\nabla} = \nabla + \Psi$ is the *prolongation connection* of this BGG-equation with Ψ the *prolongation modification* of the normal tractor connection. \rightsquigarrow Simple explicit formula available.

Similarly, one has

$$\{\textit{Conformal Killing forms}\} \cong \ker \overline{\Theta}_0 \cong \{\widehat{\overline{\nabla}} - \mathrm{parallel\ tractors}\},$$

where $\hat{\nabla} = \overline{\nabla} + \overline{\Psi}$ is the *prolongation connection* of this BGG-equation with $\overline{\Psi}$ the *prolongation modification* of the normal tractor connection. \rightsquigarrow *Explicit formula available.* (Gover-Šilhan 2008; HSSŠ, 2012)

Comparison of projective and conformal prolongation connections

Since the projective prolongation connection $\hat{\nabla}$ is defined on all of M, we can in particular restrict it to a linear connection $\hat{\nabla}_{M_0}$ on conformal tractors in $\Lambda^{k+1}\overline{\mathcal{T}}$ along M_0 .

A conformal tractor $\overline{s}\in \Lambda^{k+1}\overline{T}$ is parallel with respect to the restricted, projective prolongaton connection $\hat{\nabla}_{M_0}$ if and only if the following conditions hold:

 $\overline{\Theta}_0(\overline{\varphi}) = 0$

$$C_{c[a_2}^{\quad pq}\overline{\sigma}_{|pq|a_3\cdots a_k]}=0,\;\ldots$$
 (ormal Killing equation cKF together with an additional

(cKf)

- This is the conformal Killing equation cKF together with an additional integrability condition (I).
- In particular, the restriction of the projective prolongation connection $\hat{\nabla}$ to M_0 does not coincide with the conformal prolongation connection $\hat{\nabla}$.

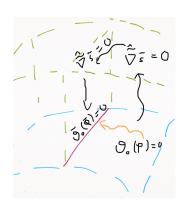
Holography of BGG-Solutions

M. Hammerl

Restriction process: $\varphi \leadsto \overline{\varphi}$

The projective prolongation connection $\hat{\nabla} = \nabla + \Psi$ of the (projective) Killing form equation on M can be equivalently described by a suitable/corresponding 'ambient prolongation connection' $\hat{\nabla}$. Let $\varphi_{\alpha_1 \cdots \alpha_k}$ be a Killing form of g_- on M_- .

- ① One regards the corresponding tractor as a suitably 'ambient prolongation connection' $\hat{\nabla}$ -parallel (multi-vector-)field \tilde{s} ,
- restricts this field to C,
- and obtains (via the obove comparison of prolongation connections) a conformal Killing form $\overline{\varphi}_{a_1\cdots a_k}$ on M_0 satisfying additional integrability conditions (I).



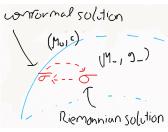
Extension process: $\bar{\phi} \rightsquigarrow \phi$

Conversely, let $\overline{\varphi}_{a_1 \cdots a_k}$ be a conformal Killing form on M_0 satisfying (I).

- Let $\widetilde{s} \in \Gamma_{\mathcal{C}}(\Lambda^{k+1}T\widetilde{M})$ be the corresponding ambient field defined along \mathcal{C} .
- ② By the above comparison of prolongation connections, \widetilde{s} is parallel with respect to the 'ambient prolongation connection' $\hat{\nabla}$ along \mathcal{C} in \mathcal{C} -directions.
- ① It is shown via an infinitesimal holonomy-computation that one obtains a global $\hat{\nabla}$ -parallel ambient field \tilde{s} .
- **1** In particular, since $\hat{\nabla}$ governs the (projective) Killing form equation globally on M, we obtain (via restriction), a Killing form $\varphi_{\alpha_1 \cdots \alpha_k}$ on M_- .

Summary of BGG-Relationships

M_0	M_{-}
Einstein metric \overline{g}_E in c	Ricci-flat affine connection
	projectively equivalent to D^{g}
conformal Killing form \overline{arphi} satisfying (I)	Killing form φ
twistor spinor $\overline{\chi}$	Killing spinor χ



- For k=1 (I) is always satisfied and we recover the (categorical) relationship between conformal Killing fields $\bar{\xi}$ on M_0 and Killing fields ξ of g_- on M_- .
- All respective objects correspond to parallel fields on ambient space \widetilde{M} .

Holography of BGG-Solutions M. Hammerl