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Fefferman-Graham ambient spaces

• Let (M, [g ]) be a conformal geometry of signature (p, q) with
p + q = m the dimension of M.
A Fefferman-Graham ambient space of (M, [g ]) is a
(pseudo-)Riemannian space (M, g) of signature (p + 1, q + 1) which is
Ricci-flat and gives an equivalent encoding of [g ].

• This description has been fundamental for constructing and classify-
ing conformal invariants (Fefferman-Graham, 1984) and for construct-
ing and studying conformally invariant differential operators (Graham-
Jenne-Mason-Sparling, 1992).
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Let g ∈ [g ] be some representative metric in the conformal class. The
Fefferman-Graham ambient space can then be written as

M = R+ ×M × R︸ ︷︷ ︸
(t,x ,ρ)

,

• where R+ ×M ⊆M is regarded as the ray bundle of metrics in the
conformal class [g ] parametrized by (t, x) 7→ t2g and
• ρ ∈ R is a new transversal coordinate.

Let x denote local coordinates on M. Then an ansatz for the
Fefferman-Graham ambient metric g is

g = t2gij(x , ρ)dx i � dx j + 2ρdt � dt + 2tdt � dρ, (FG)

where
g(x , 0) = gij(x , 0)dx idx j

is the representative metric g .

The Fefferman-Graham metric g is homogeneous of degree 2 with respect
to the Euler field t∂t on M.

3



To show existence of a Fefferman-Graham ambient metric g for given g ,
the ansatz (FG) determines an iterative procedure to determine gij(x , ρ) as
a Taylor series in ρ satisfying

Ric(g) = 0 to infinite order at ρ = 0.

• For m odd existence (and a natural version of uniqueness) of g as an
infinity-order series expansion in ρ is guaranteed for general gij(x).

• For m = 2n even, the procedure for determining the expansion in ρ for
gij(x , ρ) such that Ric(g) = 0 is generically obstructed at order n.

In general, it is not known whether a ’global’ ambient space (M, g)
satisfying Ric(g) = 0 on all on M and not only asymptotically exists always
in the odd-dimensional case or in the even, obstruction-flat situation.
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Results which provide global Fefferman–Graham ambient metrics, where g
can be constructed in a natural way from g and satisfies Ric(g) globally
and not just asymptotically at ρ = 0 are rare, both in the odd- and
even-dimensional situation.

• A special instance where ambient metrics can at least be shown to exist
properly occurs for g real–analytic, and m either being odd or m even
and with obstruction tensor O of g vanishing.

• The simplest case of geometric origin for which one has global ambient
metrics consists of locally conformally flat structures (M, [g ]), where
(M, g) exists and is unique up to diffeomorphisms.

• A well known geometric case is formed by conformal structures (M, [g ])
which contain an Einstein metric g : If Ric(g) = 2λ(m − 1)g , then g
on R+ ×M × R can be written directly in terms of g as

g = t2(1 + λρ)2g + 2ρdt � dt + 2tdt � dρ. (E)
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Examples for global ambient metrics

• In work by Thomas Leistner and Pawel Nurowski (2010) it was shown
that (odd-dimensional) pp-waves admit global and explicit ambient
metrics.
• Ambient metrics have also been constructed for particular families of

conformal structures which are induced by
I ... generic 2-distributions on 5-manifolds

(Leistner-Nurowski 2012).
I ... generic 3-distributions on 6 manifolds

(Anderson-Leistner-Nurowski 2015).
and

I for particular families of of conformal structures for which the equation
Ric(g) = 0 becomes a linear PDE
(Anderson-Leistner–Lischewski-Nurowski 2016).

• An explicit ambient metric for an example of an homogeneous confor-
mal structure was obtained by (Willse 2014).

We expand the geometric class of metrics for which canonical ambient
metrics exist globally and in a canonical realization to Patterson–Walker
metrics.
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Patterson–Walker metrics

• Let N be a smooth manifold and p : T ∗N → N its co-tangent bundle.
The vertical subbundle V ⊆ T (T ∗N) of this projection is canonically
isomorphic to T ∗N.
• An affine connection D on N determines a complementary horizontal

distribution H ⊆ T (T ∗N) that is isomorphic to TN via the tangent
map of p.

The Patterson–Walker metric associated to a torsion-free affine connection
D on N is the pseudo-Riemannian split-signature (n, n)-metric g on T ∗N
fully determined by the following conditions:
• both V and H are isotropic with respect to g ,

• the value of g with one entry from V and another entry from H is
given by the natural pairing between V ∼= T ∗N and H ∼= TN.

 It follows that V is parallel with respect to the Levi-Civita connection
of the just constructed metric. Hence Patterson–Walker metrics are
special cases of Walker metrics, which are metrics admitting a parallel
isotropic distribution.
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Local Formula for Patterson–Walker metrics

• Let D be a torsion-free affine connection on N which preserves a
volume form.

• Denote local coordinates on N by xA and the induced canonical fibre
coordinates on T ∗N by pA.

• Let Γ C
A B denote the Christoffel symbols of D.

Then

g = 2 dxA � dpA − 2 Γ C
A B pC dxA � dxB (PW)

is the Patterson–Walker metric induced on T ∗N by D.

8



Properties of the induced Patterson–Walker space (M , g):

• (M, g) carries a parallel pure spinor χ ∈ Γ(S−),

D̃χ = 0.

 equivalent encoding of the parallel maximally isotropic distribution
V ⊂ TM.

• (M, g) carries a homothety k ∈ X(M),

Lkg = 2 g .

• Any infinitesimal symmetry vA of the affine connection D induces a
Killing field ṽa of g .
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Given an affine connection D on N we may weaken it to its projective
equivalence class [D] and regard (N, [D]) as a projective structure:

We recall that two affine connections D,D ′ on N are called projectively
related if there exists a 1-form Υ ∈ Ω1(N) with

D ′XY = DXY + Υ(X )Y + Υ(Y )X (P)

for all X ,Y ∈ X(N).

It is an obviously interesting question to ask how the association

N  T ∗N, D  g

behaves with respect to a projective change from D to D ′.

• In general, for projectively related metrics D,D ′, the associated
Patterson–Walker metrics on M = T ∗N will fail to be conformally
equivalent.
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• In work by Dunajski-Tod (2010) the Patterson–Walker construction
was generalized to a projectively invariant setting in dimension n = 2.

• In work by Nurowski-Sparling (2003), a construction of conformal
structures of signature (2, 2) using Cartan connections was presented.

• In joint work (HSŠTZ, arXiv:1510.03337) it was shown that the
association from a projective structure to a conformal split signature
structure can be understood a s a Fefferman-type construction based
on a group inclusion SL(n + 1) ↪→ Spin(n + 1, n + 1).

• In joint work (HSŠTZ, arXiv:1604.08471) we provided a ’direct’
approach, primarily based on suitable ’spin calculus’, giving explicit
formuli relating geometric properties and objects on N with
corresponding objects on the conformal space M.
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Preliminaries for the construction: Projective Densities and Scales:
For projective structures on an oriented manifold N it is often useful to
employ suitably calibrated projective density bundles of weight w ,

E(w) := (∧nTN)−
w

n+1 .

For the special case of weight w = 1 we call the ray bundle E+(1) ⊆ E(1)
the bundle of projective scales.

Let [D] be a projective class which contains volume-preserving (also called
special) connections. Then projective scales s ∈ E+(1) correspond to a
special affine connections D ∈ [g ].

We define
M = T ∗N(2) = T ∗N ⊗ E(2)

the (projectively) weighted co-tangent bundle of N.
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Conformal Patterson–Walker metrics

Given a projective scale s ∈ E+(1) we obtain a trivialization/identification
of T ∗N(2) ∼= T ∗N. With D the special affine connection corresponding to
the scale s, we have the
induced Patterson–Walker metric gs on M = T ∗N(2).

Proposition

If s ′ = ef s is another projective scale, then gs′ = e2f gs .
Thus, the projectively related affine connections D,D ′ on N induce
conformally related Patterson–Walker metrics gs , gs′ on M = T ∗N(2), and
we obtain a natural association

(N, [D]) (M, [g ]).
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Properties of conformal Patterson–Walker metrics:

• (M, [g ]) carries a pure twistor spinor χ with (maximally isotropic,
n-dimensional) integrable kernel kerχ.

• (M, [g ]) carries a nowhere-vanishing conformal Killing field k ∈ kerχ

In addition, one can show the following:

• The Lie-derivative of χ with respect to the conformal Killing field k is

Lkχ = −1

2
(n + 1)χ . (L)

• The following integrability condition is satisfied for all v r ,w s ∈ kerχ:

W̃abcdv
awd = 0 . (W)

Then:

• These conditions characterize conformal Patterson–Walker metrics.

• Under those conditions there always exist (at least locally)
Patterson–Walker metrics g ∈ [g ], which satisfy D̃χ = 0.
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The Thomas cone connection

A much simpler analog of ambient spaces of conformal structures is
available for projective structures due to Tracy Thomas (1934):

• The Thomas cone associated to a projective manifold (N,D) is the

natural ray bundle C := E+(1)= (ΛnTN)−
1

n+1 .

• The Thomas cone connection ∇ is a canonical affine, Ricci-flat
connection on C.

Let s : N → E+(1) be the scale corresponding to an affine connection
D ∈ [D], providing a trivialization E+(1) ∼= R+ × N via (x0, x) 7→ s(x)x0.
In this trivialization the Thomas cone connection is given by

∇XY = DXY −
1

n − 1
Ric(X ,Y )Z , ∇Z = idTC (T)

where X ,Y ∈ X(N) and Z = x0∂x0 is the Euler field on C.

It is in fact easy to see directly from formula (T) that the thus defined
affine connection ∇ on the Thomas cone C is independent of the choice of
scale and Ricci-flat. 15



Combining the constructions

• Given a projective structure (N, [D]) on an n-dimensional manifold N,
we can form the Thomas cone (C,∇) and consider the associated
Patterson–Walker metric g on M = T ∗C = T ∗E+(1).

• Obviously: dim C = (n + 1), so sig(g) = (n + 1, n + 1).

• Since ∇ is Ricci-flat, so is its Patterson–Walker metric g.

In particular, we may be tempted to investigate whether (M, g) is in fact
the Fefferman–Graham ambient metric space associated to the conformal
class (M, [g ]):

(C,∇) // (M, g) . . .Ricci−flat, split−signature (n + 1, n + 1)

(N, [D])

OO

// (M, [g ]) . . . conformal, split−signature (n, n)

We also have the induced homothety k on M, which might be suspected
to be a canonical candidate for the Euler-field of the ambient space.
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Procedure:

• Compute the Thomas cone connection ∇ on C for given D.
• Compute the Patterson–Walker metric g on T ∗C associated to ∇.
• Perform (locally) an appropriate coordinate change which shows that

the resulting split-signature (n + 1, n + 1) pseudo-Riemannian metric
g is a Fefferman–Graham ambient metric.

Concretely:

• We use a local coordinate patch on N which induces coordinates
xA, yA on the co-tangent bundle T ∗N and coordinates x0, xA, yA, y0
on T ∗C ∼= R+ × T ∗N × R.
• Then the Patterson–Walker metric g associated to the Thomas cone

connection ∇ is

g =2dxA � dyA + 2dx0 � dy0 −
4

x0
yBdx

0 � dxB (1)

− 2yCΓ C
A Bdx

A � dxB + 2
x0y0
n − 1

RicAB dxA � dxB .

• We employ the change of coordinates t = x0, ρ = y0
x0
, pA = yA

(x0)2
.
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Theorem (Local Statement)

For a given torsion–free, volume–preserving affine connection D with
Christoffel symbols Γ C

A B ,

‘g = 2ρdt � dt + 2tdt � dρ, (PW-A)

+ t2(2dxA � dpA − 2pCΓ C
A Bdx

A � dxB +
2ρ

n − 1
RicAB dxA � dxB),

is the Fefferman–Graham ambient metric of the Patterson–Walker metric

g = 2dxA � dpA − 2pCΓ C
A Bdx

A � dxB . (PW)

• Once one has the above formula, it can also be proved directly: One
checks Ricci-flatness of (PW-A) for any given Christoffel symbols
ΓA

BC , satisfying
ΓA

BC = ΓA
CB , ∂Aγ

P
BP − ∂BΓP

AP

where the first condition corresponds to torsion–freeness of D and
second condition to volume–preservation of D.
• It follows in particular that the Fefferman-Graham obstruction tensor
O vanishes for any Patterson–Walker metric.
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Properties of the ambient metric g

• As a Patterson–Walker metric (M, g) carries a naturally induced
homothety

k = 2pA∂pA + 2ρ∂ρ

of degree 2.
• The infinitesimal affine symmetry Z of the affine connection ∇ lifts to

the Killing field
ξ = t∂t − 2pA∂pA − 2ρ∂ρ.

• The Euler field of the Fefferman–Graham ambient metric g can be
written as the sum ξ + k of this Killing field and the homothety k:

t∂t = ξ + k.

• TM carries the maximally isotropic (n + 1)-dimensional subspace
spanned by {∂pA , ∂ρ} which is preserved by ∇. This subspace can be
equivalently described by a ∇-parallel pure spinor s on M.
• In particular,

Hol(g) ⊆ SL(n + 1) n Λ2Rn+1,n+1.

19



Theorem (Global statement)

Given a projective structure (N, [D]) on an n-dimensional manifold N, the
geometric constructions indicated in the following diagram commute:

Thomas cone Ambient space

(C,∇) // (M, g)

(N, [D])

OO

// (M, [g ])

OO

In particular, the induced conformal structure [g ] admits a globally
Ricci-flat Fefferman–Graham ambient metric g which is itself a
Patterson–Walker metric.
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Q-Curvature

• Q-curvature Qg of a given metric g on an even-dimensional manifold is
a Riemannian scalar invariant with a particularly simple (linear) trans-
formation law with respect to conformal change of metric (Thomas
Branson 1993).

• Computation of Q-curvature is notoriously difficult since it typically
requires knowledge of the Fefferman-Graham ambient metric:

I Formulas in terms of underlying data can in principle be obtained algo-
rithmically for each given dimension, but the resulting formulas are not
(at the moment) accessible to human inspection.

I An explicit form of a Fefferman–Graham ambient metric g for a given
metric g allows a computation of Qg . Using the fact that g is actually
a Patterson–Walker metric, this computation is particularly simple.

Theorem

The Patterson–Walker metric g associated to a volume–preserving,
torsion–free affine connection D has vanishing Q-curvature Qg .
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Computation:

• According to (Fefferman-Hirachi, 2003), we have to compute

Qg =
(
−∆n log(t)

)
|{1}×T∗N×{0},

I where ∆ is the ambient Laplacian on M = R+ × T ∗N × R,
I t : M→ R+ is the first coordinate projection and
I the subscript denotes restriction to T ∗N ↪→M.

• To show that Q-curvature vanishes for g , it is in particular sufficient
to show that ∆ log(t) = 0.

• We observe that the function t : M→ R+ is horizontal since it is just
the pullback of the coordinate function x0 : C → R+ on the Thomas
cone C ∼= R+ × N.

• The explicit formula for the Christoffel symbols of a Patterson–Walker
metric shows that ∆ vanishes on any horizontal function. Thus in
particular ∆ log(t) = 0, and then also Qg = 0.
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Thank you for your attention!
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