Conformal Patterson–Walker metrics and Fefferman–Graham ambient spaces

Matthias Hammerl

University of Greifswald

37th Winter School Geometry and Physiscs, Srni, 20 Jan 2017

This talk is based on joint works with Katja Sagerschnig (Polytecnico di Torino), Josef Šilhan (Masaryk University), Arman Taghavi-Chabert (University of Turin) and Vojtěch Žádník (Masaryk University).

Fefferman-Graham ambient spaces

- Let (M, [g]) be a conformal geometry of signature (p, q) with p + q = m the dimension of M.
 A Fefferman-Graham ambient space of (M, [g]) is a (pseudo-)Riemannian space (M, g) of signature (p + 1, q + 1) which is Ricci-flat and gives an equivalent encoding of [g].
- This description has been fundamental for constructing and classifying conformal invariants (Fefferman-Graham, 1984) and for constructing and studying conformally invariant differential operators (Graham-Jenne-Mason-Sparling, 1992).

Let $g \in [g]$ be some representative metric in the conformal class. The Fefferman-Graham ambient space can then be written as

$$\mathsf{M} = \underbrace{\mathbb{R}_+ \times M \times \mathbb{R}}_{(t,x,\rho)},$$

• where $\mathbb{R}_+ \times M \subseteq \mathbf{M}$ is regarded as the ray bundle of metrics in the conformal class [g] parametrized by $(t, x) \mapsto t^2g$ and

• $\rho \in \mathbb{R}$ is a new transversal coordinate.

Let x denote local coordinates on M. Then an *ansatz* for the Fefferman-Graham ambient metric **g** is

$$\mathbf{g} = t^2 g_{ij}(x,\rho) dx^i \odot dx^j + 2\rho dt \odot dt + 2t dt \odot d\rho, \tag{FG}$$

where

$$g(x,0) = g_{ij}(x,0)dx^i dx^j$$

is the representative metric g.

The Fefferman-Graham metric **g** is homogeneous of degree 2 with respect to the *Euler field* $t\partial_t$ on **M**.

To show existence of a Fefferman-Graham ambient metric **g** for given g, the *ansatz* (FG) determines an iterative procedure to determine $g_{ij}(x, \rho)$ as a Taylor series in ρ satisfying

 $\operatorname{Ric}(\mathbf{g}) = \mathbf{0}$ to infinite order at $\rho = \mathbf{0}$.

- For *m* odd existence (and a natural version of uniqueness) of **g** as an infinity-order series expansion in ρ is guaranteed for general $g_{ij}(x)$.
- For m = 2n even, the procedure for determining the expansion in ρ for $g_{ij}(x, \rho)$ such that $\text{Ric}(\mathbf{g}) = 0$ is generically obstructed at order n.

In general, it is not known whether a 'global' ambient space (\mathbf{M}, \mathbf{g}) satisfying $\operatorname{Ric}(\mathbf{g}) = 0$ on all on \mathbf{M} and not only asymptotically exists always in the odd-dimensional case or in the even, obstruction-flat situation.

Results which provide global Fefferman–Graham ambient metrics, where **g** can be constructed in a natural way from g and satisfies $\text{Ric}(\mathbf{g})$ globally and not just asymptotically at $\rho = 0$ are rare, both in the odd- and even-dimensional situation.

- A special instance where ambient metrics can at least be shown to exist properly occurs for g real-analytic, and m either being odd or m even and with obstruction tensor O of g vanishing.
- The simplest case of geometric origin for which one has global ambient metrics consists of locally conformally flat structures (M, [g]), where (M, g) exists and is unique up to diffeomorphisms.
- A well known geometric case is formed by conformal structures (M, [g]) which contain an Einstein metric g: If Ric(g) = 2λ(m − 1)g, then g on ℝ₊ × M × ℝ can be written directly in terms of g as

$$\mathbf{g} = t^2 (1 + \lambda \rho)^2 g + 2\rho dt \odot dt + 2t dt \odot d\rho.$$
 (E)

Examples for global ambient metrics

- In work by Thomas Leistner and Pawel Nurowski (2010) it was shown that (odd-dimensional) *pp-waves* admit global and explicit ambient metrics.
- Ambient metrics have also been constructed for particular families of conformal structures which are induced by
 - ... generic 2-distributions on 5-manifolds (Leistner-Nurowski 2012).
 - ... generic 3-distributions on 6 manifolds (Anderson-Leistner-Nurowski 2015).

and

- for particular families of of conformal structures for which the equation Ric(g) = 0 becomes a linear PDE (Anderson-Leistner–Lischewski-Nurowski 2016).
- An explicit ambient metric for an example of an *homogeneous conformal structure* was obtained by (Willse 2014).

We expand the geometric class of metrics for which canonical ambient metrics exist globally and in a canonical realization to *Patterson–Walker metrics*.

Patterson-Walker metrics

- Let N be a smooth manifold and $p: T^*N \to N$ its co-tangent bundle. The vertical subbundle $V \subseteq T(T^*N)$ of this projection is canonically isomorphic to T^*N .
- An <u>affine connection D on N</u> determines a complementary horizontal distribution H ⊆ T(T*N) that is isomorphic to TN via the tangent map of p.

The <u>Patterson–Walker metric</u> associated to a torsion-free affine connection D on N is the pseudo-Riemannian split-signature (n, n)-metric g on T^*N fully determined by the following conditions:

- both V and H are isotropic with respect to g,
- the value of g with one entry from V and another entry from H is given by the natural pairing between V ≅ T*N and H ≅ TN.

 \rightsquigarrow It follows that V is parallel with respect to the Levi-Civita connection of the just constructed metric. Hence Patterson–Walker metrics are special cases of Walker metrics, which are metrics admitting a parallel isotropic distribution.

Local Formula for Patterson–Walker metrics

- Let *D* be a torsion-free affine connection on *N* which preserves a volume form.
- Denote local coordinates on N by x^A and the induced canonical fibre coordinates on T^{*}N by p_A.
- Let $\Gamma_A^{\ \ C}_B$ denote the Christoffel symbols of D.

Then

$$g = 2 \, \mathrm{d} x^A \odot \mathrm{d} p_A - 2 \, \Gamma_A{}^C{}_B \, p_C \, \mathrm{d} x^A \odot \mathrm{d} x^B$$

(PW

is the Patterson–Walker metric induced on T^*N by D.

Properties of the induced Patterson–Walker space (M, g):

• (M,g) carries a parallel pure spinor $\chi\in \Gamma(\mathcal{S}_{-})$,

$$\widetilde{D}\chi = 0.$$

 \rightsquigarrow equivalent encoding of the parallel maximally isotropic distribution $V \subset TM.$

• (M,g) carries a homothety $k \in \mathfrak{X}(M)$,

$$\mathcal{L}_k g = 2 g.$$

 Any infinitesimal symmetry v^A of the affine connection D induces a Killing field v^a of g. Given an affine connection D on N we may *weaken* it to its projective equivalence class [D] and regard (N, [D]) as a projective structure:

We recall that two affine connections D, D' on N are called *projectively* related if there exists a 1-form $\Upsilon \in \Omega^1(N)$ with

$$D'_X Y = D_X Y + \Upsilon(X) Y + \Upsilon(Y) X \tag{P}$$

for all $X, Y \in \mathfrak{X}(N)$.

It is an obviously interesting question to ask how the association

$$N \rightsquigarrow T^*N, D \rightsquigarrow g$$

behaves with respect to a projective change from D to D'.

• In general, for projectively related metrics D, D', the associated Patterson–Walker metrics on $M = T^*N$ will fail to be conformally equivalent.

- In work by Dunajski-Tod (2010) the Patterson–Walker construction was generalized to a projectively invariant setting in dimension n = 2.
- In work by Nurowski-Sparling (2003), a construction of conformal structures of signature (2,2) using Cartan connections was presented.
- In joint work (HSŠTZ, arXiv:1510.03337) it was shown that the association from a projective structure to a conformal split signature structure can be understood as a Fefferman-type construction based on a group inclusion SL(n+1) → Spin(n+1, n+1).
- In joint work (HSŠTZ, arXiv:1604.08471) we provided a 'direct' approach, primarily based on suitable 'spin calculus', giving explicit formuli relating geometric properties and objects on N with corresponding objects on the conformal space M.

Preliminaries for the construction: Projective Densities and Scales: For projective structures on an oriented manifold *N* it is often useful to employ suitably calibrated *projective density bundles of weight w*,

$$\mathcal{E}(w) := (\wedge^n TN)^{-\frac{w}{n+1}}$$

For the special case of *weight* w = 1 we call the ray bundle $\mathcal{E}_+(1) \subseteq \mathcal{E}(1)$ the bundle of projective scales.

Let [D] be a projective class which contains volume-preserving (also called special) connections. Then projective scales $s \in \mathcal{E}_+(1)$ correspond to a special affine connections $D \in [g]$.

We define

$$M = T^*N(2) = T^*N \otimes \mathcal{E}(2)$$

the (projectively) weighted co-tangent bundle of N.

Conformal Patterson–Walker metrics

Given a projective scale $s \in \mathcal{E}_+(1)$ we obtain a trivialization/identification of $T^*N(2) \cong T^*N$. With *D* the special affine connection corresponding to the scale *s*, we have the induced Batterson Walker metric *s*, on $M = T^*N(2)$

induced Patterson–Walker metric g_s on $M = T^*N(2)$.

Proposition

If $s' = e^{f}s$ is another projective scale, then $g_{s'} = e^{2f}g_{s}$. Thus, the projectively related affine connections D, D' on N induce conformally related Patterson–Walker metrics $g_{s}, g_{s'}$ on $M = T^*N(2)$, and we obtain a natural association

 $(N, [D]) \rightsquigarrow (M, [g]).$

Properties of conformal Patterson-Walker metrics:

- (M, [g]) carries a pure *twistor spinor* χ with (maximally isotropic, *n*-dimensional) integrable kernel ker χ .
- (M, [g]) carries a nowhere-vanishing conformal Killing field $k \in \ker \chi$

In addition, one can show the following:

• The Lie-derivative of χ with respect to the conformal Killing field k is

$$\mathcal{L}_k \chi = -\frac{1}{2} (n+1) \chi \,. \tag{L}$$

• The following integrability condition is satisfied for all $v^r, w^s \in \ker \chi$:

$$\widetilde{W}_{abcd}v^aw^d = 0. \tag{W}$$

Then:

- These conditions characterize conformal Patterson–Walker metrics.
- Under those conditions there always exist (at least locally) Patterson–Walker metrics $g \in [g]$, which satisfy $\widetilde{D}\chi = 0$.

The Thomas cone connection

A much simpler analog of ambient spaces of conformal structures is available for projective structures due to Tracy Thomas (1934):

- The <u>Thomas cone</u> associated to a projective manifold (N, D) is the natural ray bundle C := C₊(1)= (ΛⁿTN)^{-1/n+1}.
- The <u>Thomas cone connection</u> ∇ is a canonical affine, Ricci-flat connection on C.

Let $s: N \to \mathcal{E}_+(1)$ be the scale corresponding to an affine connection $D \in [D]$, providing a trivialization $\mathcal{E}_+(1) \cong \mathbb{R}_+ \times N$ via $(x^0, x) \mapsto s(x)x^0$. In this trivialization the Thomas cone connection is given by

$$\nabla_X Y = D_X Y - \frac{1}{n-1} \operatorname{Ric}(X, Y) Z, \ \nabla Z = \operatorname{id}_{TC}$$
(T)

where $X, Y \in \mathfrak{X}(N)$ and $Z = x^0 \partial_{x^0}$ is the Euler field on \mathcal{C} .

It is in fact easy to see directly from formula (T) that the thus defined affine connection ∇ on the Thomas cone C is independent of the choice of scale and Ricci-flat. 15

Combining the constructions

- Given a projective structure (N, [D]) on an n-dimensional manifold N, we can form the Thomas cone (C, ∇) and consider the associated Patterson-Walker metric g on M = T*C = T*C₊(1).
- Obviously: dim C = (n + 1), so sig(g) = (n + 1, n + 1).
- Since ∇ is Ricci-flat, so is its Patterson–Walker metric \mathbf{g} .

In particular, we may be tempted to investigate whether (\mathbf{M}, \mathbf{g}) is in fact the Fefferman–Graham ambient metric space associated to the conformal class (M, [g]):

We also have the induced homothety \mathbf{k} on \mathbf{M} , which might be suspected to be a canonical candidate for the Euler-field of the ambient space.

Procedure:

- Compute the Thomas cone connection ∇ on C for given D.
- Compute the Patterson–Walker metric \mathbf{g} on $T^*\mathcal{C}$ associated to ∇ .
- Perform (locally) an appropriate coordinate change which shows that the resulting split-signature (n + 1, n + 1) pseudo-Riemannian metric **g** is a Fefferman–Graham ambient metric.

Concretely:

- We use a local coordinate patch on N which induces coordinates x^A, y_A on the co-tangent bundle T*N and coordinates x⁰, x^A, y_A, y₀ on T*C ≅ ℝ₊ × T*N × ℝ.
- Then the Patterson–Walker metric ${\bf g}$ associated to the Thomas cone connection ∇ is

$$\mathbf{g} = 2dx^{A} \odot dy_{A} + 2dx^{0} \odot dy_{0} - \frac{4}{x^{0}}y_{B}dx^{0} \odot dx^{B}$$
(1)
$$- 2y_{C}\Gamma_{A}^{\ \ C}{}_{B}dx^{A} \odot dx^{B} + 2\frac{x^{0}y_{0}}{n-1}\operatorname{Ric}_{AB}dx^{A} \odot dx^{B}.$$

• We employ the change of coordinates $t = x^0$, $\rho = \frac{y_0}{x^0}$, $p_A = \frac{y_A}{(x^0)^2}$.

Theorem (Local Statement)

For a given torsion–free, volume–preserving affine connection D with Christoffel symbols $\Gamma_A{}^C{}_B$,

$$\mathbf{g} = 2\rho dt \odot dt + 2t dt \odot d\rho, \qquad (PW-A)$$
$$+ t^{2} (2dx^{A} \odot dp_{A} - 2p_{C} \Gamma_{A}^{C}{}_{B} dx^{A} \odot dx^{B} + \frac{2\rho}{n-1} \operatorname{Ric}_{AB} dx^{A} \odot dx^{B}),$$

is the Fefferman-Graham ambient metric of the Patterson-Walker metric

$$g = 2dx^{A} \odot dp_{A} - 2p_{C} \Gamma_{A}^{C}{}_{B} dx^{A} \odot dx^{B}.$$
 (PW)

• Once one has the above formula, it can also be proved directly: One checks Ricci-flatness of (PW-A) for any given Christoffel symbols Γ^{A}_{BC} , satisfying $\Gamma^{A}_{BC} = \Gamma^{A}_{CB}, \ \partial_{A}\gamma^{P}_{BP} - \partial_{B}\Gamma^{P}_{AP}$

where the first condition corresponds to torsion–freeness of D and second condition to volume–preservation of D.

• It follows in particular that the Fefferman-Graham obstruction tensor \mathcal{O} vanishes for any Patterson–Walker metric.

Properties of the ambient metric ${f g}$

• As a Patterson–Walker metric (**M**, **g**) carries a naturally induced homothety

$$\mathbf{k} = 2p_A \partial_{p_A} + 2
ho \partial_{
ho}$$

of degree 2.

• The infinitesimal affine symmetry Z of the affine connection ∇ lifts to the Killing field

$$\xi = t\partial_t - 2p_A\partial_{p_A} - 2\rho\partial_{\rho}.$$

 The Euler field of the Fefferman–Graham ambient metric g can be written as the sum ξ + k of this Killing field and the homothety k:

$$t\partial_t = \xi + \mathbf{k}.$$

- *T*M carries the maximally isotropic (*n* + 1)-dimensional subspace spanned by {∂_{p_A}, ∂_ρ} which is preserved by ∇. This subspace can be equivalently described by a ∇-parallel pure spinor s on M.
- In particular,

$$\operatorname{Hol}(\mathbf{g}) \subseteq \operatorname{SL}(n+1) \ltimes \Lambda^2 \mathbb{R}^{n+1,n+1}.$$

Theorem (Global statement)

Given a projective structure (N, [D]) on an n-dimensional manifold N, the geometric constructions indicated in the following diagram commute:

Thomas cone Ambient space

In particular, the induced conformal structure [g] admits a globally Ricci-flat Fefferman–Graham ambient metric **g** which is itself a Patterson–Walker metric.

Q-Curvature

- Q-curvature Q_g of a given metric g on an even-dimensional manifold is a Riemannian scalar invariant with a particularly simple (linear) transformation law with respect to conformal change of metric (Thomas Branson 1993).
- Computation of *Q*-curvature is notoriously difficult since it typically requires knowledge of the Fefferman-Graham ambient metric:
 - Formulas in terms of underlying data can in principle be obtained algorithmically for each given dimension, but the resulting formulas are not (at the moment) accessible to human inspection.
 - ► An explicit form of a Fefferman–Graham ambient metric g for a given metric g allows a computation of Q_g. Using the fact that g is actually a Patterson–Walker metric, this computation is particularly simple.

Theorem

The Patterson–Walker metric g associated to a volume–preserving, torsion–free affine connection D has vanishing Q-curvature Q_g .

Computation:

• According to (Fefferman-Hirachi, 2003), we have to compute

$$Q_{g} = \left(-\boldsymbol{\Delta}^{n}\log(t)\right)_{|\{1\}\times T^{*}N\times\{0\}},$$

- where Δ is the ambient Laplacian on $\mathbf{M} = \mathbb{R}_+ \times T^* N \times \mathbb{R}$,
- $t: \mathbf{M} \to \mathbb{R}_+$ is the first coordinate projection and
- the subscript denotes restriction to $T^*N \hookrightarrow \mathbf{M}$.
- To show that Q-curvature vanishes for g, it is in particular sufficient to show that Δ log(t) = 0.
- We observe that the function t : M → ℝ₊ is horizontal since it is just the pullback of the coordinate function x⁰ : C → ℝ₊ on the Thomas cone C ≅ ℝ₊ × N.
- The explicit formula for the Christoffel symbols of a Patterson-Walker metric shows that Δ vanishes on any horizontal function. Thus in particular Δ log(t) = 0, and then also Q_g = 0.

Thank you for your attention!