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The holonomy group

Let M be an n-dimensional manifold
endowed with an affine connection ∇.
Let x ∈ M be some
(fixed) point and c : [0, 1]→ M a closed
(piece-wise) C 1-curve with c(0) = c(1) = x .

The connection ∇ allows
us to define a parallel transport along c ,

Ptt
c : TxM → Tc(t)M,

which is a vector field along c for any given v ∈ TxM: it is the unique
solution of the ODE-problem

∇ċ(t)Ptc (v) = 0, Pt0
c(v) = v

Parallel transport along closed curves generates the holonomy group:

Hol(∇) := {Pt1
c | c ∈ C 1([0, 1],M), c(0) = c(1) = x} ⊂ GL(TxM).



Riemannian holonomy

Let g be a Riemannian metric on an (oriented) manifold M and ∇g its
Levi-Civita connection. Then

Hol(g) := Hol(∇g ) ⊂ SO(n)

Generically one has full holonomy Hol(g) = SO(n).
Fundamental results in Riemannian holonomy theory:

When Hol(g) = H1×H2, then (locally) (M, g) = (M1, g1)× (M2, g2).

When Hol(g) is irreducible and g is not symmetric, then Berger’s list
of Riemannian holonomy groups [1955] provides a finite list for
possible types of holonomy groups.

All holonomies in Berger’s list have been constructed. Specific
exceptional holonomies like G2 ⊂ SO(7) and Spin(7) ⊂ Spin(8) have
proven most difficult:

I [Bryant-Salomon 1987] constructed local examples
I [Joyce 1994/1996] constructed compact examples



Reduced holonomy via principal bundles

The holonomy group of a Riemannian metric g is reduced to

H ⊂ SO(n)

if and only if the orthogonal frame bundle P of g (together with its
principal connection form) has a reduction

H

H����

� � // P
SO(n)
����

M
id // M

Hol(g) is the smallest subgroup of SO(n) to which P can be reduced.

Example: For n = 2m even-dimensional, the following are equivalent:

The Riemannian metric g is Kähler, i.e., there exists a compatible
complex structure J: ∇gJ = 0, g(J·, J·) = g(·, ·)
Hol(g) ⊂ U(m)
There exists a reduction of the full orthogonal frame bundle (endowed
with its connection form) to U(m) ⊂ SO(2m).



Conformal structures

We say that two Riemannian metrics g and ĝ on M are conformally
related if there is a function f ∈ C∞(M,R>0) such that ĝ = fg . This
defines an equivalence relation for Riemannian metrics, and C = [g ] is
called a conformal structure on M.

While each metric g ∈ [g ] has its canonical Levi-Civita connection ∇g ,
there is no natural affine connection on M for the whole structure C. The
following problems thus become more difficult:

Defining conformal invariants and in particular developing notions of
curvature and holonomy

Defining conformally invariant differential operators

Example:
The n-dimensional Riemannian sphere (Sn, grd ) has full holonomy SO(n),
but the corresponding conformal structure (Sn, [grd ]) is locally conformally
flat via stereographic projection.



Specific examples of overdetermined problems:

Confomally invariant overdetermined problems:

Let g be a Riemannian metric on a manifold M. Can we rescale g
conformally to ĝ = fg for some positive function f such that ĝ is
Einstein,

Ric(ĝ) = λĝ ?

If M is even-dimensional, can one rescale a Riemannian metric g
conformally to a Kähler metric?

Projectively invariant overdetermined problems:
Two torsion-free affine connections ∇ and ∇̂ on TM are projectively
equivalent if they have the same unparameterized geodesics. For given
affine connection ∇ one thus obtains a projective structure [∇].

If ∇ is an affine torsion-free connection on M, is it metrizable? I.e,
can one describe its geodesics by an Riemannian metric?
Does the affine connection allow a projectively equivalent Ricci-flat
connection?



Prolongation approaches

To associate a natural connection to a conformal structure one employs
one of the following two techniques: Each approach delivers, on some
extended bundle or space a connection, and in particular yields a notion of
conformal holonomy:

Cartan resp. tractor approach (Élie Cartan, Tracy Thomas)
 Generalizes to Cartan geometries, and in particular to general
parabolic geometries
Ambient metric approach (Fefferman-Graham)
 Specific for conformal structures

In the present talk we present a general holonomy reduction theory for
Cartan geometries developed in joint work with A. Čap (Univ. of Vienna)
and A.R. Gover (Auckland Univ.)

For the specific case of conformal structures and the resulting notion of
ambient holonomy we discuss current joint work with A. Čap, A.R. Gover
and R. Graham (Univ. of Washington).



Klein-model-geometries

A Klein geometry is a pair (G ,P) with G a Lie group and P ⊂ G a closed
subgroup. G is then regarded as the automorphism group of the
homogeneous space G/P.

• Euclidean geometry can be understood as the study of the invariants
under the action of the Euclidean group Euc(n) = O(n) nRn on
Euclidean space En ∼= Rn ∼= Euc(n)/O(n).

• Projective space Pn can be described as SL(n + 1)/P, with
G = SL(n + 1) acting transitively on the space of lines in Rn+1 and
P ⊂ SL(n + 1) the stabilizer of a line.

• The conformal n-sphere is realized by regarding the
(transitive) action of the Lorentz-group G = O(n + 1, 1)
on the light-cone C ⊂ Rn+1,1 and having
P the stabilizer of some R+-ray in this cone.



Cartan Geometries

Élie Cartan, in his seminal works from ca. 1910, generalized Klein’s approach
to geometry to allow a description of curved structures which is based on
the underlying natural symmetry-group:

Homogeneous Space (Curved) Cartan geometry
En ∼= Euc(n)/O(n) n-dimensional Riemannian structure - Allows

measurement of distances on curved space.

Sn ∼= SO(n + 1)/P n-dimensional conformal structure - Allows
measurement of angles on curved space.

Pn ∼= SL(n + 1)/P n-dimensional projective structure -
Generalizes the notion of “straight lines” to
“unparameterized geodesics”.



Cartan and parabolic geometries

A Cartan geometry of type (G ,P) on a manifold M is a P-principal bundle
G → M endowed with a Cartan connection form ω ∈ Ω1(G, g) which
generalizes properties from the homogeneous model G/P:

G //____ G

P
��

Aut //___ G

P
��

G/P M

For P a parabolic subgroup of a simple Lie group G , (G, ω) is a
parabolic geometry.

Parabolic geometries allow uniform regularity and normality
conditions, and if these conditions are satisfied, the parabolic structure
is an equivalent description of an underlying geometric structure.



Holonomy of Cartan connections

The Cartan geometry (G, ω) with structure group P naturally extends to a
G -principal bundle (Ĝ , ω̂): G

P
����

� � // Ĝ

G
����

M
id // M

This allows us to define the holonomy of the Cartan connection form ω via
the extended principal connection form:

Hol(ω) := Hol(ω̂) ⊂ G .

For any G -representation V we can form the associated tractor
bundle V = G ×P V endowed with its induced tractor connection ∇V

and parallel sections of V correspond to G -equivariant maps
s : Ĝ → V that are constant on horizontal curves.
It follows in particular that for connected M one has a well defined
global G -type O := s(Ĝ) which is a G -orbit in V .
Moreover, one has a point-wise P-type for each x ∈ M:
s(Gx ) ∈ P\O, which is a P-orbit in O ⊂ V .



Holonomy-reductions of type O = G/H

The minimal way to obtain a reduction to some G -orbit O = G/H is:

Definition

A holonomy reduction of (G, ω) to H ↪→ G is a parallel section of G ×P O.

Given a reduction to O, we define for given ᾱ = P · α ∈ P\O

Mᾱ := {x ∈ M | s(Gx ) = ᾱ}.



P-type decomposition of the homogeneous model

We regard the homogeneous model G/P and consider a holonomy
reduction of type O = G/H, i.e., a reduction H ↪→ G .

The map which assocates to each point gP ∈ G/P its P-type, factorizes
to the natural bijection

H\G/P ∼→ P\O = P\G/H

between double co-set spaces defined via inversion.

{H−orbits in G/P} ↔ {P−types in O}



The curved orbit decomposition theorem

Theorem (Čap-Gover-H. 2014)

Let (G, ω) be a Cartan geometry of type (G ,P) with a given holonomy
reduction of type O = G/H. Let ᾱ ∈ P\O be such that Mᾱ 6= ∅. Then
Mᾱ ⊂ M is an initial submanifold of M and carries an induced Cartan
geometry of type (Gα,Gα ∩ P).

The decomposition
M =

⋃
ᾱ∈P\O

Mᾱ

is the curved orbit decomposition of M with respect to the given holonomy
reduction:

{H−orbits in G/P} ↔ {curved orbits in M}

When H acts transitively on G/P this shows that M carries a global
reduced geometry of type (H,H ∩ P).
The remaining work for analyzing reductions in specific cases is to see
what the normalization conditions that were employed for the original
Cartan connection form imply for the reduced structure.



Einstein-reductions of conformal structures

Let (M, [g ]) with [g ] = {fg | f ∈ C∞(M,R>0)} be an n-dimensional
Riemannian signature conformal structure.

For a reduction to SO(n + 1) ↪→ SO(n + 1, 1) we obtain
a single curved orbit of type SO(n + 1)/SO(n), which
carries an Einstein metric with positive scalar curvature.

For a reduction to SO(n, 1) ↪→ SO(n + 1, 1) we obtain
an open curved orbit of
type SO(n, 1)/SO(n) , which carries an Einstein metric
with negative scalar curvature and a closed curved orbit
of type SO(n, 1)/P̄ which carries a conformal structure.

We recover a description of almost Einstein structures
[Gover, 2010]. The reduction SO(n, 1) ↪→ SO(n + 1, 1)
yields examples of Poincaré-Einstein
manifolds with an Einstein metric on an interior
part of a manifold and a conformal structure at infinity.



Einstein-reductions of projective structures

We consider an n-dimensional projective structure (M, p) with p an
equivalence class of affine torsion-free connections on M.

We regard a reduction with G -type O = SL(n + 1)/SO(p, q) with
p + q = n + 1, which is the space of all signature (p, q) inner products.

As a P-space, O decomposes into three pieces

P\O = (P\O)+ ∪ (P\O)0 ∪ (P\O)−

Orbit Dim. Type Description
M+ n SO(p, q)/SO(p − 1, q) Einstein metric
M− n SO(p, q)/SO(p, q − 1) Einstein metric
M0 n − 1 SO(p, q)/P̄ conformal structure

This yields Klein-Einstein-structures [Čap-Gover-H., 2012], which can be
regarded as a projective compactification of a conformal structure.



Geometric construction of spaces with reduced holonomy

For group inclusions G ↪→ G̃ with G acting transitively on G̃/P̃ one can
employ a Fefferman-type construction [Čap 2005] to construct a geometry
of type (G̃ , P̃) from a geometry of type (G ,P):

(G, ω)

P

��

Correspondence

///o/o/o (G, ω)

Q
��

Extension
///o/o/o (G̃ , ω̃)

P̃
��

Normalization
///o/o/o (G̃ , ω̃nor )

P̃
��

M M̃ M̃ M̃

In case the last normalization step is trivial, one has

Hol(ω̃) = Hol(ω) ⊂ G (H)

Condition (H) then characterizes the resulting Fefferman-type spaces:

(G, ω)
Fefferman−type−construction

///o/o/o/o/o/o/o/o/o/o/o/o/o/o/o (G̃, ω̃)

Holonomy−reduction
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Holonomy reduction
SU(p + 1, q + 1) ↪→ SO(2p + 2, 2q + 2):

Let O be the set of all orthogonal complex structures on R2p+2,2q+2. With
J ∈ O one has O = SO(2p + 2, 2q + 2)/H for H = GJ = U(p + 1, q + 1)
and U(p + 1, q + 1) acts transitively on SO(2p + 2, 2q + 2)/P. It was
shown by [Čap-Gover 2010, Leitner 2008], that conformal holonomy
Hol(ω) ⊂ U(p + 1, q + 1) already implies locally that
Hol(ω) ⊂ SU(p + 1, q + 1).

Given an additional integrability condition, the resulting reduced Cartan
geometry locally factorizes to a CR-structure, and the conformal geometry
is completely determined by that CR-structure via the classical
Fefferman-construction [Fefferman 1976, Graham 1987, Čap-Gover 2010].



Holonomy reduction G2 ↪→ Spin(3, 4)

Let O be the set of all non-isotropic spinors in the 8-dimensional real spin
representation ∆3,4

R of Spin(3, 4). The stabilizer of such a spinor provides
an embedding of G2 into Spin(3, 4), and since G2 is seen to act transitively
on Spin(3, 4)/P there is only a single P-type in P\O.

The resulting holonomy reduction of conformal spin structures of signature
(2, 3) describes the geometry of a generic rank 2-distribution and the
original conformal structure is completely determined by this rank
2-distribution via the Fefferman-type construction G2 ↪→ Spin(3, 4)
[H.-Sagerschnig, 2011] .



Characterization in terms of BGG-solutions

For every G -representation V one has a naturally associated
overdetermined differential operator, the first BGG-operator
Θ0 : H0 → H1, which defines the first BGG-equation Θ0(σ) = 0
[Čap-Slovak-Souček 2001, Calderbank-Diemer 2000].

∇V − parallel sections ⊂ Γ(V)

Π0

��

prolonged system

normal solutions ⊂ ker Θ0

L0

ZZ

overdetermined system

General solutions of Θ0(σ) = 0 correspond to sections of V which are
parallel with respect to a (modified) prolongation connection
[H.-Somberg-Souček-Šilhan 2012], and therefore don’t induce
holonomy reductions of the parabolic structure.
Normal solutions (following [Leitner, 2005]) of Θ0(σ) = 0 are those
which correspond to parallel sections of V. In particular, normal
solutions are equivalent to holonomy reductions.



Conformal Holonomy Characterizations

SU(p + 1, q + 1) ↪→ SO(2p + 2, 2q + 2):
CR-structure  signature (2p + 1, 2q + 1)-conformal structure on
S1-bundle
+ lightlike conformal Killing field
[Fefferman 1976, Graham 1987, Čap-Gover 2010]

G2 ↪→ Spin(3, 4):
generic rank 2-distribution on 5-manifold  
signature (2, 3)-conformal spin structure
+ generic twistor spinor
[H.-Sagerschnig 2011]

SL(3) ↪→ Spin(3, 3):
projective 2-dimensional structure  
split signature (2, 2)-conformal spin structure
+ 2 compatible twistor spinors
[Dunajski-Tod 2010, H.-Tagavi–Chabert-Žádńık-Šilhan-Sagerschnig]



Fefferman-Graham ambient metrics

A conformal structure C = [g ]
can be understood as the ray-subbundle C ⊂ S2T ∗M
which consists of all metrics in the given conformal class.

The Fefferman-Graham ambient metric
g̃ is a signature (n + 1, 1) metric
on n + 2-dimensional ambient space M̃ = C × (−1, 1)
and extends a tautological (degenerate) form g0 on C.

For n = p + q
odd g̃ is uniquely determined as an infinite
order jet along C by the normalization condition
that Ric(g̃) vanishes to infinite order along C.

The holonomy Hol(g̃) of the ambient metric is
in general not a conformally well-defined object since
g̃ is only conformally invariant as an infinite-order
(or truncated) jet along the cone C ⊂ M̃.



Lifting of parallel tractors to parallel ambient tensors

Theorem (Graham-Willse, 2011)

Let (M, C) be a real-analytic conformal structure of signature (p, q),
n = p + q odd. Let V be some tensor power of the conformal tractor
bundle and s ∈ Γ(V) a section of that bundle which is parallel with respect
to the tractor connection. Then there exists a canonical lift of s to an
ambient tensor field s̃ that is well-defined in a neighborhood of the cone C
and parallel with respect to the ambient Levi-Civita covariant derivative.

A truncated version of this theorem exists for the even-dimensional case
and the result also holds formally (on the jet-level) at the cone C ⊂ M̃ if C
is not necessarily real-analytic.



Application of Graham-Willse’s-result for G2-structures

Theorem (H.-Sagerschnig, 2011)

Let (M, C) be a conformal structure of signature (2, 3). Then the following
are equivalent:

(M, C) is induced from a generic rank 2 distribution D ⊂ TM

The conformal holonomy Hol(C) ⊂ SO(3, 4) is contained in
G2 ⊂ SO(3, 4).

Since G2 ⊂ SO(3, 4) can be realized as the stabilizer of a suitable
generic 3-vector in Λ3R7, the holonomy reduction Hol(C) ⊂ G2 can
be equivalently characterized by the existence of a (suitably generic)
parallel tractor 3-form Φ ∈ Λ3T .

Employing Graham-Willse’s result, this yields a canonical ambient
3-form on M̃ that is parallel with respect to the ambient Levi-Civita
derivative.

In particular, Hol(∇̃) ⊂ G2.



Ambient holonomy = conformal holonomy

The natural type of holonomy one should employ is infinitesimal
ambient holonomy along the cone C:

h̃ol =span
(
{
(
∇̃ξ1 · · · ∇̃ξl−2

R̃(ξl−1, ξl )
)
|C , ξ1, . . . , ξl ∈ X(M̃)}

)
⊂ ΓC(End(TM̃))

Since Hol(C) := Hol(∇T ) ⊂ SO(p + 1, q + 1),
infinitesimal tractor holonomy is given by

hol =span
(
{
(
∇ξ1 · · · ∇ξl−2

R(ξl−1, ξl )
)
, ξ1, . . . , ξl ∈ X(M)}

)
⊂ Γ(End(T ))

Theorem (Čap-Gover-Graham-H.)

Let (M, C) be a conformal structure of signature (p, q) with n = p + q
odd. Then infinitesimal tractor holonomy coincides with infinitesimal
ambient holonomy: hol = h̃ol.



Fefferman-Graham ambient holonomy

For a real-analytic conformal structure (M, C) in odd dimension
n = p + q the ambient space (M̃, g̃) is a well-defined
pseudo-Riemannian structure of signature (p + 1, q + 1). In
particular, in this case the holonomy Hol(∇̃) ⊂ SO(p + 1, q + 1) of
the ambient Levi-Civita connection ∇̃ is a conformal invariant.
It follows in particular from the theorem that for C, and then also g̃ ,
real-analytic, that Hol(C) = Hol(∇T ) = Hol(∇̃).

For n = p + q even one has to employ a truncated version of
infinitesimal ambient holonomy that only involves derivatives up to
order n

2 and can then show analogously that this space is contained in
infinitesimal tractor holonomy hol.
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