Coupling solutions of BGG-equations in conformal spin geometry

Matthias Hammerl

University of Vienna, Faculty of Mathematics

Brno, Aug 2010

M. Hammerl (University of Vienna)

Brno, Aug 2010

(日) (周) (三) (三)

Setting

Let M be a smooth manifold and $(\mathcal{G} \to M, \omega)$ a parabolic geometry of type (G, P). Here G a is semi-simple Lie group and $P \subset G$ a parabolic subgroup. $\omega \in \Omega^1(\mathcal{G}, \mathfrak{g})$ the Cartan connection form of the geometry with values in the Lie algebra \mathfrak{g} of G. Geometries of interest could for instance be projective structures, conformal structures or CR-structures.

イロト イポト イヨト イヨト

Let M be a smooth manifold and $(\mathcal{G} \to M, \omega)$ a parabolic geometry of type (G, P). Here G a is semi-simple Lie group and $P \subset G$ a parabolic subgroup. $\omega \in \Omega^1(\mathcal{G}, \mathfrak{g})$ the Cartan connection form of the geometry with values in the Lie algebra \mathfrak{g} of G. Geometries of interest could for instance be projective structures, conformal structures or CR-structures.

We are interested in overdetermined operators on such geometries which appear as the first operators in the BGG-sequence

$$\mathcal{H}_0 \stackrel{\Theta_0}{\to} \mathcal{H}_1 \stackrel{\Theta_1}{\to} \cdots \stackrel{\Theta_{n-1}}{\to} \mathcal{H}_n$$

of natural differential operators as constructed by [Cap-Slovak-Souček].

(日) (同) (三) (三) (三)

BGG-equations, the prolongation connection and coupling

2 Coupling in conformal spin geometry

Generic twistor spinors and cKf decomposition

BGG-equations, the prolongation connection and coupling

2 Coupling in conformal spin geometry

Generic twistor spinors and cKf decomposition

Tractor bundles

For every *G*-representation *V* one associates the tractor bundle $\mathcal{V} = \mathcal{G} \times_P \mathcal{V}$.

 \mathcal{V} carries its canonical tractor connection, denoted by $\nabla = \nabla^{\mathcal{V}}$, and this gives rise to a sequence

$$\mathcal{C}_0 \stackrel{\nabla}{\to} \mathcal{C}_1 \stackrel{d^{\nabla}}{\to} \mathcal{C}_2 \stackrel{d^{\nabla}}{\to} \cdots$$

on the chain spaces $C_k = \Omega^k(M, \mathcal{V})$.

Tractor bundles

For every *G*-representation *V* one associates the tractor bundle $\mathcal{V} = \mathcal{G} \times_P \mathcal{V}$.

 \mathcal{V} carries its canonical tractor connection, denoted by $\nabla = \nabla^{\mathcal{V}}$, and this gives rise to a sequence

$$\mathcal{C}_0 \xrightarrow{\nabla} \mathcal{C}_1 \xrightarrow{d^{\nabla}} \mathcal{C}_2 \xrightarrow{d^{\nabla}} \cdots$$

on the chain spaces $C_k = \Omega^k(M, \mathcal{V})$.

Moreover, one has the (algebraic) Kostant co-differential $\partial^* : \mathcal{C}_{k+1} \to \mathcal{C}_k$, $\partial^* \circ \partial^* = 0$, which yields the complex

$$\mathcal{C}_0 \stackrel{\partial^*}{\leftarrow} \mathcal{C}_1 \stackrel{\partial^*}{\leftarrow} \mathcal{C}_2 \stackrel{\partial^*}{\leftarrow} \cdots$$

This complex gives rise to spaces $\mathcal{Z}_k = \ker \partial^*$ of cycles, $\mathcal{B}_k = \operatorname{im} \partial^*$ of borders and homologies $\mathcal{H}_k = \mathcal{Z}_k / \mathcal{B}_k$. The canonical surjections are denoted $\prod_k : \mathcal{Z}_k \to \mathcal{H}_k$.

The BGG-machinery of [Čap-Slovak-Souček] is based on canonical differential splitting operators $L_k : \Gamma(\mathcal{H}_k) \to \Gamma(\mathcal{Z}_k)$: A section $s \in \Gamma(\mathcal{Z}_k)$ is of the form $L_k \sigma, \sigma \in \Gamma(\mathcal{H}_k)$ if and only if $d^{\nabla}s \in \ker \partial^*$.

The BGG-machinery of [Čap-Slovak-Souček] is based on canonical differential splitting operators $L_k : \Gamma(\mathcal{H}_k) \to \Gamma(\mathcal{Z}_k)$: A section $s \in \Gamma(\mathcal{Z}_k)$ is of the form $L_k \sigma, \sigma \in \Gamma(\mathcal{H}_k)$ if and only if $d^{\nabla}s \in \ker \partial^*$.

In particular, one can form the first BGG-operator $\Theta_0 = \Pi_1 \circ \nabla \circ L_0$, $\Theta_0 : \Gamma(\mathcal{H}_0) \to \Gamma(\mathcal{H}_1)$.

The BGG-machinery of [Čap-Slovak-Souček] is based on canonical differential splitting operators $L_k : \Gamma(\mathcal{H}_k) \to \Gamma(\mathcal{Z}_k)$: A section $s \in \Gamma(\mathcal{Z}_k)$ is of the form $L_k \sigma, \sigma \in \Gamma(\mathcal{H}_k)$ if and only if $d^{\nabla}s \in \ker \partial^*$.

In particular, one can form the first BGG-operator $\Theta_0 = \Pi_1 \circ \nabla \circ L_0$, $\Theta_0 : \Gamma(\mathcal{H}_0) \to \Gamma(\mathcal{H}_1)$.

If a section $s \in \Gamma(\mathcal{V})$ is ∇ -parallel, we see that $\sigma = \Pi_0(s) \in \Gamma(\mathcal{H}_0)$ lies in the kernel of Θ_0 . We say that σ is a normal solution of $\Theta_0(\sigma) = 0$.

The BGG-machinery of [Čap-Slovak-Souček] is based on canonical differential splitting operators $L_k : \Gamma(\mathcal{H}_k) \to \Gamma(\mathcal{Z}_k)$: A section $s \in \Gamma(\mathcal{Z}_k)$ is of the form $L_k \sigma, \sigma \in \Gamma(\mathcal{H}_k)$ if and only if $d^{\nabla}s \in \ker \partial^*$.

In particular, one can form the first BGG-operator $\Theta_0 = \Pi_1 \circ \nabla \circ L_0$, $\Theta_0 : \Gamma(\mathcal{H}_0) \to \Gamma(\mathcal{H}_1)$.

If a section $s \in \Gamma(\mathcal{V})$ is ∇ -parallel, we see that $\sigma = \Pi_0(s) \in \Gamma(\mathcal{H}_0)$ lies in the kernel of Θ_0 . We say that σ is a normal solution of $\Theta_0(\sigma) = 0$.

In [H.-Somberg-Souček-Šilhan, 2010] a natural modification $\tilde{\nabla} = \nabla + \Psi$ with $\Psi \in \Omega^1(M, \operatorname{End}(\mathcal{V}))$ was constructed which has the property that

Proposition (HSSS, 2010)

The solutions $\sigma \in \mathcal{H}_0$ of $\Theta_0(\sigma) = 0$ are in 1 : 1-correspondence with the $\tilde{\nabla}$ -parallel sections of \mathcal{V} .

We call $\tilde{\nabla}$ the prolongation connection of Θ_0 .

The Cartan curvature form $K \in \Omega^2(M, \mathcal{A})$ of the Cartan connection ω has values in the adjoint tractor bundle $\mathcal{A} := \mathcal{G} \times_P \mathfrak{g}$, which naturally acts on the tractor bundle \mathcal{V} via $\bullet : \mathcal{A} \to \text{End}(\mathcal{V})$.

The Cartan curvature form $K \in \Omega^2(M, \mathcal{A})$ of the Cartan connection ω has values in the adjoint tractor bundle $\mathcal{A} := \mathcal{G} \times_P \mathfrak{g}$, which naturally acts on the tractor bundle \mathcal{V} via $\bullet : \mathcal{A} \to \text{End}(\mathcal{V})$.

Proposition

A solution σ of $\Theta_0(\sigma) = 0$ is normal if and only if $\partial^*(K \bullet (L_0 \sigma)) = 0$.

The Cartan curvature form $K \in \Omega^2(M, \mathcal{A})$ of the Cartan connection ω has values in the adjoint tractor bundle $\mathcal{A} := \mathcal{G} \times_P \mathfrak{g}$, which naturally acts on the tractor bundle \mathcal{V} via $\bullet : \mathcal{A} \to \text{End}(\mathcal{V})$.

Proposition

A solution σ of $\Theta_0(\sigma) = 0$ is normal if and only if $\partial^*(K \bullet (L_0 \sigma)) = 0$.

Proof:

Since ∇ is the natural connection induced by ω on \mathcal{V} the curvature of ∇ is $R = K \bullet \in \Omega^2(M, \operatorname{End}(\mathcal{V})).$

The Cartan curvature form $K \in \Omega^2(M, \mathcal{A})$ of the Cartan connection ω has values in the adjoint tractor bundle $\mathcal{A} := \mathcal{G} \times_P \mathfrak{g}$, which naturally acts on the tractor bundle \mathcal{V} via $\bullet : \mathcal{A} \to \text{End}(\mathcal{V})$.

Proposition

A solution σ of $\Theta_0(\sigma) = 0$ is normal if and only if $\partial^*(K \bullet (L_0 \sigma)) = 0$.

Proof:

Since ∇ is the natural connection induced by ω on \mathcal{V} the curvature of ∇ is $R = K \bullet \in \Omega^2(M, \operatorname{End}(\mathcal{V})).$

Denote $s = L_0 \sigma$. Now if $\partial^*(K \bullet s) = 0$, then since $R = d^{\nabla} \circ \nabla$ we have $d^{\nabla}(\nabla s) \in \ker \partial^*$. Thus

$$\nabla s = L_1(\Pi_1(s)) = L_1(\Theta_0 \sigma) = 0.$$

イロト 不得下 イヨト イヨト 二日

Coupling maps

Let now V, V' and W be G representations and $C: V \times V' \rightarrow W$ be a G-equivariant bilinear map. The corresponding tractor map is denoted

 $\mathbf{C}:\mathcal{V}\times\mathcal{V}'\to\mathcal{W}.$

Coupling maps

Let now V, V' and W be G representations and $C: V \times V' \rightarrow W$ be a G-equivariant bilinear map. The corresponding tractor map is denoted

$$C: \mathcal{V} \times \mathcal{V}' \to \mathcal{W}.$$

It induces the (differential) coupling map $\mathbf{c} : \Gamma(\mathcal{H}_0^V) \times \Gamma(\mathcal{H}_0^{V'}) \to \Gamma(\mathcal{H}_1^W)$ $(\sigma, \sigma') \mapsto \Pi_0^W (\mathbf{C}(\mathcal{L}_0^V(\sigma), \mathcal{L}_0^{V'}(\sigma'))).$

Coupling maps

Let now V, V' and W be G representations and $C: V \times V' \rightarrow W$ be a G-equivariant bilinear map. The corresponding tractor map is denoted

$$C: \mathcal{V} \times \mathcal{V}' \to \mathcal{W}.$$

It induces the (differential) coupling map $\mathbf{c} : \Gamma(\mathcal{H}_0^V) \times \Gamma(\mathcal{H}_0^{V'}) \to \Gamma(\mathcal{H}_1^W)$ $(\sigma, \sigma') \mapsto \Pi_0^W (\mathbf{C}(L_0^V(\sigma), L_0^{V'}(\sigma'))).$

Since $\mathbf{C}: \mathcal{V} \times \mathcal{V}' \to \mathcal{W}$ is algebraic and natural, we have that for all $s \in \Gamma(\mathcal{V})$, $s' \in \Gamma(\mathcal{V}')$,

$$abla^W \mathbf{C}(s,s') = \mathbf{C}(
abla^V s,s') + \mathbf{C}(s,
abla^{V'} s').$$

In particular, if $\sigma \in \mathcal{H}_0^V$ and $\sigma' \in \mathcal{H}_0^{V'}$ are normal solutions of Θ_0^V resp. $\Theta_0^{V'}$, then $\eta := \mathbf{c}(\sigma, \sigma')$ is a normal solution of $\Theta_{0=}^W$.

The operators Θ_0^V and $\Theta_0^{V'}$ have prolongation connections $\tilde{\nabla}^V = \nabla^V + \Psi^V$, $\tilde{\nabla}^{V'} = \nabla^{V'} + \Psi^{V'}$. We write $s = L_0^V \sigma, s' = L_0^{V'} \sigma'$.

The operators Θ_0^V and $\Theta_0^{V'}$ have prolongation connections $\tilde{\nabla}^V = \nabla^V + \Psi^V$, $\tilde{\nabla}^{V'} = \nabla^{V'} + \Psi^{V'}$. We write $s = L_0^V \sigma, s' = L_0^{V'} \sigma'$.

By definition, $t := \mathbf{C}(s, s')$ is a lift of $\eta = \mathbf{c}(\sigma, \sigma') = \Pi_0^W(t)$, but one doesn't necessarily have $t = L_0^W \eta$: $\nabla^W t \in \mathcal{C}_1^W = \Omega^1(M, \mathcal{W})$ need not lie in $\mathcal{Z}_1^W = \ker \partial^*$.

The operators Θ_0^V and $\Theta_0^{V'}$ have prolongation connections $\tilde{\nabla}^V = \nabla^V + \Psi^V$, $\tilde{\nabla}^{V'} = \nabla^{V'} + \Psi^{V'}$. We write $s = L_0^V \sigma, s' = L_0^{V'} \sigma'$.

By definition, $t := \mathbf{C}(s, s')$ is a lift of $\eta = \mathbf{c}(\sigma, \sigma') = \Pi_0^W(t)$, but one doesn't necessarily have $t = L_0^W \eta$: $\nabla^W t \in \mathcal{C}_1^W = \Omega^1(M, \mathcal{W})$ need not lie in $\mathcal{Z}_1^W = \ker \partial^*$.

That Θ_0^W is an operator of first order implies that one has a canonical extension of $\Pi_1^W : \mathcal{Z}_1^W \to \mathcal{H}_1^W$ to a map $\Pi_{1,\odot}^W : \mathcal{C}_1^W \to \mathcal{H}_1^W$ and then $\Theta_0^W(\eta) = \Pi_{1,\odot}^W(\nabla^W t).$

イロト イポト イヨト イヨト 二日

Now, for $\sigma \in \ker \Theta_0^V$ we have (equivalently) that $s = L_0^V$ satisfies

$$0 = \tilde{\nabla}^V s = \nabla^V s + \Psi^V s,$$

so $\nabla^V s = -\Psi^V s$, and analogously for $\sigma' \in \ker \Theta_0^{V'}$.

Now, for $\sigma \in \ker \Theta_0^V$ we have (equivalently) that $s = L_0^V$ satisfies

$$0 = \tilde{\nabla}^V s = \nabla^V s + \Psi^V s,$$

so $\nabla^V s = -\Psi^V s$, and analogously for $\sigma' \in \ker \Theta_0^{V'}$.

Therefore
$$\nabla^W t = \nabla^W \mathbf{C}(s, s') = \mathbf{C}(\nabla^V s, s') + \mathbf{C}(s, \nabla^{V'} s') = -\mathbf{C}(\Psi^V s, s') - \mathbf{C}(s, \Psi^{V'} s').$$

Now, for $\sigma \in \ker \Theta_0^V$ we have (equivalently) that $s = L_0^V$ satisfies

$$0 = \tilde{\nabla}^V s = \nabla^V s + \Psi^V s,$$

so $\nabla^V s = -\Psi^V s$, and analogously for $\sigma' \in \ker \Theta_0^{V'}$.

Therefore
$$\nabla^W t = \nabla^W \mathbf{C}(s, s') = \mathbf{C}(\nabla^V s, s') + \mathbf{C}(s, \nabla^{V'} s') = -\mathbf{C}(\Psi^V s, s') - \mathbf{C}(s, \Psi^{V'} s').$$

Thus, using $\Theta_0^W(\eta) = \Pi^W_{1,\odot}(\nabla^W t)$ we have

Proposition

For
$$\sigma \in \ker \Theta_0^V, \sigma' \in \ker \Theta_0^{V'}$$
 and $\eta = \mathbf{c}(\sigma, \sigma')$ one has $\Theta_0^W(\eta) = -\prod_{1,\odot}^W (\mathbf{C}(\Psi^V s, s') + \mathbf{C}(s, \Psi^{V'}s')).$

In particular, this yields necessary and sufficient coupling conditions.

M. Hammerl (University of Vienna) BGG-equations, the prolongation connection and coupling

BGG-equations, the prolongation connection and coupling

2 Coupling in conformal spin geometry

Generic twistor spinors and cKf decomposition

M. Hammerl (University of Vienna)

Coupling in conformal spin geometry

Brno, Aug 2010

< 回 ト < 三 ト < 三 ト

Conformal spin structures

A conformal spin structure of signature (p, q) on an n = p + q-manifold M is a reduction of structure group of TM from GL(n) to $CSpin(p,q) = \mathbb{R}_+ \times Spin(p,q)$.

This induces a conformal class C of pseudo-Riemannian signature (p,q)-metrics on M. The associated bundle to the spin representation $\Delta^{p,q}$ of $\operatorname{CSpin}(p,q)$ with \mathbb{R}_+ acting trivially is the (unweighted) conformal spin bundle S.

We will often employ the conformal density bundles $\mathcal{E}[w]$, $w \in \mathbb{R}$, which are associated to the 1-dimensional \mathbb{R}_+ representations $c \mapsto c^w$. We also employ abstract index notation $\mathcal{E}_a = \Omega^1(M), \mathcal{E}^a = \mathfrak{X}(M)$.

Conformal spin structures

A conformal spin structure of signature (p, q) on an n = p + q-manifold M is a reduction of structure group of TM from GL(n) to $CSpin(p,q) = \mathbb{R}_+ \times Spin(p,q)$.

This induces a conformal class C of pseudo-Riemannian signature (p, q)-metrics on M. The associated bundle to the spin representation $\Delta^{p,q}$ of $\operatorname{CSpin}(p,q)$ with \mathbb{R}_+ acting trivially is the (unweighted) conformal spin bundle S.

We will often employ the conformal density bundles $\mathcal{E}[w]$, $w \in \mathbb{R}$, which are associated to the 1-dimensional \mathbb{R}_+ representations $c \mapsto c^w$. We also employ abstract index notation $\mathcal{E}_a = \Omega^1(M), \mathcal{E}^a = \mathfrak{X}(M)$.

A conformal spin structure of signature (p, q) is described by a parabolic geometry of type (Spin(p+1, q+1), P), with $P \subset G = \text{Spin}(p+1, q+1)$ the stabilizer of an isotropic ray in the standard representation on $\mathbb{R}^{p+1,q+1}$.

M. Hammerl (University of Vienna)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

The almost Einstein scale operator $\Theta_0^{\mathbb{R}^{p+1,q+1}}$

With $T = \mathbb{R}^{p+1,q+1}$ the standard representation of Spin(p+1,q+1), one obtains the standard tractor bundle $\mathcal{T} = \mathcal{G} \times_P \mathbb{R}^{p+1,q+1}$ together with its tractor metric **h**. It has a semidirect composition series $\mathcal{T} = \mathcal{E}[1] \oplus \mathcal{E}_a[1] \oplus \mathcal{E}[-1].$

With $T = \mathbb{R}^{p+1,q+1}$ the standard representation of Spin(p+1,q+1), one obtains the standard tractor bundle $T = \mathcal{G} \times_P \mathbb{R}^{p+1,q+1}$ together with its tractor metric **h**. It has a semidirect composition series $T = \mathcal{E}[1] \oplus \mathcal{E}_a[1] \oplus \mathcal{E}[-1]$.

With respect to the Levi-Civita connection D of a metric $g \in C$ the first BGG-operator of T is

$$\Theta_0^T : \mathcal{E}[1] \to \mathcal{E}_{(ab)}[2],$$

$$\sigma \mapsto \mathbf{tf}(DD\sigma + P\sigma),$$

with $P \in \mathcal{E}_{(ab)}$ the Schouten tensor of g.

In this case the standard tractor connection $\nabla^{\mathcal{T}}$ is already the prolongation connection.

M. Hammerl (University of Vienna)

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

The conformal Killing form operator $\Theta_0^{\Lambda^{k+1}\mathbb{R}^{p+1,q+1}}$

Now let $V = \Lambda^{k+1} \mathbb{R}^{p+1,q+1}$ for $k \ge 1$ be an exterior power of the standard representation and $\mathcal{V} = \mathcal{G} \times_P V$ the associated tractor bundle. \mathcal{V} has a semidirect composition series

 $\mathcal{E}_{[\mathbf{a}_1\cdots\mathbf{a}_k]}[k+1] \oplus (\mathcal{E}_{[\mathbf{a}_1\cdots\mathbf{a}_{k+1}]}[k+1] \oplus \mathcal{E}_{[\mathbf{a}_1\cdots\mathbf{a}_{k-1}]}[k-1]) \oplus \mathcal{E}_{[\mathbf{a}_1\cdots\mathbf{a}_k]}[k-1].$

- 4 周 ト - 4 日 ト - 4 日 ト

The conformal Killing form operator $\Theta_0^{\Lambda^{k+1}\mathbb{R}^{p+1,q+1}}$

Now let $V = \Lambda^{k+1} \mathbb{R}^{p+1,q+1}$ for $k \ge 1$ be an exterior power of the standard representation and $\mathcal{V} = \mathcal{G} \times_P V$ the associated tractor bundle. \mathcal{V} has a semidirect composition series $\mathcal{E}_{[a_1 \cdots a_k]}[k+1] \oplus (\mathcal{E}_{[a_1 \cdots a_{k+1}]}[k+1] \oplus \mathcal{E}_{[a_1 \cdots a_{k-1}]}[k-1]) \oplus \mathcal{E}_{[a_1 \cdots a_k]}[k-1].$

The first BGG-operator of V is

$$\begin{split} \Theta_0^V &: \mathcal{E}_{[a_1 \cdots a_k]}[k+1] \to \mathcal{E}_{c[a_1 \cdots a_k]}[k+1], \\ \sigma_{a_1 \cdots a_k} &\mapsto D_c \sigma_{a_1 \cdots a_k} - D_{[a_0} \sigma_{a_1 \cdots a_k]} - \frac{k}{n-k+1} g_{c[a_1} g^{pq} D_{|p} \sigma_{q|a_2 \cdots a_k]} \end{split}$$

and its solutions are the conformal Killing forms.

The prolongation connection of $\Theta_0^{\Lambda^{k+1}\mathbb{R}^{p+1,q+1}}$

The prolongation connection is $\tilde{\nabla}^{V} = \nabla^{V} + \Psi^{V}$ for $\Psi^{V} \in \Omega^{1}(M, \text{End}(\mathcal{V}))$. Here it is enough to know its part of lowest homogeneity, which is

$$\begin{split} \bar{\Psi}^{V} \in \operatorname{Hom}(\mathcal{E}_{[a_{1}\cdots a_{k}]}[k+1], \mathcal{E}_{c} \otimes (\mathcal{E}_{[a_{1}\cdots a_{k+1}]}[k+1] \oplus \mathcal{E}_{[a_{1}\cdots a_{k-1}]}[k-1])), \\ \sigma \mapsto \mathcal{L}(\sigma) \oplus \mathcal{R}(\sigma) \end{split}$$

with

$$L(\sigma) = \frac{k+1}{2} C_{[a_0a_1 \mid c} \sigma_{p\mid a_2 \cdots a_k]} + \frac{(k-1)(k+1)}{2n} g_{c[a_0} C_{a_1a_2} {}^{pq} \sigma_{|pq\mid a_3 \cdots a_k]}$$
$$R(\sigma) = \frac{(k-1)(n-2)}{2(n-k)n} C_{c[a_2} {}^{pq} \sigma_{|pq\mid a_3 \cdots a_k]} - \frac{(k-1)(k-2)}{2(n-k)n} C_{[a_2a_3} {}^{pq} \sigma_{|cpq\mid a_4 \cdots a_k]}$$

M. Hammerl (University of Vienna)

The twistor spinor operator $\Theta_0^{\Delta^{p+1,q+1}}$

With $\Delta^{p+1,q+1}$ the spin representation of Spin(p+1,q+1) we form the associated spin tractor bundle $\Sigma := \mathcal{G} \times_P \Delta^{p+1,q+1}$. Recall the the (unweighted) spin bundle \mathcal{S} of the conformal structure. Then Σ has a semidirect composition series $\Sigma = \mathcal{S}[\frac{1}{2}] \oplus \mathcal{S}[-\frac{1}{2}]$.

The twistor spinor operator $\Theta_0^{\Delta^{p+1,q+1}}$

With $\Delta^{p+1,q+1}$ the spin representation of Spin(p+1,q+1) we form the associated spin tractor bundle $\Sigma := \mathcal{G} \times_P \Delta^{p+1,q+1}$. Recall the the (unweighted) spin bundle \mathcal{S} of the conformal structure. Then Σ has a semidirect composition series $\Sigma = \mathcal{S}[\frac{1}{2}] \oplus \mathcal{S}[-\frac{1}{2}]$.

With respect to the Levi-Civita connection D of a metric $g \in C$ the first BGG-operator of $\Delta^{p+1,q+1}$ is $\Theta_0^{\Delta^{p+1,q+1}} : \Gamma(\mathcal{S}[\frac{1}{2}]) \to \Gamma(\mathcal{E}_c \otimes \mathcal{S}[\frac{1}{2}])$,

$$\chi \mapsto D_c \chi + \frac{1}{n} \gamma_c \not D \chi,$$

where $\gamma \in \mathcal{E}_c \otimes \text{End}(\mathcal{S})$ the Christoffel symbol of \mathcal{S} and $\not D \chi = g^{pq} \gamma_p D_q \chi$.

The solutions of $\Theta_0^{\Delta^{p+1,q+1}}(\chi) = 0$ are twistor spinors, and the tractor connection ∇ coincides with the prolongation connection.

Clifford action and invariant pairing

For every $g \in C$ we obtain identifications $\mathcal{T} \cong \mathcal{E}[1] \oplus \mathcal{E}_{a}[1] \oplus \mathcal{E}[-1]$ and $\mathcal{S} \cong \mathcal{S}[\frac{1}{2}] \oplus \mathcal{S}[-\frac{1}{2}].$

Then the tractor Clifford multiplication is given by

$$\Gamma: \mathcal{T} \otimes \mathcal{S} \to \mathcal{S},$$

$$(\sigma, \varphi_{a}, \rho) \cdot (\chi, \tau) = (\varphi_{a} \cdot \chi - \sqrt{2}\sigma\tau, -\varphi_{a} \cdot \tau + \sqrt{2}\rho\chi).$$

With $\mathbf{b}: \mathcal{S}[\frac{1}{2}] \otimes \mathcal{S}[\frac{1}{2}] \to \mathbb{R}$ the invariant pairing of the (weighted) conformal spin bundle the tractor spinor pairing is

 $\mathbf{B}: \Sigma \otimes \Sigma \to \mathbb{R}, \quad \mathbf{B}\big((\chi, \tau), (\chi', \tau')\big) = \mathbf{b}(\chi, \tau') + (-1)^{p+1} \mathbf{b}(\chi', \tau).$

M. Hammerl (University of Vienna)

イロト 不得下 イヨト イヨト 二日

Wedge coupling of conformal Killing forms

Given $s \in \Gamma(\Lambda^{k+1}\mathcal{T})$ and $s' \in \Gamma(\Lambda^{k'+1}\mathcal{T})$ we form $\mathbf{C}^{\wedge}(s,s') := s \wedge s'$.

We obtain the coupling map $\mathbf{c}^{\wedge}: \mathcal{E}_{[\mathbf{a}_{1}\cdots\mathbf{a}_{k}]}[k+1] \times \mathcal{E}_{[\mathbf{a}_{1}\cdots\mathbf{a}_{k'}}[k'+1] \rightarrow \mathcal{E}_{[\mathbf{a}_{1}\cdots\mathbf{a}_{k+k'+1}]}[k+k'+2]$ $(\sigma_{\mathbf{a}_{1}\cdots\mathbf{a}_{k}}, \sigma'_{\mathbf{a}_{1}\cdots\mathbf{a}_{k'}}) \mapsto (k+1)\sigma_{[\mathbf{a}_{1}\cdots\mathbf{a}_{k}}D_{\mathbf{a}_{k+1}}\sigma'_{\mathbf{a}_{k+2}\cdots\mathbf{a}_{k+k+1}]}$ $+ (-1)^{(k+1)(k'+1)}(k'+1)\sigma'_{[\mathbf{a}_{1}\cdots\mathbf{a}_{k'}}D_{\mathbf{a}_{k'+1}}\sigma_{\mathbf{a}_{k'+2}\cdots\mathbf{a}_{k+k'+1}]}.$

Wedge coupling of conformal Killing forms

Given $s \in \Gamma(\Lambda^{k+1}\mathcal{T})$ and $s' \in \Gamma(\Lambda^{k'+1}\mathcal{T})$ we form $\mathbf{C}^{\wedge}(s,s') := s \wedge s'$.

We obtain the coupling map

$$\mathbf{c}^{\wedge}: \mathcal{E}_{[\mathbf{a}_{1}\cdots\mathbf{a}_{k}]}[k+1] \times \mathcal{E}_{[\mathbf{a}_{1}\cdots\mathbf{a}_{k'}]}[k'+1] \rightarrow \mathcal{E}_{[\mathbf{a}_{1}\cdots\mathbf{a}_{k+k'+1}]}[k+k'+2]$$

$$(\sigma_{\mathbf{a}_{1}\cdots\mathbf{a}_{k}}, \sigma'_{\mathbf{a}_{1}\cdots\mathbf{a}_{k'}}) \mapsto (k+1)\sigma_{[\mathbf{a}_{1}\cdots\mathbf{a}_{k}}D_{\mathbf{a}_{k+1}}\sigma'_{\mathbf{a}_{k+2}\cdots\mathbf{a}_{k+k+1}]}$$

$$+ (-1)^{(k+1)(k'+1)}(k'+1)\sigma'_{[\mathbf{a}_{1}\cdots\mathbf{a}_{k'}}D_{\mathbf{a}_{k'+1}}\sigma_{\mathbf{a}_{k'+2}\cdots\mathbf{a}_{k+k'+1}]}$$

Assume that σ and σ' are conformal Killing forms. Then the coupled k + k' + 1-form $\eta = \mathbf{c}^{\wedge}(\sigma, \sigma')$ is a conformal Killing form if and only if

$$(-1)^{k+1} C_{[a_1 a_2 | c}^{p} \sigma_{p|a_3 \cdots a_{k+1}} \sigma'_{a_{k+3} \cdots a_{k+k'+1}]} + \sigma_{[a_1 \cdots a_k} C_{a_{k+1} a_{k+2} | c}^{p} \sigma'_{p|a_{k+3} \cdots a_{k+k'+1}]} = 0.$$

This generalizes formulas of [Gover-Šilhan, 2008].

M. Hammerl (University of Vienna)

Coupling in conformal spin geometry

Contraction coupling of conformal Killing forms

Let now k' > k. We employ the tractor metric **h** to form a contraction map $\mathbf{C}^{\vee} : \Lambda^{k+1} \mathcal{T} \times \Lambda^{k'+1} \mathcal{T} \to \Lambda^{k'-k} \mathcal{T}$.

The coupling map is then $\mathbf{c}^{\vee}: \mathcal{E}_{[a_1\cdots a_k]}[k+1] \times \mathcal{E}_{[a_1\cdots a_{k'}]}[k'+1] \to \mathcal{E}_{[a_1\cdots a_{k'-k-1}]}[k'-k],$ $(\sigma_{a_1\cdots a_k}, \sigma'_{a_1\cdots a_{k'}}) \mapsto (k+1)\sigma^{p_1\cdots p_k}D^q\sigma'_{qp_1\cdots p_ka_1\cdots a_{k'-k-1}}$ $+ (n-k'+1)\sigma'_{p_0\cdots p_ka_1\cdots a_{k'-k-1}}D^{p_0}\sigma^{p_1\cdots p_k}.$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Contraction coupling of conformal Killing forms

Let now k' > k. We employ the tractor metric **h** to form a contraction map $\mathbf{C}^{\vee} : \Lambda^{k+1}\mathcal{T} \times \Lambda^{k'+1}\mathcal{T} \to \Lambda^{k'-k}\mathcal{T}$.

The coupling map is then

$$\mathbf{c}^{\vee}: \mathcal{E}_{[a_1\cdots a_k]}[k+1] \times \mathcal{E}_{[a_1\cdots a_{k'}]}[k'+1] \to \mathcal{E}_{[a_1\cdots a_{k'-k-1}]}[k'-k],$$

$$(\sigma_{a_1\cdots a_k}, \sigma'_{a_1\cdots a_{k'}}) \mapsto (k+1)\sigma^{p_1\cdots p_k}D^q\sigma'_{qp_1\cdots p_ka_1\cdots a_{k'-k-1}}$$

$$+ (n-k'+1)\sigma'_{p_0\cdots p_ka_1\cdots a_{k'-k-1}}D^{p_0}\sigma^{p_1\cdots p_k}.$$

If σ and σ' are conformal Killing forms the coupled k' - k - 1-form $\eta = \mathbf{c}(\sigma, \sigma')$ is also be a conformal Killing form if and only if

$$(n-k')C^{p_0p_1}_{q_c}\sigma^{qp_2\cdots p_k}\eta_{p_0\cdots p_ka_1\cdots a_{k'-k-1}}$$
$$-(k'-1)\sigma^{p_1\cdots p_k}C_{cp_1}^{q_1q_2}\eta_{q_1q_2p_2\cdots p_ka_1\cdots a_{k'-k-1}} \stackrel{\odot}{=} 0.$$

M. Hammerl (University of Vienna)

Twistor spinor coupling

Let $X, X' \in \Gamma(\Sigma)$ and fix a $k \ge 0$. We define an element in $\Lambda^{k+1}\mathcal{T} \cong \Lambda^{k+1}\mathcal{T}^*$ by

$$\mathbf{C}^{k}(X,X')(\Phi) = \mathbf{B}(\Phi \cdot X,X') \ \forall \ \Phi \in \Lambda^{k+1}\mathcal{T}.$$

This yields the invariant pairing from spinors to forms,

$$\begin{aligned} \mathbf{c}^{k}: \mathsf{\Gamma}(\mathcal{S}[\frac{1}{2}]) \times \mathsf{\Gamma}(\mathcal{S}[\frac{1}{2}]) &\to \mathcal{E}_{[\mathbf{a}_{1}\cdots\mathbf{a}_{k}]}[k+1], \\ (\chi,\chi') &\mapsto \mathbf{b}(\chi,\gamma_{[\mathbf{a}_{1}}\cdots\gamma_{\mathbf{a}_{k}]}\chi'). \end{aligned}$$

Twistor spinor coupling

Let $X, X' \in \Gamma(\Sigma)$ and fix a $k \ge 0$. We define an element in $\Lambda^{k+1}\mathcal{T} \cong \Lambda^{k+1}\mathcal{T}^*$ by

$$\mathbf{C}^{k}(X,X')(\Phi) = \mathbf{B}(\Phi \cdot X,X') \ \forall \ \Phi \in \Lambda^{k+1}\mathcal{T}.$$

This yields the invariant pairing from spinors to forms,

$$\begin{aligned} \mathbf{c}^{k}: \mathsf{\Gamma}(\mathcal{S}[\frac{1}{2}]) \times \mathsf{\Gamma}(\mathcal{S}[\frac{1}{2}]) &\to \mathcal{E}_{[\mathbf{a}_{1}\cdots\mathbf{a}_{k}]}[k+1], \\ (\chi,\chi') &\mapsto \mathbf{b}(\chi,\gamma_{[\mathbf{a}_{1}}\cdots\gamma_{\mathbf{a}_{k}]}\chi'). \end{aligned}$$

Since the prolongation connection of Σ coincides with the tractor connection this (well known) map always produces a conformal Killing k-form from two given twistor spinors.

Let $k \ge 0$. The tractor Clifford multiplication provides a map

$$\mathbf{C}^{\gamma}: \Lambda^{k+1}\mathcal{T}\otimes \Sigma \to \Sigma$$

and the corresponding coupling map is

$$\mathbf{c}^{\gamma}: \mathcal{E}_{[a_{1}\cdots a_{k}]}[k+1] \times \Gamma(S[\frac{1}{2}]) \to \Gamma(S[\frac{1}{2}]),$$

$$\varphi \times \chi \mapsto (-1)^{k+1} \frac{2(k+1)}{n} \varphi \cdot \mathcal{D}\chi + (d\varphi) \cdot \chi + \frac{k(k+1)}{(n-k+1)} (\delta\varphi) \cdot \chi.$$

Here $d\varphi = D_{[a_0}\varphi_{a_1\cdots a_k]}$ is the exterior derivative of φ and $\delta\varphi = -g^{pq}D_p\varphi_{qa_2\cdots a_k}$ is the divergence of φ .

M. Hammerl (University of Vienna)

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

This will be a twistor spinor iff $k \leq 1$ or $k \geq 2$ and $C_{ca_1}{}^{pq}\sigma_{pqa_2\cdots a_k}\gamma^{a_1\cdots a_k}\chi \stackrel{\odot}{=} 0.$

In particular, since this corresponds to the cases k = 0 or k = 1, pairing an almost Einstein scale or a conformal Killing field with a twistor spinor always yields another twistor spinor.

One can show that if the compatibility condition is satisfied, then in fact $L_0^{\Lambda^{k+1}}(\sigma) \cdot L_0^{\Sigma}(\chi)$ is ∇^{Σ} -parallel.

- 本間 と く ヨ と く ヨ と 二 ヨ

BGG-equations, the prolongation connection and coupling

2 Coupling in conformal spin geometry

3 Generic twistor spinors and cKf decomposition

M. Hammerl (University of Vienna)

Generic twistor spinors and cKf decomposition

Brno, Aug 2010

The second second

We start with an algebraic observation. Take a $k \ge 0$ and the map

$$C: \Delta^{p+1,q+1} \times \Delta^{p+1,q+1} \to \Lambda^{k+1} \mathbb{R}^{p+1,q+1},$$

realized with respect to the Spin(p + 1, q + 1)-invariant pairing $B \in \Delta^{p+1,q+1^*} \otimes \Delta^{p+1,q+1^*}$.

We start with an algebraic observation. Take a $k \ge 0$ and the map

$$C: \Delta^{p+1,q+1} \times \Delta^{p+1,q+1} \to \Lambda^{k+1} \mathbb{R}^{p+1,q+1},$$

realized with respect to the Spin(p + 1, q + 1)-invariant pairing $B \in \Delta^{p+1,q+1^*} \otimes \Delta^{p+1,q+1^*}$.

For a fixed $X \in \Delta^{p+1,q+1}$ we can form

$$i_X C: \Delta^{p+1,q+1} \to \Lambda^{k+1} \mathbb{R}^{p+1,q+1},$$

which is $G := \text{Spin}(p+1, q+1)_X$ -invariant.

M. Hammerl (University of Vienna)

Lemma

Assume that $B(X, X) \neq 0$. Then, after some suitable rescaling, one has that the map

$$P: \Lambda^{k+1} \mathbb{R}^{p+1,q+1} \to \Lambda^{k+1} \mathbb{R}^{p+1,q+1},$$

$$\Phi \mapsto i_X C(\Phi \cdot X)$$

satisfies $P \circ P = \pm P$.

イロト 不得下 イヨト イヨト

Lemma

Assume that $B(X, X) \neq 0$. Then, after some suitable rescaling, one has that the map

$$P: \Lambda^{k+1} \mathbb{R}^{p+1,q+1} \to \Lambda^{k+1} \mathbb{R}^{p+1,q+1},$$

$$\Phi \mapsto i_X C(\Phi \cdot X)$$

satisfies $P \circ P = \pm P$. Then ker $P = \text{ker } \Gamma X$ and we obtain a G-invariant decomposition

$$\Lambda^{k+1}\mathbb{R}^{p+1,q+1} = \ker \Gamma X \oplus \operatorname{im} P.$$

M. Hammerl (University of Vienna)

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Definition

We say that a twistor spinor $\chi \in \Gamma(S[\frac{1}{2}])$ is generic if $\mathbf{b}(\chi, \mathbf{D}\chi) \neq 0$. This is the case if and only if the corresponding parallel tractor $X = L_0^{\Delta^{p+1,q+1}}\chi$ satisfies $\mathbf{B}(X, X) \neq 0$.

- 4 回 ト - 4 回 ト

Definition

We say that a twistor spinor $\chi \in \Gamma(S[\frac{1}{2}])$ is generic if $\mathbf{b}(\chi, \mathbf{D}\chi) \neq 0$. This is the case if and only if the corresponding parallel tractor $X = L_0^{\Delta^{p+1,q+1}}\chi$ satisfies $\mathbf{B}(X, X) \neq 0$.

Now for a twistor spinor χ the coupling map $\mathfrak{X}(M) \times S[\frac{1}{2}] \to S[\frac{1}{2}]$ can be rewritten into

$$\xi \times \chi \mapsto D_{\xi}\chi - \frac{1}{4}(D_{[a}\xi_{b]}) \cdot \chi + \frac{1}{2n}(D_{p}\xi^{p})\chi.$$

For a conformal Killing field $\xi \in \mathfrak{X}(M)$ this is just the Lie derivative of the (weighted) spinor χ with respect to ξ . Our algebraic observation from above tells us that every generic twistor spinor χ provides a decomposition

$$\mathsf{cKf}(M,\mathcal{C}) = \mathsf{cKf}_{\chi}(M,\mathcal{C}) \oplus \mathsf{cKf}_{\chi}^{\perp}(M,\mathcal{C})$$

of conformal Killing fields into a part which also preserves χ and a complement.

M. Hammerl (University of Vienna)

Let (M, C, χ) be a conformal spin structure of signature (2, 3) with a generic twistor spinor χ .

Genericity of χ implies that $\mathcal{D}_{\chi} = \ker \gamma \chi$ is a generic rank 2 distribution on M: One has that the subbundle $[\mathcal{D}_{\chi}, \mathcal{D}_{\chi}]$ of TM spanned by Lie brackets of sections of \mathcal{D}_{χ} is 3-dimensional and $TM = [\mathcal{D}_{\chi}, [\mathcal{D}_{\chi}, \mathcal{D}_{\chi}]]$. Let (M, C, χ) be a conformal spin structure of signature (2, 3) with a generic twistor spinor χ .

Genericity of χ implies that $\mathcal{D}_{\chi} = \ker \gamma \chi$ is a generic rank 2 distribution on M: One has that the subbundle $[\mathcal{D}_{\chi}, \mathcal{D}_{\chi}]$ of TM spanned by Lie brackets of sections of \mathcal{D}_{χ} is 3-dimensional and $TM = [\mathcal{D}_{\chi}, [\mathcal{D}_{\chi}, \mathcal{D}_{\chi}]]$.

Proposition (H.-Sagerschnig, 2010)

The conformal spin structure C together with its generic twistor spinor χ is uniquely determined by D.

This is shown via a Fefferman-type construction which starts from any generic 2-distribution $\mathcal{D} \subset TM$ and associates $(\mathcal{C}_{\mathcal{D}}, \chi_{\mathcal{D}})$. In particular, there are non-flat conformal spin structures with generic twistor spinors.

(日) (同) (日) (日) (日)

The space of conformal Killing fields of (\mathcal{C}, χ) decomposes into symmetries of the generic distribution $\mathcal{D}_{\chi} = \ker \gamma \chi$ and a complement $\operatorname{cKf}_{\chi}^{\perp}(M, \mathcal{C})$. In this situation it can be shown that the space $\operatorname{cKf}_{\chi}^{\perp}(M, \mathcal{C})$ can be identified with the space of almost Einstein scales $\operatorname{aEs}(M, \mathcal{C})$, so

 $\mathsf{cKf}(M,\mathcal{C}) = \mathsf{sym}(\mathcal{D}_{\chi}) \oplus \mathsf{aEs}(M,\mathcal{C}).$

The space of conformal Killing fields of (\mathcal{C}, χ) decomposes into symmetries of the generic distribution $\mathcal{D}_{\chi} = \ker \gamma \chi$ and a complement $\operatorname{cKf}_{\chi}^{\perp}(M, \mathcal{C})$. In this situation it can be shown that the space $\operatorname{cKf}_{\chi}^{\perp}(M, \mathcal{C})$ can be identified with the space of almost Einstein scales $\operatorname{aEs}(M, \mathcal{C})$, so

 $\mathsf{cKf}(M,\mathcal{C}) = \mathsf{sym}(\mathcal{D}_{\chi}) \oplus \mathsf{aEs}(M,\mathcal{C}).$

Using the appropriate coupling maps one obtains explicit formulas: for a $g \in C$, the almost Einstein scale part of a conformal Killing field $\xi \in \mathfrak{X}(M)$ is given by $\sigma = \mathbf{b}(\chi, \frac{4}{5}\xi \cdot \mathcal{D}\chi + (D_{[a}\xi_{b]}) \cdot \chi) \in \mathcal{E}[1].$

Conversely, an almost Einstein scale $\sigma \in \mathcal{E}[1]$ is mapped to a conformal Killing field $\xi_a = \mathbf{b}(\gamma_a \chi, -\frac{2}{5}\sigma \not D \chi + (D\sigma) \cdot \chi) \in \mathcal{E}_a[2] \cong \mathfrak{X}(M)$

イロト 不得下 イヨト イヨト 二日