# Coupling solutions of BGG-equations in conformal spin geometry 

Matthias Hammerl

University of Vienna, Faculty of Mathematics

Brno, Aug 2010

## Setting

Let $M$ be a smooth manifold and $(\mathcal{G} \rightarrow M, \omega)$ a parabolic geometry of type $(G, P)$. Here $G$ a is semi-simple Lie group and $P \subset G$ a parabolic subgroup. $\omega \in \Omega^{1}(\mathcal{G}, \mathfrak{g})$ the Cartan connection form of the geometry with values in the Lie algebra $\mathfrak{g}$ of $G$. Geometries of interest could for instance be projective structures, conformal structures or CR-structures.

## Setting

Let $M$ be a smooth manifold and $(\mathcal{G} \rightarrow M, \omega)$ a parabolic geometry of type $(G, P)$. Here $G$ a is semi-simple Lie group and $P \subset G$ a parabolic subgroup. $\omega \in \Omega^{1}(\mathcal{G}, \mathfrak{g})$ the Cartan connection form of the geometry with values in the Lie algebra $\mathfrak{g}$ of $G$. Geometries of interest could for instance be projective structures, conformal structures or CR-structures.

We are interested in overdetermined operators on such geometries which appear as the first operators in the BGG-sequence

$$
\mathcal{H}_{0} \xrightarrow{\Theta_{0}} \mathcal{H}_{1} \xrightarrow{\Theta_{1}} \ldots \xrightarrow{\Theta_{n-1}} \mathcal{H}_{n}
$$

of natural differential operators as constructed by [Cap-Slovak-Souček].

## Outline

(1) BGG-equations, the prolongation connection and coupling
(2) Coupling in conformal spin geometry
(3) Generic twistor spinors and $c \mathrm{Kf}$ decomposition

## Outline

(1) BGG-equations, the prolongation connection and coupling
(2) Coupling in conformal spin geometry
(3) Generic twistor spinors and cKf decomposition

## Tractor bundles

For every $G$-representation $V$ one associates the tractor bundle $\mathcal{V}=\mathcal{G} \times{ }_{p} V$.
$\mathcal{V}$ carries its canonical tractor connection, denoted by $\nabla=\nabla^{V}$, and this gives rise to a sequence

$$
\mathcal{C}_{0} \xrightarrow{\nabla} \mathcal{C}_{1} \xrightarrow{d^{\nabla}} \mathcal{C}_{2} \xrightarrow{d^{\nabla}} \cdots
$$

on the chain spaces $\mathcal{C}_{k}=\Omega^{k}(M, \mathcal{V})$.

## Tractor bundles

For every $G$-representation $V$ one associates the tractor bundle $\mathcal{V}=\mathcal{G} \times p$.
$\mathcal{V}$ carries its canonical tractor connection, denoted by $\nabla=\nabla^{V}$, and this gives rise to a sequence

$$
\mathcal{C}_{0} \xrightarrow{\nabla} \mathcal{C}_{1} \xrightarrow{d^{\nabla}} \mathcal{C}_{2} \xrightarrow{d^{\nabla}} \cdots
$$

on the chain spaces $\mathcal{C}_{k}=\Omega^{k}(M, \mathcal{V})$.
Moreover, one has the (algebraic) Kostant co-differential $\partial^{*}: \mathcal{C}_{k+1} \rightarrow \mathcal{C}_{k}$, $\partial^{*} \circ \partial^{*}=0$, which yields the complex

$$
\mathcal{C}_{0} \stackrel{\partial^{*}}{\leftarrow} \mathcal{C}_{1} \stackrel{\partial^{*}}{\leftarrow} \mathcal{C}_{2} \stackrel{\partial^{*}}{\leftarrow} \cdots
$$

This complex gives rise to spaces $\mathcal{Z}_{k}=\operatorname{ker} \partial^{*}$ of cycles, $\mathcal{B}_{k}=\operatorname{im} \partial^{*}$ of borders and homologies $\mathcal{H}_{k}=\mathcal{Z}_{k} / \mathcal{B}_{k}$. The canonical surjections are denoted $\Pi_{k}: \mathcal{Z}_{k} \rightarrow \mathcal{H}_{k}$.

## The BGG-operators and the prolongation connection

The BGG-machinery of [Čap-Slovak-Souček] is based on canonical differential splitting operators $L_{k}: \Gamma\left(\mathcal{H}_{k}\right) \rightarrow \Gamma\left(\mathcal{Z}_{k}\right):$ A section $s \in \Gamma\left(\mathcal{Z}_{k}\right)$ is of the form $L_{k} \sigma, \sigma \in \Gamma\left(\mathcal{H}_{k}\right)$ if and only if $d^{\nabla} s \in \operatorname{ker} \partial^{*}$.

## The BGG-operators and the prolongation connection

The BGG-machinery of [Čap-Slovak-Souček] is based on canonical differential splitting operators $L_{k}: \Gamma\left(\mathcal{H}_{k}\right) \rightarrow \Gamma\left(\mathcal{Z}_{k}\right):$ A section $s \in \Gamma\left(\mathcal{Z}_{k}\right)$ is of the form $L_{k} \sigma, \sigma \in \Gamma\left(\mathcal{H}_{k}\right)$ if and only if $d^{\nabla} s \in \operatorname{ker} \partial^{*}$.

In particular, one can form the first BGG-operator $\Theta_{0}=\Pi_{1} \circ \nabla \circ L_{0}$, $\Theta_{0}: \Gamma\left(\mathcal{H}_{0}\right) \rightarrow \Gamma\left(\mathcal{H}_{1}\right)$.

## The BGG-operators and the prolongation connection

The BGG-machinery of [Čap-Slovak-Souček] is based on canonical differential splitting operators $L_{k}: \Gamma\left(\mathcal{H}_{k}\right) \rightarrow \Gamma\left(\mathcal{Z}_{k}\right)$ : A section $s \in \Gamma\left(\mathcal{Z}_{k}\right)$ is of the form $L_{k} \sigma, \sigma \in \Gamma\left(\mathcal{H}_{k}\right)$ if and only if $d^{\nabla} s \in \operatorname{ker} \partial^{*}$.

In particular, one can form the first BGG-operator $\Theta_{0}=\Pi_{1} \circ \nabla \circ L_{0}$, $\Theta_{0}: \Gamma\left(\mathcal{H}_{0}\right) \rightarrow \Gamma\left(\mathcal{H}_{1}\right)$.

If a section $s \in \Gamma(\mathcal{V})$ is $\nabla$-parallel, we see that $\sigma=\Pi_{0}(s) \in \Gamma\left(\mathcal{H}_{0}\right)$ lies in the kernel of $\Theta_{0}$. We say that $\sigma$ is a normal solution of $\Theta_{0}(\sigma)=0$.

## The BGG-operators and the prolongation connection

The BGG-machinery of [Čap-Slovak-Souček] is based on canonical differential splitting operators $L_{k}: \Gamma\left(\mathcal{H}_{k}\right) \rightarrow \Gamma\left(\mathcal{Z}_{k}\right):$ A section $s \in \Gamma\left(\mathcal{Z}_{k}\right)$ is of the form $L_{k} \sigma, \sigma \in \Gamma\left(\mathcal{H}_{k}\right)$ if and only if $d^{\nabla} s \in \operatorname{ker} \partial^{*}$.

In particular, one can form the first BGG-operator $\Theta_{0}=\Pi_{1} \circ \nabla \circ L_{0}$, $\Theta_{0}: \Gamma\left(\mathcal{H}_{0}\right) \rightarrow \Gamma\left(\mathcal{H}_{1}\right)$.

If a section $s \in \Gamma(\mathcal{V})$ is $\nabla$-parallel, we see that $\sigma=\Pi_{0}(s) \in \Gamma\left(\mathcal{H}_{0}\right)$ lies in the kernel of $\Theta_{0}$. We say that $\sigma$ is a normal solution of $\Theta_{0}(\sigma)=0$.
In [H.-Somberg-Souček-Šilhan, 2010] a natural modification $\tilde{\nabla}=\nabla+\Psi$ with $\Psi \in \Omega^{1}(M, \operatorname{End}(\mathcal{V}))$ was constructed which has the property that

## Proposition (HSSS, 2010)

The solutions $\sigma \in \mathcal{H}_{0}$ of $\Theta_{0}(\sigma)=0$ are in 1:1-correspondence with the $\tilde{\nabla}$-parallel sections of $\mathcal{V}$.

We call $\tilde{\nabla}$ the prolongation connection of $\Theta_{0}$.

## An efficient condition for checking normality of $\sigma \in \Gamma\left(\mathcal{H}_{0}\right), \Theta_{0}(\sigma)=0$

The Cartan curvature form $K \in \Omega^{2}(M, \mathcal{A})$ of the Cartan connection $\omega$ has values in the adjoint tractor bundle $\mathcal{A}:=\mathcal{G} \times{ }_{P} \mathfrak{g}$, which naturally acts on the tractor bundle $\mathcal{V}$ via $\bullet: \mathcal{A} \rightarrow \operatorname{End}(\mathcal{V})$.

## An efficient condition for checking normality of $\sigma \in \Gamma\left(\mathcal{H}_{0}\right), \Theta_{0}(\sigma)=0$

The Cartan curvature form $K \in \Omega^{2}(M, \mathcal{A})$ of the Cartan connection $\omega$ has values in the adjoint tractor bundle $\mathcal{A}:=\mathcal{G} \times{ }_{P} \mathfrak{g}$, which naturally acts on the tractor bundle $\mathcal{V}$ via $\bullet: \mathcal{A} \rightarrow \operatorname{End}(\mathcal{V})$.

## Proposition

A solution $\sigma$ of $\Theta_{0}(\sigma)=0$ is normal if and only if $\partial^{*}\left(K \bullet\left(L_{0} \sigma\right)\right)=0$.

## An efficient condition for checking normality of $\sigma \in \Gamma\left(\mathcal{H}_{0}\right), \Theta_{0}(\sigma)=0$

The Cartan curvature form $K \in \Omega^{2}(M, \mathcal{A})$ of the Cartan connection $\omega$ has values in the adjoint tractor bundle $\mathcal{A}:=\mathcal{G} \times{ }_{P} \mathfrak{g}$, which naturally acts on the tractor bundle $\mathcal{V}$ via $\bullet: \mathcal{A} \rightarrow \operatorname{End}(\mathcal{V})$.

## Proposition

A solution $\sigma$ of $\Theta_{0}(\sigma)=0$ is normal if and only if $\partial^{*}\left(K \bullet\left(L_{0} \sigma\right)\right)=0$.

## Proof:

Since $\nabla$ is the natural connection induced by $\omega$ on $\mathcal{V}$ the curvature of $\nabla$ is $R=K \bullet \in \Omega^{2}(M, \operatorname{End}(\mathcal{V}))$.

## An efficient condition for checking normality of $\sigma \in \Gamma\left(\mathcal{H}_{0}\right), \Theta_{0}(\sigma)=0$

The Cartan curvature form $K \in \Omega^{2}(M, \mathcal{A})$ of the Cartan connection $\omega$ has values in the adjoint tractor bundle $\mathcal{A}:=\mathcal{G} \times{ }_{P} \mathfrak{g}$, which naturally acts on the tractor bundle $\mathcal{V}$ via $\bullet: \mathcal{A} \rightarrow \operatorname{End}(\mathcal{V})$.

## Proposition

A solution $\sigma$ of $\Theta_{0}(\sigma)=0$ is normal if and only if $\partial^{*}\left(K \bullet\left(L_{0} \sigma\right)\right)=0$.

## Proof:

Since $\nabla$ is the natural connection induced by $\omega$ on $\mathcal{V}$ the curvature of $\nabla$ is $R=K \bullet \in \Omega^{2}(M, \operatorname{End}(\mathcal{V}))$.

Denote $s=L_{0} \sigma$. Now if $\partial^{*}(K \bullet s)=0$, then since $R=d^{\nabla} \circ \nabla$ we have $d^{\nabla}(\nabla s) \in \operatorname{ker} \partial^{*}$. Thus

$$
\nabla s=L_{1}\left(\Pi_{1}(s)\right)=L_{1}\left(\Theta_{0} \sigma\right)=0
$$

## Coupling maps

Let now $V, V^{\prime}$ and $W$ be $G$ representations and $C: V \times V^{\prime} \rightarrow W$ be a $G$-equivariant bilinear map. The corresponding tractor map is denoted

$$
\mathbf{C}: \mathcal{V} \times \mathcal{V}^{\prime} \rightarrow \mathcal{W}
$$

## Coupling maps

Let now $V, V^{\prime}$ and $W$ be $G$ representations and $C: V \times V^{\prime} \rightarrow W$ be a $G$-equivariant bilinear map. The corresponding tractor map is denoted

$$
\mathbf{C}: \mathcal{V} \times \mathcal{V}^{\prime} \rightarrow \mathcal{W} .
$$

It induces the (differential) coupling map c: $\Gamma\left(\mathcal{H}_{0}^{v}\right) \times \Gamma\left(\mathcal{H}_{0}^{v^{\prime}}\right) \rightarrow \Gamma\left(\mathcal{H}_{1}^{W}\right)$

$$
\left(\sigma, \sigma^{\prime}\right) \mapsto \Pi_{0}^{W}\left(\mathbf{C}\left(L_{0}^{V}(\sigma), L_{0}^{V^{\prime}}\left(\sigma^{\prime}\right)\right)\right) .
$$

## Coupling maps

Let now $V, V^{\prime}$ and $W$ be $G$ representations and $C: V \times V^{\prime} \rightarrow W$ be a $G$-equivariant bilinear map. The corresponding tractor map is denoted

$$
\mathbf{C}: \mathcal{V} \times \mathcal{V}^{\prime} \rightarrow \mathcal{W}
$$

It induces the (differential) coupling map c: $\Gamma\left(\mathcal{H}_{0}^{V}\right) \times \Gamma\left(\mathcal{H}_{0}^{V^{\prime}}\right) \rightarrow \Gamma\left(\mathcal{H}_{1}^{W}\right)$

$$
\left(\sigma, \sigma^{\prime}\right) \mapsto \Pi_{0}^{W}\left(\mathbf{C}\left(L_{0}^{V}(\sigma), L_{0}^{V^{\prime}}\left(\sigma^{\prime}\right)\right)\right)
$$

Since $\mathbf{C}: \mathcal{V} \times \mathcal{V}^{\prime} \rightarrow \mathcal{W}$ is algebraic and natural, we have that for all $s \in \Gamma(\mathcal{V}), s^{\prime} \in \Gamma\left(\mathcal{V}^{\prime}\right)$,

$$
\nabla^{W} \mathbf{C}\left(s, s^{\prime}\right)=\mathbf{C}\left(\nabla^{V} s, s^{\prime}\right)+\mathbf{C}\left(s, \nabla^{V^{\prime}} s^{\prime}\right) .
$$

In particular, if $\sigma \in \mathcal{H}_{0}^{V}$ and $\sigma^{\prime} \in \mathcal{H}_{0}^{V^{\prime}}$ are normal solutions of $\Theta_{0}^{V}$ resp. $\Theta_{0}^{V^{\prime}}$, then $\eta:=\mathbf{c}\left(\sigma, \sigma^{\prime}\right)$ is a normal solution of $\Theta_{0 \square}^{W}$.

## Coupling for |1|-graded parabolic geometries with $\Theta_{0}^{W}$ of first order

> The operators $\Theta_{0}^{V}$ and $\Theta_{0}^{V^{\prime}}$ have prolongation connections $\tilde{\nabla}^{V}=\nabla^{V}+\Psi^{V}, \tilde{\nabla}^{V^{\prime}}=\nabla^{V^{\prime}}+\Psi^{V^{\prime}}$. We write $s=L_{0}^{V} \sigma, s^{\prime}=L_{0}^{V^{\prime}} \sigma^{\prime}$

## Coupling for |1|-graded parabolic geometries with $\Theta_{0}^{W}$ of first order

The operators $\Theta_{0}^{V}$ and $\Theta_{0}^{V^{\prime}}$ have prolongation connections $\tilde{\nabla}^{V}=\nabla^{V}+\Psi^{V}, \tilde{\nabla}^{V^{\prime}}=\nabla^{V^{\prime}}+\psi^{V^{\prime}}$. We write $s=L_{0}^{V} \sigma, s^{\prime}=L_{0}^{V^{\prime}} \sigma^{\prime}$.

By definition, $t:=\mathbf{C}\left(s, s^{\prime}\right)$ is a lift of $\eta=\mathbf{c}\left(\sigma, \sigma^{\prime}\right)=\Pi_{0}^{W}(t)$, but one doesn't necessarily have $t=L_{0}^{W} \eta$ :
$\nabla^{W} t \in \mathcal{C}_{1}^{W}=\Omega^{1}(M, \mathcal{W})$ need not lie in $\mathcal{Z}_{1}^{W}=\operatorname{ker} \partial^{*}$.

## Coupling for |1|-graded parabolic geometries with $\Theta_{0}^{W}$ of first order

The operators $\Theta_{0}^{V}$ and $\Theta_{0}^{V^{\prime}}$ have prolongation connections $\tilde{\nabla}^{V}=\nabla^{V}+\Psi^{V}, \tilde{\nabla}^{V^{\prime}}=\nabla^{V^{\prime}}+\psi^{V^{\prime}}$. We write $s=L_{0}^{V} \sigma, s^{\prime}=L_{0}^{V^{\prime}} \sigma^{\prime}$.

By definition, $t:=\mathbf{C}\left(s, s^{\prime}\right)$ is a lift of $\eta=\mathbf{c}\left(\sigma, \sigma^{\prime}\right)=\Pi_{0}^{W}(t)$, but one doesn't necessarily have $t=L_{0}^{W} \eta$ :
$\nabla^{W} t \in \mathcal{C}_{1}^{W}=\Omega^{1}(M, \mathcal{W})$ need not lie in $\mathcal{Z}_{1}^{W}=\operatorname{ker} \partial^{*}$.
That $\Theta_{0}^{W}$ is an operator of first order implies that one has a canonical extension of $\Pi_{1}^{W}: \mathcal{Z}_{1}^{W} \rightarrow \mathcal{H}_{1}^{W}$ to a map $\Pi_{1, \odot}^{W}: \mathcal{C}_{1}^{W} \rightarrow \mathcal{H}_{1}^{W}$ and then $\Theta_{0}^{W}(\eta)=\Pi_{1, \odot}^{W}\left(\nabla^{W} t\right)$.

## Coupling for |1|-graded parabolic geometries with $\Theta_{0}^{W}$ of first order

Now, for $\sigma \in \operatorname{ker} \Theta_{0}^{V}$ we have (equivalently) that $s=L_{0}^{V}$ satisfies

$$
0=\tilde{\nabla}^{v} s=\nabla^{v} s+\Psi^{v} s,
$$

so $\nabla^{V} s=-\Psi^{V} s$, and analogously for $\sigma^{\prime} \in \operatorname{ker} \Theta_{0}^{V^{\prime}}$.

## Coupling for |1|-graded parabolic geometries with $\Theta_{0}^{W}$ of first order

Now, for $\sigma \in \operatorname{ker} \Theta_{0}^{V}$ we have (equivalently) that $s=L_{0}^{V}$ satisfies

$$
0=\tilde{\nabla}^{v_{s}}=\nabla^{V} s+\Psi^{V_{s}}
$$

so $\nabla^{V} s=-\psi^{V}$, and analogously for $\sigma^{\prime} \in \operatorname{ker} \Theta_{0}^{V^{\prime}}$.
Therefore $\nabla^{W} t=\nabla^{W} \mathbf{C}\left(s, s^{\prime}\right)=\mathbf{C}\left(\nabla^{V} s, s^{\prime}\right)+\mathbf{C}\left(s, \nabla^{V^{\prime}} s^{\prime}\right)=$ $-\mathbf{C}\left(\Psi^{V} s, s^{\prime}\right)-\mathbf{C}\left(s, \Psi^{V^{\prime}} s^{\prime}\right)$.

## Coupling for |1|-graded parabolic geometries with $\Theta_{0}^{W}$ of first order

Now, for $\sigma \in \operatorname{ker} \Theta_{0}^{V}$ we have (equivalently) that $s=L_{0}^{V}$ satisfies

$$
0=\tilde{\nabla}^{V} s=\nabla^{V} s+\Psi^{V} s,
$$

so $\nabla^{V} s=-\Psi^{V} s$, and analogously for $\sigma^{\prime} \in \operatorname{ker} \Theta_{0}^{V^{\prime}}$.
Therefore $\nabla^{W} t=\nabla^{W} \mathbf{C}\left(s, s^{\prime}\right)=\mathbf{C}\left(\nabla^{V} s, s^{\prime}\right)+\mathbf{C}\left(s, \nabla^{V^{\prime}} s^{\prime}\right)=$ $-\mathbf{C}\left(\Psi^{V} s, s^{\prime}\right)-\mathbf{C}\left(s, \Psi^{V^{\prime}} s^{\prime}\right)$.

Thus, using $\Theta_{0}^{W}(\eta)=\Pi_{1, \odot}^{W}\left(\nabla^{W} t\right)$ we have

## Proposition

For $\sigma \in \operatorname{ker} \Theta_{0}^{V}, \sigma^{\prime} \in \operatorname{ker} \Theta_{0}^{V^{\prime}}$ and $\eta=\mathbf{c}\left(\sigma, \sigma^{\prime}\right)$ one has $\Theta_{0}^{W}(\eta)=-\Pi_{1, \odot}^{W}\left(\mathbf{C}\left(\Psi^{V} s, s^{\prime}\right)+\mathbf{C}\left(s, \Psi^{V^{\prime}} s^{\prime}\right)\right)$.

In particular, this yields necessary and sufficient coupling conditions.

## Outline

## (1) BGG-equations, the prolongation connection and coupling

(2) Coupling in conformal spin geometry
(3) Generic twistor spinors and cKf decomposition

## Conformal spin structures

A conformal spin structure of signature $(p, q)$ on an $n=p+q$-manifold $M$ is a reduction of structure group of $T M$ from $\operatorname{GL}(n)$ to $\operatorname{CSpin}(p, q)=\mathbb{R}_{+} \times \operatorname{Spin}(p, q)$.

This induces a conformal class $\mathcal{C}$ of pseudo-Riemannian signature $(p, q)$-metrics on $M$. The associated bundle to the spin representation $\Delta^{p, q}$ of $\operatorname{CSpin}(p, q)$ with $\mathbb{R}_{+}$acting trivially is the (unweighted) conformal spin bundle $\mathcal{S}$.

We will often employ the conformal density bundles $\mathcal{E}[w], w \in \mathbb{R}$, which are associated to the 1 -dimensional $\mathbb{R}_{+}$representations $c \mapsto c^{w}$. We also employ abstract index notation $\mathcal{E}_{a}=\Omega^{1}(M), \mathcal{E}^{a}=\mathfrak{X}(M)$.

## Conformal spin structures

A conformal spin structure of signature $(p, q)$ on an $n=p+q$-manifold $M$ is a reduction of structure group of $T M$ from $\operatorname{GL}(n)$ to $\operatorname{CSpin}(p, q)=\mathbb{R}_{+} \times \operatorname{Spin}(p, q)$.

This induces a conformal class $\mathcal{C}$ of pseudo-Riemannian signature $(p, q)$-metrics on $M$. The associated bundle to the spin representation $\Delta^{p, q}$ of $\operatorname{CSpin}(p, q)$ with $\mathbb{R}_{+}$acting trivially is the (unweighted) conformal spin bundle $\mathcal{S}$.

We will often employ the conformal density bundles $\mathcal{E}[w], w \in \mathbb{R}$, which are associated to the 1 -dimensional $\mathbb{R}_{+}$representations $c \mapsto c^{w}$. We also employ abstract index notation $\mathcal{E}_{a}=\Omega^{1}(M), \mathcal{E}^{a}=\mathfrak{X}(M)$.

A conformal spin structure of signature $(p, q)$ is described by a parabolic geometry of type $(\operatorname{Spin}(p+1, q+1), P)$, with $P \subset G=\operatorname{Spin}(p+1, q+1)$ the stabilizer of an isotropic ray in the standard representation on $\mathbb{R}^{p+1, q+1}$.

## The almost Einstein scale operator $\Theta_{0}^{\mathbb{R}^{p+1, q+1}}$

With $T=\mathbb{R}^{p+1, q+1}$ the standard representation of $\operatorname{Spin}(p+1, q+1)$, one obtains the standard tractor bundle $\mathcal{T}=\mathcal{G} \times{ }_{p} \mathbb{R}^{p+1, q+1}$ together with its tractor metric $\mathbf{h}$. It has a semidirect composition series $\mathcal{T}=\mathcal{E}[1] \forall \mathcal{E}_{a}[1] \forall \mathcal{E}[-1]$.

## The almost Einstein scale operator $\Theta_{0}^{\mathbb{R}^{p+1, q+1}}$

With $T=\mathbb{R}^{p+1, q+1}$ the standard representation of $\operatorname{Spin}(p+1, q+1)$, one obtains the standard tractor bundle $\mathcal{T}=\mathcal{G} \times{ }_{p} \mathbb{R}^{p+1, q+1}$ together with its tractor metric $\mathbf{h}$. It has a semidirect composition series
$\mathcal{T}=\mathcal{E}[1] \forall \mathcal{E}_{a}[1] \forall \mathcal{E}[-1]$.
With respect to the Levi-Civita connection $D$ of a metric $g \in \mathcal{C}$ the first BGG-operator of $T$ is

$$
\begin{aligned}
& \Theta_{0}^{T}: \mathcal{E}[1] \rightarrow \mathcal{E}_{(a b)}[2], \\
& \sigma \mapsto \mathbf{t f}(D D \sigma+P \sigma),
\end{aligned}
$$

with $P \in \mathcal{E}_{(a b)}$ the Schouten tensor of $g$.
In this case the standard tractor connection $\nabla^{T}$ is already the prolongation connection.

## The conformal Killing form operator $\Theta_{0}^{\Lambda^{k+1} \mathbb{R}^{p+1, q+1}}$

Now let $V=\Lambda^{k+1} \mathbb{R}^{p+1, q+1}$ for $k \geq 1$ be an exterior power of the standard representation and $\mathcal{V}=\mathcal{G} \times_{p} V$ the associated tractor bundle. $\mathcal{V}$ has a semidirect composition series
$\mathcal{E}_{\left[a_{1} \cdots a_{k}\right]}[k+1] \notin\left(\mathcal{E}_{\left[a_{1} \cdots a_{k+1}\right]}[k+1] \oplus \mathcal{E}_{\left[a_{1} \cdots a_{k-1}\right]}[k-1]\right) \notin \mathcal{E}_{\left[a_{1} \cdots a_{k}\right]}[k-1]$.

## The conformal Killing form operator $\Theta_{0}^{\Lambda^{k+1} \mathbb{R}^{p+1, q+1}}$

Now let $V=\Lambda^{k+1} \mathbb{R}^{p+1, q+1}$ for $k \geq 1$ be an exterior power of the standard representation and $\mathcal{V}=\mathcal{G} \times_{p} V$ the associated tractor bundle. $\mathcal{V}$ has a semidirect composition series
$\mathcal{E}_{\left[a_{1} \cdots a_{k}\right]}[k+1] \notin\left(\mathcal{E}_{\left[a_{1} \cdots a_{k+1}\right]}[k+1] \oplus \mathcal{E}_{\left[a_{1} \cdots a_{k-1}\right]}[k-1]\right) \notin \mathcal{E}_{\left[a_{1} \cdots a_{k}\right]}[k-1]$.
The first BGG-operator of $V$ is

$$
\begin{aligned}
& \Theta_{0}^{V}: \mathcal{E}_{\left[a_{1} \cdots a_{k}\right]}[k+1] \rightarrow \mathcal{E}_{c\left[a_{1} \ldots a_{k}\right]}[k+1], \\
& \sigma_{a_{1} \cdots a_{k}} \mapsto D_{c} \sigma_{a_{1} \cdots a_{k}}-D_{\left[a_{0}\right.} \sigma_{\left.a_{1} \cdots a_{k}\right]}-\frac{k}{n-k+1} g_{c\left[a_{1}\right.} g^{p q} D_{\mid p} \sigma_{\left.q \mid a_{2} \cdots a_{k}\right]}
\end{aligned}
$$

and its solutions are the conformal Killing forms.

## The prolongation connection of $\Theta_{0}^{\Lambda^{k+1} \mathbb{R}^{p+1, q+1}}$

The prolongation connection is $\tilde{\nabla}^{V}=\nabla^{V}+\psi^{V}$ for $\psi^{V} \in \Omega^{1}(M, \operatorname{End}(\mathcal{V})$. Here it is enough to know its part of lowest homogeneity, which is

$$
\begin{aligned}
& \bar{\Psi}^{V} \in \operatorname{Hom}\left(\mathcal{E}_{\left[a_{1} \cdots a_{k}\right]}[k+1], \mathcal{E}_{c} \otimes\left(\mathcal{E}_{\left[a_{1} \cdots a_{k+1}\right]}[k+1] \oplus \mathcal{E}_{\left[a_{1} \cdots a_{k-1}\right]}[k-1]\right)\right), \\
& \sigma \mapsto L(\sigma) \oplus R(\sigma)
\end{aligned}
$$

with

$$
\begin{aligned}
& L(\sigma)=\frac{k+1}{2} C_{\left[a_{0} a_{1} \mid c\right.}^{p} \sigma_{\left.p \mid a_{2} \cdots a_{k}\right]}+\frac{(k-1)(k+1)}{2 n} g_{c\left[a_{0}\right.} C_{a_{1} a_{2}}{ }^{p q} \sigma_{\left.|p q| a_{3} \cdots a_{k}\right]} \\
& R(\sigma)=\frac{(k-1)(n-2)}{2(n-k) n} C_{c\left[a_{2}\right.}{ }^{p q} \sigma_{\left.|p q| a_{3} \cdots a_{k}\right]}-\frac{(k-1)(k-2)}{2(n-k) n} C_{\left[a_{2} a_{3}\right.}^{p q} \sigma_{\left.|c p q| a_{4} \ldots a_{k}\right]} .
\end{aligned}
$$

## The twistor spinor operator $\Theta_{0}^{\Delta^{\rho+1, q+1}}$

With $\Delta^{p+1, q+1}$ the spin representation of $\operatorname{Spin}(p+1, q+1)$ we form the associated spin tractor bundle $\Sigma:=\mathcal{G} \times{ }_{P} \Delta^{p+1, q+1}$. Recall the the (unweighted) spin bundle $\mathcal{S}$ of the conformal structure. Then $\Sigma$ has a semidirect composition series $\Sigma=\mathcal{S}\left[\frac{1}{2}\right] \forall \mathcal{S}\left[-\frac{1}{2}\right]$.

## The twistor spinor operator $\Theta_{0}^{\Delta^{p+1, q+1}}$

With $\Delta^{p+1, q+1}$ the spin representation of $\operatorname{Spin}(p+1, q+1)$ we form the associated spin tractor bundle $\Sigma:=\mathcal{G} \times{ }_{P} \Delta^{p+1, q+1}$. Recall the the (unweighted) spin bundle $\mathcal{S}$ of the conformal structure. Then $\Sigma$ has a semidirect composition series $\Sigma=\mathcal{S}\left[\frac{1}{2}\right] \forall \mathcal{S}\left[-\frac{1}{2}\right]$.

With respect to the Levi-Civita connection $D$ of a metric $g \in \mathcal{C}$ the first BGG-operator of $\Delta^{p+1, q+1}$ is $\Theta_{0}^{\Delta^{p+1, q+1}}: \Gamma\left(\mathcal{S}\left[\frac{1}{2}\right]\right) \rightarrow \Gamma\left(\mathcal{E}_{c} \otimes \mathcal{S}\left[\frac{1}{2}\right]\right)$,

$$
\chi \mapsto D_{c} \chi+\frac{1}{n} \gamma_{c} D \chi
$$

where $\gamma \in \mathcal{E}_{c} \otimes \operatorname{End}(\mathcal{S})$ the Christoffel symbol of $\mathcal{S}$ and $D \chi=g^{p q} \gamma_{p} D_{q} \chi$.
The solutions of $\Theta_{0}^{\Delta^{p+1, q+1}}(\chi)=0$ are twistor spinors, and the tractor connection $\nabla$ coincides with the prolongation connection.

## Clifford action and invariant pairing

For every $g \in \mathcal{C}$ we obtain identifications $\mathcal{T} \cong \mathcal{E}[1] \oplus \mathcal{E}_{\mathrm{a}}[1] \oplus \mathcal{E}[-1]$ and $\mathcal{S} \cong \mathcal{S}\left[\frac{1}{2}\right] \oplus \mathcal{S}\left[-\frac{1}{2}\right]$.

Then the tractor Clifford multiplication is given by

$$
\begin{aligned}
& \Gamma: \mathcal{T} \otimes \mathcal{S} \rightarrow \mathcal{S}, \\
& \left(\sigma, \varphi_{a}, \rho\right) \cdot(\chi, \tau)=\left(\varphi_{a} \cdot \chi-\sqrt{2} \sigma \tau,-\varphi_{a} \cdot \tau+\sqrt{2} \rho \chi\right)
\end{aligned}
$$

With $\mathbf{b}: \mathcal{S}\left[\frac{1}{2}\right] \otimes \mathcal{S}\left[\frac{1}{2}\right] \rightarrow \mathbb{R}$ the invariant pairing of the (weighted) conformal spin bundle the tractor spinor pairing is

$$
\mathbf{B}: \Sigma \otimes \Sigma \rightarrow \mathbb{R}, \quad \mathbf{B}\left((\chi, \tau),\left(\chi^{\prime}, \tau^{\prime}\right)\right)=\mathbf{b}\left(\chi, \tau^{\prime}\right)+(-1)^{p+1} \mathbf{b}\left(\chi^{\prime}, \tau\right)
$$

## Wedge coupling of conformal Killing forms

Given $s \in \Gamma\left(\Lambda^{k+1} \mathcal{T}\right)$ and $s^{\prime} \in \Gamma\left(\Lambda^{k^{\prime}+1} \mathcal{T}\right)$ we form $\mathbf{C}^{\wedge}\left(s, s^{\prime}\right):=s \wedge s^{\prime}$.
We obtain the coupling map

$$
\begin{aligned}
& \mathbf{c}^{\wedge}: \mathcal{E}_{\left[a_{1} \cdots a_{k}\right]}[k+1] \times \mathcal{E}_{\left[a_{1} \cdots a_{k^{\prime}}\right.}\left[k^{\prime}+1\right] \rightarrow \mathcal{E}_{\left[a_{1} \cdots a_{k+k^{\prime}+1}\right]}\left[k+k^{\prime}+2\right] \\
& \left(\sigma_{a_{1} \cdots a_{k}}, \sigma_{a_{1} \cdots a_{k^{\prime}}}^{\prime}\right) \mapsto(k+1) \sigma_{\left[a_{1} \cdots a_{k}\right.} D_{a_{k+1}} \sigma_{\left.a_{k+2} \cdots a_{k+k+1}\right]}^{\prime} \\
& +(-1)^{(k+1)\left(k^{\prime}+1\right)}\left(k^{\prime}+1\right) \sigma_{\left[a_{1} \cdots a_{k}\right.}^{\prime} D_{a_{k^{\prime}+1}} \sigma_{\left.a_{k^{\prime}+2} \cdots a_{k+k^{\prime}+1}\right]} .
\end{aligned}
$$

## Wedge coupling of conformal Killing forms

Given $s \in \Gamma\left(\Lambda^{k+1} \mathcal{T}\right)$ and $s^{\prime} \in \Gamma\left(\Lambda^{k^{\prime}+1} \mathcal{T}\right)$ we form $\mathbf{C}^{\wedge}\left(s, s^{\prime}\right):=s \wedge s^{\prime}$.
We obtain the coupling map

Assume that $\sigma$ and $\sigma^{\prime}$ are conformal Killing forms. Then the coupled $k+k^{\prime}+1$-form $\eta=\mathbf{c}^{\wedge}\left(\sigma, \sigma^{\prime}\right)$ is a conformal Killing form if and only if

$$
(-1)^{k+1} C_{\left[a_{1} a_{2} \mid c\right.}^{p} \sigma_{p \mid a_{3} \cdots a_{k+1}} \sigma_{\left.a_{k+3} \cdots a_{k+k^{\prime}+1}\right]}^{\prime}+\sigma_{\left[a_{1} \cdots a_{k}\right.} C_{a_{k+1} a_{k+2} \mid c}^{p} \sigma_{\left.p \mid a_{k+3} \cdots a_{k+k^{\prime}+1}\right]}^{\prime}
$$

$$
\stackrel{\odot}{=} 0
$$

This generalizes formulas of [Gover-Šilhan, 2008].

$$
\begin{aligned}
& \mathbf{c}^{\wedge}: \mathcal{E}_{\left[a_{1} \cdots a_{k}\right]}[k+1] \times \mathcal{E}_{\left[a_{1} \cdots a_{k^{\prime}}\right.}\left[k^{\prime}+1\right] \rightarrow \mathcal{E}_{\left[a_{1} \cdots a_{\left.k+k^{\prime}+1\right]}\right]}\left[k+k^{\prime}+2\right] \\
& \left(\sigma_{a_{1} \cdots a_{k}}, \sigma_{a_{1} \cdots a_{k^{\prime}}}^{\prime}\right) \mapsto(k+1) \sigma_{\left[a_{1} \cdots a_{k}\right.} D_{a_{k+1}} \sigma_{\left.a_{k+2} \cdots a_{k+k+1}\right]}^{\prime} \\
& +(-1)^{(k+1)\left(k^{\prime}+1\right)}\left(k^{\prime}+1\right) \sigma_{\left[a_{1} \cdots a_{k^{\prime}}\right.}^{\prime} D_{a_{k^{\prime}+1}} \sigma_{\left.a_{k^{\prime}+2} \cdots a_{k+k^{\prime}+1}\right]} .
\end{aligned}
$$

## Contraction coupling of conformal Killing forms

Let now $k^{\prime}>k$. We employ the tractor metric $\mathbf{h}$ to form a contraction $\operatorname{map} \mathbf{C}^{\vee}: \Lambda^{k+1} \mathcal{T} \times \Lambda^{k^{\prime}+1} \mathcal{T} \rightarrow \Lambda^{k^{\prime}-k} \mathcal{T}$.

The coupling map is then
$\mathbf{c}^{\vee}: \mathcal{E}_{\left[a_{1} \cdots a_{k}\right]}[k+1] \times \mathcal{E}_{\left[a_{1} \cdots a_{k^{\prime}}\right]}\left[k^{\prime}+1\right] \rightarrow \mathcal{E}_{\left[a_{1} \cdots a_{k^{\prime}-k-1}\right]}\left[k^{\prime}-k\right]$,

$$
\begin{aligned}
\left(\sigma_{a_{1} \cdots a_{k}}, \sigma_{a_{1} \cdots a_{k^{\prime}}}^{\prime}\right) \mapsto & (k+1) \sigma^{p_{1} \cdots p_{k}} D^{q} \sigma_{q p_{1} \cdots p_{k} a_{1} \cdots a_{k^{\prime}-k-1}}^{\prime} \\
& +\left(n-k^{\prime}+1\right) \sigma_{p_{0} \cdots p_{k} a_{1} \cdots a_{k^{\prime}-k-1}}^{\prime} D^{p_{0}} \sigma^{p_{1} \cdots p_{k}} .
\end{aligned}
$$

## Contraction coupling of conformal Killing forms

Let now $k^{\prime}>k$. We employ the tractor metric $\mathbf{h}$ to form a contraction $\operatorname{map} \mathbf{C}^{\vee}: \Lambda^{k+1} \mathcal{T} \times \Lambda^{k^{\prime}+1} \mathcal{T} \rightarrow \Lambda^{k^{\prime}-k} \mathcal{T}$.

The coupling map is then

$$
\begin{aligned}
&\left.\mathbf{c}^{\vee}: \mathcal{E}_{\left[a_{1} \cdots a_{k}\right]}\right] \\
&\left(\sigma_{a_{1} \cdots a_{k}}, \sigma_{a_{1} \cdots a_{k^{\prime}}}^{\prime}\right) \mapsto(k+1) \sigma^{\left.p_{1} \cdots p_{k} \cdots a_{k}\right]}\left[k^{\prime}+1\right] \rightarrow \mathcal{E}_{\left[a_{1} \cdots a_{k^{\prime}-k-1}\right]}\left[k^{\prime} \sigma_{q p_{1} \cdots p_{k} a_{1} \cdots a_{k^{\prime}-k-1}}^{\prime}\right. \\
&+\left(n-k^{\prime}+1\right) \sigma_{p_{0} \cdots p_{k} a_{1} \cdots a_{k^{\prime}-k-1}}^{\prime} D^{p_{0}} \sigma^{p_{1} \cdots p_{k}}
\end{aligned}
$$

If $\sigma$ and $\sigma^{\prime}$ are conformal Killing forms the coupled $k^{\prime}-k-1$-form $\eta=\mathbf{c}\left(\sigma, \sigma^{\prime}\right)$ is also be a conformal Killing form if and only if

$$
\begin{aligned}
& \left(n-k^{\prime}\right) C_{q c}^{p_{0} p_{1}} \sigma^{q p_{2} \cdots p_{k}} \eta_{p_{0} \cdots p_{k} a_{1} \cdots a_{k^{\prime}-k-1}} \\
& -\left(k^{\prime}-1\right) \sigma^{p_{1} \cdots p_{k}} C_{c p_{1}}^{q_{1} q_{2}} \eta_{q_{1} q_{2} p_{2} \cdots p_{k} a_{1} \cdots a_{k^{\prime}-k-1}} \stackrel{\odot}{\rightleftharpoons}
\end{aligned}
$$

## Twistor spinor coupling

Let $X, X^{\prime} \in \Gamma(\Sigma)$ and fix a $k \geq 0$. We define an element in $\Lambda^{k+1} \mathcal{T} \cong \Lambda^{k+1} \mathcal{T}^{*}$ by

$$
\mathbf{C}^{k}\left(X, X^{\prime}\right)(\Phi)=\mathbf{B}\left(\Phi \cdot X, X^{\prime}\right) \forall \Phi \in \Lambda^{k+1} \mathcal{T}
$$

This yields the invariant pairing from spinors to forms,

$$
\begin{aligned}
\mathbf{c}^{k}: \Gamma\left(S\left[\frac{1}{2}\right]\right) \times \Gamma\left(S\left[\frac{1}{2}\right]\right) & \rightarrow \mathcal{E}_{\left[a_{1} \cdots a_{k}\right]}[k+1] \\
\left(\chi, \chi^{\prime}\right) & \mapsto \mathbf{b}\left(\chi, \gamma_{\left[a_{1}\right.} \cdots \gamma_{\left.a_{k}\right]} \chi^{\prime}\right)
\end{aligned}
$$

## Twistor spinor coupling

Let $X, X^{\prime} \in \Gamma(\Sigma)$ and fix a $k \geq 0$. We define an element in $\Lambda^{k+1} \mathcal{T} \cong \Lambda^{k+1} \mathcal{T}^{*}$ by

$$
\mathbf{C}^{k}\left(X, X^{\prime}\right)(\Phi)=\mathbf{B}\left(\Phi \cdot X, X^{\prime}\right) \forall \Phi \in \Lambda^{k+1} \mathcal{T}
$$

This yields the invariant pairing from spinors to forms,

$$
\begin{aligned}
\mathbf{c}^{k}: \Gamma\left(S\left[\frac{1}{2}\right]\right) \times \Gamma\left(S\left[\frac{1}{2}\right]\right) & \rightarrow \mathcal{E}_{\left[a_{1} \cdots a_{k}\right]}[k+1] \\
\left(\chi, \chi^{\prime}\right) & \mapsto \mathbf{b}\left(\chi, \gamma_{\left[a_{1}\right.} \cdots \gamma_{\left.a_{k}\right]} \chi^{\prime}\right)
\end{aligned}
$$

Since the prolongation connection of $\Sigma$ coincides with the tractor connection this (well known) map always produces a conformal Killing $k$-form from two given twistor spinors.

## Conformal Killing forms - twistor spinor coupling

Let $k \geq 0$. The tractor Clifford multiplication provides a map

$$
\mathbf{C}^{\gamma}: \Lambda^{k+1} \mathcal{T} \otimes \Sigma \rightarrow \Sigma
$$

and the corresponding coupling map is

$$
\begin{aligned}
& \mathbf{c}^{\gamma}: \mathcal{E}_{\left[a_{1} \cdots a_{k}\right]}[k+1] \times \Gamma\left(S\left[\frac{1}{2}\right]\right) \rightarrow \Gamma\left(S\left[\frac{1}{2}\right]\right), \\
& \varphi \times \chi \mapsto(-1)^{k+1} \frac{2(k+1)}{n} \varphi \cdot \not D \chi+(d \varphi) \cdot \chi+\frac{k(k+1)}{(n-k+1)}(\delta \varphi) \cdot \chi .
\end{aligned}
$$

Here $d \varphi=D_{\left[a_{0}\right.} \varphi_{\left.a_{1} \cdots a_{k}\right]}$ is the exterior derivative of $\varphi$ and $\delta \varphi=-g^{p q} D_{p} \varphi_{q a_{2} \cdots a_{k}}$ is the divergence of $\varphi$.

## Conformal Killing forms - twistor spinor coupling

This will be a twistor spinor iff $k \leq 1$ or $k \geq 2$ and
$C_{c a_{1}}{ }^{p q} \sigma_{p q a_{2} \cdots a_{k}} \gamma^{a_{1} \cdots a_{k}} \chi \stackrel{\odot}{=} 0$.
In particular, since this corresponds to the cases $k=0$ or $k=1$, pairing an almost Einstein scale or a conformal Killing field with a twistor spinor always yields another twistor spinor.

One can show that if the compatibility condition is satisfied, then in fact $L_{0}^{\Lambda^{k+1}}(\sigma) \cdot L_{0}^{\Sigma}(\chi)$ is $\nabla^{\Sigma_{-}}$parallel.

## Outline

## (1) BGG-equations, the prolongation connection and coupling

(2) Coupling in conformal spin geometry
(3) Generic twistor spinors and cKf decomposition

## Generic twistor spinors

We start with an algebraic observation. Take a $k \geq 0$ and the map

$$
C: \Delta^{p+1, q+1} \times \Delta^{p+1, q+1} \rightarrow \Lambda^{k+1} \mathbb{R}^{p+1, q+1}
$$

realized with respect to the $\operatorname{Spin}(p+1, q+1)$-invariant pairing $B \in \Delta^{p+1, q+1^{*}} \otimes \Delta^{p+1, q+1^{*}}$.

## Generic twistor spinors

We start with an algebraic observation. Take a $k \geq 0$ and the map

$$
C: \Delta^{p+1, q+1} \times \Delta^{p+1, q+1} \rightarrow \Lambda^{k+1} \mathbb{R}^{p+1, q+1}
$$

realized with respect to the $\operatorname{Spin}(p+1, q+1)$-invariant pairing $B \in \Delta^{p+1, q+1^{*}} \otimes \Delta^{p+1, q+1^{*}}$.

For a fixed $X \in \Delta^{p+1, q+1}$ we can form

$$
i_{X} C: \Delta^{p+1, q+1} \rightarrow \Lambda^{k+1} \mathbb{R}^{p+1, q+1}
$$

which is $G:=\operatorname{Spin}(p+1, q+1)_{X \text {-invariant. }}$.

## Generic twistor spinors

## Lemma

Assume that $B(X, X) \neq 0$. Then, after some suitable rescaling, one has that the map

$$
\begin{aligned}
& P: \Lambda^{k+1} \mathbb{R}^{p+1, q+1} \rightarrow \Lambda^{k+1} \mathbb{R}^{p+1, q+1} \\
& \Phi \mapsto i_{X} C(\Phi \cdot X)
\end{aligned}
$$

satisfies $P \circ P= \pm P$.

## Generic twistor spinors

## Lemma

Assume that $B(X, X) \neq 0$. Then, after some suitable rescaling, one has that the map

$$
\begin{aligned}
& P: \Lambda^{k+1} \mathbb{R}^{p+1, q+1} \rightarrow \Lambda^{k+1} \mathbb{R}^{p+1, q+1} \\
& \Phi \mapsto i_{X} C(\Phi \cdot X)
\end{aligned}
$$

satisfies $P \circ P= \pm P$.
Then $\operatorname{ker} P=\operatorname{ker} \Gamma X$ and we obtain a $G$-invariant decomposition

$$
\Lambda^{k+1} \mathbb{R}^{p+1, q+1}=\operatorname{ker} \Gamma X \oplus \operatorname{im} P
$$

Definition
We say that a twistor spinor $\chi \in \Gamma\left(\mathcal{S}\left[\frac{1}{2}\right]\right)$ is generic if $\mathbf{b}(\chi, \Phi \chi) \neq 0$. This is the case if and only if the corresponding parallel tractor $X=L_{0}^{\Delta^{p+1, q+1}} \chi$ satisfies $\mathbf{B}(X, X) \neq 0$.

## Definition

We say that a twistor spinor $\chi \in \Gamma\left(\mathcal{S}\left[\frac{1}{2}\right]\right)$ is generic if $\mathbf{b}(\chi, D \chi) \neq 0$. This is the case if and only if the corresponding parallel tractor $X=L_{0}^{\Delta^{p+1, q+1}} \chi$ satisfies $\mathbf{B}(X, X) \neq 0$.

Now for a twistor spinor $\chi$ the coupling map $\mathfrak{X}(M) \times \mathcal{S}\left[\frac{1}{2}\right] \rightarrow \mathcal{S}\left[\frac{1}{2}\right]$ can be rewritten into

$$
\xi \times \chi \mapsto D_{\xi} \chi-\frac{1}{4}\left(D_{[a} \xi_{b]}\right) \cdot \chi+\frac{1}{2 n}\left(D_{p} \xi^{p}\right) \chi
$$

For a conformal Killing field $\xi \in \mathfrak{X}(M)$ this is just the Lie derivative of the (weighted) spinor $\chi$ with respect to $\xi$. Our algebraic observation from above tells us that every generic twistor spinor $\chi$ provides a decomposition

$$
\operatorname{cKf}(M, \mathcal{C})=\operatorname{cKf}_{\chi}(M, \mathcal{C}) \oplus \operatorname{cKf}_{\chi}^{\perp}(M, \mathcal{C})
$$

of conformal Killing fields into a part which also preserves $\chi$ and a complement.

## Generic twistor spinors in low dimension [HS, 2010]

Let $(M, \mathcal{C}, \chi)$ be a conformal spin structure of signature $(2,3)$ with a generic twistor spinor $\chi$.

Genericity of $\chi$ implies that $\mathcal{D}_{\chi}=\operatorname{ker} \gamma \chi$ is a generic rank 2 distribution on $M$ : One has that the subbundle $\left[\mathcal{D}_{\chi}, \mathcal{D}_{\chi}\right.$ ] of $T M$ spanned by Lie brackets of sections of $\mathcal{D}_{\chi}$ is 3-dimensional and $T M=\left[\mathcal{D}_{\chi},\left[\mathcal{D}_{\chi}, \mathcal{D}_{\chi}\right]\right]$.

## Generic twistor spinors in low dimension [HS, 2010]

Let $(M, \mathcal{C}, \chi)$ be a conformal spin structure of signature $(2,3)$ with a generic twistor spinor $\chi$.

Genericity of $\chi$ implies that $\mathcal{D}_{\chi}=\operatorname{ker} \gamma \chi$ is a generic rank 2 distribution on $M$ : One has that the subbundle $\left[\mathcal{D}_{\chi}, \mathcal{D}_{\chi}\right.$ ] of $T M$ spanned by Lie brackets of sections of $\mathcal{D}_{\chi}$ is 3-dimensional and $T M=\left[\mathcal{D}_{\chi},\left[\mathcal{D}_{\chi}, \mathcal{D}_{\chi}\right]\right]$.

Proposition (H.-Sagerschnig, 2010)
The conformal spin structure $\mathcal{C}$ together with its generic twistor spinor $\chi$ is uniquely determined by $\mathcal{D}$.

This is shown via a Fefferman-type construction which starts from any generic 2-distribution $\mathcal{D} \subset T M$ and associates $\left(\mathcal{C}_{\mathcal{D}}, \chi_{\mathcal{D}}\right)$. In particular, there are non-flat conformal spin structures with generic twistor spinors.

## Generic twistor spinors in low dimension [HS, 2010]

The space of conformal Killing fields of $(\mathcal{C}, \chi)$ decomposes into symmetries of the generic distribution $\mathcal{D}_{\chi}=\operatorname{ker} \gamma \chi$ and a complement $\operatorname{cKf}_{\chi}^{\perp}(M, \mathcal{C})$. In this situation it can be shown that the space $\operatorname{cKf}_{\chi}^{\perp}(M, \mathcal{C})$ can be identified with the space of almost Einstein scales $\operatorname{aEs}(M, \mathcal{C})$, so

$$
\operatorname{cKf}(M, \mathcal{C})=\operatorname{sym}\left(\mathcal{D}_{\chi}\right) \oplus \operatorname{ass}(M, \mathcal{C})
$$

## Generic twistor spinors in low dimension [HS, 2010]

The space of conformal Killing fields of $(\mathcal{C}, \chi)$ decomposes into symmetries of the generic distribution $\mathcal{D}_{\chi}=\operatorname{ker} \gamma \chi$ and a complement $\operatorname{cKf}_{\chi}^{\perp}(M, \mathcal{C})$. In this situation it can be shown that the space $\operatorname{cKf}_{\chi}^{\perp}(M, \mathcal{C})$ can be identified with the space of almost Einstein scales a $\mathrm{Es}(M, \mathcal{C})$, so

$$
\operatorname{cKf}(M, \mathcal{C})=\operatorname{sym}\left(\mathcal{D}_{\chi}\right) \oplus \operatorname{aEs}(M, \mathcal{C})
$$

Using the appropriate coupling maps one obtains explicit formulas: for a $g \in \mathcal{C}$, the almost Einstein scale part of a conformal Killing field $\xi \in \mathfrak{X}(M)$ is given by $\sigma=\mathbf{b}\left(\chi, \frac{4}{5} \xi \cdot D \chi+\left(D_{[a} \xi_{b]}\right) \cdot \chi\right) \in \mathcal{E}[1]$.

Conversely, an almost Einstein scale $\sigma \in \mathcal{E}[1]$ is mapped to a conformal Killing field $\xi_{a}=\mathbf{b}\left(\gamma_{a} \chi,-\frac{2}{5} \sigma \not \subset \chi+(D \sigma) \cdot \chi\right) \in \mathcal{E}_{a}[2] \cong \mathfrak{X}(M)$

