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Some questions:

Two questions in Riemannian (or conformal) geometry:

Let g be a pseudo-Riemannian metric on a manifold M. Can we
rescale g conformally to ĝ = fg with some positive function f such
that ĝ is Einstein,

Ric(ĝ) = λĝ ?

If M is even-dimensional, can one rescale a Riemannian metric g
conformally to a Kähler metric?
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Some questions:

Two questions in affine (or projective) geometry:

If ∇ is an affine torsion-free connection on M, is it metrizable? I.e,
can one describe its geodesics by a Riemannian metric?

Does the affine connection allow a projectively equivalent Ricci-flat
connection?
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Example 1: Einstein metrics in a conformal class

Let g and ĝ be pseudo-Riemannian metrics of signature
(p, q), p + q = n on an n-manifold M.

We say that g and ĝ are conformally related iff there is a function
f ∈ C∞(M,R+) such that ĝ = fg .

This defines an equivalence relation for pseudo-Riemannian metrics;
the equivalence class of a metric g is denoted by C = [g ] and defines
a conformal structure on M.

Given a metric g ∈ [g ], one has its Levi-Civita connection D and can
form the Riemannian curvature tensor Rg .

To ask whether one can rescale a given metric g to an Einstein metric
amounts to the question whether there is an Einstein metric in a
given conformal class; i.e., whether for some g ∈ C = [g ] the Ricci
curvature Ricg := tr(1,3) Rg ∈ Γ(S2T ∗M) is a multiple of g .
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Example 1: Einstein metrics in a conformal class

This problem is governed by the operator [Bailey-Eastwood-Gover, 1994],

Θg : C∞(M)→ Γ(S2
0 T ∗M),

Θg (σ) = (DDσ + Pg σ) +
1

n
(4σ − tr(1,2) Pg σ)g

where

Pg :=
1

n − 2

(
Ricg − Scg

2(n − 1)
g
)

is the Schouten-tensor; S2
0 T ∗M denotes symmetric, trace-free bilinear

forms on TM. The convention for the Laplace operator is
4 := − tr(1,2) ◦D2.

For σ ∈ C∞(M,R+) one has Θg (σ) = 0 iff σ−2g is Einstein.
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Example 1: Einstein metrics in a conformal class

The operator Θg is conformally covariant between C∞(M) and
S2

0 T ∗M: if one switches to another metric ĝ = e2f g in the conformal
class, then

Θĝ ◦m(ef ) = m(ef ) ◦Θg ,

where m(ef ) is simply the multiplication operator with ef .

To define a conformally invariant operator, one introduces conformal
density bundles E [w ]: these are line bundles which are trivialized by a
choice of g ∈ [g ]. The trivializations of σ ∈ E [w ] with respect to
ĝ = e2f g and g are related according to

[σ]ĝ = ewf [σ]g .
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Example 1: Einstein metrics in a conformal class

By forming the weighted bundles H0 = E [1] and H1 = S2
0 T ∗M ⊗ E [1]

one obtains a conformally invariant operator

Θ : Γ(H0)→ Γ(H1).

Following [Gover, Jour.Geom.Phys. (2010)] one calls ker Θ ⊂ E [1] the
space of almost Einstein scales.

M. Hammerl (University of Vienna) Geometric overdetermined systems 9 / 37



Example 1: Einstein metrics in a conformal class

By forming the weighted bundles H0 = E [1] and H1 = S2
0 T ∗M ⊗ E [1]

one obtains a conformally invariant operator

Θ : Γ(H0)→ Γ(H1).

Following [Gover, Jour.Geom.Phys. (2010)] one calls ker Θ ⊂ E [1] the
space of almost Einstein scales.

M. Hammerl (University of Vienna) Geometric overdetermined systems 9 / 37



Example 2: Metrization of projective structures

Two torsion-free linear connections D and D̂ on TM are projectively
equivalent iff there exists a one form Υ ∈ Ω1(M) with

D̂ω = Dω + Υ⊗ ω + ω ⊗Υ

for all ω ∈ Ω1(M). Projectively equivalent connections have the same
unparameterized geodesics.

An interesting question in projective differential geometry is whether a
given projective class of connections [D] contains the Levi-Civita
connection of some metric, i.e., whether the corresponding set of
unparameterized geodesics is metrizable.

It was observed by [Sinjukov, Nauka (1979)] and [Mikeš, Acta Univ.
Palack. Olomuc. (1996)] that this problem is governed by the
equation

Dσ − 1

n + 1
sym

(
id⊗ tr(1,2)(Dσ)

)
= 0

for σ ∈ Γ(S2TM).
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Prolongations of overdetermined systems

To study a given overdetermined system of equations described by an
operator Θ : Γ(H0)→ Γ(H1) we want to rewrite the system in closed
form:

We look for an equivalent first order system such that all first order
derivatives of the dependent variables are given by the dependent
variables themselves.

In classical language, this means that one introduces additional
variables for derivatives of σ ∈ Γ(H0) and derives differential
consequences for these variables from the equation Θ0(σ) = 0.
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Prolongations of overdetermined systems

We will employ the following notation:

The ’additional variables’ are encoded in an extension of the bundle
H0 to a bundle V which has a projection V

Π→ H0.

The expression of derivatives of σ ∈ Γ(H0) in terms of the ’new
variables’ is done via a linear differential operator L : Γ(H0)→ Γ(V)
which splits Π, i.e., Π ◦ L = idΓ(H0).

The resulting closed system is encoded in a linear connection
∇ : Γ(V)→ Γ(T ∗M ⊗ V).

Equivalence of the closed system with the equation Θ(σ) = 0 then
says that the projection Π and the splitting L restrict to inverse
isomorphisms between the space of parallel sections of ∇ and the
kernel of Θ0.

We then call the tuple (V,Π, L,∇) a geometric prolongation of Θ0.
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Immediate applications of a geometric prolongation

If (V,Π, L,∇) is a geometric prolongation of Θ0, then

the solution space ker(Θ0) is finite-dimensional and bounded by
rank V,

if L0 is a differential operator of order r , then every solution is
determined by its r th-order jet in a point,

if Θ0(σ) = 0 and σ is not trivial, then σ is non-vanishing on an
open-dense set.

Moreover, the curvature of the prolongation connection can be used to
obtain obstructions against the existence of parallel sections of V resp.
solutions of Θ0(σ) = 0.
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Study of singularities. Example: Einstein rescalings

To rewrite Θ(σ) = 0 in closed form we introduce new variables µ = Dgσ
and ρ = 1

n (4g − Jg )σ, where 4g = − trg ◦Dg ◦ Dg and Jg = tr(P(g)).

Then

Θ(σ) = 0 iff ∇

ρµ
σ

 =

 Dρ− Pg (·, µ)
Dµ+ σP + ρg

Dσ − µ

 =

0
0
0

 .

The prolongation connection ∇ preserves the bilinear-form h given by the

(quadratic) formula

ρµ
σ

 7→ 2σρ+ g(µ, µ).
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Study of singularities. Example: Einstein rescalings

In particular, for σ, µ, ρ corresponding to a solution of Θ(σ) = 0, the
expression 2σρ+ g(µ, µ) ∈ C∞(M) is necessarily constant equal α, which
shall be non-zero for our discussion.

If σ(x) = 0, then gx(Dσ(x),Dσ(x)) 6= 0 and we see that Dσ is
non-vanishing along M0, which shows that M0 is a hypersurface in M.

Moreover, TxM0 = Dσ(x)⊥ ⊂ TxM and depending on whether
α = g(Dσ(x),Dσ(x)) is greater or smaller zero, M0 inherits a signature
(p − 1, q) resp. (p, q − 1)-metric.

In the case where M is a closed manifold this yields a Poincaré-Einstein
manifold: The manifold M is decomposed into an Einstein-manifold M−
and a conformal boundary M0, the singularity set of σ. Since
M = M− ∪M0 is compact M− is a conformally compact Einstein manifold.
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The problem of naturality/invariance

For a given type of geometry we want our constructions of differential
operators and other objects to depend only on the underlying
geometric structure, without additional choices. In particular, we
want to construct prolongations which respect the underlying
geometric structure.

The case of conformal geometry already exemplifies that one
immediately encounters great obstacles, since there is no unique
(Levi-Civita) connection as in Riemannian geometry.

Major advances to overcome this obstacle were achieved in the 1920s
by Élie Cartan and Tracy Thomas:

Given a conformal structure of signature (p, q), p + q = n, the latter
constructed a natural bundle S of rank n + 2 endowed with a
canonical connection ∇S and compatible signature
(p + 1, q + 1)-metric h. This is now called the conformal standard
tractor bundle.
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Cartan’s description of conformal structures

A few years earlier, Élie Cartan had worked with what would now be
considered the structure bundle G of S:

Let
G := SO(p + 1, q + 1), g = so(p + 1, q + 1) and define P ⊂ G as the
stabilizer of an isotropic ray in Rp+1,q+1.

Definition

A Cartan geometry of type (G ,P) on a manifold M is a P-principal bundle
G → M endowed with a Cartan connection form ω ∈ Ω1(G, g). ω is
P-equivariant, reproduces fundamental vector fields and provides a
trivialization TG ∼= G × g.

Theorem (Cartan, 1923)

There is an equivalence of categories between conformal structures of
signature (p, q) and Cartan geometries of type (SO(p + 1, q + 1),P)
whose curvature satisfies a normalization condition.
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Parabolic geometries and underlying structures

The definition of a Cartan geometry makes sense for arbitrary Lie
groups G with closed subgroup P, and in the case where P is a
parabolic subgroup of a semi-simple Lie group one calls (G, ω) a
parabolic geometry.

For a parabolic geometry (G, ω) there is a canonical regularity
condition which implies that it induces a geometric structure on the
underlying manifold M.

There is also a natural normalization condition on ω, which yields the
class of normal parabolic geometries.

The equivalent description of geometric structures as parabolic
geometries is a powerful tool for natural resp. invariant constructions.
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Parabolic geometries and tractor bundles

Given an arbitrary parabolic geometry (G, ω) of type (G ,P) and a
G -representation V , one can build the associated tractor bundle
V := G ×P V .

The Cartan connection form ω can be extended to a G -principal
connection form ω′ on an extended bundle and then endows V with
its tractor connection ∇V .

Let Ck = ΛkT ∗M ⊗ V. Then Γ(Ck) = Ωk(M,V) and one can form
the twisted de-Rham sequence of the tractor connection ∇V ,

Γ(C0)
∇V

→ Γ(C1)
d∇→ Γ(C2)

d∇→ · · ·

For a parabolic geometry there is a canonical Lie algebra differential
∂∗ called the Kostant codifferential. It gives rise to a complex

C0
∂∗← C1

∂∗← C2
∂∗← · · ·
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The BGG-sequence

The differential ∂∗ yields bundles Zk = ker ∂∗ of cycles, Bk = im ∂∗

borders and homologies Hk = Zk/Hk , and one has the canonical
projections Πk : Zk → Hk .

Now the BGG-sequence is formed by natural differential operators

Γ(H0)
Θ0→ Γ(H1)

Θ1→ Γ(H2)
Θ2→ · · ·

It was presented in [Čap-Slovǎk-Souček, Ann. of Math. (2001)] and a
simplified construction was obtained in [Calderbank-Diemer, Crelle’s
Journal (2001)]

The main technical step in the development of the BGG-machinery is
the construction of the canonical BGG-splitting-operators
Lk : Γ(Hk)→ Γ(Zk).
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The first BGG-operator

We are mostly interested in the first BGG-operator
Θ0 : Γ(H0)→ Γ(H1), defined via the composition Π1 ◦ ∇V ◦ L0,

im (L0)
∇V

// Γ(Z1)

Π1

��
Γ(H0)

L0

OO

Θ0 // Γ(H1)

.

If s ∈ Γ(V) is ∇V -parallel, then automatically Θ0(Π0(s)) = 0. Thus,
parallel sections project into ker Θ0.

(V,Π0, L0,∇V ) is however not a geometric prolongation for general
representations V , since the converse does not hold:
If σ ∈ ker Θ0, then ∇V (L0(σ)) need not necessarily vanish, but may
lie in Γ(B1) = im ∂∗.
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Examples of first BGG-operators for conformal structures

If one takes the standard tractor bundle S of a conformal structure
(M, [g ]) one obtains the operator governing Einstein rescalings
discussed in the first example.

If (M, [g ]) is a conformal spin structure with spin bundle ∆ and
Clifford symbol γ ∈ Γ(T ∗M ⊗ End(∆)), one also has a spin tractor
bundle Σ. Let D/ : Γ(∆)→ Γ(∆) be the Dirac operator.
The first BGG-operator of Σ is the twistor operator

Γ(∆)→ Γ(T ∗M ⊗∆),

χ 7→ Dχ+
1

n
γ ⊗D/χ.

Solutions of this equation are known as twistor spinors.

Both cases are very special: parallel sections of the tractor connection
are already in 1:1-correspondence with solutions, which reflects the
fact that the modelling representations are still very simple.
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Examples of first BGG-operators for conformal structures

For an exterior power V = Λk+1S, k ≥ 1 one obtains the operator
governing conformal Killing k-forms,

Θ0 : Ωk(M)→ Γ(T ∗M ⊗ ΛkT ∗M),

Θ0(σ) = Dσ − alt(1,··· ,k+1)Dσ

− k

n − k + 1
alt(2,··· ,k+1)

(
g ⊗ (tr(1,2) Dσ)

)
.

Already in this case a solution of Θ0(σ) need not satisfy that also
∇V (L0(σ)) = 0. In fact, this imposes additional equations on a
conformal Killing form σ, and solutions to this extended system have
been termed normal conformal Killing forms by [Leitner,
Rend.Circ.Mat.Pal. (2005)].
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Theorem (H.-Somberg-Souček-Šilhan, 2010)

Let V be a tractor bundle for a regular parabolic geometry. There exists a
natural connection ∇̃ on V such that

1 The BGG-construction can still be carried out for ∇̃ and yields
BGG-splitting operators L̃k and BGG-operators Θ̃k .

2 The first BGG-splitting operator and first BGG-operator for ∇̃
coincide with the corresponding objects for ∇V .

3 The diagram

im L0
∇̃ // Γ(Z1)

Γ(H0)

L0

OO

Θ0 // Γ(H1)

L̃1

OO

commutes, and this implies that (V,Π0, L0, ∇̃) is a natural geometric
prolongation of Θ0.

∇̃ is unique under a natural condition and is called the
prolongation connection of Θ0.
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Natural Prolongation

Corollary

Let V be a G-representation and (V, ∇̃,Π0, L0) the geometric
prolongation of Θ0.

1 The space ker Θ0 ⊂ H0 has rank ≤ dim V .

2 Every σ ∈ ker Θ0 is determined by its r -jet at some point, with r ∈ N
only depending on the representation V .

3 If σ ∈ ker Θ0 is not globally vanishing, its singularity set σ−1({0}) has
an open dense complement.
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Example: Prolongation of the equation governing
projective metrizability

A class of projectively equivalent connections [D] on an n-manifold is
equivalently described as a parabolic geometry (G, ω) of type
(SL(n + 1),P) with P the stabilizer of a line in Rn+1. The tractor
bundle V = G ×P S2Rn+1 yields the first BGG-operator

Θ0 : Γ(S2TM)→ Γ(T ∗M ⊗ S2TM)

Θ0(σ) = Dσ − 1

n + 1
sym

(
id⊗ tr(1,2)(Dσ)

)
which governs the existence of geodesically equivalent metrics.

After choice of a connection D ∈ [D] the tractor bundle V can be
written as a direct sum S2TM ⊕ TM ⊕ C∞(M), and a section
s ∈ Γ(V) will be written

[s]D =

ρµ
σ

 ∈
 C∞(M)

Γ(TM)
Γ(S2TM)

 .
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Example: Prolongation of the equation governing
projective metrizability

One calculates the splitting operator L0 : Γ(S2TM)→ Γ(V) as

σ 7→

 1
n(n+1) tr(1,3)(2,4) D2σ + 1

2n tr(1,3)(2,4) P⊗σ
− 1

n+1 tr(1,2) Dσ

σ

 .

The explicit form of the prolongation connection is

∇̃

ρµ
σ

 =

 Dρ− 2 tr(2,3) P⊗µ− 4
n tr(1,4)(3,5) A⊗ σ

Dµ− 2 tr(2,3) P⊗σ + ρ id + 2
n tr(2,5)(4,6) C ⊗ σ

Dσ + sym(id⊗µ)

 .

Here A ∈ Γ(T ∗M ⊗ Λ2T ∗M) is the Cotton-York tensor of D and
C ∈ Γ(Λ2T ∗M ⊗ End(TM)) the Weyl-curvature.

This prolongation agrees with the one found by direct calculation in
[Eastwood-Matveev, IMA (2008)]
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Geometric construction of solutions

A useful application of the BGG-machinery is the geometric realization of
non-flat structures that admit solutions to certain overdetermined systems.
Often one can also characterize the resulting structures.

This employs the so called Fefferman-type constructions: Starting from a
geometry on M, one naturally associates another geometry on a (possibly
larger) manifold N. This generalizes the classical Fefferman construction,
which takes a CR-structure on M and associates a conformal structure on
an U(1)-bundle N → M which admits a light-like conformal Killing field.
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Example: Geometric construction of twistor spinors

In recent joint work with K. Sagerschnig [Ann.Glob.Ann.Geom.] we
employed a Fefferman-type construction to produce conformal spin
structures on 5 and 6 manifolds that carry generic twistor spinors.

We sketch the process for 5-manifolds:
We start with a maximally non-integrable 2-distribution D ⊂ TM of the
5-manifold M. This says that the bundle [D,D] spanned by Lie brackets of
sections of D is 3-dimensional and [D, [D,D]] = TM. These are very
classical structures, also called generic 2-distributions, that are related to
the geometry of second order ODEs.
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Example: Geometric construction of twistor spinors

In the case where D is oriented the structure (M,D) can be modelled as a
Cartan geometry of type (G2,P). Here G2 shall denote the the connected
real Lie group with fundamental group Z2 and Lie algebra the split real
form of the exceptional complex Lie algebra gC2 . P ⊂ G2 is a suitable
parabolic subgroup.

It is well known that one can realize G2 ⊂ SO(3, 4) as the stabilizer of a
Φ ∈ Λ3R7. For our purposes we use the embedding G2 ⊂ Spin(3, 4), where
G2 can be realized as the stabilizer of an arbitrary non-isotropic spinor
X ∈ ∆3,4

R , the real 8-dimensional real spin representation of Spin(3, 4).
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Example: Geometric construction of twistor spinors

The Fefferman-type construction starts by taking the Cartan geometry
(G, ω) describing the generic 2-distribution D ⊂ TM. The parabolic
subgroup P ⊂ G2 naturally embeds into the parabolic subgroup
P̃ ⊂ Spin(3, 4), and this allows one to build the extended principal bundle

G̃ := G ×P P̃, G̃ → M.

Then one shows that the G2-Cartan connection form ω on G canonically
extends to a Spin(3, 4)-Cartan connection form ω̃ on G̃. There is some
further technical work necessary to check regularity and normality of the
extended Spin(3, 4)-Cartan form.
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Example: Geometric construction of twistor spinors

The resulting conformal spin structure of signature (2, 3) that is then
described by (G̃, ω̃) has a spin tractor bundle

Σ = G̃ ×P̃ ∆3,4
R ,

and it follows from the construction that the corresponding spin tractor
connection ∇Σ preserves a canonical (non-trivial) section X ∈ Γ(Σ),

∇ΣX = 0.

The first BGG-projection is a map L0 : Σ→ S[ 1
2 ], taking values in the

weighted spin bundle S[ 1
2 ].
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Example: Geometric construction of twistor spinors

Since the first BGG-operator

Θ0 : Γ(S[
1

2
])→ Γ(T ∗M ⊗ S[

1

2
])

is the twistor operator discussed earlier and parallel sections project to
solutions we see that we obtain a solution χ ∈ Γ(S[ 1

2 ]) of the twistor
equation Dχ+ 1

5γD/χ = 0.

With respect to the canonical spinor pairing

b2,3 : S[
1

2
]⊗ S[

1

2
]→ M × R

this twistor spinor is generic in the sense that b2,3(χ,D/χ) 6= 0.

Theorem

A conformal spin structure C of signature (2, 3) on a 5-manifold is induced
from an oriented generic 2-distribution D ⊂ TM if and only if there exists
a generic twistor spinor χ on M.
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Solution coupling

Another application of the BGG-machinery is to derive coupling formulas
between solutions of (possibly different) systems.

For the Fefferman-type construction (M,D) (M, C) just discussed such
maps appear naturally when one decomposes a given conformal Killing
field ξ ∈ X(M) into a part that respects the distribution D and a canonical
complementary part, which in this case turns out to be isomorphic to the
space of almost Einstein scales on M.
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Solution coupling and automorphism decomposition

Proposition

Given a conformal spin structure of signature (2, 3) and a generic twistor
spinor χ ∈ Γ(S [ 1

2 ]), the space of conformal Killing fields decomposes into
the space of almost Einstein scales and the space of infinitesimal
symmetries of the corresponding rank 2-distribution.

Explicitly, for a g ∈ C, the almost Einstein scale part of a conformal Killing
field ξ ∈ X(M) is given by

σ = b2,3(χ,
4

5
ξ ·D/χ+ (Dξ) · χ) ∈ E [1].

Conversely, an almost Einstein scale σ ∈ E [1] is mapped to a conformal
Killing field

ξ = b2,3(γχ,−2

5
σD/χ+ (Dσ) · χ) ∈ X(M)
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