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Plan

The main point of this talk is to show how one gets a description of the
kernel of an conformally invariant overdetermined operator as the space of
parallel sections of some connection.
We start by illustrating the problem for one particular and very well
understood equation. Then we proceed to lay out out other conformally
invariant overdetermined systems which can be described in a similar
fashion using BGG-operators. This description is then used for rewriting
the systems in closed form
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Illustration of the Problem: Almost Einstein scales
Let

[g ] = {e2f g | f ∈ C∞(M)}
be a conformal class of metrics on M.

Definition

A function σ ∈ C∞(M) is called an almost Einstein scale for g ∈ [g ] if the
open set U = M/σ−1{0} is dense and σ−2g is Einstein on U.

Observing the transformation behaviour of the Schouten tensor

Pab =
1

n − 2
(Ricab −

R

2(n − 1)
gab)

one obtains that σ−2g is Einstein on the complement of the singularity-set
iff (

DaDbσ + σPab

)
0

= 0. (1)

Here D is the Levi-Civita connection of g and subscript 0 takes the
trace-free part.
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Let us encode this via the operator

Θg : C∞(M)→ S2
0 T ∗M, (2)

σ 7→
(
DDσ + σP

)
0

(3)

which maps C∞(M) into symmetric, trace-free bilinear forms on TM.

Θg is conformally covariant: with m(·) denoting the multiplication
operator by a function,

Θg̃ = m(ef ) ◦Θg ◦m(e−f )

for g̃ = e2f g .
Equivalently, one can say that one has a conformally invariant operator;
for this we need the conformal density bundles E [w ] for w ∈ R: these are
line bundles which are trivialized for every g ∈ [g ] such that for f ∈ E [w ]
the resulting trivializations transform as

[f ]g̃ = ewf [f ]g

for g̃ = e2f g .
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Then every Θg defines the same operator

Θ : E [1]→ S2T ∗M ⊗ E [1],

and we say that Θ is conformally invariant since it operators between
natural bundles for the conformal structures and is defined via a universal
formula in metric terms.

Now the equation (1) resp. the operator (2) is overdetermined. There is a
well known way to write the system in closed form:
Let

[S]g := E [1]⊕ Ea[1]⊕ E [−1].

A section s ∈ Γ([S]g ) will be written

s =

 ρ
ϕa

σ

 ∈
E [−1]
Ea[1]
E [1]

 . (4)
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We now define the bundle S as the equivalence class of the [S]g , g ∈ [g ]
under the relation

[s]ĝ =

 ρ̂
ϕ̂a

σ̂

 =

ρ−Υaϕ
a − 1

2σΥbΥb

ϕa + σΥa

σ

 (5)

where Υ = df .

The insertion of E [−1] into S as the top slot is independent of the choice
of g ∈ [g ] and defines a section τ+ ∈ S[1]. The insertion of E [1] into S as
the bottom slot is well defined only via a choice of g ∈ [g ] and defines a
section τ− ∈ S[−1].
Projection to the bottom slot is well defined and gives a map

Π0 : S → E [1],

ρµ
σ

 7→ σ.
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There is a well defined connection on S: one defines

[∇Sc s]g = ∇Sc

 ρ
ϕa

σ

 =

 Dcρ− P b
c ϕb

Dcϕa + σPca + ρgca

Dcσ − ϕc

 . (6)

Here g ∈ S2T ∗M ⊗ E [2] is the conformal metric.

One defines the splitting
operator

LS0 : E [1]→ Γ(S), (7)

σ 7→

− 1
n (4+ J)σ

Dσ
σ

 .

and calculates

∇S ◦ LS0 (σ) =

 Dc(4σ + Jσ)− P p
c Dpσ

(DaDbσ + Pabσ)− 1
n (4σ + Jσ)gab

0

 .
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The middle slot is just Θ(σ) and it turns out that it is a differential
consequence of Θ(σ) = 0 that also the top slot vanishes. Thus:

Proposition

Π0 and L0 : E [1]→ S restrict to inverse isomorphisms between ∇S-parallel
sections of S and the kernel of Θ.

We will say that (S,∇S ,Π0, L0) is a geometric prolongation of Θ. It is
well known that parallel sections are in 1 : 1-correspondence with
Holonomy-invariant elements of the modelling vector space. We
immediately gain some consequences:
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Corollary

The solution space of equation (1) is finite-dimensional and bounded by
rank S = n + 2. Equality can only be obtained for a locally conformally
flat structure.

Proof :
The dimensional bound is clear. Let K denote the curvature of ∇S . Then
R ∈ Ω2(M, so(S) is computet to be

Kc1c2 =

0 −Aac1c2 0
0 C a

c1c2 b Aa
c1c2

0 0 0

 (8)

with C a
c1c2 b the Weyl-curvature and

Aabc = DbPca − DcPba

the Cotton-York tensor.
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Having the maximal solution space implies trivial holonomy of ∇S ;
especially, the curvature K has to vanish, and we see from (8) that then
both conformal curvature tensors are trivial. �

One more simple
consequence is:

Corollary

Any solution of (DDσ + Pσ)0 = 0 is determined by its 2-jet at a point.
Especially: If σ is a non-trivial solution, it is automatically non-vanishing
on an open-dense subset.

Proof :
L0 is a second order splitting operator. Especially, if the 2-jet of a
σ ∈ C∞(M) vanishes, s := L0σ = 0. But a parallel section of S is
determined by its value at one point. �
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Tractor bundles, cohomology and the BGG-sequence
S is called the standard tractor bundle endowed with the standard tractor
connection ∇S and the tractor metric h. Any subbundle T of of a tensor
power of S is called a tractor bundle and is endowed with the connection
∇T induced by ∇S .

A few simple algebraic observations, mainly the fact
that one has an inclusion

T ∗M ↪→ so(S,h) = Λ2(S)

allow one to define an algebraic differential

∂∗ : Ωk+1(M, T )→ Ωk(M, T ),

∂∗ ◦ ∂∗ = 0.

We will abbreviate Ωk(M, T ) = Ck . Then ∂∗ provides us with a complex

C0
∂∗← C1

∂∗← C2
∂∗← · · · .

This complex gives rise to spaces Zk = ker ∂∗ of chains, Bk = im ∂∗ of
borders and cohomologies Hk = Zk/Hk .
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On the other hand, ∇ gives rise to a sequence

C0
∇→ C1

d∇→ C2
d∇→ · · ·

and that’s all we need for introducing the BGG-machinery as deveoloped
by [Čap-Slovak-Souček,2001] and [Calderbank-Diemer,2001]:
The main point is that d∇ and ∂∗ give rise to canonical differential
splitting operators Lk : Hk → Zk in following way:

While for a general section ϕ ∈ Ωk(M, T ) with ∂∗(ϕ) = 0 one need not
have that also ∂∗(d∇(ϕ)) = 0, there is in fact a well defined subspace Lk

for which

Zk ⊃ Lk
d∇→ Zk+1 ⊂ Ck+1.

On Lk the natural projections Πk : Zk → Hk restricts to an isomorphism,
whose inverse is a (differential) splitting operator Lk .
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One can thus form the BGG-operators Θk as the composition
Πk+1 ◦ d∇ ◦ Lk :

Lk
d∇ // Zk+1

Πk+1

��
Hk

Lk

OO

Θk // Hk+1

and obtains the BGG-sequence

C0
Θ0→ C1

Θ1→ C2
Θ2→ · · · .

We remark that only in the conformally flat case will this be a complex.

The first operator in this sequence is always to be overdetermined.
Examples :
If T = S, Θ0 is the operator governing Einstein scales introduced at the
beginning.

Matthias Hammerl (University of Vienna) Conformally invariant operators Pisa, June 2009 13 / 26



One can thus form the BGG-operators Θk as the composition
Πk+1 ◦ d∇ ◦ Lk :

Lk
d∇ // Zk+1

Πk+1

��
Hk

Lk

OO

Θk // Hk+1

and obtains the BGG-sequence

C0
Θ0→ C1

Θ1→ C2
Θ2→ · · · .

We remark that only in the conformally flat case will this be a complex.
The first operator in this sequence is always to be overdetermined.
Examples :
If T = S, Θ0 is the operator governing Einstein scales introduced at the
beginning.

Matthias Hammerl (University of Vienna) Conformally invariant operators Pisa, June 2009 13 / 26



If T = Λk+1T we will obtain the operator governing
conformal Killing forms

{σ ∈ E[a1···ak ][k + 1] :

Dcσa1···ak
− D[a0

σa1···ak ] −
k

n − k + 1
gpqDpσqa2···ak

= 0}.

With respect to a metric one has

[Λk+1T ]g =

 E[a1···ak ][k − 1]
E[a1···ak+1][k + 1] | E[a1···ak−1][k − 1]

E[a1···ak ][k + 1]

 .

via the identification ρa1···ak

ϕa0···ak
| µa2···ak

σa1···ak

 7→ τ− ∧ σ + ϕ+ τ+ ∧ τ− ∧ µ+ τ+ ∧ ρ. (9)
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The tractor connection on Λk+1T is given by

∇Λk+1T
c

 ρa1···ak

ϕa0···ak
| µa2···ak

σa1···ak

 = (10)

=


Dcρa1···ak

− P p
c ϕpa1···ak

− kPc[a1
µa2···ak ](

Dcϕa0···ak
+ (k + 1)gc[a0

ρa1···ak ]

+(k + 1)Pc[a0
σa1···ak ]

)
|
(

Dcµa2···ak

−P p
c σpa2···ak

+ ρca2···ak

)
Dcσa1···ak

− ϕca1···ak
+ kδc[a1

µa2···ak ].

 .

and the first BGG-splitting operator LT0 : E[a1···ak ][k + 1]→ Λk+1T is

LT0 (σ) = (11)

=



−
1

n(k+1) DpDpσa1···ak
+ k

n(k+1 DpD[a1
σ|p|a2···ak ]

+ k
n(n−k+1) D[a1

Dpσ|p|a2···ak ]

+ 2k
n Pp

[a1
σ|p|a2···ak ] − 1

nJσa1···ak


D[a0

σa1···ak ] | − 1
n−k+1g

pqDpσqa2···ak

σa1···ak

 .
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Then, via (10) and (11) one computes that for σ ∈ E[a1···ak ][k + 1] the

projection of ∇Λk+1T ◦ LΛk+1T
0 (σ) to the lowest slot Ec[a1···ak ][k + 1] in

Ω1(M,Λk+1T ) is given by

σa1···ak
7→ Dcσa1···ak

− D[a0
σa1···ak ] −

k

n − k + 1
gpqDpσqa2···ak

. (12)

This is the projection of σa1···ak
to the highest weight part of

Ec[a1···ak ][k + 1] which is formed by trace-free elements with trivial
alternation, we write

E{c[a1···ak ]}0
[k + 1] := {σa1···ak

: 0 = σ[ca1···ak ] and 0 = gca1σca1···ak
}.
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We thus in fact have the first BGG-operator

ΘΛk+1T
0 : E[a1···ak ][k + 1]→ E{c[a1···ak ]}0

[k + 1],

σ 7→ D{cσa1···ak}0
.

Forms in the kernel of ΘΛk+1T
0 are thus the conformal Killing k-forms.

Unlike the case of k = 0 and almost Einstein scales this is no longer a
prolongation: While Π0 is easily seen to projects ∇-parallel sections of T
into ker Θ0, one only has ∇L0(σ)) ∈ im ∂∗ for a σ ∈ ker Θ0 and not
necessarily ∇L0(σ) = 0.
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General approach:

Our approach to prolong the overdetermined equations

Θ0σ
!

= 0

for some first BGG-operator Θ0 is to modify the tractor connection in a
suitable way:
We will find a natural space of deformations of tractor connections such
that the BGG-construction still works and yields the same underlying
operator Θ0. (All other splitting- and BGG- operators may change).
The deformed connection will describe the kernel of Θ0 as parallel sections.
Working in this class of connections we will find a unique one describing
the underlying system of equations.
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The deformation of the tractor connection

Let Ψ ∈ Ω1(M, gl(T ))1. The change in curvature after a deformation

∇ → ∇̃ = ∇+ Ψ

is given by

RΨ = R + d∇Ψ + [Ψ,Ψ]

with R ∈ Ω2(M, gl(T )) the original curvature of ∇T .

The main deformation result is

Theorem 1

There exists a unique Ψ ∈ Ω1(M, gl(T ))1 such that

Ψs ∈ im ∂∗ and

∂∗(RΨs) = 0

for all s ∈ T .
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The prolongation connection ∇̃ = ∇+ Ψ

Before proving Theorem 1, let us show how it solves the prolongation
problem:
We can now do the BGG-machinery with ∇̃. Let us first check that this
still yields the same first BGG-operator Θ0 as with ∇:

1 Since
∇̃ ◦ L0 = ∇ ◦ L0 mod im ∂∗

we see ∂∗ ◦ ∇̃ ◦ L0 = 0, which implies that L0 is the first
BGG-splitting operator of ∇̃.

2 Again, since ∇̃ = ∇ mod im ∂∗ and Π1 kills im ∂∗, we have

θ̃0 = Π1 ◦ ∇̃ ◦ L0 = Θ0,

and thus our deformation doesn’t change the first BGG-operator.
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We now show that the diagram

im L0
∇̃ // Z1

H0

L0

OO

Θ0 // H1

L̃1

OO

commutes:

1 By definition of Θ0, ∇̃ ◦ L0 with values in Z1 lifts Θ0 over Π1. For it
to agree with L̃1 ◦Θ0 we thus must have ∂∗ ◦ d∇̃ ◦ ∇̃ ◦ L0 = 0.

2 But since d∇̃ ◦ ∇̃ = RΨ with RΨ the curvature of ∇̃,

∂∗ ◦ d∇̃ ◦ ∇̃ ◦ L0 = ∂∗ ◦ RΨ ◦ L0 = 0

holds by assumption on Ψ.
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We now show that the diagram

im L0
∇̃ //

RΨ

!!
Z1

d∇ // C2

H0

L0

OO

Θ0 // H1

L̃1

OO

commutes:

1 By definition of Θ0, ∇̃ ◦ L0 with values in Z1 lifts Θ0 over Π1. For it
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The prolongation connection ∇̃ = ∇+ Ψ

Thus we have

Theorem 2

There exists a natural connection ∇̃ on T such that Π0 and L0 restrict to
inverse isomorphisms between ∇̃-parallel sections of T and the kernel of
Θ0. I.e.: (T ,Π0, L0, ∇̃) is a natural geometric prolongation of Θ0.

To prove Theorem 1 one employs a completely algorithmic inductive
procedure: The failure of ∇+ Ψ to satisfy the conditions of the theorem is
given by

∂∗ ◦ RΨ ∈ B1 ⊂ Ω1(G, gl(T )).

Recall that we have a natural filtration of B1 with Bi ⊃ Bi+1 and Bj = 0
for some high enough j and assume that we already got a
Ψ ∈ Ω1(M, gl(T ))1 which achieves that ∂∗ ◦ RΨ ∈ Bi

1.
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Then, for a φ which also maps T into Bi
1 we find that

∂∗ ◦ RΨ+φ − ∂∗ ◦ RΨ = � ◦ φ (13)

modulo terms in Bi+1
1 . Here � denotes the Kostant Laplacian: the only

important fact for us is that it is invertible on im ∂∗ = B1 ⊂ Ω1(M, T ).
This tells us to proceed by taking

φ := −� ◦ ∂∗RΨ,

then ∂∗ ◦ RΨ+ϕ sits in the next higher filtration component, and after
finitely many steps we arrive at a solution.
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An exposition of this prolongation procedure in the realm of conformal
geometry can be found at math.dg/0811.4122. There one also finds an
explicit step by step calculation for the prolongation connection of
conformal Killing forms.

A treatment of the alternative normalization condition ∂∗ ◦ R = 0 for
connections on tractor bundles will appear in a joint paper with J. Šilhan,
V. Souček and P. Somberg.

We will now quickly go over some applications:
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Algebraic obstruction tensors for free

Since L̃1 ◦Θ0 = ∇̃ ◦ L0 one has that the composition of the first two
BGG-operators for ∇̃ is

Θ̃1 ◦Θ0 = Π2 ◦ RΨ ◦ L0.

Especially, when σ ∈ ker Θ0, then necessarily Π2(RΨ(L0(σ))) = 0.

For instance, for a conformal Killing k-form with k ≥ 2 one obtains
without a line of computation that

C p
{c1c2 [a1

σ|p|a2···ak ]}0
= 0.

This obstruction has been observed as a side result of calculations done in
ad hoc prolongation by Kashiwada (68), Semmelmann (2001) and
Gover-Šilhan (2006). This description is completely conceptual.
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Construction of sharp(er) obstructions a la Gover-Nurowski

When one chooses a metric in the conformal class in the conformal case,
one obtains the Weyl (resp. Levi-Civita-) connection on TM and T ∗M
and its tensor powers, and may thus couple these connections with the
prolongation connection ∇̃.

Then for a ∇̃-parallel section s ∈ T one has Rs = 0. Differentiating this
one obtains 0 = ∇̃(Rs) = (∇̃R)s + R∇̃s = (∇̃R)s by parallelity and thus

(∇̃kR)s = 0 ∀k ∈ N0.

In the case of the standard tractor bundle of conformal geometry ∇̃ = ∇
and Gover-Nurowski (2006) obtained sharp obstructions against the
existence of Einstein scales under a genericity assumption on the Weyl
curvature, using in fact only the equations for k = 0 and k = 1.
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