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Motivation from the point of view of conformal geometry

Two pseudo-Riemannian metrics g and ĝ of signature (p, q) are
conformally related if there is an f ∈ C∞(M) with ĝ = e2f g . The
corresponding equivalence class of metrics is a ray subbundle
C ⊂ Γ(S2T ∗M), which we call a conformal structure.

The study of conformal structures brings new obstacles compared to
Riemannian geometry, since there is no unique torsion-free principal
connection form on the conformal frame bundle G0 → M.

Operators and objects which are defined in terms of the Riemannian
data of a g ∈ C but don’t depend on the particular choice of
representative metric are called conformally invariant.
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Motivation from the point of view of conformal geometry

In this talk we dicuss how another geometric structure, a generic
distribution D ⊂ TM, gives rise to a conformal structure CD of
signature (2, 3) plus a conformal object, namely a twistor spinor.

The discovery that one has a conformal class of metrics CD for a
generic distribution D is due to [P. Nurowski, Journ. Geom. Physics
(2005)].

We will describe D CD as a particular case of a Fefferman-type
construction, which is a powerful tool for parabolic geometries.
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Motivation from the point of view of conformal geometry

This description of D CD is used to obtain relations to conformal
holonomy and existence of a well defined conformal object which
encodes the distribution D, namely a twistor spinor.

Finally, we use this twistor spinor to decompose symmetries of the
conformal structure C.

We make extensive use of techniques for parabolic geometries, in
particular we employ tractor calculus and the description of conformal
objects as kernels of BGG-operators.
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Generic distributions

For two subbundles D1 ⊂ TM and D2 ⊂ TM we define

[D1,D2]x := span({[ξ, η]x : ξ ∈ Γ(D1), η ∈ Γ(D2)}).

D is a generic distribution if D2 := [D,D] ⊂ TM is a subbundle of
constant rank 3 and D3 := [D2,D2] = TM. These are distributions of
maximal growth vector (2, 3, 5) in each point.
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D and CD on S2 × S3

There is a well known generic rank 2-distribution D ⊂ TM on
M = S2 × S3, which encodes the system of a ball rolling without
splipping or twisting on another ball [Montgomery-Bor,
Enseign.Mathem. (2009)].

The automorphism group of this (oriented) distribution is the full Lie
group G2 - which in this talk will always denote the unique connected
Lie group with fundamental group Z2 and Lie algebra the split real
form g2 of the exceptional complex Lie group gC

2 .
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D and CD on S2 × S3

S2 × S3 also carries a conformal structure C of signature (2, 3) with
large automorphism group, which has representative (g2,−g3); here
g2 and g3 are the canonical round metrics on the 2- resp. 3-sphere.

The structure group of (S2 × S3,C) is CO(2, 3) = R+ ×O(2, 3).
Fixing all orientations, this reduces to the connected group
R+ × SO(2, 3)o ; fixing also the canonical spin-structure of this space
we get the structure group R+ × Spin(2, 3) of conformal spin
structures of signature (2, 3).

The group of all conformal maps {f : f ∗C = C} preserving this spin
structure is then Spin(3, 4), and S2 × S3 can be realized as
Spin(3, 4)/P̃ with P̃ the stabilizer of an isotropic ray in the standard
representation of Spin(3, 4) on R3,4 = R7.
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D and CD on S2 × S3

It has been observed by [I. Kath, Habil (1999)] that G2 ↪→ Spin(3, 4)
as the stabilizer of an arbitrary non-isotropic spinor X ∈ ∆3,4

R
∼= R4,4.

With P = Spin(3, 4) ∩ P̃ one then has G2/P = Spin(3, 4)/P̃.

We can regard

(G2/P = S2 × S3,D) (Spin(3, 4)/P̃ = S2 × S3,C)

as going to a ’weaker’ geometric structure: The automorphism group
increases from G2 to Spin(3, 4).

This process D C generalizes: Given a 5-dimensional manifold M
endowed with an (orientable) generic distribution D one obtains a
conformal spin structure of signature (2, 3).

This is based on the Cartan geometric description of generic
distributions and conformal structures:
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Cartan’s description of geometric structures

Let G be a real Lie group and P ⊂ G a closed subgroup; The Lie algebras
of G ,P are denoted g, p.

Definition

Let M be a smooth manifold. A Cartan geometry of type (G ,P) on M
consists of of a P-principal bundle G → M endowed with a g-valued
1-form ω ∈ Ω1(G, g) which satisfies the following properties:

1 ω is P-equivariant.

2 ω reproduces fundamental vector fields.

3 ω provides a trivialization TG ∼= G × g.

It follows from this definition that TM = G ×P g/p.
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Cartan’s description of geometric structures

Definition

The curvature K ∈ Ω2(G, g) of ω is defined by

K (ξ, η) := dω(ξ, η) + [ω(ξ), ω(η)]

for ξ, η ∈ X(G).
It is horizontal and P-equivariant and thus factorizes to an

AM := G ×P g

valued two form K ∈ Ω2(M,AM).
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Cartan’s description of geometric structures

In the case where P is a parabolic subgroup of a semi-simple Lie
group G , which is the case for the groups P ⊂ G2 and P̃ ⊂ Spin(3, 4)
discussed above, one calls (G, ω) a parabolic geometry.

This class of geometries is particularly important because it comes
with canonical regularity and normality conditions on ω resp. its
curvature K .

Parabolic geometries which satisfy these conditions are equivalent (in
the categorical sense) with underlying geometric structures. The
cases of interest to us are:
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Equivalent description of distributions and conformal
structures as parabolic geometries

Theorem

Oriented generic rank 2-distributions of 5-manifolds can be equivalently
described as regular, normal parabolic geometries of type (G2,P).

Theorem

Conformal spin structures of signature (p, q) can be equivalently described
as regular, normal parabolic geometries of type (Spin(p + 1, q + 1), P̃),
with P̃ ⊂ Spin(p + 1, q + 1) the stabilizer of an isotropic ray in Rp+1,q+1.

Evidently we should tell here how this correspondence comes about. At
least, to see how the parabolic geometries define underlying geometric
structures can be explained in a reasonable time, but would already
demand too many additional definitions at this point. We will just be glad
that this identification exists and use it.
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Extension of structure group for parabolic geometries

Given a Cartan geometry (G, ω), of type (G ,P), one has that G is a
P principal bundle over the underlying manifold M.

In this talk we employ two kinds of extension of structure group - one
of these is purely technical and intrinsic to a given parabolic geometry,
used to form a real principal bundle connection. The second kind
produces a different kind of geometry on the underlying manifold M.

We begin by the first kind, used to define the holonomy of (G, ω):
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First kind of extension of structure group: forming a
principal bundle connection form from the Cartan
connection form

Given a parabolic geometry (G, ω) of type (G ,P), we remark that
ω ∈ Ω1(G, g) is not a principal connection form on G since it is g

valued on a P-principal bundle; this however, can be mended easily:
We define Ĝ := G ×P G , which is the P associated bundle to G
defined via restriction of the natural left action of G on itself to the
action of P on G .
Then there is canonical embedding G ↪→ Ĝ, and one has
ω ∈ Γ(T ∗G ⊗ g) ⊂ Γ(T ∗Ĝ ⊗ g).
One can extend ω to an element in Γ

(
(T ∗Ĝ)|G ⊗ g

)
by demanding

that fundamental vector fields ζX (u) := d
dt |t=0

u · exp(tX ) are

reproduced.
By equivariant extension of the resulting form, one obtains a principal
connection form ω̂ ∈ Ω1(Ĝ, g); This form will soon play an important
role.
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Second kind of extension of structure group: The
Fefferman-type construction D CD

Using the embedding G2 ⊂ Spin(3, 4) and the fact that the parabolic
subgroup P ⊂ G2 is just the intersection G2 ∩ P̃ one can define an
extension functor from Cartan geometries of type (G2,P) to
geometries of type (Spin(3, 4), P̃):

Let (GD, ωD), GD → M, ωD ∈ Ω1(GD, g2) be a parabolic geometry of
type (G2,P), which shall be regular and normal, and therefore
equivalent to an underlying generic rank 2-distribution D on M.

Define GC := GD ×P P̃, i.e., we extend the structure group from P to
P̃. Then, similarly to above, ωD ∈ Ω1(GD, g2) uniquely extends to a
so(3, 4)-valued Cartan connection form ωC ∈ Ω1(GC, so(3, 4)).
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The Fefferman-type construction D CD and holonomy
reduction

Proposition

(GC, ωC) is a regular, normal parabolic geometry of type (Spin(3, 4), P̃),
and thus induces a conformal spin structure CD of signature (2, 3) on M.

In particular, this implies that Nurowski’s conformal structure
associated to an orientable generic distribution D carries a canonical
spin structure.

The important point in having normality of ωC is that this implies
strong relations between D and CD:

Given the parabolic structure bundles GD and GC of the generic
distribution and the conformal structure, we can form the the
extended bundles ĜD := GD ×P G and ĜC := GC ×P̃ Spin(3, 4), which
carry the principal connection forms ω̂D and ω̂C.
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The Fefferman-type construction D CD and holonomy
reduction

Now ω̂C depends only on the conformal structure (M,C), and thus
gives rise to a well defined conformal holonomy

Hol(C) := Hol(ω̂C) ⊂ Spin(3, 4).

The construction shows that one obtains a holonomy reduction of
principal bundles (ω̂D, ω̂D) ↪→ (ω̂C, ω̂C) from Hol(ω̂C) ⊂ Spin(3, 4) to
Hol(ω̂′D) ⊂ G2.

Thus, for every (orientable) generic distribution D one has for the
holonomy of the induced conformal spin structure
Hol(CD) ⊂ G2 ⊂ Spin(3, 4).
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Holonomy reduction for parabolic geomeries

Naturally, one now asks wheter any given conformal spin structure C
of signature (2, 3) is already induced by a generic distribution if the
necessary condition Hol(C) ⊂ G2 is satisfied.

This works: one employs a reduction procedure for parabolic
geometries:

Starting from (M,C), one has the equivalent description as (GC, ωC)
and knows by assumption that (ĜC, ω̂C) reduces to a G2-principal
bundle Ḡ ↪→ ĜC, ω̄ ∈ Ω1(Ḡ , g2).

Then Ḡ is shown to intersect transversally with GC in a
P ⊂ G2-principal bundle G ⊂ GC, and ω̄ can by seen to restrict to a
(G2,P)-Cartan connection form ω ∈ Ω1(G, g2).
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Holonomy reduction for parabolic geomeries

The surprising fact now is that the normality of the
(Spin(3, 4), P̃)-geometry already implies the normality of the constructed
(G2,P)-structure (G, ω), on M, and one obtains:

Theorem (M.H.-K.Sagerschnig, SIGMA (2009))

Let (M,C) be a conformal structure of signature (2, 3) with
Hol(C) ⊂ G2 ⊂ Spin(3, 4). Then C is canonically associated to a generic
rank two distribution D.

Evidently one now wants to describe the reduction Hol(C) ⊂ G2 in terms
of reasonable conformal data on (M,C).
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Tractor bundles for parabolic geometries

We already mentioned that the lack of a unique torsion-free
connection for a conformal geometry complicates canonical
(differential) constructions.

The Cartan geometry (GC, ωC) provides a substitute via the
so(3, 4)-valued 1-form ωC, which was extended canonically to a
P̃-principal connection form on the extended bundle
G′C := GC ×P̃ Spin(3, 4).

Then, every finite dimensional, real Spin(3, 4)-representation V gives
rise to an adjoint tractor bundle

V := GC ×P̃ V = ĜC ×Spin(3,4) V

endowed with its canonical tractor connection.
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Construction/description of invariant differential operators
via tractor bundles

An important application of V together with its tractor connection is
the construction of (conformally) invariant differential operators.
There is a natural tractor homology produced by the Kostant
co-differential ∂∗ : Ωk+1(M,V→ Ωk(M,V), ∂∗ ◦ ∂∗ = 0. Thus, there
exists a algebraic theory in the background of the constructions which
will follow, but we don’t discuss this here.
The section space of the first and second homologies of ∂∗ are
denoted H0 and H1.
H0 is a quotient of Γ(V), and we have the canonical surjection
Π0 : Γ(V)→ H0.
The goal now is to factorize the connection

∇ : Γ(V)→ Ω1(M,V)

to an operator

Θ0 : H0 → H1 :
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The first BGG-operator Θ0

The general BGG-machinery as developed by [Čap-Slovǎk-Souček,
Ann. of Math. (2001)] and simplified by [Calderbank-Diemer, (J.
Reine u. Angew. Math.) (2001)] describes the first BGG-operator Θ0

as the composition

Θ0 = Π1 ◦ ∇ ◦ L0.

The middle operator is just the first order operator ∇, and Π1 is
simply a sub-quotient projection map, i.e., it maps a subbundle of
Ω1(M,V) onto H1.

The important term in the above formula is L0 : H0 → Γ(V), which
takes a section σ ∈ H0 and maps it to a tractor section
s = L0σ ∈ Γ(V).

L0 is a differential splitting operator of the canonical surjection
Π0 : Γ(V)→ H0. I.e.: Π0 ◦ L0 = idH0 .
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The kernel of Θ0 and parallel sections of V

We will be interested in solutions of equations of

Θ0(σ) = 0, σ ∈ H0.

An important fact which immediately follows from its construction
and relates solutions of the above natural geometric equations to
(conformal) holonomy is:

Lemma

Via Π0 : Γ(V)→ H0, ∇-parallel sections of the tractor bundle V project
into the kernel of Θ0.

If, conversely, also every element of ker Θ0 ⊂ Γ(H0) splits into a
∇-parallel section of V we say that ∇ is the prolongation connection
of Θ0.

This is the case for the case of the conformal standard- and spin-
tractor bundle:
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The standard tractor bundle of conformal geometry

Taking the standard representation on R3,4 = R7 of Spin(3, 4), the
corresponding associated tractor bundle is the standard tractor bundle
S of conformal geometry.

One calculates that with respect to a choice of metric g ∈ C, which
has Levi-Civita connection D, its first BGG-operator is

Θg : C∞(M)→ Γ(S2
0 T ∗M),

Θg (σ) = (DDσ + Pg σ) +
1

n
(4σ − tr(1,2) Pg σ)g .

Here

Pg :=
1

n − 2

(
Ricg − Scg

2(n − 1)
g
)

is the Schouten-tensor; S2
0 T ∗M denotes symmetric, trace-free bilinear

forms on TM. The convention for the Laplace operator is
4 := − tr(1,2) ◦D2.

For σ ∈ C∞(M,R+) one has Θg (σ) = 0 iff σ−2g is Einstein.
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The conformal spin tractor bundle

Taking the associated bundle to the 8-dimensional, real spin
representation ∆3,4

R
∼= R4,4 of Spin(3, 4), one obtains the conformal

spin tractor bundle Σ.

Let ∆ be the real, conformal spin bundle of rank 4, with Clifford
symbol γ ∈ Γ(T ∗M ⊗ End(∆)) and D/ : Γ(∆)→ Γ(∆) its Dirac
operator.

With respect to a metric g ∈ C the first BGG-operator is the twistor
operator

Γ(∆)→ Γ(T ∗M ⊗∆),

χ 7→ Dχ+
1

n
γ ⊗D/ χ,

which projects the Levi-Civita derivative of a spinor to the kernel of
the Clifford multiplication.
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Characterization of G2-holonomy in terms of twistor spinors

It turns out that characterization of Hol(C) ⊂ G2 via a twistor spinor
is very simple: The real 4-dimensional spin representation ∆2,3

R carries
a non-degenerate skew-symmetric bilinear form which can be related
to the symmetric (4, 4)-form on ∆3,4

R .

Now via the first BGG-splitting operator a twistor spinor χ ∈ Γ(∆) is
equivalent to a parallel spin tractor X ∈ Γ(Σ). But X corresponds to
an holonomy-invariant element in ∆3,4

R .
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Characterization of G2-holonomy in terms of twistor spinors

We already know that the stabilizer of an non-null element
X ∈ ∆3,4

R
∼= R4,4 is (conjugate to) G2.

The condition of X being non-null can be related to a condition on χ,
and one obtains:

Let D/ : Γ(∆)→ Γ(∆) be the Dirac operator, then

Theorem (M.H., Thesis (2009))

Let (M,C) be a conformal spin manifold of signature (2, 3) and β the
skew-symmetric form on the 4-dimensional real spin bundle ∆. Then C is
induced from a generic rank 2-distribution iff there is a twistor spinor
χ ∈ Γ(∆) with non-vanishing β(χ,D/ χ).
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Decomposition of infinitesimal automorphisms

We can relate the symmetries of a generic distribution with those of
the induced conformal structure:

A vector field ξ ∈ X(M) is a symmetry of D if Lξ(η) ∈ Γ(D) for all
η ∈ Γ(D).

A vector field ξ ∈ X(M) is said to be a conformal Killing field if it
preserves the conformal structure CD: for every representative metric
g there is an f ∈ C∞(M) with Lξg = fg .

Since the construction D CD is functorial, one has an inclusion of
symmetries of D into the conformal Killing fields, we write

sym(D) ↪→ cKf(CD).
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Decomposition of infinitesimal automorphisms

It follows from the description of infinitesimal automorphisms of
parabolic geometries [Čap, JEMS (2008)] that the first
BGG-operators of the adjoint tractor bundles ADM := GD ×P g2 and
ACM := GC ×P̃ so(3, 4) describe the symmetries of D and the
conformal Killing fields of C.

Now as a G2-module, so(3, 4) decomposes into R3,4 ⊕ g2. This
implies a decomposition of the conformal adjoint tractor bundle ACM
into S and ADM.

This decomposition is compatible with the prolongation connections
on the respective bundles. Via explicit formulas for BGG-splitting
operators this yields the following decomposition theorem:
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Theorem (Decomposition of conf. Killing fields via a twistor spinor)

Let CD be the conformal (2, 3)-structure induced by a generic
2-distribution D ⊂ TM. Every conformal Killing field decomposes into a
symmetry of the distribution D and another part corresponding to an
Einstein scale (which may have a singularity set). Via the canonical twistor
spinor χ ∈ Γ(∆) this decomposition can be made explicit:

An Einstein scale σ ∈ C∞(M) corresponds to the Killing field
ξ ∈ X(M) defined by the relation

g(ξ, η) = β(
2

5
σD/ χ+ γ(Dσ)χ, γ(η)χ)

for all η ∈ X(M).

The Einstein scale part σ ∈ C∞(M) of a Killing field ξ ∈ X(M) is
given by

σ = β(
4

5
γ(ξ)D/ χ+ γ(Dξ)χ, χ).
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