Twistor spinors and generic rank 2-distributions on 5-manifolds

Matthias Hammerl

University of Vienna, Faculty of Mathematics

Rauischholzhausen, September 2009

Based on joint work with K. Sagerschnig, University of Vienna.

1 Introduction

2 A Fefferman-type construction

3 Conformal split- G_2 -holonomy and twistor spinors

4 Decomposition of conformal Killing fields

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

1 Introduction

2 A Fefferman-type construction

3 Conformal split-G₂-holonomy and twistor spinors

Decomposition of conformal Killing fields

イロト イヨト イヨト

- Two pseudo-Riemannian metrics g and ĝ of signature (p, q) are conformally related if there is an f ∈ C[∞](M) with ĝ = e^{2f}g. The corresponding equivalence class of metrics is a ray subbundle C ⊂ Γ(S²T*M), which we call a conformal structure.
- The study of conformal structures brings new obstacles compared to Riemannian geometry, since there is no unique torsion-free principal connection form on the conformal frame bundle $\mathcal{G}_0 \rightarrow M$.
- Operators and objects which are defined in terms of the Riemannian data of a g ∈ C but don't depend on the particular choice of representative metric are called *conformally invariant*.

- In this talk we dicuss how another geometric structure, a generic distribution D ⊂ TM, gives rise to a conformal structure C_D of signature (2,3) plus a conformal object, namely a twistor spinor.
- The discovery that one has a conformal class of metrics C_D for a generic distribution D is due to [P. Nurowski, Journ. Geom. Physics (2005)].
- We will describe D → C_D as a particular case of a *Fefferman-type* construction, which is a powerful tool for *parabolic geometries*.

- This description of D ~>> C_D is used to obtain relations to *conformal* holonomy and existence of a well defined conformal object which encodes the distribution D, namely a twistor spinor.
- Finally, we use this twistor spinor to *decompose symmetries* of the conformal structure **C**.
- We make extensive use of techniques for *parabolic geometries*, in particular we employ *tractor calculus* and the description of conformal objects as kernels of *BGG-operators*.

Outline

1 Introduction

2 A Fefferman-type construction

3 Conformal split-G₂-holonomy and twistor spinors

4 Decomposition of conformal Killing fields

★聞▶ ★ 国▶ ★ 国▶

• For two subbundles $\mathbf{D}_1 \subset TM$ and $\mathbf{D}_2 \subset TM$ we define

 $[\mathbf{D}_1,\mathbf{D}_2]_{\mathsf{X}} := \operatorname{span}(\{[\xi,\eta]_{\mathsf{X}} : \xi \in \mathsf{\Gamma}(\mathbf{D}_1), \eta \in \mathsf{\Gamma}(\mathbf{D}_2)\}).$

D is a generic distribution if D² := [D, D] ⊂ TM is a subbundle of constant rank 3 and D³ := [D², D²] = TM. These are distributions of maximal growth vector (2, 3, 5) in each point.

- There is a well known generic rank 2-distribution $\mathbf{D} \subset TM$ on $M = S^2 \times S^3$, which encodes the system of a ball rolling without splipping or twisting on another ball [Montgomery-Bor, Enseign.Mathem. (2009)].
- The automorphism group of this (oriented) distribution is the full Lie group G₂ which in this talk will always denote the unique connected Lie group with fundamental group Z₂ and Lie algebra the split real form g₂ of the exceptional complex Lie group g₂^C.

- $S^2 \times S^3$ also carries a conformal structure **C** of signature (2,3) with large automorphism group, which has representative $(g_2, -g_3)$; here g_2 and g_3 are the canonical round metrics on the 2- resp. 3-sphere.
- The structure group of (S² × S³, C) is CO(2,3) = ℝ₊ × O(2,3). Fixing all orientations, this reduces to the connected group ℝ₊ × SO(2,3)_o; fixing also the canonical spin-structure of this space we get the structure group ℝ₊ × Spin(2,3) of *conformal spin* structures of signature (2,3).
- The group of all conformal maps {f : f*C = C} preserving this spin structure is then Spin(3,4), and S² × S³ can be realized as Spin(3,4)/P̃ with P̃ the stabilizer of an isotropic ray in the standard representation of Spin(3,4) on ℝ^{3,4} = ℝ⁷.

イロト 不得下 イヨト イヨト 三日

D and **C**_D on $S^2 \times S^3$

- It has been observed by [I. Kath, Habil (1999)] that $G_2 \hookrightarrow \text{Spin}(3,4)$ as the stabilizer of an arbitrary non-isotropic spinor $\mathbf{X} \in \Delta_{\mathbb{R}}^{3,4} \cong \mathbb{R}^{4,4}$.
- With $P = \operatorname{Spin}(3,4) \cap \tilde{P}$ one then has $G_2/P = \operatorname{Spin}(3,4)/\tilde{P}$.
- We can regard

$$(G_2/P = S^2 \times S^3, \mathbf{D}) \rightsquigarrow (\operatorname{Spin}(3, 4)/\tilde{P} = S^2 \times S^3, \mathbf{C})$$

as going to a 'weaker' geometric structure: The automorphism group increases from G_2 to Spin(3, 4).

- This process D → C generalizes: Given a 5-dimensional manifold M endowed with an (orientable) generic distribution D one obtains a conformal spin structure of signature (2, 3).
- This is based on the Cartan geometric description of generic distributions and conformal structures:

Let G be a real Lie group and $P \subset G$ a closed subgroup; The Lie algebras of G, P are denoted $\mathfrak{g}, \mathfrak{p}$.

Definition

Let M be a smooth manifold. A Cartan geometry of type (G, P) on M consists of of a P-principal bundle $\mathcal{G} \to M$ endowed with a g-valued 1-form $\omega \in \Omega^1(\mathcal{G}, \mathfrak{g})$ which satisfies the following properties:

- **1** ω is *P*-equivariant.
- 2 ω reproduces fundamental vector fields.
- ω provides a trivialization $T\mathcal{G} \cong \mathcal{G} \times \mathfrak{g}$.

It follows from this definition that $TM = \mathcal{G} \times_P \mathfrak{g}/\mathfrak{p}$.

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Definition

The curvature $K \in \Omega^2(\mathcal{G}, \mathfrak{g})$ of ω is defined by

$$K(\xi,\eta) := d\omega(\xi,\eta) + [\omega(\xi),\omega(\eta)]$$

for $\xi, \eta \in \mathfrak{X}(\mathcal{G})$. It is horizontal and *P*-equivariant and thus factorizes to an

$$\mathcal{A}M := \mathcal{G} \times_P \mathfrak{g}$$

valued two form $K \in \Omega^2(M, \mathcal{A}M)$.

- In the case where P is a parabolic subgroup of a semi-simple Lie group G, which is the case for the groups P ⊂ G₂ and P̃ ⊂ Spin(3,4) discussed above, one calls (G, ω) a parabolic geometry.
- This class of geometries is particularly important because it comes with canonical *regularity* and *normality* conditions on ω resp. its curvature K.
- Parabolic geometries which satisfy these conditions are equivalent (in the categorical sense) with underlying geometric structures. The cases of interest to us are:

Equivalent description of distributions and conformal structures as parabolic geometries

Theorem

Oriented generic rank 2-distributions of 5-manifolds can be equivalently described as regular, normal parabolic geometries of type (G_2, P) .

Theorem

Conformal spin structures of signature (p, q) can be equivalently described as regular, normal parabolic geometries of type $(\text{Spin}(p+1, q+1), \tilde{P})$, with $\tilde{P} \subset \text{Spin}(p+1, q+1)$ the stabilizer of an isotropic ray in $\mathbb{R}^{p+1,q+1}$.

Evidently we should tell here how this correspondence comes about. At least, to see how the parabolic geometries define underlying geometric structures can be explained in a reasonable time, but would already demand too many additional definitions at this point. We will just be glad that this identification exists and *use it*.

・ロト ・聞ト ・ヨト ・ヨト

- Given a Cartan geometry (\mathcal{G}, ω) , of type (\mathcal{G}, P) , one has that \mathcal{G} is a P principal bundle over the underlying manifold M.
- In this talk we employ two kinds of extension of structure group one of these is purely technical and intrinsic to a given parabolic geometry, used to form a real principal bundle connection. The second kind produces a different kind of geometry on the underlying manifold *M*.
- We begin by the first kind, used to define the *holonomy* of (\mathcal{G}, ω) :

ロト 不得下 不良下 不良下

First kind of extension of structure group: forming a principal bundle connection form from the Cartan connection form

- Given a parabolic geometry (G, ω) of type (G, P), we remark that ω ∈ Ω¹(G, g) is not a principal connection form on G since it is g valued on a P-principal bundle; this however, can be mended easily:
- Then there is canonical embedding $\mathcal{G} \hookrightarrow \hat{\mathcal{G}}$, and one has $\omega \in \Gamma(T^*\mathcal{G} \otimes \mathfrak{g}) \subset \Gamma(T^*\hat{\mathcal{G}} \otimes \mathfrak{g}).$
- One can extend ω to an element in Γ((T*Ĝ)|_G ⊗ g) by demanding that fundamental vector fields ζ_X(u) := d/dt|t=0</sub>u · exp(tX) are reproduced.
- By equivariant extension of the resulting form, one obtains a principal connection form ŵ ∈ Ω¹(Ĝ, g); This form will soon play an important role.

Second kind of extension of structure group: The Fefferman-type construction $D \rightsquigarrow C_D$

- Using the embedding G₂ ⊂ Spin(3,4) and the fact that the parabolic subgroup P ⊂ G₂ is just the intersection G₂ ∩ P̃ one can define an extension functor from Cartan geometries of type (G₂, P) to geometries of type (Spin(3,4), P̃):
- Let $(\mathcal{G}_{\mathbf{D}}, \omega_{\mathbf{D}}), \mathcal{G}_{\mathbf{D}} \to M, \omega_{\mathbf{D}} \in \Omega^{1}(\mathcal{G}_{\mathbf{D}}, \mathfrak{g}_{2})$ be a parabolic geometry of type (\mathcal{G}_{2}, P) , which shall be regular and normal, and therefore equivalent to an underlying generic rank 2-distribution **D** on *M*.
- Define $\mathcal{G}_{\mathbf{C}} := \mathcal{G}_{\mathbf{D}} \times_{P} \tilde{P}$, i.e., we extend the structure group from P to \tilde{P} . Then, similarly to above, $\omega_{\mathbf{D}} \in \Omega^{1}(\mathcal{G}_{\mathbf{D}}, \mathfrak{g}_{2})$ uniquely extends to a $\mathfrak{so}(3, 4)$ -valued Cartan connection form $\omega_{\mathbf{C}} \in \Omega^{1}(\mathcal{G}_{\mathbf{C}}, \mathfrak{so}(3, 4))$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

The Fefferman-type construction $D \rightsquigarrow C_D$ and holonomy reduction

Proposition

 $(\mathcal{G}_{\mathbf{C}}, \omega_{\mathbf{C}})$ is a regular, normal parabolic geometry of type $(\text{Spin}(3, 4), \tilde{P})$, and thus induces a conformal spin structure $\mathbf{C}_{\mathbf{D}}$ of signature (2,3) on M.

- In particular, this implies that Nurowski's conformal structure associated to an *orientable* generic distribution **D** carries a canonical spin structure.
- The important point in having *normality* of ω_C is that this implies strong relations between **D** and C_D:
- Given the parabolic structure bundles G_D and G_C of the generic distribution and the conformal structure, we can form the the extended bundles G_D := G_D ×_P G and G_C := G_C ×_{p̃} Spin(3,4), which carry the principal connection forms û_D and û_C.

The Fefferman-type construction $D \rightsquigarrow C_D$ and holonomy reduction

 Now ω_C depends only on the conformal structure (M, C), and thus gives rise to a well defined *conformal holonomy*

 $\operatorname{Hol}(\mathbf{C}) := \operatorname{Hol}(\hat{\omega}_{\mathbf{C}}) \subset \operatorname{Spin}(3, 4).$

- The construction shows that one obtains a holonomy reduction of principal bundles (ŵ_D, ŵ_D) → (ŵ_C, ŵ_C) from Hol(ŵ_C) ⊂ Spin(3,4) to Hol(ŵ_D) ⊂ G₂.
- Thus, for every (orientable) generic distribution D one has for the holonomy of the induced conformal spin structure Hol(C_D) ⊂ G₂ ⊂ Spin(3,4).

Holonomy reduction for parabolic geomeries

- Naturally, one now asks wheter any given conformal spin structure C of signature (2,3) is already induced by a generic distribution if the necessary condition Hol(C) ⊂ G₂ is satisfied.
- This works: one employs a reduction procedure for parabolic geometries:
- Starting from (M, C), one has the equivalent description as (G_C, ω_C) and knows by assumption that (Ĝ_C, ŵ_C) reduces to a G₂-principal bundle Ḡ → Ĝ_C, w̄ ∈ Ω¹(Ḡ, g₂).
- Then \overline{G} is shown to intersect transversally with $\mathcal{G}_{\mathbf{C}}$ in a $P \subset G_2$ -principal bundle $\mathcal{G} \subset \mathcal{G}_{\mathbf{C}}$, and $\overline{\omega}$ can by seen to restrict to a (G_2, P) -Cartan connection form $\omega \in \Omega^1(\mathcal{G}, \mathfrak{g}_2)$.

The surprising fact now is that the normality of the $(\text{Spin}(3,4), \tilde{P})$ -geometry already implies the normality of the constructed (G_2, P) -structure (\mathcal{G}, ω) , on M, and one obtains:

Theorem (M.H.-K.Sagerschnig, SIGMA (2009))

Let (M, \mathbb{C}) be a conformal structure of signature (2, 3) with $Hol(\mathbb{C}) \subset G_2 \subset Spin(3, 4)$. Then \mathbb{C} is canonically associated to a generic rank two distribution \mathbb{D} .

Evidently one now wants to describe the reduction $Hol(\mathbf{C}) \subset G_2$ in terms of reasonable conformal data on (M, \mathbf{C}) .

Outline

1 Introduction

2 A Fefferman-type construction

3 Conformal split- G_2 -holonomy and twistor spinors

4 Decomposition of conformal Killing fields

< A >

Tractor bundles for parabolic geometries

- We already mentioned that the lack of a unique torsion-free connection for a conformal geometry complicates canonical (differential) constructions.
- The Cartan geometry $(\mathcal{G}_{\mathbf{C}}, \omega_{\mathbf{C}})$ provides a substitute via the $\mathfrak{so}(3, 4)$ -valued 1-form $\omega_{\mathbf{C}}$, which was extended canonically to a \tilde{P} -principal connection form on the extended bundle $\mathcal{G}'_{\mathbf{C}} := \mathcal{G}_{\mathbf{C}} \times_{\tilde{P}} \operatorname{Spin}(3, 4).$
- Then, every finite dimensional, real Spin(3, 4)-representation V gives rise to an adjoint *tractor bundle*

$$\mathbf{V} := \mathcal{G}_{\mathbf{C}} imes_{\tilde{P}} V = \hat{\mathcal{G}}_{\mathbf{C}} imes_{\operatorname{Spin}(3,4)} V$$

endowed with its canonical tractor connection.

Construction/description of invariant differential operators via tractor bundles

- An important application of **V** together with its tractor connection is the construction of (conformally) invariant differential operators.
- There is a natural tractor homology produced by the Kostant co-differential $\partial^* : \Omega^{k+1}(M, \mathbf{V} \to \Omega^k(M, \mathbf{V}), \ \partial^* \circ \partial^* = 0$. Thus, there exists a algebraic theory in the background of the constructions which will follow, but we don't discuss this here.
- The section space of the first and second homologies of ∂^* are denoted \mathcal{H}_0 and \mathcal{H}_1 .
- \mathcal{H}_0 is a quotient of $\Gamma(\mathbf{V})$, and we have the canonical surjection $\Pi_0 : \Gamma(\mathbf{V}) \to \mathcal{H}_0$.
- The goal now is to *factorize* the connection

$$abla : \Gamma(\mathbf{V})
ightarrow \Omega^1(M, \mathbf{V})$$

to an operator

$$\Theta_0:\mathcal{H}_0 o\mathcal{H}_1:$$

M. Hammerl (University of Vienna)

The first BGG-operator Θ_0

 The general BGG-machinery as developed by [Čap-Slovăk-Souček, Ann. of Math. (2001)] and simplified by [Calderbank-Diemer, (J. Reine u. Angew. Math.) (2001)] describes the first BGG-operator Θ₀ as the composition

$$\Theta_0=\Pi_1\circ\nabla\circ L_0.$$

- The middle operator is just the first order operator ∇, and Π₁ is simply a sub-quotient projection map, i.e., it maps a subbundle of Ω¹(M, V) onto H₁.
- The important term in the above formula is $L_0 : \mathcal{H}_0 \to \Gamma(\mathbf{V})$, which takes a section $\sigma \in \mathcal{H}_0$ and maps it to a tractor section $s = L_0 \sigma \in \Gamma(\mathbf{V})$.
- L_0 is a differential splitting operator of the canonical surjection $\Pi_0 : \Gamma(\mathbf{V}) \to \mathcal{H}_0$. I.e.: $\Pi_0 \circ L_0 = id_{\mathcal{H}_0}$.

The kernel of Θ_0 and parallel sections of \boldsymbol{V}

• We will be interested in solutions of equations of

 $\Theta_0(\sigma) = 0, \sigma \in \mathcal{H}_0.$

• An important fact which immediately follows from its construction and relates solutions of the above natural geometric equations to (conformal) holonomy is:

Lemma

Via $\Pi_0 : \Gamma(\mathbf{V}) \to \mathcal{H}_0$, ∇ -parallel sections of the tractor bundle \mathbf{V} project into the kernel of Θ_0 .

- If, conversely, also every element of ker $\Theta_0 \subset \Gamma(\mathbf{H}_0)$ splits into a ∇ -parallel section of \mathbf{V} we say that ∇ is the *prolongation connection* of Θ_0 .
- This is the case for the case of the conformal *standard* and *spin*-tractor bundle:

The standard tractor bundle of conformal geometry

- Taking the standard representation on R^{3,4} = R⁷ of Spin(3,4), the corresponding associated tractor bundle is the standard tractor bundle S of conformal geometry.
- One calculates that with respect to a choice of metric $g \in \mathbf{C}$, which has Levi-Civita connection D, its first BGG-operator is

$$\Theta^{g} : C^{\infty}(M) \to \Gamma(S_{0}^{2}T^{*}M),$$

$$\Theta^{g}(\sigma) = (DD\sigma + \mathsf{P}^{g}\sigma) + \frac{1}{n}(\bigtriangleup \sigma - \operatorname{tr}_{(1,2)}\mathsf{P}^{g}\sigma)g.$$

Here

$$\mathsf{P}^g := \frac{1}{n-2} \big(\mathsf{Ric}^g - \frac{\mathsf{Sc}^g}{2(n-1)} g \big)$$

is the Schouten-tensor; S₀² T*M denotes symmetric, trace-free bilinear forms on TM. The convention for the Laplace operator is Δ := - tr_(1,2) ∘ D².
For σ ∈ C[∞](M, ℝ₊) one has Θ^g(σ) = 0 iff σ⁻²g is Einstein.

The conformal spin tractor bundle

- Taking the associated bundle to the 8-dimensional, real spin representation $\Delta_{\mathbb{R}}^{3,4} \cong \mathbb{R}^{4,4}$ of $\mathrm{Spin}(3,4)$, one obtains the conformal spin tractor bundle Σ .
- Let Δ be the real, conformal spin bundle of rank 4, with Clifford symbol γ ∈ Γ(T*M ⊗ End(Δ)) and Ø : Γ(Δ) → Γ(Δ) its Dirac operator.
- With respect to a metric g ∈ C the first BGG-operator is the twistor operator

$$\Gamma(\mathbf{\Delta})
ightarrow \Gamma(T^*M \otimes \mathbf{\Delta}),$$

 $\chi \mapsto D\chi + rac{1}{n} \gamma \otimes \not\!\!\!D\chi,$

which projects the Levi-Civita derivative of a spinor to the kernel of the Clifford multiplication.

- It turns out that characterization of $Hol(\mathbf{C}) \subset G_2$ via a twistor spinor is very simple: The real 4-dimensional spin representation $\Delta_{\mathbb{R}}^{2,3}$ carries a non-degenerate skew-symmetric bilinear form which can be related to the symmetric (4, 4)-form on $\Delta_{\mathbb{R}}^{3,4}$.
- Now via the first BGG-splitting operator a twistor spinor $\chi \in \Gamma(\Delta)$ is equivalent to a parallel spin tractor $\mathbf{X} \in \Gamma(\Sigma)$. But \mathbf{X} corresponds to an holonomy-invariant element in $\Delta_{\mathbb{R}}^{3,4}$.

- We already know that the stabilizer of an *non-null* element $X \in \Delta^{3,4}_{\mathbb{R}} \cong \mathbb{R}^{4,4}$ is (conjugate to) G_2 .
- The condition of **X** being non-null can be related to a condition on χ , and one obtains:

Theorem (M.H., Thesis (2009))

Let (M, \mathbb{C}) be a conformal spin manifold of signature (2, 3) and β the skew-symmetric form on the 4-dimensional real spin bundle Δ . Then \mathbb{C} is induced from a generic rank 2-distribution iff there is a twistor spinor $\chi \in \Gamma(\Delta)$ with non-vanishing $\beta(\chi, \mathcal{D}\chi)$.

Outline

1 Introduction

2 A Fefferman-type construction

3 Conformal split-G₂-holonomy and twistor spinors

4 Decomposition of conformal Killing fields

★聞▶ ★ 国▶ ★ 国▶

Decomposition of infinitesimal automorphisms

- We can relate the symmetries of a generic distribution with those of the induced conformal structure:
- A vector field $\xi \in \mathfrak{X}(M)$ is a symmetry of **D** if $\mathcal{L}_{\xi}(\eta) \in \Gamma(\mathbf{D})$ for all $\eta \in \Gamma(\mathbf{D})$.
- A vector field ξ ∈ 𝔅(M) is said to be a *conformal Killing field* if it preserves the conformal structure C_D: for every representative metric g there is an f ∈ C[∞](M) with L_ξg = fg.
- Since the construction $D \rightsquigarrow C_D$ is functorial, one has an inclusion of symmetries of D into the conformal Killing fields, we write

$$\mathsf{sym}(\mathsf{D}) \hookrightarrow \mathrm{cKf}(\mathsf{C}_{\mathsf{D}}).$$

Decomposition of infinitesimal automorphisms

- It follows from the description of infinitesimal automorphisms of parabolic geometries [Čap, JEMS (2008)] that the first BGG-operators of the adjoint tractor bundles A_DM := G_D ×_P g₂ and A_CM := G_C ×_{P̃} so(3,4) describe the symmetries of **D** and the conformal Killing fields of **C**.
- Now as a G_2 -module, $\mathfrak{so}(3,4)$ decomposes into $\mathbb{R}^{3,4} \oplus \mathfrak{g}_2$. This implies a decomposition of the conformal adjoint tractor bundle $\mathcal{A}_{\mathbb{C}}M$ into **S** and $\mathcal{A}_{\mathbb{D}}M$.
- This decomposition is compatible with the prolongation connections on the respective bundles. Via explicit formulas for BGG-splitting operators this yields the following decomposition theorem:

ヘロト 人間ト 人口ト 人口ト

Theorem (Decomposition of conf. Killing fields via a twistor spinor)

Let C_D be the conformal (2,3)-structure induced by a generic 2-distribution $D \subset TM$. Every conformal Killing field decomposes into a symmetry of the distribution D and another part corresponding to an Einstein scale (which may have a singularity set). Via the canonical twistor spinor $\chi \in \Gamma(\Delta)$ this decomposition can be made explicit:

• An Einstein scale $\sigma \in C^{\infty}(M)$ corresponds to the Killing field $\xi \in \mathfrak{X}(M)$ defined by the relation

$$g(\xi,\eta) = \beta(\frac{2}{5}\sigma \not\!\!\!D \chi + \gamma(D\sigma)\chi,\gamma(\eta)\chi)$$

for all $\eta \in \mathfrak{X}(M)$.

The Einstein scale part σ ∈ C[∞](M) of a Killing field ξ ∈ 𝔅(M) is given by

$$\sigma = \beta(\frac{4}{5}\gamma(\xi)\not\!\!D\chi + \gamma(D\xi)\chi,\chi).$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >