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Introduction

Given a manifold M carrying a geometric structure we consider a solution
σ of an invariant overdetermined system Θ(σ) = 0 and assume that it
vanishes at some point, σ(x) = 0.

We then want to understand the zero set M0 := σ−1({0}) and the interior
M− := M\M0.

It will be shown for some simple but intersting operators in projective and
conformal geometry that the zero set M0 inherits a geometric structure
and M− is equipped with a canonical connection.

The approach taken here is to regard the holonomy reduction provided by
the (prolonged) solution σ, which yields different but related structures on
the zero set M0 and the interor M−.
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Some questions:

Two questions in Riemannian (or conformal) geometry:

Let g be a pseudo-Riemannian metric on a manifold M. Can we
rescale g conformally to ĝ = fg for some positive function f such
that ĝ is Einstein,

Ric(ĝ) = λĝ ?

If M is even-dimensional, can one rescale a Riemannian metric g
conformally to a Kähler metric?
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Some questions:

Two questions in affine (or projective) geometry:

If ∇ is an affine torsion-free connection on M, is it metrizable? I.e,
can one describe its geodesics by an Riemannian metric?

Does the affine connection allow a projectively equivalent Ricci-flat
connection?
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Prolongation

The above questions yield overdetermined PDEs Θ(σ) = 0 on a function
or field σ.

An overdetermined system is said to be brought into closed form, or it is
said to be prolonged, if it is written in an equivalent form ∇s = 0, where
s = (σ, µ, · · · , ρ) is an extension of σ by new variables which encode
partial finite jet information of σ, and ∇ is a linear connection that
incorporates differential consequences of the original equation Θ(σ) = 0.

The equivalent encoding as a closed system allows us to globalize
(jet-)information on the solution, which will be used to study its behaviour
and its singularities.
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Some typical easy consequences of the prolonged form:

If σ is non-trivial, s is nowhere vanishing. Sometimes already this is
enough for regularity of the singularity set.

Since s is determined by a finite jet of σ at a point x , any non-trivial
solution σ of Θ(σ) = 0 must already be non-vanishing on an
open-dense subset.

Sometimes we have a priori knowledge on Hol(∇), like that it
preserves a metric. This yields global invariants of σ and its
derivatives which only depend on these data at one point.

In some cases the prolongation connection ∇ is directly induced from
the structural data of the underlying geometry. Then a solution of
Θ(σ) = 0 in fact yields a holonomy reduction of the geometry.
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Some examples: Singularity sets of Einstein/Ricci-flat rescalings and pure twistor spinors

Example 1: Einstein rescalings of a (pseudo)-Riem. metric

The Schouten tensor P(g) of a metric g is a linear combination of Ric(g)
and g - so g is Einstein iff Ric(g) or equivalently P(g) is trace-free.
If one rewrites the rescaled metric as ĝ = σ−2g for a σ ∈ C∞(M,R+) the
explicit transformation law P(g) P(ĝ) yields that P(ĝ) is trace-free iff

Θ(σ) := tf(DgDgσ + P(g)) = 0.

To rewrite Θ(σ) = 0 in closed form we introduce new variables µ = Dgσ
and ρ = 1

n (4g − Jg )σ, where 4g = − trg ◦Dg ◦ Dg and Jg = tr(P(g)).

Then

Θ(σ) = 0 iff ∇

ρµ
σ

 =

 Dρ− Pg (·, µ)
Dµ+ σP + ρg

Dσ − µ

 =

0
0
0

 .
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Some examples: Singularity sets of Einstein/Ricci-flat rescalings and pure twistor spinors

Example 1: Einstein rescalings of a (pseudo)-Riem. metric

The prolongation connection ∇ preserves the bilinear-form h given by the

(quadratic) formula

ρµ
σ

 7→ 2σρ+ g(µ, µ).

In particular, for σ, µ, ρ corresponding to a solution of Θ(σ) = 0, the
expression 2σρ+ g(µ, µ) ∈ C∞(M) is necessarily constant equal α, which
shall be non-zero for our discussion.

If σ(x) = 0, then gx(Dσ(x),Dσ(x)) 6= 0 and we see that Dσ is
non-vanishing along M0, which shows that M0 is a hypersurface in M.

Moreover, TxM0 = Dσ(x)⊥ ⊂ TxM and depending on whether
α = g(Dσ(x),Dσ(x)) is greater or smaller zero, M0 inherits a signature
(p − 1, q) resp. (p, q − 1)-metric.
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Some examples: Singularity sets of Einstein/Ricci-flat rescalings and pure twistor spinors

Example 2: Projectively equivalent Ricci-flat connections

Let D be a torsion-free affine connection on the n-manifold M and assume
that D induces the flat connection on ΛnT ∗M, which is equivalent to
Ric(D) being symmetric.

We ask whether there is a projectively equivalent connection D̂,

D̂aϕb = Daϕb −Υaϕb −Υbφa

for some Υ ∈ Ω1(M) with

Ric(D̂) = 0.

If we restrict to exact Υ = D log( 1
|σ|) one obtains that Ric(D̂) = 0 iff

Θ(σ) = DDσ +
1

n − 1
Ric(D)σ = 0.
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Some examples: Singularity sets of Einstein/Ricci-flat rescalings and pure twistor spinors

Example 2: Projectively equivalent Ricci-flat connections

The prolongation of this equation introduces a new variable ϕ = Dσ, and
then

Θ(σ) = 0 iff ∇
(
ϕ
σ

)
=

(
Dϕ+ 1

n−1 Ric(D)σ

Dσ − ϕ

)
=

(
0
0

)
.

If we allow a non-trivial solution σ of Θ(σ) = 0 to have a zero at x ∈ M,
then necessarily Dσ(x) 6= 0. In particular M0 = σ−1({0}) is a
hypersurface in M with TxM0 = (Dσ(x))o ⊂ TxM.
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Some examples: Singularity sets of Einstein/Ricci-flat rescalings and pure twistor spinors

Example 2: Projectively equivalent Ricci-flat connections

If ξ, η ∈ X(M0) are vector fields along M0, then 0 = φ(η) along M0, and
then also

0 = (Dξφ)(η(x)) + φ(Dξ(η)).

But Dξ(φ)(η(x)) = − 1
n−1 Ric(D)(ξ, η)σ(x) = 0, and therefore

0 = φ(Dξ(η)) = (Dξη) · σ and Dξη ∈ X(M0), which says that D restricts
to a connection on M0.

Let now [D] be a projective class of connections, i.e., a class of torsion-free
affine connections with the same geodesics as unparameterized curves.
Then we see that a solution of Θ(σ) = 0 provides a canonical Ricci-flat
connection on M− and the singularity hypersurface M0 is totally geodesic
in (M, [D]).
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Some examples: Singularity sets of Einstein/Ricci-flat rescalings and pure twistor spinors

Example 3: The twistor spinor equation in split signature

Let g be a split signature (n, n) metric on the 2n-manifold M endowed
with a spin structure and corresponding positive and negative (real
2n−1-dimensional) Spin bundles S+,S−.

A positive twistor spinor is a solution χ ∈ Γ(S+) of

Θ(χ) = Dχ+
1

2n
γD/ χ = 0,

where γ is Clifford multiplication and D/ is the Dirac operator.

The prolongation connection ∇ of this system lives on S+ ⊕ S−, acts on
(χ,D/ χ) and has

Hol(∇) ⊂ Spin(n + 1, n + 1).
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Some examples: Singularity sets of Einstein/Ricci-flat rescalings and pure twistor spinors

Example 3: The twistor spinor equation in split signature

Assume that χ(x) = 0 for some x ∈ M and that D/ χ(x) is pure, i.e., the
kernel of D/ χ(x) is maximal isotropic in TxM.

Then, since Hol(∇) ⊂ Spin(n + 1, n + 1), D/ χ(x) is also pure at any other
x ∈ M0 = χ−1({0}).
And since Dχ(x) = − 1

2nγD/ χ this implies that Dχ has constant rank
along M0, which is therefore a submanifold.

A more detailed analysis of the Spin(n + 1, n + 1)-orbit of (0, τ), pure τ
and some more work gives:

Proposition

1 The zero set M0 = χ−1({0}) is a totally geodesic maximally isotropic
submanifold of M.

2 χ is pure on the open dense complement M− = M\M0 and
determines a foliation of M− by maximally isotropic leafs.
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Holonomy reduction for Cartan geometries

We now summarize what happened in these examples and then switch to a
new viewpoint:

We had an overdetermined system σ,Θ(σ) = 0.

Introducing new variables for some derivatives of σ one can write
down an equivalent closed system s,∇s = 0.

Parellelicity of s implies that information on σ and its derivatives
globalizes in some way.
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Holonomy reduction for Cartan geometries

Another interpretation:
Holonomy reduction for Cartan geometries

Projective, conformal and conformal spin structures can be equivalently
encoded as Cartan geometries.

A Cartan geometry has a type (G ,P), with G a Lie group and P ⊂ G a
closed subgroup.

A Cartan geometry of type (G ,P) on a manifold M is given by a
P-principal bundle G over M endowed with a 1-form ω ∈ Ω1(G, g)
satisfying some properties making it into a Cartan connection form.

We are interested in cases where the overdetermined system Θ(σ) = 0 is
canonically associated to an irreducible G -representation V via the
BGG-construction of [Čap-Slovak-Souček, 2001].
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Holonomy reduction for Cartan geometries

Holonomy reduction for Cartan geometries

It is not easy to describe the operator Θ induced by the G -representation
V quickly.

Also, for every system Θ(σ) = 0 of BGG-type the prolongation connection
∇ that rewrites this system into ∇s = 0 exists [H.-Šilhan-Somberg-Souček],
but in most cases it is a complicated object.

We restrict our discussion here to some very special cases, which include
the three examples above, where it is very easy to describe the
prolongation connection ∇ of this system: It is a linear connection induced
by the Cartan connection form:
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Holonomy reduction for Cartan geometries

Holonomy reduction for Cartan geometries

The Cartan connection form is not a principal connection form, but we can
form the extended bundle Ĝ := G ×P G and extend ω canonically to a
G -principal connection form ω̂.

Then, given a G -representation V , we form the associated bundle
V = G ×P V , which carries the linear connection ∇ induced by ω̂ since we
can also write V = Ĝ ×G V .

Then for the examples discussed above parallel sections s ∈ Γ(V),∇s = 0
correspond to solutions of the overdetermined system Θ(σ) = 0, which
therefore reduce the holonomy of ω̂.
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Holonomy reduction for Cartan geometries

Holonomy reduction for Cartan geometries

While it is clear that one has an holonomy reduction of the extended
bundle, this doesn’t give a global reduction of the underlying Cartan
geometry.

In fact, we cannot expect to obtain a global reduction over all of M, since
we saw in the behaviour exhibited above that we should obtain different
Cartan geometries over different subsets of M.

In fact, it turns out that the holonomy reduction does yield Cartan
reductions over the correct submanifolds of M.
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Holonomy reduction for Cartan geometries

Holonomy reduction for Cartan geometries

Let ŝ : Ĝ → V be the G -equivariant map corresponding to the section
s ∈ Γ(V) and take u ∈ G ∈ Ĝ with ŝ(u) = v . Then one has the the
holonomy reduction H ⊂ Ĝ through u: ŝ restricts to the constant function
v ∈ V on H.

Then Ĝ = H · G , which implies ŝ(Ĝ) = G · v . We say that σ resp. s has
G -orbit type G · v .

The different behaviour of σ on different subsets of M stems from the fact
that the single G -orbit G · v decomposes into a disjoint union on P-orbits
G · v = ∪iP · vi for some vi ∈ G · v .

For x ∈ M and Gx the fiber in P-principal bundle G over x one has
ŝ(Gx) = P · vi for some i and we say that σ has P-orbit type P · vi at x .

M. Hammerl (University of Vienna) Holonomy reduction over singularity sets



Holonomy reduction for Cartan geometries

Holonomy reduction for Cartan geometries

We define Mi ⊂ M as the set of all x with σ(x) having orbit type P · vi .

The reduction now proceeds in four steps:

1 Show that Mi are submanifolds of M.

2 With Mi
j
↪→ M, show that j∗G and j∗H intersect in a Pvi -principal

bundle Gi over Mi .

3 Show that that pullback of the Cartan connection form j∗ω restricts
to a Cartan connection form on Gi of type (Gvi ,Pvi ).

4 Show that the reduced connection satisfies special curvature
properties due to the normalization condition on the original
curvature.
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Holonomy reduction for Cartan geometries

In [Example 1, Conformal Einstein] from above this method yields

M0 inherits normal parabolic geometry describing an induced conformal
structure.
M− inherits a torsion-free reductive Cartan geometry describing the
distinguished (pseudo)-Riemannian metric. The normalization
condition implies that this is an Einstein metric.

In [Example 2, Projective Ricci-flat] one obtains that

M0 is a totally geodesic hypersurface and the restricted Cartan
connection form is normal.
M− inherits a Ricci-flat torsion-free connection.

In [Example 3, Twistor spinor with χ(x) = 0, D/ χ(x) pure] one has

M0 is a maximally isotropic totally geodesic submanifold and the
restricted Cartan connection form is normal.
On M− one has that χ is pure and induces a foliation by integrable
maximally isotropic distributions.
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On the homogeneous model

Reductions of the homogenous model

A Cartan geometry has its homogeneous model G/P with maximal
symmetry group G . We can always use this model case to understand
what kind of reductions a parallel section s ∈ Γ(V) provides.

The prolongation connection ∇ of the system Θ(σ) = 0 lives on the
bundle V = G ×P V : it is the flat connection with respect to the
trivialization (gP, v) 7→ [g , g−1v ] ∈ V. In particular, the homogeneous
model allows also the maximal number of solutions to Θ(σ) = 0.

Given an element v ∈ V , we now study the corresponding parallel section
of type G · v , which is given by the equivariant map g 7→ g−1v .

We have that

Mi := {x = gP ∈ G/P : g−1 · v ∈ P · vi}

is Gvi -homogeneous and Mi = Gvi/Pvi .

M. Hammerl (University of Vienna) Holonomy reduction over singularity sets



On the homogeneous model

Example: The reduction of RPn

The homogeneous model of projective structures in dimension n is

M = G/P = SL(n + 1)/P = RPn,

with P the stabilizer of some line Re+ in Rn+1.

The overdetermined system σ,∈ C∞(M),

DDσ + Pσ = 0

is associated to the dual standard representation (Rn+1)∗.
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On the homogeneous model

Example: The reduction of RPn

There is only one G -orbit type G · v , 0 6= v ∈ (Rn+1)∗, but

G · v = P · v0 ∪ P · v−,

with (e+, v0) = 0, (e+, v−) = 1.

Then Gv−
∼= Gv0

∼= SL(n) n Rn. We have Pv− = SL(n), and thus the
geometry over M− is reduced to a (torsion-free) geometry of type
(SL(n) n Rn, SL(n)). M− ↪→ RPn as flat affine space Rn.

Let be P̄ the stabilizer of the line through e+ ∈ vo
0
∼= Rn. in SL(n) ⊂ Gv0 .

Then Pv0 = P̄ n Rn, and the geometry over M0 is reduced to
(SL(n) n Rn, P̄ n Rn), which factorizes to a geometry of type (SL(n), P̄):
We have M0 ↪→ RPn as RPn−1.
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