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Introduction

Given a manifold M carrying a geometric structure we consider a solution
σ of an invariant overdetermined system Θ(σ) = 0 and assume that it
vanishes at some point, σ(x) = 0.

We then want to understand the zero set M0 := σ−1({0}) and the interior
M− := M\M0.

It will be shown for some simple but interesting operators in projective and
conformal geometry that the zero set M0 inherits a geometric structure
and M− is equipped with a canonical connection.

The approach taken here is to regard the holonomy reduction provided by
the (prolonged) solution σ, which yields different but related structures on
the zero set M0 and the interor M−.



Specific examples of overdetermined problems:

Conformally invariant overdetermined problems:

Let g be a Riemannian metric on a manifold M. Can we rescale g
conformally to ĝ = fg for some positive function f such that ĝ is
Einstein,

Ric(ĝ) = λĝ ?

If M is even-dimensional, can one rescale a Riemannian metric g
conformally to a Kähler metric?

Projectively invariant overdetermined problems:
Two torsion-free affine connections ∇ and ∇̂ on TM are projectively
equivalent if they have the same unparameterized geodesics. For given
affine connection ∇ one thus obtains a projective structure [∇].

If ∇ is an affine torsion-free connection on M, is it metrizable? I.e,
can one describe its geodesics by an Riemannian metric?
Does the affine connection allow a projectively equivalent Ricci-flat
connection?



Prolongation

The above questions yield overdetermined PDEs Θ(σ) = 0 on a function
or field σ.

An overdetermined system is said to be brought into closed form, or it is
said to be prolonged, if it is written in an equivalent form ∇s = 0, where
s = (σ, µ, · · · , ρ) is an extension of σ by new variables which encode
partial finite jet information of σ, and ∇ is a linear connection that
incorporates differential consequences of the original equation Θ(σ) = 0.

The equivalent encoding as a closed system allows us to globalize
(jet-)information on the solution, which will be used to study its behaviour
and its singularities.



Some typical easy consequences of the prolonged form:

If σ is non-trivial, s is nowhere vanishing. Sometimes already this is
enough for regularity of the singularity set.

Since s is determined by a finite jet of σ at a point x , any non-trivial
solution σ of Θ(σ) = 0 must already be non-vanishing on an
open-dense subset.

Sometimes we have a priori knowledge on Hol(∇), like that it
preserves a metric. This yields global invariants of σ and its
derivatives which only depend on these data at one point.

In some cases the prolongation connection ∇ is directly induced from
the structural data of the underlying geometry. Then a solution of
Θ(σ) = 0 in fact yields a holonomy reduction of the geometry.



Example: Einstein rescalings of a (pseudo)-Riem. metric

The Schouten tensor P(g) of a metric g is a linear combination of Ric(g)
and g - so g is Einstein iff Ric(g) or equivalently P(g) is trace-free.
If one rewrites the rescaled metric as ĝ = σ−2g for a σ ∈ C∞(M,R+) the
explicit transformation law P(g) P(ĝ) yields that P(ĝ) is trace-free iff

Θ(σ) := tf(DgDgσ + P(g)) = 0.

To rewrite Θ(σ) = 0 in closed form we introduce new variables µ = Dgσ
and ρ = 1

n (4g − Jg )σ, where 4g = − trg ◦Dg ◦ Dg and Jg = tr(P(g)).

Then

Θ(σ) = 0 iff ∇

ρµ
σ

 =

 Dρ− Pg (·, µ)
Dµ+ σP + ρg

Dσ − µ

 =

0
0
0

 .



Example: Einstein rescalings of a (pseudo)-Riem. metric

The prolongation connection ∇ preserves the bilinear-form h given by the

(quadratic) formula

ρµ
σ

 7→ 2σρ+ g(µ, µ).

In particular, for σ, µ, ρ corresponding to a solution of Θ(σ) = 0, the
expression 2σρ+ g(µ, µ) ∈ C∞(M) is necessarily constant equal α, which
shall be non-zero for our discussion.

If σ(x) = 0, then gx(Dσ(x),Dσ(x)) 6= 0 and we see that Dσ is
non-vanishing along M0, which shows that M0 is a hypersurface in M.

Moreover, TxM0 = Dσ(x)⊥ ⊂ TxM and depending on whether
α = g(Dσ(x),Dσ(x)) is greater or smaller zero, M0 inherits a signature
(p − 1, q) resp. (p, q − 1)-metric.



Let us observe what happened in the example and then switch to a new
viewpoint:

We had an overdetermined system σ,Θ(σ) = 0.

Introducing new variables for some derivatives of σ one can write
down an equivalent closed system s,∇s = 0.

Parellelicity of s implies that information on σ and its derivatives
globalizes in some way.



A different viewpoint: Cartan geometries

Projective, conformal and conformal spin structures can be equivalently
encoded as Cartan geometries.

The model for a Cartan geoometry is a Klein geometry, which is a pair
(G ,P) with G a Lie group and P ⊂ G a closed subgroup. G is then
regarded as the automorphism group of the homogeneous space G/P.

A general Cartan geometry on a manifold M is modelled on a
homogeneous space G/P but is ’curved’ and has ’less/no’ symmetries:

Klein geometry Cartan geometry

G // G

P
��

G/P

Aut // G

P
��
M



Klein-model-spaces and associated Cartan geometries

• Euclidean geometry can be understood as the study of the invariants
under the action of the Euclidean group Euc(n) = O(n) nRn on
Euclidean space En ∼= Rn ∼= Euc(n)/O(n).
 n-dimensional Riemannian structure

• Projective space Pn can be described as SL(n + 1)/P, with
G = SL(n + 1) acting transitively on the space of lines in Rn+1 and
P ⊂ SL(n + 1) the stabilizer of a line.
 n-dimensional projective structure

• The conformal n-sphere is realized by regarding the
(transitive) action of the Lorentz-group G = SO(n + 1, 1)
on the light-cone C ⊂ Rn+1,1 and having
P the stabilizer of some R+-ray in this cone.
 n-dimensional conformal



Definition of a Cartan geometry

Definition

A Cartan geometry of type (G ,P) on a manifold M is a P-principal bundle
G → M endowed with a Cartan connection form ω ∈ Ω1(G, g).

ω is P-equivariant

ω reproduces fundamental vector fields

ω trivialization TG ∼= G × g.

The Cartan geometry is reductive if g decomposes into pn n as a
P-module, i.e., p has a P-invariant complement in g. In that case the
Cartan connection form ω decomposes into

a Soldering form θ ∈ Ω1(G, n) giving an identification TM = G ×P n,

a P-principal connection for γ ∈ Ω1(G, p), providing in particular a
linear connection on TM.



Tractor bundles and holonomy for Cartan connections

A general (non-reductive) Cartan geometry (G, ω) of type (G ,P) does not
induce connections on P-associated bundles, but the Cartan bundle
naturally extends to a G -principal bundle (Ĝ , ω̂):

G

P
����

� � // Ĝ

G
����

M
id // M

This allows us to define the holonomy of the Cartan connection form ω via
the extended principal connection form:

Hol(ω) := Hol(ω̂) ⊂ G .

For any G -representation V we can form the associated tractor bundle
V = G ×P V endowed with its induced tractor connection ∇V .



Orbit decompositions and holonomy reductions

Flat situation Curved situation
G // G

P
��

G/P

Aut // G

P
��
M

While G acts transitively on G/P, one may regard the H-orbit
decomposition of G/P for any given subgroup H ⊆ G .

Does there exist a generalisation of such H-orbits in the curved
situation?



Theorem (A. Čap, A.R. Gover and M. H., 2014)

For a given curved structure M modelled on G/P with holonomy group
reduced to H ⊆ G there exists a natural 1 : 1 correspondence

{H−orbits in G/P} ↔ {curved orbits in M}.

This yields the curved orbit decomposition of M, and each orbit carries
itself a natural Cartan geometry.

Applications:
Classification of conformal holonomy
(J. Alt, A. Di Scala and T. Leistner, 2014)

Differential geometric compactifications

Close relationships with overdetermined systems of PDEs



Relationship with BGG-solutions

For every G -representation V one has a naturally associated
overdetermined differential operator, the first BGG-operator
Θ0 : H0 → H1, which defines the first BGG-equation Θ0(σ) = 0
[Čap-Slovak-Souček 2001, Calderbank-Diemer 2000].

∇V − parallel sections ⊂ Γ(V)

Π0

��

prolonged system

normal solutions ⊂ ker Θ0

L0

ZZ

overdetermined system

General solutions of Θ0(σ) = 0 correspond to sections of V which are
parallel with respect to a (modified) prolongation connection
[H.-Somberg-Souček-Šilhan 2012], and therefore don’t induce
holonomy reductions of the parabolic structure.
Normal solutions (following [Leitner, 2005]) of Θ0(σ) = 0 are those
which correspond to parallel sections of V. In particular, normal
solutions are equivalent to holonomy reductions.



Examples of first BGG-operators for conformal structures

If one takes the standard tractor bundle S of a conformal structure
(M, [g ]) one obtains the operator governing Einstein rescalings
discussed in the first example.

If (M, [g ]) is a conformal spin structure with spin bundle ∆ and
Clifford symbol γ ∈ Γ(T ∗M ⊗ End(∆)), one also has a spin tractor
bundle Σ. Let D/ : Γ(∆)→ Γ(∆) be the Dirac operator.
The first BGG-operator of Σ is the twistor operator

Γ(∆)→ Γ(T ∗M ⊗∆),

χ 7→ Dχ+
1

n
γ ⊗D/ χ.

Solutions of this equation are known as twistor spinors.

Both cases are very special: parallel sections of the tractor connection
are already in 1:1-correspondence with solutions, which reflects the
fact that the modelling representations are still very simple.



Conformal Holonomy Characterizations

SU(p + 1, q + 1) ↪→ SO(2p + 2, 2q + 2):
CR-structure  signature (2p + 1, 2q + 1)-conformal structure on
S1-bundle
+ lightlike conformal Killing field
[Fefferman 1976, Graham 1987, Čap-Gover 2010]

G2 ↪→ Spin(3, 4):
generic rank 2-distribution on 5-manifold  
signature (2, 3)-conformal spin structure
+ generic twistor spinor
[H.-Sagerschnig 2011]

SL(3) ↪→ Spin(3, 3):
projective 2-dimensional structure  
split signature (2, 2)-conformal spin structure
+ 2 compatible twistor spinors
[H.-Tagavi–Chabert-Žádńık-Šilhan-Sagerschnig, 2016]



Poincare-Einstein manifolds

Let (M, [g ]) with [g ] = {fg | f ∈ C∞(M,R>0)} be an n-dimensional
Riemannian signature conformal structure.

For a reduction to SO(n + 1) ↪→ SO(n + 1, 1) we obtain
a single curved orbit of type SO(n + 1)/SO(n), which
carries an Einstein metric with positive scalar curvature.

For a reduction to SO(n, 1) ↪→ SO(n + 1, 1) we obtain
an open curved orbit of
type SO(n, 1)/SO(n) , which carries an Einstein metric
with negative scalar curvature and a closed curved orbit
of type SO(n, 1)/P̄ which carries a conformal structure.

We recover a description of almost Einstein structures
[Gover, 2010]: The reduction SO(n, 1) ↪→ SO(n + 1, 1)
yields examples of Poincaré-Einstein
manifolds with an Einstein metric on an interior
part of a manifold and a conformal structure at infinity.



Klein-Einstein manifolds

Let M be an n+1-dimensional manifold endowed with a projective structure
p whose normal projective tractor connection ∇T preserves a signature (n+
1, 1) tractor metric g. Equivalently, the projective holonomy is reduced to

Hol(p) ⊆ SO(n + 1, 1) ⊆ SL(n + 2).

One obtains a decomposition of M as a Klein-Einstein manifold:

(M0, c) is a conformal n-dimensional space.
(M+, g+) an Einstein metric with Ric(g+) = ng+.
(M−, g−) an Einstein metric with Ric(g−) = −ng−.
(M0, c) is the projective infinity of (M−, g−).



Another viewpoint: Fefferman-Graham ambient metrics

A conformal structure
[g ] can be understood as the ray-subbundle C ⊂ S2T ∗M
which consists of all metrics in the given conformal class.

The Fefferman-Graham ambient metric
g̃ is a signature (n + 1, 1) metric
on n + 2-dimensional ambient space M̃ = C × (−1, 1)
and extends a tautological (degenerate) form g0 on C.

n = p + q odd:
g̃ is uniquely determined as an infinite
order jet along C by the normalization condition
that Ric(g̃) vanishes to infinite order along C.

n = p + q even: g̃ is unique up addition of terms
of order higher than n

2 under the normalization
condition that Ric(g̃) vanishes to order n

2 − 2 along
C and to order n

2 − 1 in tangential directions along C.



BGG-solutions and parallel ambient fields

According to recent work
(Čap-Gover-Graham-H. 2016) ambient holonomy
equals conformal holonomy: Hol(c) = Hol(∇̃).

To be precise, this holds for infinitesimal
holonomy, and literally in the simply-connected,
real-analytic, odd dimensional situation.

In particular, one gets correspondences between
solutions to overdetermined equations and parallel ambient objects:

V̄ M̃ M0 M−
Rn+2 Parallel field Einstein metric gE in c ...

∆n+1,1 Parallel spinor twistor spinor χ Killing spinor χ


