Geometric overdetermined differential equations and holonomy

Matthias Hammerl
University of Greifswald

Talk at Politecnico di Torino, Sep 282016

Introduction

Given a manifold M carrying a geometric structure we consider a solution σ of an invariant overdetermined system $\Theta(\sigma)=0$ and assume that it vanishes at some point, $\sigma(x)=0$.

We then want to understand the zero set $M_{0}:=\sigma^{-1}(\{0\})$ and the interior $M_{-}:=M \backslash M_{0}$.

It will be shown for some simple but interesting operators in projective and conformal geometry that the zero set M_{0} inherits a geometric structure and M_{-}is equipped with a canonical connection.

The approach taken here is to regard the holonomy reduction provided by the (prolonged) solution σ, which yields different but related structures on the zero set M_{0} and the interor M_{-}.

Specific examples of overdetermined problems:

Conformally invariant overdetermined problems:

- Let g be a Riemannian metric on a manifold M. Can we rescale g conformally to $\hat{g}=f g$ for some positive function f such that \hat{g} is Einstein,

$$
\operatorname{Ric}(\hat{g})=\lambda \hat{g} ?
$$

- If M is even-dimensional, can one rescale a Riemannian metric g conformally to a Kähler metric?

Projectively invariant overdetermined problems:

Two torsion-free affine connections ∇ and $\hat{\nabla}$ on $T M$ are projectively equivalent if they have the same unparameterized geodesics. For given affine connection ∇ one thus obtains a projective structure [∇].

- If ∇ is an affine torsion-free connection on M, is it metrizable? I.e, can one describe its geodesics by an Riemannian metric?
- Does the affine connection allow a projectively equivalent Ricci-flat connection?

Prolongation

The above questions yield overdetermined PDEs $\Theta(\sigma)=0$ on a function or field σ.

An overdetermined system is said to be brought into closed form, or it is said to be prolonged, if it is written in an equivalent form $\nabla s=0$, where $s=(\sigma, \mu, \cdots, \rho)$ is an extension of σ by new variables which encode partial finite jet information of σ, and ∇ is a linear connection that incorporates differential consequences of the original equation $\Theta(\sigma)=0$.

The equivalent encoding as a closed system allows us to globalize (jet-)information on the solution, which will be used to study its behaviour and its singularities.

Some typical easy consequences of the prolonged form:

- If σ is non-trivial, s is nowhere vanishing. Sometimes already this is enough for regularity of the singularity set.
- Since s is determined by a finite jet of σ at a point x, any non-trivial solution σ of $\Theta(\sigma)=0$ must already be non-vanishing on an open-dense subset.
- Sometimes we have a priori knowledge on $\operatorname{Hol}(\nabla)$, like that it preserves a metric. This yields global invariants of σ and its derivatives which only depend on these data at one point.
- In some cases the prolongation connection ∇ is directly induced from the structural data of the underlying geometry. Then a solution of $\Theta(\sigma)=0$ in fact yields a holonomy reduction of the geometry.

Example: Einstein rescalings of a (pseudo)-Riem. metric

The Schouten tensor $\mathrm{P}(g)$ of a metric g is a linear combination of $\operatorname{Ric}(g)$ and g - so g is Einstein iff $\operatorname{Ric}(g)$ or equivalently $\mathrm{P}(g)$ is trace-free. If one rewrites the rescaled metric as $\hat{g}=\sigma^{-2} g$ for a $\sigma \in \mathrm{C}^{\infty}\left(M, \mathbb{R}_{+}\right)$the explicit transformation law $\mathrm{P}(g) \rightsquigarrow \mathrm{P}(\hat{g})$ yields that $\mathrm{P}(\hat{g})$ is trace-free iff

$$
\Theta(\sigma):=\operatorname{tf}\left(D^{g} D^{g} \sigma+\mathrm{P}(g)\right)=0
$$

To rewrite $\Theta(\sigma)=0$ in closed form we introduce new variables $\mu=D^{g} \sigma$ and $\rho=\frac{1}{n}\left(\triangle^{g}-J^{g}\right) \sigma$, where $\triangle^{g}=-\operatorname{tr}^{g} \circ D^{g} \circ D^{g}$ and $J^{g}=\operatorname{tr}(\mathrm{P}(g))$.

Then

$$
\Theta(\sigma)=0 \text { iff } \nabla\left(\begin{array}{l}
\rho \\
\mu \\
\sigma
\end{array}\right)=\left(\begin{array}{c}
D \rho-\mathrm{P}^{g}(\cdot, \mu) \\
D \mu+\sigma P+\rho g \\
D \sigma-\mu
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

Example: Einstein rescalings of a (pseudo)-Riem. metric

The prolongation connection ∇ preserves the bilinear-form \mathbf{h} given by the
(quadratic) formula $\left(\begin{array}{c}\rho \\ \mu \\ \sigma\end{array}\right) \mapsto 2 \sigma \rho+g(\mu, \mu)$.
In particular, for σ, μ, ρ corresponding to a solution of $\Theta(\sigma)=0$, the expression $2 \sigma \rho+g(\mu, \mu) \in \mathrm{C}^{\infty}(M)$ is necessarily constant equal α, which shall be non-zero for our discussion.

If $\sigma(x)=0$, then $g_{x}(D \sigma(x), D \sigma(x)) \neq 0$ and we see that $D \sigma$ is non-vanishing along M_{0}, which shows that M_{0} is a hypersurface in M.

Moreover, $T_{x} M_{0}=D \sigma(x)^{\perp} \subset T_{x} M$ and depending on whether $\alpha=g(D \sigma(x), D \sigma(x))$ is greater or smaller zero, M_{0} inherits a signature $(p-1, q)$ resp. $(p, q-1)$-metric.

Let us observe what happened in the example and then switch to a new viewpoint:

- We had an overdetermined system $\sigma, \Theta(\sigma)=0$.
- Introducing new variables for some derivatives of σ one can write down an equivalent closed system $s, \nabla s=0$.
- Parellelicity of s implies that information on σ and its derivatives globalizes in some way.

A different viewpoint: Cartan geometries

Projective, conformal and conformal spin structures can be equivalently encoded as Cartan geometries.

The model for a Cartan geoometry is a Klein geometry, which is a pair (G, P) with G a Lie group and $P \subset G$ a closed subgroup. G is then regarded as the automorphism group of the homogeneous space G / P.

A general Cartan geometry on a manifold M is modelled on a homogeneous space G / P but is 'curved' and has 'less/no' symmetries:

Klein-model-spaces and associated Cartan geometries

- Euclidean geometry can be understood as the study of the invariants under the action of the Euclidean group $\operatorname{Euc}(n)=\mathrm{O}(n) \ltimes \mathbb{R}^{n}$ on Euclidean space $\mathbb{E}^{n} \cong \mathbb{R}^{n} \cong \operatorname{Euc}(n) / O(n)$.
$\rightsquigarrow n$-dimensional Riemannian structure
- Projective space \mathbb{P}^{n} can be described as $\mathrm{SL}(n+1) / P$, with $G=\operatorname{SL}(n+1)$ acting transitively on the space of lines in \mathbb{R}^{n+1} and $P \subset \mathrm{SL}(n+1)$ the stabilizer of a line.
$\rightsquigarrow n$-dimensional projective structure
- The conformal n-sphere is realized by regarding the (transitive) action of the Lorentz-group $G=\mathrm{SO}(n+1,1)$ on the light-cone $\mathcal{C} \subset \mathbb{R}^{n+1,1}$ and having P the stabilizer of some \mathbb{R}_{+}-ray in this cone. $\rightsquigarrow n$-dimensional conformal

Definition of a Cartan geometry

Definition

A Cartan geometry of type (G, P) on a manifold M is a P-principal bundle $\mathcal{G} \rightarrow M$ endowed with a Cartan connection form $\omega \in \Omega^{1}(\mathcal{G}, \mathfrak{g})$.

- ω is P-equivariant
- ω reproduces fundamental vector fields
- ω trivialization $T \mathcal{G} \cong \mathcal{G} \times \mathfrak{g}$.

The Cartan geometry is reductive if \mathfrak{g} decomposes into $\mathfrak{p} \ltimes \mathfrak{n}$ as a P-module, i.e., \mathfrak{p} has a P-invariant complement in \mathfrak{g}. In that case the Cartan connection form ω decomposes into

- a Soldering form $\theta \in \Omega^{1}(\mathcal{G}, \mathfrak{n})$ giving an identification $T M=\mathcal{G} \times{ }_{P} \mathfrak{n}$,
- a P-principal connection for $\gamma \in \Omega^{1}(\mathcal{G}, \mathfrak{p})$, providing in particular a linear connection on TM.

Tractor bundles and holonomy for Cartan connections

A general (non-reductive) Cartan geometry (\mathcal{G}, ω) of type (G, P) does not induce connections on P-associated bundles, but the Cartan bundle naturally extends to a G-principal bundle $(\hat{G}, \hat{\omega})$:

This allows us to define the holonomy of the Cartan connection form ω via the extended principal connection form:

$$
\operatorname{Hol}(\omega):=\operatorname{Hol}(\hat{\omega}) \subset G .
$$

For any G-representation V we can form the associated tractor bundle $\mathcal{V}=\mathcal{G} \times{ }_{P} V$ endowed with its induced tractor connection ∇^{V}.

Orbit decompositions and holonomy reductions

- While G acts transitively on G / P, one may regard the H-orbit decomposition of G / P for any given subgroup $H \subseteq G$.
- Does there exist a generalisation of such H-orbits in the curved situation?

Theorem (A. Čap, A.R. Gover and M. H., 2014)
For a given curved structure M modelled on G / P with holonomy group reduced to $H \subseteq G$ there exists a natural 1:1 correspondence

$$
\{H \text {-orbits in } G / P\} \leftrightarrow\{\text { curved orbits in } M\} .
$$

This yields the curved orbit decomposition of M, and each orbit carries itself a natural Cartan geometry.

Applications:

- Classification of conformal holonomy (J. Alt, A. Di Scala and T. Leistner, 2014)
- Differential geometric compactifications
- Close relationships with overdetermined systems of PDEs

Relationship with BGG-solutions

For every G-representation V one has a naturally associated overdetermined differential operator, the first $B G G$-operator $\Theta_{0}: \mathcal{H}_{0} \rightarrow \mathcal{H}_{1}$, which defines the first BGG-equation $\Theta_{0}(\sigma)=0$ [Čap-Slovak-Souček 2001, Calderbank-Diemer 2000].

normal solutions $\subset \operatorname{ker} \Theta_{0}$ overdetermined system

- General solutions of $\Theta_{0}(\sigma)=0$ correspond to sections of \mathcal{V} which are parallel with respect to a (modified) prolongation connection [H.-Somberg-Souček-Šilhan 2012], and therefore don't induce holonomy reductions of the parabolic structure.
- Normal solutions (following [Leitner, 2005]) of $\Theta_{0}(\sigma)=0$ are those which correspond to parallel sections of \mathcal{V}. In particular, normal solutions are equivalent to holonomy reductions.

Examples of first BGG-operators for conformal structures

- If one takes the standard tractor bundle \mathbf{S} of a conformal structure ($M,[g]$) one obtains the operator governing Einstein rescalings discussed in the first example.
- If $(M,[g])$ is a conformal spin structure with spin bundle $\boldsymbol{\Delta}$ and Clifford symbol $\gamma \in \Gamma\left(T^{*} M \otimes \operatorname{End}(\boldsymbol{\Delta})\right)$, one also has a spin tractor bundle $\boldsymbol{\Sigma}$. Let $D: \Gamma(\boldsymbol{\Delta}) \rightarrow \Gamma(\boldsymbol{\Delta})$ be the Dirac operator.
The first BGG-operator of $\boldsymbol{\Sigma}$ is the twistor operator

$$
\begin{aligned}
\Gamma(\boldsymbol{\Delta}) & \rightarrow \Gamma\left(T^{*} M \otimes \Delta\right), \\
\chi & \mapsto D \chi+\frac{1}{n} \gamma \otimes D \chi .
\end{aligned}
$$

Solutions of this equation are known as twistor spinors.

- Both cases are very special: parallel sections of the tractor connection are already in 1:1-correspondence with solutions, which reflects the fact that the modelling representations are still very simple.

Conformal Holonomy Characterizations

- $\mathrm{SU}(p+1, q+1) \hookrightarrow \mathrm{SO}(2 p+2,2 q+2)$:

CR-structure \rightsquigarrow signature $(2 p+1,2 q+1)$-conformal structure on S^{1}-bundle

+ lightlike conformal Killing field
[Fefferman 1976, Graham 1987, Čap-Gover 2010]
- $G_{2} \hookrightarrow \operatorname{Spin}(3,4)$:
generic rank 2-distribution on 5 -manifold \rightsquigarrow signature (2,3)-conformal spin structure
+ generic twistor spinor
[H.-Sagerschnig 2011]
- $\operatorname{SL}(3) \hookrightarrow \operatorname{Spin}(3,3)$:
projective 2-dimensional structure \rightsquigarrow
split signature (2, 2)-conformal spin structure
+2 compatible twistor spinors
[H.-Tagavi-Chabert-Žádník-Šilhan-Sagerschnig, 2016]

Poincare-Einstein manifolds

Let $(M,[g])$ with $[g]=\left\{f g \mid f \in \mathrm{C}^{\infty}\left(M, \mathbb{R}_{>0}\right)\right\}$ be an n-dimensional Riemannian signature conformal structure.

- For a reduction to $\mathrm{SO}(n+1) \hookrightarrow \mathrm{SO}(n+1,1)$ we obtain a single curved orbit of type $\mathrm{SO}(n+1) / \mathrm{SO}(n)$, which carries an Einstein metric with positive scalar curvature.
- For a reduction to $\mathrm{SO}(n, 1) \hookrightarrow \mathrm{SO}(n+1,1)$ we obtain an open curved orbit of
type $\mathrm{SO}(n, 1) / \mathrm{SO}(n)$, which carries an Einstein metric with negative scalar curvature and a closed curved orbit of type $\mathrm{SO}(n, 1) / \bar{P}$ which carries a conformal structure.

We recover a description of almost Einstein structures [Gover, 2010]: The reduction $\mathrm{SO}(n, 1) \hookrightarrow \mathrm{SO}(n+1,1)$ yields examples of Poincaré-Einstein manifolds with an Einstein metric on an interior part of a manifold and a conformal structure at infinity.

Klein-Einstein manifolds

Let M be an $n+1$-dimensional manifold endowed with a projective structure \mathbf{p} whose normal projective tractor connection $\nabla^{\mathcal{T}}$ preserves a signature ($n+$ $1,1)$ tractor metric \mathbf{g}. Equivalently, the projective holonomy is reduced to

$$
\mathrm{Hol}(\mathbf{p}) \subseteq \mathrm{SO}(n+1,1) \subseteq \mathrm{SL}(n+2)
$$

One obtains a decomposition of M as a Klein-Einstein manifold:

- $\left(M_{0}, \mathbf{c}\right)$ is a conformal n-dimensional space.
- $\left(M_{+}, g_{+}\right)$an Einstein metric with $\operatorname{Ric}\left(g_{+}\right)=n g_{+}$.
- $\left(M_{-}, g_{-}\right)$an Einstein metric with $\operatorname{Ric}\left(g_{-}\right)=-n g_{-}$.
- $\left(M_{0}, \mathbf{c}\right)$ is the projective infinity of $\left(M_{-}, g_{-}\right)$.

Another viewpoint: Fefferman-Graham ambient metrics

A conformal structure
[g] can be understood as the ray-subbundle $\mathcal{C} \subset S^{2} T^{*} M$ which consists of all metrics in the given conformal class.

The Fefferman-Graham ambient metric \tilde{g} is a signature $(n+1,1)$ metric on $n+2$-dimensional ambient space $\tilde{M}=\mathcal{C} \times(-1,1)$ and extends a tautological (degenerate) form \mathbf{g}_{0} on \mathcal{C}.

- $n=p+q$ odd:
\tilde{g} is uniquely determined as an infinite order jet along \mathcal{C} by the normalization condition that $\operatorname{Ric}(\tilde{g})$ vanishes to infinite order along \mathcal{C}.
- $n=p+q$ even: \tilde{g} is unique up addition of terms of order higher than $\frac{n}{2}$ under the normalization
 condition that $\operatorname{Ric}(\tilde{g})$ vanishes to order $\frac{n}{2}-2$ along \mathcal{C} and to order $\frac{n}{2}-1$ in tangential directions along \mathcal{C}.

BGG-solutions and parallel ambient fields

According to recent work (Čap-Gover-Graham-H. 2016) ambient holonomy equals conformal holonomy: $\operatorname{Hol}(\mathbf{c})=\operatorname{Hol}(\widetilde{\nabla})$.

To be precise, this holds for infinitesimal holonomy, and literally in the simply-connected, real-analytic, odd dimensional situation.

In particular, one gets correspondences between solutions to overdetermined equations and parallel ambient objects:

\bar{V}	\tilde{M}	M_{0}	M_{-}
\mathbb{R}^{n+2}	Parallel field	Einstein metric \bar{g}_{E} in \mathbf{c}	\ldots
$\Delta^{n+1,1}$	Parallel spinor	twistor spinor $\bar{\chi}$	Killing spinor χ

