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Parabolic geometries give rise to many interesting overdetermined
geometric equations and in this talk we are going to describe a general
prolongation procedure yielding a natural connection whose parallel
sections are in 1:1-correspondence with the solutions of the prolonged
system.

We will begin by giving one example in conformal geometry and another
one for projective structures.
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Example in conformal geometry: (almost) Einstein scales

A conformal structure on a manifold M is an equivalence class [g ] of
pseudo-Riemannian metrics, where two metrics g and ĝ are equivalent iff
there is a function f ∈ C∞(M) such that ĝ = e2f g .

A nice example of a conformally invariant operator is

Θg : C∞(M)→ S2
0 T ∗M, (1)

σ 7→ trace-free part
(
DDσ + σP

)
. (2)

Here D is the Levi-Civita connection of a metric g in the conformal class
and P = Pab is the Schouten-tensor, which is a trace-modification of the
Ricci tensor. S2

0 T ∗M denotes symmetric, trace-free bilinear forms on TM.
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Θg describes the equation governing Einstein scales: for
σ ∈ C∞(M), σ > 0 one has Θgσ = 0 iff σ−2g is Einstein.

The operator Θg is conformally covariant between C∞(M) and S2
0 T ∗M: if

one switches to another metric ĝ = e2f g in the conformal class, then

Θĝ ◦m(ef ) = m(ef ) ◦Θg ,

where m(ef ) is simply the multiplication operator with ef . This yields a
conformally invariant operator between the
weighted bundles H0 = E [1] and H1 = S2

0 T ∗M ⊗ E [1].
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Metrization of projective structures (Eastwood-Matveev,
Bryant-Dunajski-Eastwood)

An example for an interesting equation appearing for a projective geometry
(M, [∇]) is the equation trace-free part(∇σ) = 0, for σ ∈ S2TM.

This gives a projectively invariant operator

Θ : E(ab)[−2]→ E (ab)
c [−2]

between (projectively) weighted spaces.

Assume that there is a ∇ in the projective class with symmetric Ricci
tensor. Then:
Solutions σ of this equation which are positive definite correspond to
metrics whose Levi-Civita connection sits in the projective class of metrics
[∇].
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The above equations can be described by first BGG-operators, which will
be introduced/recalled below. So one could hope that this uniform
description of these overdetermined systems can be used to obtain a
general prolongation method.

Given an overdetermined operator Θ : H0 → H1, what we are looking for
is a geometric prolongation: We want an extension

Π : V → H0

of H0, a (differential) splitting

L : H0 → V

of Π and a linear connection ∇ on V such that Π and L restrict to inverse
isomorphisms between ∇-parallel sections of V and the kernel of Θ.

We will also call the tuple (V,Π, L,∇) a geometric prolongation of Θ.
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A general method yielding a natural prolongation
connection. The Setting.

We will work with a parabolic geometry of type (G ,P), G a semisimple
Lie group and P a parabolic subgroup:

The geometric structure on the manifold M is encoded in a P-principal
bundle G over M endowed with a Cartan connection form ω ∈ Ω1(G, g).

The curvature κ ∈ Ω2(G, g), given by
κ(X ,Y ) = dω(X ,Y ) + [ω(X ), ω(Y )], satisfies regularity and and
normality conditions for achieving equivalence with an underlying
geometric structure on M.

The solution to the prolongation problem of BGG-operators which we are
going to describe will work for arbitrary regular parabolic geometries and
will be natural resp. invariant.
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First, some background: basic structure on tractor bundles

For a G -representation V the associated bundle V = G ×P V is called a
tractor bundle.
Tractor bundles make themselves so welcome by carrying, in contrast to
mere assocated P-representations, canonical linear connections:

The Cartan connection form ω can be extended G -equivariantly to a
principal connection on the extended bundle G′ = G ×P G and thus the
associated bundle V = G ′ ×G V = G ×P V is endowed with a linear
connection, which is denoted by ∇ and called the tractor connection on V.
∇ gives rise to a sequence

C0
∇→ C1

d∇→ C2
d∇→ · · ·

on the chain spaces Ck = Ωk(M,V).
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On the other hand, one has the (algebraic) Kostant co-differential
∂∗ : Ck+1 → Ck which gives the complex

C0
∂∗← C1

∂∗← C2
∂∗← · · · .

This complex gives rise to spaces Zk = ker ∂∗ of chains, Bk = im ∂∗ of
borders and homologies Hk = Zk/Hk .

d∇ and ∂∗ are strongly related: tractor bundles V and their chain spaces
Ck carry natural filtrations · · · C i

k ⊃ C
i+1
k · · · . Regularity of the parabolic

geometry is then equivalent to the fact that d∇ always induces a certain
canonical Lie algebra differential

∂ : gr(Ck)→ gr(Ck+1)

on the associated graded spaces. We will also simply say that d∇ and ∂
coincide in lowest homogeneity.
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That’s all one needs for doing BGG:

Now the BGG-machinery starts by observing that d∇ and ∂∗ give rise to
canonical splittings Lk : Hk → Zk : While Zk is mapped by d∇ into Ck one
has a well defined subspace Lk for which

Zk ⊃ Lk
d∇→ Zk+1 ⊂ Ck+1.

On Lk the natural projections Πk : Zk → Hk restricts to an isomorphism,
whose inverse is a (differential) splitting operator Lk . One can thus form
the BGG-operators Θk as the composition Πk+1 ◦ d∇ ◦ Lk :

Lk
d∇ // Zk+1

Πk+1

��
Hk

Lk

OO

Θk // Hk+1

Matthias Hammerl (University of Vienna) Invariant Prolongation of Overdetermined Systems arising for Parabolic GeometriesWarsaw, January 2009



Example: (almost) Einstein cales:

Conformal structures of signature (p, q) are modelled on Cartan
geometries of type (SO(p + 1, q + 1),P) and the standard representation
of SO(p + 1, q + 1) on Rp+q+2 this gives rise to the standard tractor
bundle S := G ×P Rp+q+2 of conformal geometry.

With respect to a metric g in the conformal class, which corresponds to a
Weyl structure, the tractor bundle decomposes into

[S]g = E [1]⊕ Ea[1]⊕ E [−1]

and one writes elements [s]g = σ ⊕ ϕa ⊕ ρ ∈ [S]g as

[s]g =

 ρ
ϕa

σ

 .
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The tractor connection is explicityly given by

∇cs = ∇c

 ρ
ϕa

σ

 =

 Dcρ− P b
c ϕb

Dcϕa + σPca + ρgca

Dcσ − ϕc

 ,

and the splitting operator L0 is

σ ∈ E [1] 7→

− 1
n (4σ + Pa

aσ)
∇σ
σ

 .

Composition of ∇ with L0 and computing the first homology H1 to be
S2

0 T ∗M[1] yields

Θ0 : E [1]→ S2
0 T ∗M[1],

σ 7→ trace-free part
(
DDσ + σP

)
,

whose kernel consists of (almost) Einstein scales of [g ].
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Commutativity of the first BGG-diagram

In this case the first BGG-diagram

im L0
∇ // Z1

H0

L0

OO

Θ0 // H1

L1

OO

commutes, which says that L0 and Π0 restrict to inverse isomorphisms
between almost Einstein scales and ∇-parallel sections of S. Otherwise
put: (S,Π0, L0,∇) is a geometric prolongation of Θ0.
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However, for a general, more complicated representation V of G and its
tractor bundle V, the associated first BGG-diagram will fail to commute.
The problem is that while Π0 is easily seen to projects ∇-parallel sections
of V into ker Θ0, one only has ∇L0(σ)) ∈ im ∂∗ for a σ ∈ ker Θ0 and not
necessarily ∇L0(σ) = 0.

The solution:

We are going to deform ∇ to a connection ∇̃ = ∇+ Ψ which will satisfy a
natural condition that will imply commutativity of the first BGG-diagram
and solve the prolongation problem.
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The deformation of the tractor connection

We will consider deformations Ψ ∈ Ω1(M, gl(V))1. The homogeneity
1-condition exactly means that ∇̃ = ∇+ Ψ still coincides with ∂ in lowest
homogeneity, which is necessary and sufficient for doing the
BGG-constructions with ∇̃.

Let RΨ be the curvature of ∇̃ = ∇+ Ψ. The main result is

Theorem 1

There exists a unique Ψ ∈ Ω1(M, gl(V))1 such that

Ψs ∈ im ∂∗ and

∂∗(RΨs) = 0

for all s ∈ V.
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A completely algorithmic inductive procedure:

The failure of ∇+ Ψ to satisfy the conditions of the theorem is given by

∂∗ ◦ RΨ ∈ B1 ⊂ Ω1(G, gl(V)).

Recall that we have a natural filtration of B1 with Bi ⊃ Bi+1 and Bj = 0
for some high enough j and assume that we already got a
Ψ ∈ Ω1(M, gl(V))1 which achieves that ∂∗ ◦ RΨ ∈ Bi

1.

Then, for a φ which also maps V into Bi
1 we find that

∂∗ ◦ RΨ+φ − ∂∗ ◦ RΨ = � ◦ φ (3)

modulo terms in Bi+1
1 . Here � denotes the Kostant Laplacian: the only

important fact for us is that it is invertible on im ∂∗ = B1 ⊂ Ω1(M,V).
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This tells us to proceed by taking

φ := −� ◦ ∂∗RΨ,

then ∂∗ ◦ RΨ+ϕ sits in the next higher filtration component, and after
finitely many steps we arrive at a solution.

An exposition of this prolongation procedure in the realm of conformal
geometry can be found at math.dg/0811.4122. There one also finds an
explicit step by step calculation for the prolongation connection of
conformal Killing forms.

A general treatment of the normalization condition ∂∗ ◦ R = 0 will appear
in a joint paper with J. Šilhan, V. Souček and P. Somberg.
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The prolongation connection ∇̃ = ∇+ Ψ

We can now do the BGG-machinery with ∇̃. Let us first check that this
still yields the same first BGG-operator Θ0 as with ∇:

1 Since
∇̃ ◦ L0 = ∇ ◦ L0 mod im ∂∗

we see ∂∗ ◦ ∇̃ ◦ L0 = 0, which implies that L0 is the first
BGG-splitting operator of ∇̃.

2 Again, since ∇̃ = ∇ mod im ∂∗ and Π1 kills im ∂∗, we have

θ̃0 = Π1 ◦ ∇̃ ◦ L0 = Θ0,

and thus our deformation doesn’t change the first BGG-operator.
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We now show that the diagram

im L0
∇̃ //

RΨ

!!
Z1

d∇ // C2

H0

L0

OO

Θ0 // H1

L̃1

OO

commutes:

1 By definition of Θ0, ∇̃ ◦ L0 with values in Z1 lifts Θ0 over Π1. For it
to agree with L̃1 ◦Θ0 we thus must have ∂∗ ◦ d∇̃ ◦ ∇̃ ◦ L0 = 0.

2 But since d∇̃ ◦ ∇̃ = RΨ with RΨ the curvature of ∇̃,

∂∗ ◦ d∇̃ ◦ ∇̃ ◦ L0 = ∂∗ ◦ RΨ ◦ L0 = 0

holds by assumption on Ψ.
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The prolongation connection ∇̃ = ∇+ Ψ

Thus we have

Theorem 2

There exists a natural connection ∇̃ on V such that Π0 and L0 restrict to
inverse isomorphisms between ∇̃-parallel sections of V and the kernel of
Θ0. I.e.: (V,Π0, L0, ∇̃) is a natural geometric prolongation of Θ0.

We will now quickly go over some applications:
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Some algebraic obstruction tensors for free

Since L̃1 ◦Θ0 = ∇̃ ◦ L0 one has that the composition of the first two
BGG-operators for ∇̃ is

Θ̃1 ◦Θ0 = Π2 ◦ RΨ ◦ L0.

Especially, when σ ∈ ker Θ0, then necessarily Π2(RΨ(L0(σ))) = 0.

If the geometry is 1-graded and one knows that H2 is concentrated in
lowest homogeneity, then this latter term turns out to be the projection of
the action of the (generalized) Weyl curvature on σ to the highest weight
part.
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For instance, for a conformal Killing k-form with k ≥ 2 one obtains
without a line of computation that

C p
{c1c2 [a1

σ|p|a2···ak ]}0
= 0.

This obstruction has been observed as a side result of calculations done in
ad hoc prolongation by Kashiwada (68), Semmelmann (2001) and
Gover-Šilhan (2006). This description is completely conceptual.

Similarly one sees that twistor spinors are killed by the Weyl curvature.

For the projective example above one gets that

(W a
c1c2 pσ

bp + W b
c1c2 pσ

ap)0

must vanish for a solution σab describing a metrization of the projective
class.
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Construction of sharp(er) obstructions a la Gover-Nurowski

When one chooses a Weyl structure, for instance when one chooses a
metric in the conformal class in the conformal case, one obtains the Weyl
(resp. Levi-Civita-) connection on TM and T ∗M and its tensor powers,
and may thus couple these connections with the prolongation connection
∇̃.

Then for a ∇̃-parallel section s ∈ V one has Rs = 0. Differentiating this
one obtains 0 = ∇̃(Rs) = (∇̃R)s + R∇̃s = (∇̃R)s by parallelity and thus

(∇̃kR)s = 0 ∀k ∈ N0.

In the case of the standard tractor bundle of conformal geometry ∇̃ = ∇
and Gover-Nurowski (2006) obtained sharp obstructions against the
existence of Einstein scales under a genericity assumption on the Weyl
curvature, using in fact only the equations for k = 0 and k = 1.
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