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Example 1: Einstein metrics in a conformal class

Let g and ĝ be pseudo-Riemannian metrics of signature
(p, q), p + q = n on an n-manifold M.

We say that g and ĝ are conformally related iff there is a function
f ∈ C∞(M, R+) such that ĝ = fg .

This defines an equivalence relation for pseudo-Riemannian metrics;
the equivalence class of a metric g is denoted by [g ] and defines a
conformal structure on M.

Given a metric g ∈ [g ], one has its Levi-Civita connection D and can
form the Riemannian curvature tensor Rg .

It is a natural question whether there is an Einstein metric in a given
conformal class; i.e., whether for some g ∈ [g ] the Ricci curvature
Ricg := tr(1,3) Rg ∈ Γ(S2T ∗M) is a multiple of g .
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Example 1: Einstein metrics in a conformal class

This question is governed by the operator

Θg : C∞(M)→ Γ(S2
0T ∗M),

Θg (σ) = (DDσ + Pg σ) +
1

n
(4σ − tr(1,2) Pg σ)g .

Here

Pg :=
1

n − 2

(
Ricg − Scg

2(n − 1)
g
)

is the Schouten-tensor; S2
0T ∗M denotes symmetric, trace-free bilinear

forms on TM. The convention for the Laplace operator is
4 := − tr(1,2) ◦D2.

For σ ∈ C∞(M, R+) one has Θg (σ) = 0 iff σ−2g is Einstein.
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Example 1: Einstein metrics in a conformal class

The operator Θg is conformally covariant between C∞(M) and
S2

0T ∗M: if one switches to another metric ĝ = e2f g in the conformal
class, then

Θĝ ◦m(ef ) = m(ef ) ◦Θg ,

where m(ef ) is simply the multiplication operator with ef .

To define a conformally invariant operator, one introduces conformal
density bundles E [w ]: these are line bundles which are trivialized by a
choice of g ∈ [g ]. The trivializations of σ ∈ E [w ] with respect to
ĝ = e2f g and g are related according to [σ]ĝ = ewf [σ]g .

By forming the weighted bundles H0 = E [1] and H1 = S2
0T ∗M ⊗ E [1]

one obtains a conformally invariant operator

Θ : Γ(H0)→ Γ(H1) :

the definition of Θ does not depend on the choice of g ∈ [g ].
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Example 2: Metrization of projective structures

Two torsion-free linear connections D and D̂ on TM are projectively
equivalent iff there exists a one form Υ ∈ Ω1(M) with

D̂ω = Dω + Υ⊗ ω + ω ⊗Υ

for all ω ∈ Ω1(M). Projectively equivalent connections have the same
unparameterized geodesics.
An interesting question in projective differential geometry is whether a
given projective class of connections [D] contains the Levi-Civita
connection of some metric.
It was observed by [Sinjukov, Nauka (1979)] and [Mikeš, Acta Univ.
Palack. Olomuc. (1996)] that this problem is governed by the
equation

Dσ − 1

n + 1
sym

(
id⊗ tr(1,2)(Dσ)

)
= 0

for σ ∈ Γ(S2TM).
This yields a projectively invariant operator between suitably weighted
bundles.
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Prolongations of overdetermined systems

Given an overdetermined system of equations described by an operator
Θ : Γ(H0)→ Γ(H1) we want to rewrite the system in closed form:

We look for an equivalent first order system such that all first order
derivatives of the dependent variables are given by the dependent
variables themselves.

In classical language, this means that one introduces additional
variables for derivatives of σ ∈ Γ(H0) and derives differential
consequences for these variables from the equation Θ0(σ) = 0.
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Prolongations of overdetermined systems

We will employ the following notation:

The ’additional variables’ are encoded in an extension of the bundle
H0 to a bundle V which has a projection V

Π→ H0.

The expression of derivatives of σ ∈ Γ(H0) in terms of the ’new
variables’ is done via a linear differential operator L : Γ(H0)→ Γ(V)
which splits Π, i.e., Π ◦ L = idΓ(H0).

The resulting closed system is encoded in a linear connection
∇ : Γ(V)→ Γ(T ∗M ⊗ V).

Equivalence of the closed system with the equation Θ(σ) = 0 then
says that the projection Π and the splitting L restrict to inverse
isomorphisms between the space of parallel sections of ∇ and the
kernel of Θ0.

We then call the tuple (V,Π, L,∇) a geometric prolongation of Θ0.
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Immediate applications of a geometric prolongation

If (V,Π, L,∇) is a geometric prolongation of Θ0, then

the solution space ker(Θ0) is finite-dimensional and bounded by
rank V,

if L0 is a differential operator of order r , then every solution is
determined by its r th-order jet in a point,

if Θ0(σ) = 0 and σ is not trivial, then σ is non-vanishing on an
open-dense set.

Moreover, the curvature of the prolongation connection can be used to
obtain obstructions for the existence of parallel sections of V resp.
solutions of Θ0(σ) = 0.
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The problem of naturality/invariance

We want to construct prolongations which respect the underlying
geometric structure.

For instance, in conformal geometry we don’t want our constructions
to depend on a choice of metric in the conformal class.

This case already exemplifies that one immediately encounters great
obstacles, since there is no unique Levi-Civita connection as in
Riemannian geometry.

Major advances to overcome this obstacle were achieved in the 1920s
by Élie Cartan and Tracy Thomas:

Given a conformal structure of signature (p, q), p + q = n, the latter
constructed a natural bundle S of rank n + 2 endowed with a
canonical connection ∇S and compatible signature
(p + 1, q + 1)-metric h. This is now called the conformal standard
tractor bundle.
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Cartan’s description of conformal structures

A few years earlier, Élie Cartan had worked with what would now be
considered the structure bundle G of S: Let
G := SO(p + 1, q + 1), g = so(p + 1, q + 1) and define P ⊂ G as the
stabilizer of an isotropic ray in Rp+1,q+1.

Definition

A Cartan geometry of type (G ,P) on a manifold M is a P-principal bundle
G → M endowed with a Cartan connection form ω ∈ Ω1(G, g). ω is
P-equivariant, reproduces fundamental vector fields, and provides a
trivialization TG ∼= G × g.

Theorem (Cartan, 1923)

There is an equivalence of categories between conformal structures of
signature (p, q) and Cartan geometries of type (SO(p + 1, q + 1),P)
whose curvature satisfies a normalization condition.
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Parabolic geometries and underlying structures

The definition of a Cartan geometry makes sense for arbitrary Lie
groups G with closed subgroup P, and in the case where P is a
parabolic subgroup of a semi-simple Lie group one calls (G, ω) a
parabolic geometry.

For a parabolic geometry (G, ω) there is a canonical regularity
condition which implies that it induces a geometric structure on the
underlying manifold M.

There is also a natural normalization condition on ω, which yields the
class of normal parabolic geometries.

The equivalent description of geometric structures as parabolic
geometries is a powerful tool for natural resp. invariant constructions.
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Parabolic geometries and tractor bundles

Given an arbitrary parabolic geometry (G, ω) of type (G ,P) and a
G -representation V , one can build the associated tractor bundle
V := G ×P V .

The Cartan connection form ω can be extended to a G -principal
connection form ω′ on an extended bundle and then endows V with
its tractor connection ∇V .

Let Ck = ΛkT ∗M ⊗ V. Then Γ(Ck) = Ωk(M,V) and one can form
the twisted de-Rham sequence of the tractor connection ∇V ,

Γ(C0)
∇V

→ Γ(C1)
d∇→ Γ(C2)

d∇→ · · ·

For a parabolic geometry there is a canonical Lie algebra differential
∂∗ called the Kostant codifferential. It gives rise to a complex

C0
∂∗← C1

∂∗← C2
∂∗← · · ·
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The BGG-sequence

The differential ∂∗ yields bundles Zk = ker ∂∗ of cycles, Bk = im ∂∗

borders and homologies Hk = Zk/Hk , and one has the canonical
projections Πk : Zk → Hk .

Now the BGG-sequence is formed by natural differential operators

Γ(H0)
Θ0→ Γ(H1)

Θ1→ Γ(H2)
Θ2→ · · ·

It was presented in [Čap-Slovǎk-Souček, Ann. of Math. (2001)] and a
simplified construction was obtained in [Calderbank-Diemer, (J. Reine
u. Angew. Math.) (2001)]

The main technical step in the development of the BGG-machinery is
the construction of the canonical BGG-splitting-operators
Lk : Γ(Hk)→ Γ(Zk).
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The first BGG-operator

We are mostly interested in the first BGG-operator
Θ0 : Γ(H0)→ Γ(H1), defined via the composition Π1 ◦ ∇V ◦ L0,

im (L0)
∇V

// Γ(Z1)

Π1

��
Γ(H0)

L0

OO

Θ0 // Γ(H1)

.

If s ∈ Γ(V) is ∇V -parallel, then automatically Θ0(Π0(s)) = 0. Thus,
parallel sections project into ker Θ0.

(V,Π0, L0,∇V ) is however not a geometric prolongation for general
representations V , since the converse does not hold:
If σ ∈ ker Θ0, then ∇V (L0(σ)) need not necessarily vanish, but may
lie in Γ(B1) = im ∂∗.
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Examples of first BGG-operators for conformal structures

If one takes the standard tractor bundle S of a conformal structure
(M, [g ]) one obtains the operator governing Einstein rescalings
discussed in the first example.

If (M, [g ]) is a conformal spin structure with spin bundle ∆ and
Clifford symbol γ ∈ Γ(T ∗M ⊗ End(∆)), one also has a spin tractor
bundle Σ. Let D/ : Γ(∆)→ Γ(∆) be the Dirac operator.
The first BGG-operator of Σ is the twistor operator

Γ(∆)→ Γ(T ∗M ⊗∆),

χ 7→ Dχ +
1

n
γ ⊗D/ χ.

Solutions of this equation are known as twistor spinors.

Both cases are very special: parallel sections of the tractor connection
are already in 1:1-correspondence with solutions, which reflects the
fact that the modelling representations are still very simple.

M. Hammerl (University of Vienna) Natural prolongations of BGG-operators 18 / 36



Examples of first BGG-operators for conformal structures

For an exterior power V = Λk+1S, k ≥ 1 one obtains the operator
governing conformal Killing k-forms,

Θ0 : Ωk(M)→ Γ(T ∗M ⊗ ΛkT ∗M),

Θ0(σ) = Dσ − alt(1,··· ,k+1)Dσ

− k

n − k + 1
alt(2,··· ,k+1)

(
g ⊗ (tr(1,2) Dσ)

)
.

Already in this case a solution of Θ0(σ) need not satisfy that also
∇V (L0(σ)) = 0. In fact, this imposes additional equations on a
conformal Killing form σ, and solutions to this extended system have
been termed normal conformal Killing forms by [Leitner,
Rend.Circ.Mat.Pal. (2005)].
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Prolongation of first BGG-operators

For BGG-operators appearing for parabolic geometries whose structure
group G has 1-graded Lie algebra a prolongation was constructed by
[Branson-Čap-Eastwood-Gover, Int. Journ. Mat. (2006)]. This works
also for semilinear equations with prescribed symbol; however, it
doesn’t respect invariance of the original equation. A generalization
of this approach to higher gradings is current work of K. Neusser.

Another result was obtained for the prolongation of the equations for
infinitesimal automorphisms of parabolic geometries, [Čap, JEMS
(2008)]: The adjoint tractor bundle AM := G ×P g together with an
explicit modification of the adjoint tractor connection by curvature is
shown to describe the infinitesimal automorphisms of a parabolic
geometry (G, ω)
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Prolongation of first BGG-operators

For specific equations invariant prolongations have been found by
direct calculations; For the equation governing conformal Killing
forms above, this was done by [Gover-Šilhan, Diff. Geom. Appl.
(2008)]. This approach soon becomes computationally impossible.

The solution to the prolongation problem for BGG-operators which we
are going to describe will work for arbitrary regular parabolic
geometries and will be natural. Explicit calculations can be done by
an algorithm:
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Theorem (Natural Prolongation)

Let V be a tractor bundle for a regular parabolic geometry. There exists a
natural connection ∇̃ on V such that

1 The BGG-construction can still be carried out for ∇̃ and yields
BGG-splitting operators L̃k and BGG-operators Θ̃k .

2 The first BGG-splitting operator and first BGG-operator for ∇̃
coincide with the corresponding objects for ∇V .

3 The diagram

im L0
∇̃ // Γ(Z1)

Γ(H0)

L0

OO

Θ0 // Γ(H1)

L̃1

OO

commutes, and this implies that (V,Π0, L0, ∇̃) is a natural geometric
prolongation of Θ0.

∇̃ is unique under a natural condition and is called the
prolongation connection of Θ0.
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Natural prolongation

This is shown via a modification procedure for tractor connections,
which will yield the required connection in the form ∇̃ = ∇V + Ψ,
Ψ ∈ Ω1(M,End(V)).

One first imposes conditions on the modification map Ψ which yield a
class of modified connections for which the BGG-construction can still
be carried out and produces the same first BGG-(splitting)-operator
as the tractor connection on V.

Next, one imposes a natural condition on the curvature
RΨ ∈ Ω2(M,End(V)) of ∇̃ = ∇V + Ψ which is seen to imply
commutativity of the first BGG-diagram.

Now there is an inductive algorithm which yields Ψ in terms of
geometric data of the underlying structure after an ’unnatural’ choice.
For instance, in conformal geometry, this produces the desired Ψ in
terms of Riemannian data of a metric g in the conformal class.

Finally, one observes that this Ψ is actually unique, and thus the
result doesn’t depend on any special choices during the construction.
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Natural Prolongation

One immediately obtains:

Corollary

Let V be a G-representation and (V, ∇̃,Π0, L0) the geometric
prolongation of Θ0.

1 The space ker Θ0 ⊂ H0 has rank ≤ dim V .

2 Every σ ∈ ker Θ0 is determined by its r -jet at some point, with r ∈ N
only depending on the representation V .

3 If σ ∈ ker Θ0 is not globally vanishing, its singularity set σ−1({0}) has
an open dense complement.
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Example: Prolongation of the equation governing
projective metrizability

A class of projectively equivalent connections [D] on an n-manifold is
equivalently described as a parabolic geometry (G, ω) of type
(SL(n + 1),P) with P the stabilizer of a line in Rn+1. The tractor
bundle V = G ×P S2Rn+1 yields the first BGG-operator

Θ0 : Γ(S2TM)→ Γ(T ∗M ⊗ S2TM)

Θ0(σ) = Dσ − 1

n + 1
sym

(
id⊗ tr(1,2)(Dσ)

)
which governs the existence of geodesically equivalent metrics.
After choice of a connection D ∈ [D] the tractor bundle V can be
written as a direct sum S2TM ⊕ TM ⊕ C∞(M), and a section
s ∈ Γ(V) will be written

[s]D =

ρ
µ
σ

 ∈
 C∞(M)

Γ(TM)
Γ(S2TM)

 .
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Example: Prolongation of the equation governing
projective metrizability

One calculates the splitting operator L0 : Γ(S2TM)→ Γ(V) as

σ 7→

 1
n(n+1) tr(1,3)(2,4) D2σ + 1

2n tr(1,3)(2,4) P⊗σ

− 1
n+1 tr(1,2) Dσ

σ

 .

The explicit form of the prolongation connection is

∇̃

ρ
µ
σ

 =

 Dρ− 2 tr(2,3) P⊗µ− 4
n tr(1,4)(3,5) A⊗ σ

Dµ− 2 tr(2,3) P⊗σ + ρ id+ 2
n tr(2,5)(4,6) C ⊗ σ

Dσ + sym(id⊗µ)

 .

Here A ∈ Γ(T ∗M ⊗ Λ2T ∗M) is the Cotton-York tensor of D and
C ∈ Γ(Λ2T ∗M ⊗ End(TM)) the Weyl-curvature.

This prolongation agrees with the one found by direct calculation in
[Eastwood-Matveev, IMA (2008)]
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Conformal structures with G2-holonomy

Let (M, [g ]) be a conformal structure of signature (2, 3).

(M, [g ]) can be described as a parabolic geometry (G̃, ω̃) of type
(SO(3, 4), P̃), with P̃ the stabilizer of an isotropic ray in R3,4. The
standard tractor bundle of [g ] is given by S = G̃ ×P̃ R7 and is
endowed with a canonical (3, 4)-metric h.

We define the conformal holonomy Hol([g ]) := Hol(∇S) ⊂ SO(3, 4)
and are interested in the case where Hol([g ]) ⊂ G2:

G2 shall be the the real Lie group with fundamental group Z2 and Lie
algebra the split real form of the exceptional complex Lie algebra gC

2 .
It is well known that one can realize G2 ⊂ SO(3, 4) as the stabilizer of
a Φ ∈ Λ3R7.
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G2-holonomy and generic distributions

Conformal structures with G2-holonomy are strongly related with
generic distributions on a 5-manifold M:

Let D ⊂ TM be a subbundle of constant rank 2. We say that D is a
generic rank 2-distribution if Lie brackets [ξ, η] of sections ξ, η ∈ Γ(D)
span a subbundle of constant rank 3 and TM is spanned by Lie
brackets of the form [ξ, [η, ζ]], ξ, η, ζ ∈ Γ(D).

It is a classical result by [Cartan, 1910] that a generic distributions
D ⊂ TM can be described as a parabolic geometry (G, ω) of type
(G2,P), with P = G2 ∩ P̃.

Surprisingly, it was only observed recently, [Nurowski, J.Geom.Phys.
(2005)], that the inclusion G2 ↪→ SO(3, 4) can be used to canonically
associate a conformal class of (2, 3)-metrics [g ]D to a generic
distribution D.
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G2-holonomy and generic distributions

This is a generalized Fefferman concstruction: If (G, ω) is the Cartan
geometry describing the distribution D, one obtains a conformal
geometry (G̃, ω̃), where G̃ := G ×P P̃ and ω̃ is the canonically
extended form.

The construction D [g ]D is functorial. To obtain strong relations
between [D] and [g ]D one needs in addition that the normalization
conditions on ω imply the corresponding conditions on ω̃. This was
done by [Sagerschnig, 2008 (Thesis)].

This implies that the induced conformal structures have holonomy
contained in G2, and in joint work [M.H.-Sagerschnig, SIGMA (2009)]
the converse construction was presented:

Theorem

Let (M, [g ]) be a conformal structure of signature (2, 3) with
Hol([g ]) ⊂ G2. Then [g ] is canonically associated to a generic rank two
distribution D.
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Characterization of G2-holonomy in terms of normal
conformal Killing 2 forms

Recall that G2 was realized in SO(3, 4) as the stabilizer of a
Φ ∈ Λ3R7. This is easily seen to provide a parallel section Φ of Λ3S,
which then yields a normal conformal Killing 2-form
φ ∈ Γ(Λ2T ∗M ⊗ E [3]) for (M, [g ]).

The characterization of G2-holonomy in terms of a normal conformal
Killing 2-form φ is a bit technical, since one has to find good
conditions on φ which imply that its corresponding tractor object is of
the right orbit type. It turns out that one has to demand that φ is
locally decomposable and satisfies the genericity condition
φ ∧ µ ∧ ρ 6= 0 for

µ := tr(1,2) Dφ ∈ T ∗M

ρ := +24φ + 4 alt(tr(1,3) DDφ) + 3 alt(tr(2,3) DDφ)

+ 24 alt(tr(1,3) P ⊗ φ)− 6 tr(1,2) P ⊗ φ ∈ Λ2T ∗M.

M. Hammerl (University of Vienna) Applications to conformal structures with G2-holonomy 31 / 36



Characterization of G2-holonomy in terms of twistor spinors

Another way to obtain a conformal object from D is to use the
realization of G2 in the orthogonal spin group of signature (3, 4): Let
∆3,4

R be the real 8-dimensional spin representation of Spin(3, 4).

There is a unique signature (4, 4) symmetric bilinear form on ∆3,4
R ,

and it is shown by [Kath, 1999 (Habil.)] that one can present G2 as
the isotropy group of an arbitrary non-null X ∈ ∆3,4

R .

This implies in particular that the induced conformal structure of an
(orientable) generic distribution always carries a canonical spin
structure.

We can thus form a parallel spin tractor X ∈ Γ(Σ) over M; and with
∆R the real spin bundle of (M, [g ]), we can project X to a twistor
spinor χ ∈ Γ(∆R ⊗ E [12 ]).
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Characterization of G2-holonomy in terms of twistor spinors

It turns out that characterization via a twistor spinor is very simple:
The real 4-dimensional spin representation ∆2,3

R carries a
non-degenerate skew-symmetric bilinear form which can be related to
the symmetric (4, 4)-form on ∆3,4

R .

Now via the first BGG-splitting operator a twistor spinor
χ ∈ Γ(∆R ⊗ E [12 ]) splits to a parallel spin tractor X ∈ Γ(Σ) and the
condition of X being non-null can be related to a condition on χ:

Let D/ : Γ(∆R)→ Γ(∆R) be the Dirac operator, then

Theorem

Let (M, [g ]) be a conformal spin manifold of signature (2, 3) and ω the
skew-symmetric form on the 4-dimensional real spin bundle ∆R. Then [g ]
is induced from a generic rank 2-distribution iff there is a twistor spinor
χ ∈ Γ(∆R ⊗ E [12 ]) with non-vanishing ω(χ,D/ χ).
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Decomposition of infinitesimal automorphisms

We can relate the symmetries of a generic distribution with those of
the induced conformal structure:

A vector field ξ ∈ X(M) is a symmetry of D if Lξ(η) ∈ Γ(D) for all
η ∈ Γ(D).

A vector field ξ ∈ X(M) is said to be a conformal Killing field if it
preserves the conformal structure [g ]D: for every representative metric
g there is an f ∈ C∞(M) with Lξg = fg .

Since the construction D [g ]D is functorial, one has an inclusion of
symmetries of D into the conformal Killing fields, we write

sym(D) ↪→ cKf([g ]D).
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Decomposition of infinitesimal automorphisms

It follows from the description of infinitesimal automorphisms of
parabolic geometries [Čap, JEMS (2008)] that the first
BGG-operators of the adjoint tractor bundles AM := G ×P g2 and
ÃM := G̃ ×P̃ so(3, 4) describe the symmetries of D and the
conformal Killing fields of [g ].

Now as a G2-module, so(3, 4) decomposes into R3,4 ⊕ g2. This
implies a decomposition of the conformal adjoint tractor bundle ÃM
into S and AM.

This decomposition is compatible with the prolongation connections
on the respective bundles. Via explicit formulas for BGG-splitting
operators this yields the following decomposition theorem:
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Proposition (Decomposition of conf. Killing fields via a twistor spinor)

Let [g ]D be the conformal (2, 3)-structure induced by a generic
2-distribution D ⊂ TM. Every conformal Killing field decomposes into a
symmetry of the distribution D and another part corresponding to an
Einstein scale (which may have a singularity set). Via the canonical twistor
spinor χ ∈ Γ(∆R ⊗ E [12 ]) this decomposition can be made explicit:

An Einstein scale σ ∈ C∞(M) corresponds to the Killing field
ξ ∈ X(M) defined by the relation

g(ξ, η) = ω(
2

5
σD/ χ + γ(Dσ)χ, γ(η)χ)

for all η ∈ X(M).

The Einstein scale part σ ∈ C∞(M) of a Killing field ξ ∈ X(M) is
given by

σ = ω(
4

5
γ(ξ)D/ χ + γ(Dξ)χ, χ).
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