Natural Prolongations of BGG-Operators

Matthias Hammerl

University of Vienna, Faculty of Mathematics

August 2009

Natural Prolongations of BGG-Operators

1 Invariant overdetermined systems and prolongation

2 Natural prolongations of BGG-operators

Applications to conformal structures with G_2 -holonomy

Example 1: Einstein metrics in a conformal class

- Let g and \hat{g} be pseudo-Riemannian metrics of signature (p, q), p + q = n on an *n*-manifold M.
- We say that g and \hat{g} are conformally related iff there is a function $f \in C^{\infty}(M, \mathbb{R}_+)$ such that $\hat{g} = fg$.
- This defines an equivalence relation for pseudo-Riemannian metrics; the equivalence class of a metric g is denoted by [g] and defines a conformal structure on M.
- Given a metric g ∈ [g], one has its Levi-Civita connection D and can form the Riemannian curvature tensor R^g.
- It is a natural question whether there is an Einstein metric in a given conformal class; i.e., whether for some g ∈ [g] the Ricci curvature Ric^g := tr_(1,3) R^g ∈ Γ(S²T*M) is a multiple of g.

Example 1: Einstein metrics in a conformal class

• This question is governed by the operator

$$\Theta^{g}: C^{\infty}(M) \to \Gamma(S_{0}^{2}T^{*}M),$$

$$\Theta^{g}(\sigma) = (DD\sigma + \mathsf{P}^{g}\sigma) + \frac{1}{n}(\bigtriangleup\sigma - \mathsf{tr}_{(1,2)}\mathsf{P}^{g}\sigma)g.$$

Here

$$\mathsf{P}^g := rac{1}{n-2} ig(\mathsf{Ric}^g - rac{\mathsf{Sc}^g}{2(n-1)} g ig)$$

is the Schouten-tensor; $S_0^2 T^*M$ denotes symmetric, trace-free bilinear forms on *TM*. The convention for the Laplace operator is $\triangle := -\operatorname{tr}_{(1,2)} \circ D^2$.

• For $\sigma \in C^{\infty}(M, \mathbb{R}_+)$ one has $\Theta^g(\sigma) = 0$ iff $\sigma^{-2}g$ is Einstein.

Example 1: Einstein metrics in a conformal class

• The operator Θ^g is conformally covariant between $C^{\infty}(M)$ and $S_0^2 T^*M$: if one switches to another metric $\hat{g} = e^{2f}g$ in the conformal class, then

$$\Theta^{\hat{g}} \circ m(e^f) = m(e^f) \circ \Theta^g,$$

where $m(e^{f})$ is simply the multiplication operator with e^{f} .

- To define a conformally invariant operator, one introduces conformal density bundles *E*[w]: these are line bundles which are trivialized by a choice of g ∈ [g]. The trivializations of σ ∈ *E*[w] with respect to *ĝ* = e^{2f}g and g are related according to [σ]_{*ĝ*} = e^{wf}[σ]_g.
- By forming the weighted bundles H₀ = E[1] and H₁ = S₀² T^{*} M ⊗ E[1] one obtains a conformally invariant operator

$$\Theta: \Gamma(\mathbf{H}_0) \to \Gamma(\mathbf{H}_1):$$

the definition of Θ does not depend on the choice of $g \in [g]$.

Example 2: Metrization of projective structures

• Two torsion-free linear connections D and \hat{D} on TM are projectively equivalent iff there exists a one form $\Upsilon \in \Omega^1(M)$ with

$$\hat{D}\omega = D\omega + \Upsilon \otimes \omega + \omega \otimes \Upsilon$$

for all $\omega \in \Omega^1(M)$. Projectively equivalent connections have the same unparameterized geodesics.

- An interesting question in projective differential geometry is whether a given projective class of connections [D] contains the Levi-Civita connection of some metric.
- It was observed by [Sinjukov, Nauka (1979)] and [Mikeš, Acta Univ. Palack. Olomuc. (1996)] that this problem is governed by the equation

$$D\sigma - \frac{1}{n+1} \operatorname{sym}(\operatorname{id} \otimes \operatorname{tr}_{(1,2)}(D\sigma)) = 0$$

for $\sigma \in \Gamma(S^2 TM)$.

• This yields a projectively invariant operator between suitably weighted bundles.

- Given an overdetermined system of equations described by an operator $\Theta: \Gamma(\mathbf{H}_0) \to \Gamma(\mathbf{H}_1)$ we want to rewrite the system in *closed form*:
- We look for an equivalent first order system such that all first order derivatives of the dependent variables are given by the dependent variables themselves.
- In classical language, this means that one introduces additional variables for derivatives of σ ∈ Γ(H₀) and derives differential consequences for these variables from the equation Θ₀(σ) = 0.

We will employ the following notation:

- The 'additional variables' are encoded in an extension of the bundle H_0 to a bundle V which has a projection $V \xrightarrow{\Pi} H_0$.
- The expression of derivatives of σ ∈ Γ(H₀) in terms of the 'new variables' is done via a linear differential operator L : Γ(H₀) → Γ(V) which splits Π, i.e., Π ∘ L = id_{Γ(H₀)}.
- The resulting closed system is encoded in a linear connection $\nabla : \Gamma(\mathbf{V}) \to \Gamma(\mathcal{T}^* M \otimes \mathbf{V}).$
- Equivalence of the closed system with the equation $\Theta(\sigma) = 0$ then says that the projection Π and the splitting *L* restrict to inverse isomorphisms between the space of parallel sections of ∇ and the kernel of Θ_0 .

We then call the tuple $(\mathbf{V}, \Pi, L, \nabla)$ a geometric prolongation of Θ_0 .

If $(\boldsymbol{V},\boldsymbol{\Pi},\boldsymbol{L},\nabla)$ is a geometric prolongation of $\Theta_0,$ then

- the solution space $\text{ker}(\Theta_0)$ is finite-dimensional and bounded by $\operatorname{rank}\, \bm{V},$
- if L₀ is a differential operator of order r, then every solution is determined by its rth-order jet in a point,
- if $\Theta_0(\sigma) = 0$ and σ is not trivial, then σ is non-vanishing on an open-dense set.

Moreover, the curvature of the prolongation connection can be used to obtain obstructions for the existence of parallel sections of \mathbf{V} resp. solutions of $\Theta_0(\sigma) = 0$.

The problem of naturality/invariance

- We want to construct prolongations which respect the underlying geometric structure.
- For instance, in conformal geometry we don't want our constructions to depend on a choice of metric in the conformal class.
- This case already exemplifies that one immediately encounters great obstacles, since there is no unique Levi-Civita connection as in Riemannian geometry.
- Major advances to overcome this obstacle were achieved in the 1920s by Élie Cartan and Tracy Thomas:
- Given a conformal structure of signature (p, q), p + q = n, the latter constructed a natural bundle S of rank n + 2 endowed with a canonical connection ∇^S and compatible signature (p + 1, q + 1)-metric h. This is now called the *conformal standard tractor* bundle.

Cartan's description of conformal structures

A few years earlier, Élie Cartan had worked with what would now be considered the structure bundle \mathcal{G} of **S**: Let $G := SO(p+1, q+1), \mathfrak{g} = \mathfrak{so}(p+1, q+1)$ and define $P \subset G$ as the stabilizer of an isotropic ray in $\mathbb{R}^{p+1,q+1}$.

Definition

A Cartan geometry of type (G, P) on a manifold M is a P-principal bundle $\mathcal{G} \to M$ endowed with a Cartan connection form $\omega \in \Omega^1(\mathcal{G}, \mathfrak{g})$. ω is P-equivariant, reproduces fundamental vector fields, and provides a trivialization $T\mathcal{G} \cong \mathcal{G} \times \mathfrak{g}$.

Theorem (Cartan, 1923)

There is an equivalence of categories between conformal structures of signature (p, q) and Cartan geometries of type (SO(p + 1, q + 1), P) whose curvature satisfies a normalization condition.

- The definition of a Cartan geometry makes sense for arbitrary Lie groups G with closed subgroup P, and in the case where P is a parabolic subgroup of a semi-simple Lie group one calls (G, ω) a parabolic geometry.
- For a parabolic geometry (\mathcal{G}, ω) there is a canonical *regularity* condition which implies that it induces a geometric structure on the underlying manifold M.
- There is also a natural normalization condition on ω , which yields the class of *normal* parabolic geometries.
- The equivalent description of geometric structures as parabolic geometries is a powerful tool for natural resp. invariant constructions.

Parabolic geometries and tractor bundles

- Given an arbitrary parabolic geometry (G, ω) of type (G, P) and a G-representation V, one can build the associated *tractor bundle* V := G ×_P V.
- The Cartan connection form ω can be extended to a G-principal connection form ω' on an extended bundle and then endows V with its *tractor connection* ∇^V.
- Let C_k = Λ^k T^{*}M ⊗ V. Then Γ(C_k) = Ω^k(M, V) and one can form the *twisted de-Rham sequence* of the tractor connection ∇^V,

$$\Gamma(\boldsymbol{C}_0) \stackrel{\nabla^{\mathcal{V}}}{\rightarrow} \Gamma(\boldsymbol{C}_1) \stackrel{\mathrm{d}^{\nabla}}{\rightarrow} \Gamma(\boldsymbol{C}_2) \stackrel{\mathrm{d}^{\nabla}}{\rightarrow} \cdots$$

• For a parabolic geometry there is a canonical Lie algebra differential ∂^* called the *Kostant codifferential*. It gives rise to a complex

$$\mathbf{C}_0 \stackrel{\partial^*}{\leftarrow} \mathbf{C}_1 \stackrel{\partial^*}{\leftarrow} \mathbf{C}_2 \stackrel{\partial^*}{\leftarrow} \cdots$$

M. Hammerl (University of Vienna)

The BGG-sequence

- The differential ∂* yields bundles Z_k = ker ∂* of cycles, B_k = im ∂* borders and homologies H_k = Z_k/H_k, and one has the canonical projections Π_k : Z_k → H_k.
- Now the BGG-sequence is formed by natural differential operators

$$\Gamma(\boldsymbol{H}_0) \stackrel{\Theta_0}{\rightarrow} \Gamma(\boldsymbol{H}_1) \stackrel{\Theta_1}{\rightarrow} \Gamma(\boldsymbol{H}_2) \stackrel{\Theta_2}{\rightarrow} \cdots$$

It was presented in [Čap-Slovǎk-Souček, Ann. of Math. (2001)] and a simplified construction was obtained in [Calderbank-Diemer, (J. Reine u. Angew. Math.) (2001)]

 The main technical step in the development of the BGG-machinery is the construction of the canonical BGG-splitting-operators
 L_k : Γ(H_k) → Γ(Z_k).

The first BGG-operator

• We are mostly interested in the first BGG-operator $\Theta_0 : \Gamma(\mathbf{H}_0) \to \Gamma(\mathbf{H}_1)$, defined via the composition $\Pi_1 \circ \nabla^V \circ L_0$,

$$\begin{array}{c|c} \operatorname{im} (L_0) \xrightarrow{\nabla^V} & \Gamma(\mathbf{Z}_1) \\ & & \downarrow^{\Pi_1} \\ & & \downarrow^{\Pi_1} \\ & \Gamma(\mathbf{H}_0) \xrightarrow{\Theta_0} & \Gamma(\mathbf{H}_1) \end{array} \end{array}$$

- If s ∈ Γ(V) is ∇^V-parallel, then automatically Θ₀(Π₀(s)) = 0. Thus, parallel sections project into ker Θ₀.
- (V, Π₀, L₀, ∇^V) is however not a geometric prolongation for general representations V, since the converse does not hold: If σ ∈ ker Θ₀, then ∇^V(L₀(σ)) need not necessarily vanish, but may lie in Γ(B₁) = im ∂*.

Examples of first BGG-operators for conformal structures

- If one takes the standard tractor bundle **S** of a conformal structure (M, [g]) one obtains the operator governing Einstein rescalings discussed in the first example.
- If (M, [g]) is a conformal spin structure with spin bundle Δ and Clifford symbol γ ∈ Γ(T*M⊗ End(Δ)), one also has a spin tractor bundle Σ. Let Ø : Γ(Δ) → Γ(Δ) be the Dirac operator. The first BGG-operator of Σ is the *twistor operator*

$$\Gamma(\mathbf{\Delta}) \to \Gamma(T^* M \otimes \mathbf{\Delta}),$$
$$\chi \mapsto D\chi + \frac{1}{n} \gamma \otimes \mathcal{D}\chi$$

Solutions of this equation are known as twistor spinors.

• Both cases are very special: parallel sections of the tractor connection are already in 1:1-correspondence with solutions, which reflects the fact that the modelling representations are still very simple.

M. Hammerl (University of Vienna)

Examples of first BGG-operators for conformal structures

 For an exterior power V = Λ^{k+1}S, k ≥ 1 one obtains the operator governing conformal Killing k-forms,

$$\Theta_{0}: \Omega^{k}(M) \to \Gamma(T^{*}M \otimes \Lambda^{k}T^{*}M),$$

$$\Theta_{0}(\sigma) = D\sigma - \operatorname{alt}_{(1,\cdots,k+1)}D\sigma$$

$$- \frac{k}{n-k+1}\operatorname{alt}_{(2,\cdots,k+1)}(g \otimes (\operatorname{tr}_{(1,2)}D\sigma)).$$

• Already in this case a solution of $\Theta_0(\sigma)$ need not satisfy that also $\nabla^V(L_0(\sigma)) = 0$. In fact, this imposes additional equations on a conformal Killing form σ , and solutions to this extended system have been termed *normal* conformal Killing forms by [Leitner, Rend.Circ.Mat.Pal. (2005)].

- For BGG-operators appearing for parabolic geometries whose structure group *G* has 1-graded Lie algebra a prolongation was constructed by [Branson-Čap-Eastwood-Gover, Int. Journ. Mat. (2006)]. This works also for semilinear equations with prescribed symbol; however, it doesn't respect invariance of the original equation. A generalization of this approach to higher gradings is current work of K. Neusser.
- Another result was obtained for the prolongation of the equations for infinitesimal automorphisms of parabolic geometries, [Čap, JEMS (2008)]: The adjoint tractor bundle AM := G ×_P g together with an explicit modification of the adjoint tractor connection by curvature is shown to describe the infinitesimal automorphisms of a parabolic geometry (G, ω)

- For specific equations invariant prolongations have been found by direct calculations; For the equation governing conformal Killing forms above, this was done by [Gover-Šilhan, Diff. Geom. Appl. (2008)]. This approach soon becomes computationally impossible.
- The solution to the prolongation problem for BGG-operators which we are going to describe will work for arbitrary regular parabolic geometries and will be natural. Explicit calculations can be done by an algorithm:

Theorem (Natural Prolongation)

Let V be a tractor bundle for a regular parabolic geometry. There exists a natural connection $\tilde{\nabla}$ on V such that

- The BGG-construction can still be carried out for $\tilde{\nabla}$ and yields BGG-splitting operators \tilde{L}_k and BGG-operators $\tilde{\Theta}_k$.
- ② The first BGG-splitting operator and first BGG-operator for *∇*coincide with the corresponding objects for *∇^V*.

The diagram

$$\begin{array}{c} \operatorname{im} L_{0} \xrightarrow{\nabla} \Gamma(\mathbf{Z}_{1}) \\ \downarrow_{0} & \qquad \tilde{L}_{1} \\ \Gamma(\mathbf{H}_{0}) \xrightarrow{\Theta_{0}} \Gamma(\mathbf{H}_{1}) \end{array}$$

commutes, and this implies that $(\mathbf{V}, \Pi_0, L_0, \tilde{\nabla})$ is a natural geometric prolongation of Θ_0 .

 $\tilde{\nabla}$ is unique under a natural condition and is called the prolongation connection of Θ_0 .

Natural prolongation

- This is shown via a modification procedure for tractor connections, which will yield the required connection in the form ∇̃ = ∇^V + Ψ, Ψ ∈ Ω¹(M, End(V)).
- One first imposes conditions on the modification map Ψ which yield a class of modified connections for which the BGG-construction can still be carried out and produces the same first BGG-(splitting)-operator as the tractor connection on **V**.
- Next, one imposes a natural condition on the curvature *R*_Ψ ∈ Ω²(*M*, End(**V**)) of ∇̃ = ∇^V + Ψ which is seen to imply commutativity of the first BGG-diagram.
- Now there is an inductive algorithm which yields Ψ in terms of geometric data of the underlying structure after an 'unnatural' choice. For instance, in conformal geometry, this produces the desired Ψ in terms of Riemannian data of a metric g in the conformal class.
- Finally, one observes that this Ψ is actually unique, and thus the result doesn't depend on any special choices during the construction.

One immediately obtains:

Corollary

Let V be a G-representation and $(\mathbf{V}, \tilde{\nabla}, \Pi_0, L_0)$ the geometric prolongation of Θ_0 .

- The space ker $\Theta_0 \subset \mathcal{H}_0$ has rank $\leq \dim V$.
- 2 Every σ ∈ ker Θ₀ is determined by its r-jet at some point, with r ∈ N only depending on the representation V.
- If σ ∈ ker Θ₀ is not globally vanishing, its singularity set σ⁻¹({0}) has an open dense complement.

Example: Prolongation of the equation governing projective metrizability

A class of projectively equivalent connections [D] on an n-manifold is equivalently described as a parabolic geometry (G, ω) of type (SL(n+1), P) with P the stabilizer of a line in ℝⁿ⁺¹. The tractor bundle V = G ×_P S²ℝⁿ⁺¹ yields the first BGG-operator

$$\Theta_0: \Gamma(S^2 TM) \to \Gamma(T^*M \otimes S^2 TM)$$
$$\Theta_0(\sigma) = D\sigma - \frac{1}{n+1} \operatorname{sym}(\operatorname{id} \otimes \operatorname{tr}_{(1,2)}(D\sigma))$$

which governs the existence of geodesically equivalent metrics.

After choice of a connection D ∈ [D] the tractor bundle V can be written as a direct sum S²TM ⊕ TM ⊕ C[∞](M), and a section s ∈ Γ(V) will be written

$$[\boldsymbol{s}]_{D} = \begin{pmatrix} \rho \\ \mu \\ \sigma \end{pmatrix} \in \begin{pmatrix} \mathcal{C}^{\infty}(M) \\ \Gamma(TM) \\ \Gamma(S^{2}TM) \end{pmatrix}$$

M. Hammerl (University of Vienna)

Natural prolongations of BGG-operators

Example: Prolongation of the equation governing projective metrizability

• One calculates the splitting operator $L_0: \Gamma(S^2TM) \to \Gamma(\mathbf{V})$ as

$$\sigma \mapsto \begin{pmatrix} \frac{1}{n(n+1)} \operatorname{tr}_{(1,3)(2,4)} D^2 \sigma + \frac{1}{2n} \operatorname{tr}_{(1,3)(2,4)} \mathsf{P} \otimes \sigma \\ -\frac{1}{n+1} \operatorname{tr}_{(1,2)} D \sigma \\ \sigma \end{pmatrix}$$

• The explicit form of the prolongation connection is

$$\tilde{\nabla} \begin{pmatrix} \rho \\ \mu \\ \sigma \end{pmatrix} = \begin{pmatrix} D\rho - 2\operatorname{tr}_{(2,3)} \mathsf{P} \otimes \mu - \frac{4}{n}\operatorname{tr}_{(1,4)(3,5)} A \otimes \sigma \\ D\mu - 2\operatorname{tr}_{(2,3)} \mathsf{P} \otimes \sigma + \rho\operatorname{id} + \frac{2}{n}\operatorname{tr}_{(2,5)(4,6)} C \otimes \sigma \\ D\sigma + \operatorname{sym}(\operatorname{id} \otimes \mu) \end{pmatrix}.$$

Here $A \in \Gamma(T^*M \otimes \Lambda^2 T^*M)$ is the *Cotton-York* tensor of *D* and $C \in \Gamma(\Lambda^2 T^*M \otimes \text{End}(TM))$ the *Weyl-curvature*.

• This prolongation agrees with the one found by direct calculation in [Eastwood-Matveev, IMA (2008)]

Conformal structures with G₂-holonomy

- Let (M, [g]) be a conformal structure of signature (2, 3).
- (M, [g]) can be described as a parabolic geometry $(\tilde{\mathcal{G}}, \tilde{\omega})$ of type $(SO(3, 4), \tilde{P})$, with \tilde{P} the stabilizer of an isotropic ray in $\mathbb{R}^{3,4}$. The standard tractor bundle of [g] is given by $\mathbf{S} = \tilde{\mathcal{G}} \times_{\tilde{P}} \mathbb{R}^7$ and is endowed with a canonical (3, 4)-metric **h**.
- We define the conformal holonomy Hol([g]) := Hol(∇^S) ⊂ SO(3,4) and are interested in the case where Hol([g]) ⊂ G₂:
- G_2 shall be the the real Lie group with fundamental group \mathbb{Z}_2 and Lie algebra the split real form of the exceptional complex Lie algebra $\mathfrak{g}_2^{\mathbb{C}}$. It is well known that one can realize $G_2 \subset SO(3,4)$ as the stabilizer of a $\Phi \in \Lambda^3 \mathbb{R}^7$.

G₂-holonomy and generic distributions

- Conformal structures with G₂-holonomy are strongly related with *generic distributions* on a 5-manifold *M*:
- Let D ⊂ TM be a subbundle of constant rank 2. We say that D is a generic rank 2-distribution if Lie brackets [ξ, η] of sections ξ, η ∈ Γ(D) span a subbundle of constant rank 3 and TM is spanned by Lie brackets of the form [ξ, [η, ζ]], ξ, η, ζ ∈ Γ(D).
- It is a classical result by [Cartan, 1910] that a generic distributions $\mathbf{D} \subset TM$ can be described as a parabolic geometry (\mathcal{G}, ω) of type (\mathcal{G}_2, P) , with $P = \mathcal{G}_2 \cap \tilde{P}$.
- Surprisingly, it was only observed recently, [Nurowski, J.Geom.Phys. (2005)], that the inclusion G₂ → SO(3, 4) can be used to canonically associate a conformal class of (2, 3)-metrics [g]_D to a generic distribution **D**.

G_2 -holonomy and generic distributions

- This is a generalized Fefferman concstruction: If (G, ω) is the Cartan geometry describing the distribution **D**, one obtains a conformal geometry (G̃, ω̃), where G̃ := G ×_P P̃ and ω̃ is the canonically extended form.
- The construction D → [g]_D is functorial. To obtain strong relations between [D] and [g]_D one needs in addition that the normalization conditions on ω imply the corresponding conditions on ω̃. This was done by [Sagerschnig, 2008 (Thesis)].
- This implies that the induced conformal structures have holonomy contained in *G*₂, and in joint work [M.H.-Sagerschnig, SIGMA (2009)] the converse construction was presented:

Theorem

Let (M, [g]) be a conformal structure of signature (2, 3) with $Hol([g]) \subset G_2$. Then [g] is canonically associated to a generic rank two distribution **D**.

Characterization of G_2 -holonomy in terms of normal conformal Killing 2 forms

- Recall that G₂ was realized in SO(3, 4) as the stabilizer of a Φ ∈ Λ³ℝ⁷. This is easily seen to provide a parallel section Φ of Λ³S, which then yields a normal conformal Killing 2-form φ ∈ Γ(Λ² T*M ⊗ E[3]) for (M, [g]).
- The characterization of G_2 -holonomy in terms of a normal conformal Killing 2-form ϕ is a bit technical, since one has to find good conditions on ϕ which imply that its corresponding tractor object is of the right orbit type. It turns out that one has to demand that ϕ is locally decomposable and satisfies the genericity condition $\phi \wedge \mu \wedge \rho \neq 0$ for

$$\begin{split} \mu &:= \operatorname{tr}_{(1,2)} D\phi \in T^*M\\ \rho &:= +2 \triangle \phi + 4\operatorname{alt}(\operatorname{tr}_{(1,3)} DD\phi) + 3\operatorname{alt}(\operatorname{tr}_{(2,3)} DD\phi)\\ &+ 24\operatorname{alt}(\operatorname{tr}_{(1,3)} P \otimes \phi) - 6\operatorname{tr}_{(1,2)} P \otimes \phi \in \Lambda^2 T^*M. \end{split}$$

- Another way to obtain a conformal object from **D** is to use the realization of G_2 in the orthogonal spin group of signature (3,4): Let $\Delta_{\mathbb{R}}^{3,4}$ be the real 8-dimensional spin representation of $\mathrm{Spin}(3,4)$.
- There is a unique signature (4, 4) symmetric bilinear form on $\Delta_{\mathbb{R}}^{3,4}$, and it is shown by [Kath, 1999 (Habil.)] that one can present G_2 as the isotropy group of an arbitrary non-null $X \in \Delta_{\mathbb{R}}^{3,4}$.
- This implies in particular that the induced conformal structure of an (orientable) generic distribution always carries a canonical spin structure.
- We can thus form a parallel spin tractor X ∈ Γ(Σ) over M; and with Δ_R the real spin bundle of (M, [g]), we can project X to a twistor spinor χ ∈ Γ(Δ_R ⊗ ε[¹/₂]).

Characterization of G_2 -holonomy in terms of twistor spinors

- It turns out that characterization via a twistor spinor is very simple: The real 4-dimensional spin representation $\Delta_{\mathbb{R}}^{2,3}$ carries a non-degenerate skew-symmetric bilinear form which can be related to the symmetric (4, 4)-form on $\Delta_{\mathbb{R}}^{3,4}$.
- Now via the first BGG-splitting operator a twistor spinor $\chi \in \Gamma(\Delta_{\mathbb{R}} \otimes \mathcal{E}[\frac{1}{2}])$ splits to a parallel spin tractor $\mathbf{X} \in \Gamma(\Sigma)$ and the condition of \mathbf{X} being non-null can be related to a condition on χ :
- Let $ot\!\!D : \Gamma(\Delta_{\mathbb R}) \to \Gamma(\Delta_{\mathbb R})$ be the Dirac operator, then

Theorem

Let (M, [g]) be a conformal spin manifold of signature (2, 3) and ω the skew-symmetric form on the 4-dimensional real spin bundle $\Delta_{\mathbb{R}}$. Then [g] is induced from a generic rank 2-distribution iff there is a twistor spinor $\chi \in \Gamma(\Delta_{\mathbb{R}} \otimes \mathcal{E}[\frac{1}{2}])$ with non-vanishing $\omega(\chi, \mathcal{D}\chi)$.

Decomposition of infinitesimal automorphisms

- We can relate the symmetries of a generic distribution with those of the induced conformal structure:
- A vector field $\xi \in \mathfrak{X}(M)$ is a symmetry of **D** if $\mathcal{L}_{\xi}(\eta) \in \Gamma(\mathbf{D})$ for all $\eta \in \Gamma(\mathbf{D})$.
- A vector field ξ ∈ 𝔅(M) is said to be a conformal Killing field if it preserves the conformal structure [g]_D: for every representative metric g there is an f ∈ C[∞](M) with L_ξg = fg.
- Since the construction D → [g]_D is functorial, one has an inclusion of symmetries of D into the conformal Killing fields, we write

 $\mathsf{sym}(\mathbf{D}) \hookrightarrow \mathrm{cKf}([g]_{\mathbf{D}}).$

Decomposition of infinitesimal automorphisms

- It follows from the description of infinitesimal automorphisms of parabolic geometries [Čap, JEMS (2008)] that the first BGG-operators of the adjoint tractor bundles $\mathcal{AM} := \mathcal{G} \times_P \mathfrak{g}_2$ and $\mathcal{\widetilde{AM}} := \mathcal{\widetilde{G}} \times_{\tilde{P}} \mathfrak{so}(3, 4)$ describe the symmetries of **D** and the conformal Killing fields of [g].
- Now as a G₂-module, so(3,4) decomposes into ℝ^{3,4} ⊕ g₂. This implies a decomposition of the conformal adjoint tractor bundle ÃM into S and AM.
- This decomposition is compatible with the prolongation connections on the respective bundles. Via explicit formulas for BGG-splitting operators this yields the following decomposition theorem:

Proposition (Decomposition of conf. Killing fields via a twistor spinor)

Let $[g]_{\mathbf{D}}$ be the conformal (2,3)-structure induced by a generic 2-distribution $\mathbf{D} \subset TM$. Every conformal Killing field decomposes into a symmetry of the distribution \mathbf{D} and another part corresponding to an Einstein scale (which may have a singularity set). Via the canonical twistor spinor $\chi \in \Gamma(\mathbf{\Delta}_{\mathbb{R}} \otimes \mathcal{E}[\frac{1}{2}])$ this decomposition can be made explicit:

 An Einstein scale σ ∈ C[∞](M) corresponds to the Killing field ξ ∈ 𝔅(M) defined by the relation

$$g(\xi,\eta) = \omega(\frac{2}{5}\sigma \not\!\!D \chi + \gamma(D\sigma)\chi,\gamma(\eta)\chi)$$

for all $\eta \in \mathfrak{X}(M)$.

The Einstein scale part σ ∈ C[∞](M) of a Killing field ξ ∈ 𝔅(M) is given by

$$\sigma = \omega(\frac{4}{5}\gamma(\xi)\not\!\!D\chi + \gamma(D\xi)\chi,\chi).$$