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Holonomy of Cartan connections

Let (G, ω) be a Cartan geometry of type (G ,P) on M: G is a Lie
group, and P ⊂ G a closed subgroup; G → M is a P-principal
bundle and ω ∈ Ω1(G, g) is a Cartan connection form: ω is
P-equivariant, reproduces fundamental vector fields and provides
an isomorphism TG = G × g.

To define the holonomy of the Cartan geometry (G, ω) we need an
auxiliary principal connection form:

For this we extend Ĝ = G ×P G , which is now a G - principal
bundle over M and canonically extends ω to a G -principal
connection form ω̂ ∈ Ω1(Ĝ, g).
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Holonomy of Cartan connections

For any given u ∈ Ĝ the holonomy group of ω̂ is Holu(ω̂) ⊂ G , and
if we forget about the base-point u ∈ Ĝ we obtain the holonomy
group of ω̂ up to G -conjugacy, denoted by Hol(ω̂).We define this
to be the holonomy of the original Cartan connection form:

Hol(ω) := Hol(ω̂).

If Hol(ω) 6= G we have reduced holonomy. Interesting situations
with reduced holonomy are often those due to the existence of
some parallel section:
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Parallel sections of tractor bundles

Since (Ĝ, ω̂) is a G -principal bundle together with a principal
connection form, for every G -representation V one obtains an
associated bundle V together with an induced linear connection
∇V .
One has V = Ĝ ×G V = G ×P V and says that V is a tractor
bundle together with its canonical tractor connection ∇V .

A section of V is equivalent to a G -equivariant map s : Ĝ → V ,
and this section is parallel if and only if for every parallel curve
c : [0, 1]→ Ĝ one has that s ◦ c : [0, 1]→ V is constant.
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G - and P-types of parallel sections

If we assume the manifold M to be connected any two fibers of the
G -bundle Ĝ → M can be joined by a parallel curve. Thus for
parallel s the full image s(Ĝ) ⊂ V is the same as the image s(Ĝx)
of an arbitrary fiber, and by G -equivariancy of s it follows that this
is some G -orbit O ⊂ V . We call O the G -type of s.

Since the Cartan bundle G canonically includes into the extended
bundle Ĝ there is also an additional point-wise data: For a given
x ∈ M we have the P-fiber Gx ⊂ Ĝx and can also form
s(Gx) ⊂ O ⊂ V . This is a well-defined P-orbit in O that depends
on x . We say that s(Gx) ∈ P\O is the P-type of s at x ∈ M.
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G - and P-types of parallel sections

This yields a decomposition of the manifold M: For given
ᾱ = P · α ∈ P\O we define Mᾱ the set of all points in M of given
P-type ᾱ, and then

M =
⋃

ᾱ∈P\O

Mᾱ.

We now discuss this decomposition in a simple case in projective
geometry:
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Example: A parallel metric on the projective standard
tractor bundle

Let M be a connected smooth n-manifold and [D] a projective
class of torsion-free affine connections on M, i.e., a projective
structure. This is described as a Cartan geometry (G, ω) of type
(SL(n + 1),P), with P the stabilizer of a line in Rn+1.

The standard tractor bundle of (M, [D]) is T = G ×P Rn+1, and
the preserved line in Rn+1 gives a well-defined (projectively
weighted) section X of T [1]

Assume that h ∈ Γ(S2T ∗) is a parallel non-degenerate symmetric
bilinear form on T of signature (p, q). Then the G -type of h is an
SL(n + 1)-orbit O ⊂ S2T ∗, namely the homogeneous space of all
(p, q)-signature inner products on Rn+1.
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Example: A parallel metric on the projective standard
tractor bundle

As a P-space, O decomposes into three pieces:
P\O = P\O+ ∪ P\O0 ∪ P\O−: P\O+ consists of those inner
products in O which are positive on the P-preserved line in Rn+1,
P\O− are those which are negative and with respect to the inner
products in P\O0 the preserved line is isotropic.

The corresponding P-type decomposition M = M+ ∪M0 ∪M− is
determined by the sign of the function σ := h(X,X).
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Holonomy-reductions of type O

Back in the general situation, where (G, ω) is an arbitrary Cartan
geometry of type (G ,P), let O be a G -homogeneous space, which
need not necessarily sit inside some G -representation. The
non-linear tractor bundle G ×P O inherits a natural connection
from ω and it is useful to define a holonomy reduction of ω in this
setting:

Definition

A holonomy reduction of (G, ω) of type O is a G -equivariant map
s : Ĝ → O which is parallel with respect to the induced connection
on G ×P O.
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P-type decomposition on the homogeneous model

We now ask what a holonomy reduction of type O and its induced
decomposition look like on the homogeneous model M = G/P.

The extended Cartan bundle Ĝ = G ×P G is canonically trivialized
to G/P × G via the map

G/P × G → G ×P G

(gP, g ′) 7→ [g , g−1g ′]P .

Then, if s : Ĝ → O is a G -equivariant map, this trivializes to a
map s : G/P × G → O, and it is easy to see that s is parallel if
and only if this map is constant in G/P. In particular, by
G -equivariancy, s is completely determined by α = s(eP, e) ∈ O.

M. Hammerl (Univ. Vienna) Holonomy-reductions of Cartan connections



Holonomy of Cartan connections and curved orbit decomposition
Comparison theorem for holonomy reduced Cartan geometries

Remarks and applications

P-type decomposition on the homogeneous model

We denote H = Gα ⊂ G the isotropy group of α ∈ O. Then
O = G/H and s is given by

s : G/P × G → G/H, (gP, g ′) 7→ (g ′)−1H.

For a point gP ∈ G/P we have ĜgP ⊃ GgP = (gP, gP) and thus

s(GgP) = Pg−1H ∈ P\O = P\G/H.

M. Hammerl (Univ. Vienna) Holonomy-reductions of Cartan connections



Holonomy of Cartan connections and curved orbit decomposition
Comparison theorem for holonomy reduced Cartan geometries

Remarks and applications

P-type decomposition on the homogeneous model

The map

G/P → P\O,
gP 7→ P − type at gP

thus factorizes to the isomorphism

H\G/P → P\O = P\G/H,

HgP 7→ Pg−1H

between double co-set spaces.

This shows that MPg−1H = HgP/P = H · (gP/P) ⊂ G/P. So the
points in G/P of type ᾱ = Pg−1H ∈ P\O are exactly those in the
H-orbit of gP/P ∈ G/P.
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Comparison theorem

Theorem

Let (G → M, ω) and (G′ → M ′, ω′) be Cartan geometries of type
(G ,P) which have given holonomy reductions of type O. Assume,
for some ᾱ ∈ P\O, that there are points x ∈ Mᾱ, x ′ ∈ M ′ᾱ. Then
there exists a local diffeomorphism ϕ : N → N ′ between
neighborhoods N of x and N ′ of x ′ with ϕ(x) = x ′ which maps
Mβ̄ ∩ N ′ to M ′

β̄
∩ N ′ for all β̄ ∈ P\O.

This says that the P-type of s is locally determined by its P-type
at one point.
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Sketch of proof of comparison theorem:
adapted normal coordinates

The proof is based on adapted normal coordinates. Take some
point u ∈ Gx ⊂ Ĝx with s(u) = α ∈ O. To form normal
coordinates for the Cartan geometry we choose some complement
g− ⊂ g to p ⊂ g. Denote, for X ∈ g−, by ζX ∈ X(G) the vector
field that is defined by ζXu = ω−1

u (X ). Let π : Ĝ → M denote the
surjective submersion of the principal bundle.

Let Ψ : g− → G, Ψ(X ) := FlζX1 (u), i.e., we follow the flow of the
vector field ζX , starting at u to time 1. Then it is easy to see that
the map ψ = π ◦Ψ defines a local diffeomorphism between suitable
neighborhoods W ⊂ g− and N ⊂ M of 0 ∈ g− resp. x ∈ M.
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Sketch of proof of comparison theorem:
adapted normal coordinates

Now we define the local section τ : N → Ĝ,
τ(ψ(X )) := Ψ(X ) · exp(−X ). Then the radial curves

c : R→ Ĝ,
t 7→ τ(tX ) = FlXt (u) · exp(−tX )

are parallel with respect to ω̂.

In particular, since s : Ĝ → O is constant on parallel curves, it
follows that for all X ∈W ⊂ g− one has
s(τ(X )) = s(τ(0)) = s(u) = α ∈ O. Then by equivariancy
s(Ψ(X )) = s(τ(X ) · exp(X )) = exp(−X ) · α, and therefore
the P-type of s at ψ(X ) equals P · exp(−X ) · α.
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Consequences of the comparison theorem

The comparison theorem tells us that the local structure of the
P-type decomposition of type O can already be seen on the
homogeneous model:

Choosing the model space M ′ = G/P and the map
s ′ : G/P × G → O, s ′((gP, g ′)) = g ′−1 · α we have computed that
the P-type decomposition of G/P is then simply the H = Gα-orbit
decomposition of G/P.

We therefore obtain:

Corollary

For all ᾱ ∈ P\O, Mᾱ is either empty or an initial submanifold of
M that is locally diffeomorphic to Gα/(Gα ∩ P).

M. Hammerl (Univ. Vienna) Holonomy-reductions of Cartan connections



Holonomy of Cartan connections and curved orbit decomposition
Comparison theorem for holonomy reduced Cartan geometries

Remarks and applications

The reduced Cartan geometries on curved orbits

Gα/Gα ∩ P is the homogeneous model of Cartan geometries of
type (Gα,Gα ∩ P). This Cartan geometric structure carries over to
the curved orbit Mᾱ:

Theorem

Let α ∈ P\O be such that Mᾱ 6= ∅. Then Mᾱ ⊂ M carries in a
natural way a Cartan geometry of type (Gα,Gα ∩ P) that is
induced from the holonomy reduced Cartan geometry (G → M, ω).

The remaining work in specific cases is to see what the
normalization conditions that were employed for the original
Cartan connection form, respectively its curvature, imply for the
reduced structure.
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Projective structure with a tractor metric

In our example of a projective structure (M, [D]) endowed with a
parallel tractor metric h ∈ Γ2(S2T ∗M) we have a global G -type
O ⊂ S2Rn+1∗ which is the space of all signature (p, q) inner
products on Rn+1. In particular, for all h ∈ O, we have
Gh = SO(p, q) ⊂ SL(n + 1).

Denote the line in Rn+1 that is stabilized by the parabolic
subgroup P ⊂ G by RX . For h ∈ O with h(X ,X ) > 0 we then
have Gh ∩ P = Ph = SO(p − 1, q).

It follows that M+ = {x ∈ M : σ(x) > 0} (with σ = h(X,X)) is
endowed with a Cartan geometry of type (SO(p, q),SO(p − 1, q).
This describes a signature (p − 1, q) metric on M+, and the
normalization condition of the projective Cartan connection ω
respectively its curvature imply that this metric is Einstein.
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Projective structure with a tractor metric

Analogously, M− = {x ∈ M : σ(x) < 0} carries an Einstein metric
of signature (p, q − 1).

For h ∈ O with h(X ,X ) = 0 we have that Gh ∩ P = Ph is the
parabolic subgroup of SO(p, q) that preserves an isotropic line.
Therefore the hypersurface M0 = σ−1({0} carries a conformal
structure of signature (p − 1, q − 1).

Since the projective structure (M, [D]) is an instance of a parabolic
geometry, parallel sections of the tractor bundle
S2T ∗ = G ×P S2(Rn+1)∗ are equivalent to normal solutions of the
corresponding first BGG-equation on σ.
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Zero-sets of natural quotients

When s is a parallel section of a tractor bundle V = G ×P V and
W ⊂ V is some P-subbundle, we can form W = G ×P V and take
the quotient σ = s/W.

Let O ⊂ V be the G -type of s. Now since W is P-invariant we see
that the possible P-types of s, which are P\O, decompose into

P\O0 := P\(W ∩ O)

and some complement.

It is easy to see that σ = s/W vanishes at some x ∈ M if and only
if the P-type of s at x is contained in P\O0. In particular it follows
from the comparison theorem that the local structure of the zero
set of σ is already visible on the homogeneous model G/P.
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Relation to normal BGG-solutions

In the case where G is a semi-simple Lie group and P ⊂ G is a
parabolic subgroup, the BGG-machinery of [Čap-Slovak-Souček]
relates sections of a tractor bundle V = G ×P V with solutions of
an overdetermined system Θ0(σ) = 0 on a natural quotient
σ = s/V1 of s. The normal solutions of Θ0(σ) = 0 are in
1 : 1-correspondence with parallel sections s ∈ Γ(V).

It follows that

1 The structure of the zero set σ−1({0}) of normal solutions of
Θ0(σ) = 0 is already completely visible on the homogeneous
model G/P.

2 The zero set decomposes into a union of curved orbits, each
of which carries a canonical (reduced) Cartan geometry.
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Global holonomy reductions for H ⊂ G acting transitively

Some interesting special cases of holonomy reductions of type O
occur when P\O only consists of one point. If H = Gα, α ∈ O is
an isotropy group of that reduction, the duality
P\O = P\G/H ∼= H\G/P gives the equivalent condition that H
acts transitively on G/P. In this case there is a global reduction
from the Cartan geometry (G ,P) on M to a Cartan geometry of
type (H,H ∩ P).
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Holonomy reductions of Fefferman-type spaces

Let O be the set of all orthogonal complex structures on
R2p+2,2q+2. With J ∈ O one has H = GJ = U(p + 1, q + 1), and
this acts transitively on SO(2p + 2, 2q + 2)/P. It was shown by
[Čap-Gover, Leitner], that conformal holonomy
Hol(ω) ⊂ U(p + 1, q + 1) already implies locally that
Hol(ω) ⊂ SU(p + 1, q + 1).

Given the parallel orthogonal complex structure, the corresponding
normal BGG-solution is a light-like conformal Killing field on
(M, [g ]). The resulting reduced Cartan geometry locally factorizes
to a CR-structure, and the conformal geometry is completely
determined by that CR-structure via the classical
Fefferman-construction.
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Holonomy reductions of Fefferman-type spaces

Let O be the set of all non-isotropic spinors in the 8-dimensional
real spin representation ∆3,4

R of Spin(3, 4). The stabilizer of such a
spinor provides an embedding of G2 into Spin(3, 4), and since G2 is
seen to act transitively on Spin(3, 4)/P there is again only a singe
P-type.

Given the non-isotropic parallel spinor on the conformal manifold
(M, [g ]), the corresponding first BGG-solution is a twistor spinor χ.
The resulting holonomy reduction describes the geometry of a
generic rank 2-distribution, which is formed by kerχ ∩ ker g .

This is again an instance of a Fefferman-type construction
[H.-Sagerschnig] and the original conformal structure is completely
determined by this rank 2-distribution.

M. Hammerl (Univ. Vienna) Holonomy-reductions of Cartan connections


	Holonomy of Cartan connections and curved orbit decomposition
	Comparison theorem for holonomy reduced Cartan geometries
	Remarks and applications

