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CHAPTER 1

Introduction

The main result of this work is a natural prolongation procedure for cer-
tain overdetermined systems arising for parabolic geometries. The overde-
termined linear differential operators which describe the systems in question
are the first BGG-operators, i.e., the first operators appearing in BGG-
sequences. These operators are natural with respect to the underlying geo-
metric structure on the manifold, and the same is true for the resulting
equations. A main feature of our method is that also the prolongation con-
nection we construct is natural.

A simple and interesting case in which one can illustrate both problem
and solution comes from conformal geometry:

1.1. An example from conformal geometry: the prolongation of
the conformally invariant operator governing (almost)

Einstein scales

A conformal structure on a manifold M is an equivalence class [g] of
pseudo-Riemannian metrics, where two metrics g and ĝ are equivalent if and
only if there is a function f ∈ C∞(M) such that ĝ = e2fg. The simplest way
to explain what a conformally invariant operator is, is to give an example:
The formula for the operator will at first depend on the choice of metric
g ∈ [g], resp. its Levi-Civita connection D, and maps smooth functions on
M into trace-free symmetric bilinear forms on M :

Θg
0 : C∞(M)→ Γ(S2

0T
∗M), (1)

σ 7→
(
DDσ + σP

)
0
. (2)

Here

P = P(g) =
1

n− 2
(Ric(g)− Sc(g)

2(n− 1)
g) ∈ Γ(S2T ∗M)

is the Schouten tensor of g, which is a trace modification of Ricci curvature
Ric = Ric(g) by scalar curvature Sc = Sc(g). Subscript 0 takes the trace-free
part.

Now it is well known ([BEG94]), and we will check this in chapter 6,
that Θg

0 describes the equation governing Einstein scales: for σ ∈ C∞(M)
nowhere vanishing one has Θg

0σ = 0 if and only if σ−2g is Einstein, i.e.,
iff Ric(s−2g) is purely trace. Moreover, the operator Θg

0 is conformally
covariant between C∞(M) and Γ(S2

0T
∗M): if one switches to another metric

ĝ = e2fg in the conformal class,

Θĝ
0 ◦m(ef ) = m(ef ) ◦Θg

0, (3)

where m(ef ) is simply the multiplication operator with ef .

3



4 1. INTRODUCTION

If we want an operator which doesn’t depend on a choice of metric we
need to introduce the conformal density bundles: For every w ∈ R, E[w] is
a line bundle which is trivialized canonically after a choice of a g ∈ [g]. Let
ĝ = e2fg. If [σ]g is the trivialization of a section σ ∈ E [w] := Γ(E[w]), then
[σ]ĝ = ewf [σ]g. From the definition it is clear that one can use E[2] to define
a conformal metric

g ∈ Γ(S2T ∗M ⊗E[2])

which trivializes to g for g ∈ [g]. Its inverse is denoted by g−1 ∈ Γ(S2TM⊗
E[−2]). We will also regard g and g−1 as isomorphisms; e.g., for ϕ ∈
Ω1(M), g−1(ϕ) ∈ Γ(TM ⊗E[−2])

To obtain a conformally invariant operator from Θg
0 we will tensor the

source and target spaces of Θg
0 by suitable density bundles:

H0 := E[1],

H1 := S2
0T
∗M ⊗E[1].

Then (3) is seen to be equivalent to Θg
0 defining the same operator

Θ0 : H0 := Γ(H0)→ Γ(H1) =: H1

for every g ∈ [g], and we say that Θ0 is a conformally invariant operator.
In general, a conformally invariant operator is obtained by a universal

formula in the Levi-Civita connection, the metric, the curvature, and the
volume form, possibly followed by contractions, such that one obtains a
well-defined operator between natural bundles for the conformal structure.

The example of the operator for Einstein scales above has another in-
teresting property: it is overdetermined, and thus one can wish to have a
prolongation of the corresponding system of equations: in classical terms,
this means that one wants to introduce more dependent variables and derive
differential consequences of the overdetermined system, such that one can
write down a closed system of equations; i.e., a system of first order PDEs
in which all (first order) derivatives of the dependent variables are expressed
in the dependent variables themselves.

1.1.1. The standard tractor bundle of conformal geometry and
the prolongation of the equation governing Einstein scales. The
prolongation of Θ0(σ) =

(
DDσ + σP

)
0

!= is well known and conformally
invariant. With respect to a metric g in the conformal class the standard
tractor bundle S of a conformal geometry is given by

[S]g = E[1]⊕ T ∗M ⊗E[1]⊕E[−1] (4)

and one writes elements [s]g = σ ⊕ ϕ⊕ ρ ∈ [S]g as

[s]g =

ρϕ
σ

 . (5)

We will say more about the standard tractor bundle than would be strictly
necessary at this place to write down the prolongation, since many the struc-
tures introduced below for S will also occur later for general tractor bundles.
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For ĝ = e2fg one has the transformation

[s]ĝ =

ρ̂ϕ̂
σ̂

 =

ρ− g−1(Υ, ϕ)− 1
2σg−1(Υ,Υ)

ϕ+ σΥ
σ

 (6)

where Υ = df ∈ Ω1(M). S is defined as the equivalence class of [S]g for
g ∈ [g] with respect to this transformation (see also [BEG94]). The space
of sections Γ(S) is denoted S.

The filtration

[S]−1
g = [S]g = E[1]⊕ T ∗M ⊗E[1]⊕E[−1],

[S]0g = T ∗M ⊗E[1]⊕E[−1],

[S]1g = E[−1]

is compatible with (6) and thus defines a filtration

S = S−1 ⊃ S0 ⊃ S1

of S. By construction this filtration splits according to (4) with respect to
a metric g in the conformal class

We will denote the filtration of S as a composition series in the form

S = E[1] +�� T ∗M ⊗E[1] +�� E[−1], (7)

since

S−1/S0 = E[1],

S0/S1 = T ∗M ⊗E[1],

S1 = E[−1].

Thus (7) says that the associated graded

gr(S) := gr−1(S)⊕ gr0(S)⊕ gr1(S) := S−1/S0 ⊕ S0/S⊕ S1

is given by (4).
The bundle [S]g is endowed with the connection

∇ξ[s]g = ∇ξ

ρϕ
σ

 =

Dξρ− P(ξ, g−1(ϕ))
Dξϕ+ σiξP + ρiξg

Dξσ − ϕ(ξ)

 , (8)

which is invariant with respect to the transformation (6) and thus gives a
well defined connection on S, called the standard tractor connection.

We furthermore see from (6) that one has a well-defined projection Π to
the ‘lowest slot’ H0 = E[1] of S. This projection splits via the differential
operator L0 : Γ(H0) = H0 → S, which is again defined via a metric g:

σ ∈ E [1] 7→

 1
n(4σ − Jσ)

Dσ
σ

 ,
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with 4σ = −g−1(DDσ) and J ∈ E [−2] the trace of P ∈ S2T ∗M with
respect to g−1 ∈ Γ(S2TM ⊗E[−2]). We calculate

∇(L0(σ)) =

 1
nD(4σ − Jσ)− P(·, g−1(Dσ))
(DDσ + Pσ) + 1

n(4σ − Jσ)g
0

 .

Since 1
n(4σ − Jσ)g is minus the trace part of (DDσ + Pσ), we see that

Θ0 : H0 → H1 comes about as the composition of ∇◦L0 with the projection
to the middle slot of S. This is an example of the calculation of a first
BGG-operator.

Let now σ ∈ C∞(M) satisfy (DDσ + Pσ) + 1
n(4σ − Jσ)g = 0. Then

also

D3σ + (DP )σ + PDσ +
1
n
D(4σ − Jσ)g = 0,

and an alternation in the first two slots followed by trace yields

−Ric(·, g−1(Dσ)) + JDσ − P (·, g−1Dσ) +
1
n

(n− 1)D(4σ − Jσ) = 0.

Then, using the definition of P, this is immediately seen to be equivalent to
vanishing of 1

nD(4σ−Jσ)−P(·, g−1(Dσ)). Therefore Θ0σ = 0, which is the
middle equation of ∇(L0(σ)) = 0, already implies that also the top slot of
∇(L0(σ)) vanishes, and we see that Θ0(σ) = 0 is equivalent to∇(L0(σ)) = 0.
We therefore say that (S,∇,Π, L0) is a geometric prolongation of Θ0 : H0 →
H1: The maps Π and L0 restrict to inverse isomorphisms between the space
of parallel sections of S with respect to ∇ and the space of Einstein scales in
H0. This is of course well known ([BEG94]), and will be obtained in a far
more conceptual way in 6.1. The approach taken here to get a prolongation
of the equation Θ0(σ) != 0 can be stated in the classical language: we
introduced more dependent variables via the extension of H0 by S and
found the differential consequences of Θ0(σ) = 0, namely ∇(L0(σ)) = 0.

1.2. The general procedure: prolongation of first BGG-operators

The general situation will be the following: We consider a parabolic
geometry

(G, ω)

��

Poo

M

of type (G,P ) on a manifold M . In the example above this would encode
a conformal structure [g] on M . The necessary parts of the, by now quite
extensive, general theory of parabolic geometries will be recalled in chapter
2.
Any G-representation V gives rise to the associated tractor bundle

V = G ×P V
which shares basic properties with the standard tractor bundle of conformal
geometry discussed above: It is endowed with a canonical linear connection
∇ : Γ(V) = V → Ω1(M,V) and there is again a a canonical quotient H0
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via a surjection Π : V→ H0. The crucial fact is, as we will discuss in some
detail in the next chapter, that this projection admits a differential splitting

L0 : Γ(H0) = H0 → V = Γ(V).

This splitting is the central part in the construction of the first BGG-
operator

Θ0 : H0 → Ω1(M,H0)),

which will be described in section 2.4 of chapter 2.
Then we will prove in chapter 4:

Theorem. There exists a natural linear connection ∇̃ on V such that the
projection Π : V → H0 and the differential splitting operator L0 : H0 → V
restrict to inverse isomorphisms between the space of parallel sections of
(V, ∇̃) and the kernel of Θ0.

I.e., every first BGG-operator has a geometric prolongation (V, ∇̃,Π, L0).
Inconveniently, this natural connection coincides with the associated

tractor connection only in a few special cases.
For 1-graded parabolic geometries a prolongation procedure for first

BGG-operators has already been constructed in [BČEG06]. The result of
this thesis has two advantages: One advantage of the procedure presented
here is that it works for arbitrary regular parabolic geometries. The main
point however is that the prolongation connection we construct is natural.

1.3. Overview of this text

In chapter 2 we will present the necessary background for parabolic ge-
ometries. The general facts on Cartan geometries will be recalled succinctly,
mostly to fix the notation. The main focus will lie on tractor bundles, their
cohomology and the construction of the BGG-sequence.

In chapter 3 we will construct a natural modification/adjustment of the
tractor connection such that the first BGG-diagram commutes. This is the
main technical part in the solution of the prolongation problem, which will
then be discussed in chapter 4.

Next we come to examples: in chapter 5 we start by treating the simplest
BGG-operators in projective geometry, namely those which arise for the
standard- resp. the dual standard tractor bundle and then proceed to two
more elaborate examples.

In chapter 6 we treat conformally invariant equations. After reviewing
the standard tractor bundle in our framework we proceed to the prolongation
of the operator governing conformal Killing k-forms in 6.2. In section 6.3
we give a convenient description of the spin-tractor bundle and use this to
study the twistor-spinor equation.

Finally, in chapter 7, we use BGG-techniques and prolongation connec-
tions to study a generalized Fefferman construction associating conformal
structures of signature (2, 3) to generic rank two distributions in dimen-
sion five. We obtain a characterizations of those conformal structures which
are induced by generic distributions via conformal Killing two-forms and
another characterization via twistor-spinors. Moreover, we give a decompo-
sition theorem for conformal Killing fields.
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CHAPTER 2

Preliminaries on parabolic geometries, tractor
bundles and the BGG-machinery

In this chapter we will recall basic notions of Cartan- and parabolic
geometries and then treat tractor bundles and the BGG-sequence. For an
extensive treatment of parabolic geometries we refer to [ČS09]. The basic
references for tractor calculus are [ČG02] and [ČG00].

2.1. Cartan geometries

Let us first discuss Cartan geometries of type (G,P ), with G some (real)
Lie group and P < G a closed subgroup. We will always assume that G/P
is connected. The Lie algebras of G and P will be denoted by g resp. p.

The first step is to view the homogeneous space M = G/P as a geometric
structure, whose automorphism group is exactly G, acting upon M = G/P
from the left. Diagrammatically:

G //

!!CC
CC

CC
CC

G

����

Poo

G/P

.

One can intrinsically describe this geometric data via the Maurer-Cartan
form ωMC ∈ Ω1(G, g) which is just left-trivialization of TG = G × g. It
satisfies the Maurer-Cartan equation

dωMC(X,Y ) + [ω(X), ω(Y )] = 0 for all X,Y ∈ g. (9)

We say that the automorphisms of (G,ωMC) are the (right-)P -equivariant
diffeomorphisms of G preserving ωMC :

Proposition. Aut(G,ωMC) = {Ψ : G→ G : Ψ(gp) = Ψ(g)p for all p ∈
P and Ψ∗ωMC = ωMC}.

Then it is well known that Aut(G,ωMC) = G.
Now a Cartan geometry of type (G,P ) is a P -principal bundle Π : G →

M endowed with a Cartan connection form ω ∈ Ω1(G, g), which satisfies the
possible generalizations of ωMC to a so called ’curved’ setting: Denote the
P -right action of g ∈ P by rg, i.e., rg(u) = u ·p, and the fundamental vector
fields for this action by ζY for Y ∈ p, i.e., ζY (u) = d

dt |t=0
(u · exp(tY )). Then

one demands that
(C.1) ωu·p(Turpξ) = Ad(p−1)ωu(ξ) for all p ∈ P , u ∈ G, and ξ ∈ TuG.
(C.2) ω(ζY ) = Y for all Y ∈ p.
(C.3) ωu : TuG → g is a linear isomorphism for all u ∈ G.

9



10 2. PRELIMINARIES

We say that ω is right-equivariant, reproduces fundamental vector fields and
is an absolute parallelism ω : TG ∼= G × g.

The automorphisms of (G, ω) are

Aut(G, ω) := {Ψ ∈ Diff(G)P : Ψ∗ω = ω}, (10)

which is a Lie group (see for instance [ČS09]) with Lie algebra a subalgebra
of the P -invariant vector fields X(G):

aut(G, ω) := {ξ ∈ X(G)P : ξ is complete and Lξω = 0}. (11)

One has that dim Aut(G, ω) ≤ dim G = dim Aut(G,ωMC), with equality
implying that (G, ω) and (G,ωMC) are locally isomorphic as Cartan geome-
tries.

Let Ad : P → GL(g/p) be the representation on g/p induced by Ad,
which makes sense since p ⊂ g is Ad(P )-invariant. It is a direct consequence
of (C.1)-(C.3) that

TM = G ×P g/p. (12)

In particular, dim M = dim g/p. For a general Cartan geometry (G, ω) of
type (G,P ) the failure of ω to satisfy the Maurer-Cartan equation (9) is
measured by the curvature form Ω ∈ Ω2(G, g),

Ω(ξ, η) := dω(ξ, η) + [ω(ξ), ω(η)] (13)

for ξ, η ∈ X(G). One can show that Ω vanishes, i.e., ω is locally flat, if and
only if (G, ω) is locally isomorphic to (G,ωMC).

Since the Cartan connection defines an absolute parallelism

ω : TG ∼= G × g

its curvature can be equivalently encoded in the curvature function κ ∈
C∞(G,Λ2(g∗)⊗ g),

κ(u)(X,Y ) := Ω(ω−1
u (X), ω−1

u (Y )).

One verifies that Ω vanishes upon insertion of a vertical field ζY for Y ∈
p, i.e. it is horizontal. Moreover, Ω is P -equivariant, and we will write
Ω ∈ Ω2

hor(G, g)P . Thus we can view κ as a P -equivariant function G 7→
Λ2(g/p)∗ ⊗ g.

We denote by

AM := G ×P g (14)

the associated bundle corresponding to the restriction of the adjoint repre-
sentation Ad : G → GL(g) to P , called the adjoint tractor bundle (general
tractor bundles will be introduced later).

Since the curvature-form Ω ∈ Ω2
hor(G, g)P is horizontal and P -equivariant,

it factorizes to a AM -valued 2-form K ∈ Ω2(M,AM) on M . Thus Ω ∈
Ω2

hor(G, g)P ,K ∈ Ω2(M,AM) and κ ∈ C∞(G,Λ2(g/p)∗ ⊗ g)P all encode es-
sentially the same object, namely the curvature of the Cartan connection
form ω. Technical reasons will determine which representation should be
used at a given point.
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2.2. Parabolic geometries

2.2.1. |k|-graded Lie algebras. Let g be a real semisimple Lie alge-
bra. We say that g is |k|-graded if

g = g−k ⊕ · · · ⊕ g−1︸ ︷︷ ︸
g−

⊕g0 ⊕ g1 ⊕ · · · ⊕ gk︸ ︷︷ ︸
p+

(15)

such that [gi, gj ] ⊂ gi+j , with gi = {0} for |i| > k.
The grading of g induces a filtration

g = g−k ⊃ g−k+1 ⊃ · · · ⊃ gk = gk ⊃ {}

via

gi :=
k⊕
j=i

gj .

p := g0 = g0 n p+ is then a parabolic subalgebra of g. g0 is reductive and
decomposes into the semisimple part gss0 and its center gc0. There is a unique
element E in gc0, called the grading element of g, which has the property
that ad(E)|gj

= jidgj .

2.2.2. Group level. For a given semisimple |k|-graded g will fix a Lie
group G with Lie algebra g and define

G0 := {g ∈ G : Ad(g)gi = gi ∀i}, (16)

P+ := {g ∈ G : (Ad(g)− id)gi ⊂ gi+1 ∀i} and

P := {g ∈ G : Ad(g)gi ⊂ gi ∀i}.

These are closed subgroups of G with Lie algebras g0, p+ and p. One has
that P = G0 nP+ with G0 reductive and P+ a contractible nilpotent group
isomorphic via the exponential map to p+. In particular, we can write
P = G0 n p+.

Definition 2.2.1. A parabolic geometry of type (G,P ) is a Cartan ge-
ometry (G, ω) on a manifold M of type (G,P ) with g a |k|-graded semisimple
Lie algebra and P defined as above.

Diagrammatically, we will say that

(G, ω)

��

Poo

M

is a parabolic geometry of type (G,P ) over M
We will often use that the Killing form on g induces a P -equivariant

duality between (g/p) and p+. I.e.: (g/p)∗ ∼= p+. Then, since TM =
G ×P g/p, one has T ∗M = G ×P p+. In particular, T ∗M is canonically
endowed with the structure of a (pointwise) nilpotent Lie algebra.
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2.2.3. Gradings and filtrations of representations. Let V be a P -
or G-representation. The action of p ∈ P resp p ∈ G on v ∈ V written p · v,
and likewise the infinitesimal action of X ∈ p resp. X ∈ g is written X · v.
E.g., for V = g the adjoint representation Ad : G → GL(g) and X,Y ∈ g
one has X · Y = −Y ·X = [X,Y ].

2.2.3.1. Let V be a G-representation. Then the semisimple element E
acts diagonalizable on V since g is a semisimple Lie algebra. If moreover V is
irreducible, the eigenvalues of E will form a (necessarily finite) chain in α+N
for some α ∈ R and E thus induces a G0-invariant grading V = V0⊕· · ·⊕Vr
of V . It is easy to see that giVj ⊂ Vi+j . The induced filtration

V = V 0 ⊃ · · · ⊃ V r ⊃ V r+1 = {0}
then satisfies giV j ⊂ V i+j . In particular p+V

j ⊂ V j+1 and the filtration is
P = G0 n p+-invariant.

2.2.3.2. If V is just a P -representation, there is still a natural P -invariant
filtration

V = V 0 ⊃ V 1 · · · ⊃ V r ⊃ V r+1 = {0} (17)

such that p+V
i ⊂ V i+1. This comes about by defining V r as the annihilator

of the p+-action on V ; then one sets recursively

V i := {v ∈ V : Y · v ∈ V i+1 ∀ Y ∈ p+}.

Here r is chosen in hindsight such that all inclusions in (17) are proper. The
associated graded gr(V ) of V is then defined by

gr(V ) = gr0(V )⊕ · · · ⊕ grr(V ) = V/V 1 ⊕ · · · ⊕ V r−1/V r ⊕ V r,

and this grading is evidently P -invariant. In fact, p+ acts trivially on gr(V )
by construction.

Remark 2.2.2. A map of homogeneity ≥ i between filtered spaces de-
scends to a canonical map of homogeneity i between the associated graded
spaces; however, a lift of a homogeneous map between graded spaces to a
map between the corresponding filtered spaces depends on a choice of iso-
morphism of filtered spaces between gr(V ) and V .

2.2.3.3. Associated graded spaces of natural bundles: Consider the bun-
dle G0 := G/P+: since P+ is a normal subgroup in P and P/P+ = G0, G0 is
a G0-principal bundle over M .

Let V be a P -representation and let V = G ×P V be the corresponding
P -associated bundle.

Lemma 2.2.3. There is a canonical isomorphism gr(V) ∼= G0 ×G0 V

Proof. Since p+ acts trivially on gr(V ) and p+ C P the quotient of
G × gr(V ) by the P -right action

(u, v) · p = (u · p, p−1 · v), u ∈ G, v ∈ V, p ∈ P
is the same as the quotient of G0 × V by

(u, v) · p = (u · g, g−1 · v), u ∈ G0, v ∈ V, p ∈ G0.

�
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2.2.4. Lie algebra (co)homology. Let now V be an irreducible G-
representation. We can act on V by both g− and p+, and this will yield
two Lie algebra differentials ∂ and ∂∗. We begin by introducing the P -
representations

Cl := Λl(g/p)∗ ⊗ V = Λlp+ ⊗ V. (18)

which will be the chain spaces of algebraic differentials. Cl = Λlp+ ⊗ V
inherits the canonical G0-invariant gradings from p+ and V and the induced
P -invariant filtrations. For instance, Ci0 = V i and Ci1 =

∑i
j=1 gj ⊗ Vi−j .

We will say that an element of Cil is of homogeneity ≥ i. This refers to
the natural concept of homogeneity of maps between filtered spaces: take
for instance a ϕ ∈ C2 = Λ2(g/p)∗ ⊗ V . Then ϕ is of homogeneity ≥ i, i.e.,
ϕ ∈ Ci2, if for all Xs ∈ gs and Xt ∈ gt one has ϕ(Xs, Xt) ∈ V i+s+t.

Both ∂ and ∂∗ below will make

C∗ := C0 ⊕ · · · ⊕ Cn

into a complex.
2.2.4.1. The differentials ∂ and ∂∗: The Lie algebra differential ∂ of g−

with values in V is defined by

∂ : Λlg∗− ⊗ V → Λl+1g∗− ⊗ v; for ϕ ∈ Λlg∗− ⊗ V, and X0, . . . , Xl ∈ g− (19)

∂ϕ(X0, · · · , Xl) :=
l∑

i=0

(−1)iXi · ϕ(X0, · · · , X̂i, · · · , Xl)

+
∑

0≤i<j≤l
(−1)i+jϕ([Xi, Xj ], X0, · · · , X̂i, · · · , X̂j , · · · , Xl).

One has the G0-equivariant isomorphism g− → g/p; likewise for the dual
spaces g∗−

∼= (g/p)∗ ∼= p+. Thus one can view ∂ a as map ∂ : Cl → Cl+1. It
is straightforward to check that ∂ ◦ ∂ = 0, and one obtains the complex

V = C0
∂→ C1

∂→ · · · ∂→ Cn. (20)

Since the differential (19) and the identification g∗−
∼= (g/p)∗ are immediately

seen to be G0-equivariant, so is ∂ : Cl → Cl+1. It is however easy to see that
∂ cannot be p+-equivariant, Take for instance v ∈ V,X ∈ g−1 and Y ∈ g1

and compute that (Y · (∂v))(X)− (∂(Y · v))(X) = [Y,X] · v, which need not
vanish.

Dually to ∂ one has the Kostant codifferential

∂∗ : Λl+1p+ ⊗ V → Λlp+ ⊗ V ; for Z0, · · · , Zl ∈ p+ and v ∈ V, (21)

∂∗(Z0 ∧ · · · ∧ Zl ⊗ v) :=
l∑

i=0

(−1)i+1Z0 ∧ · · · Ẑi · · · ∧ Zl ⊗ Zi · v

+
∑

0≤i<j≤l
(−1)i+j [Zi, Zj ] ∧ Z0 · · · ∧ Ẑi ∧ · · · ∧ Ẑj ∧ · · · ∧ Zl ⊗ v.

Since ∂∗ as defined by (21) is easily seen to be P -equivariant, and since the
the identification (g/p)∗ ∼= p+ is so too, the codifferential ∂∗ : Cl+1 → Cl is
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also P -equivariant; moreover, one has that ∂∗ ◦∂∗ = 0. Thus it provides the
complex

V
∂∗← C1

∂∗← C2 · · ·
∂∗← Cn.

We will denote the space of cycles of ∂∗ by Zl = ker ∂∗ ⊂ Cl and the space
of borders of ∂∗ by Bl = im ∂∗ ⊂ Cl. The homologies are Hl = Hl(p+, V ) =
Zl/Bl.

Remark 2.2.4. For complex semisimple |k|-graded Lie algebras [Kos61]
provides an algorithmic computation of the homologies Hi. The results have
been transfered to the case of real semisimple |k|-graded Lie algebras in
[Šil04].

In this text we will mostly be interested in H0 and H1, since first BGG-
operators operate between the corresponding associated bundles. For H0,
it follows from irreducibilty of V that H0 = V/V 1. H1 is obtained auto-
matically when one computes the first BGG-operator, as is shown in the
examples in chapters 5 and 6. H2 will appear when constructing certain
tensorial obstruction maps (4.2, 6.2.6.)

We don’t give the details of the computations here, which involve the
computation of part of the Hasse diagram of g and have been written down in
complete detail in [ČS09]. One can also employ the implementation [Šil].
For the purposes of computation one employs the algorithm of [BE89],
which works with the highest weight of the dual representation V ∗, written
as a sum of fundamental weights. For the explicit examples of chapters 5
and 6 we will therefore provide this via the Dynkin diagram of the (com-
plexified) representation and the coefficient of each fundamental weight in
the representation V ∗ presented by an integer over the corresponding simple
root.

2.2.4.2. The Hodge decomposition via the Kostant Laplacian �: It is due
to Kostant [Kos61] that ∂ and ∂∗ are adjoint with respect to a natural inner
product on the complex C∗ = C0⊕· · ·⊕Cn. This is used to produce a Hodge
decomposition via the Kostant Laplacian

� = ∂ ◦ ∂∗ + ∂∗ ◦ ∂.

One has

Ci = im ∂ ⊕ ker�⊕ im ∂∗, (22)

and then necessarily ker(∂) = im ∂ ⊕ ker� and ker(∂∗) = im ∂∗ ⊕ ker�.
This implies that Hi(p+, V ) = Hi = Zi/Bi includes into Ci as ker� as

a G0-module, but since � is not p-invariant, ker� is not P -invariant either,
and thus the identification Hi = ker� ⊂ Ci only makes sense as G0-modules.

Since ∂∗ vanishes on im ∂∗, one has that ∂∗ ◦ ∂ : im ∂∗ → im ∂∗ agrees
with the restriction of � to im ∂∗. Thus

�|im ∂∗ = ∂∗ ◦ ∂ : im ∂∗ → im ∂∗

has trivial kernel by (22) and is therefore an isomorphism,where

((∂∗ ◦ ∂)|im ∂∗)
−1 = (�|im ∂∗)

−1. (23)
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2.2.4.3. Tractor bundles. A natural bundle V = G ×P V associated to a
G-representation is called a tractor bundle. Any G-representation V is also
a g-module, and thus one has a P -equivariant action of g on V , i.e.: for all
g ∈ P ,X ∈ g and v ∈ V ,

Ad(g)(X) · v = g · (X · (g−1 · v)). (24)

Thus, G-representations are special cases of (g, P )-representations, i.e., rep-
resentations V of both g and P which are compatible via (24). A bit more
generally, we will say that P -associated bundles to (g, P )-representations are
also tractor bundles. (24) is just P -equivariancy of the Lie algebra action
g× V → V , and thus yields an action of AM = G ×P g on V, which we will
denote by •.

With
Ci := G ×P Ci = ΛiT ∗M ⊗V

and the P -equivariant Kostant codifferential as defined in (21) we get the
complex

V ∂∗← C1
∂∗← C2 · · ·

∂∗← Cn. (25)

The vector bundles of cycles, borders and homologies are

Zi = G ×P Zi = ker ∂∗ ⊂ Ci,

Bi = G ×P Bi = im ∂∗ ⊂ Ci and

Hi = Zi/Bi = G ×P Hi.

We have the natural projections

Πi : Zi → Hi. (26)

The spaces of sections of Ci,Zi,Bi and Hi will be denoted by Ci,Zi,Bi and
Hi.

Since ∂ : Cl → Cl+1 is only G0-equivariant, one has to switch to the
associated graded spaces: Since P = G0 n p+ and p+ acts trivially on the
spaces gr(Cl), we obtain a P -equivariant map ∂ : gr(Cl)→ gr(Cl+1), and on
the level of associated bundles this yields the complex

gr(V) = gr(C0) ∂→ gr(C1) ∂→ · · · ∂→ gr(Cn).

Likewise, the G0-equivariant Kostant-Laplacian � : Cl → Cl gives rise to
maps

� : gr(Cl)→ gr(Cl).

We remark that the maps ∂, ∂∗ and � are all homogeneous of degree 0 when
viewed as maps on the associated graded spaces. E.g., � preserves gri(Cl)
for all i, l and ∂ maps gri(Cl) into gri(Cl+1).

2.2.5. Regular and normal parabolic geometries. Recall that prop-
erty (C.3) of the Cartan connection form ω yields the trivialization TG =
G × g. In particular, the filtration of g gives rise to a filtration

T−kG ⊃ · · · ⊃ T kG ⊃ {0}.
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Since TM is the associated bundle to the P -representation g/p, which
carries the Ad(P )-invariant filtration

g−k/p ⊃ · · · ⊃ g−1/p

, one has the filtration of the tangent bundle

T iM = G ×P gi/p, (27)

TM = T−kM ⊃ T−k+1M ⊃ · · · ⊃ T−1M ⊃ {0}. (28)

It is easy to see that the filtration of TM is induced directly by the filtration
of TG: for u ∈ G and x = Π(u) one has T ixM = TuΠ(T iuG) for all i ∈ Z.

We say that M is a filtered manifold if the filtration of TM is compatible
with the Lie bracket of vector fields: one has

[ξ, η] ∈ Γ(T i+jM) for ξ ∈ Γ(T iM), η ∈ Γ(T jM). (29)

In this case it is easy to see that the Lie bracket

[·, ·] : Γ(TM)× Γ(TM)→ Γ(TM)

induces an algebraic Lie bracket on all fibers of gr(TM). This is encoded in
the Levi bracket

L : gr(TM)× gr(TM)→ gr(TM). (30)

But gr(TM) already carries a natural pointwise (nilpotent) Lie algebra
structure {·, ·} coming from g−: By Lemma 2.2.3, gr(TM) = G0 ×G0 g−.
Thus the G0-equivariant Lie-bracket on g− carries over to an algebraic
bracket

{·, ·} : gr(TM)⊗ gr(TM)→ gr(TM). (31)

Definition 2.2.5. A parabolic geometry (G, ω) on a filtered manifold M
is called regular if the algebraic- and the Levi bracket on gr(TM) coincide.
I.e., if {·, ·} = L(·, ·).

One can translate this into a simple condition on the curvature;

Proposition 2.2.6. Let M be endowed with the filtration (27) induced
by (G, ω). Then M is a filtered manifold and ω is regular if and only if
K ∈ Ω2(M,AM) is homogeneous of degree ≥ 1, i.e., K ∈ Ω2(M,AM)1.

2.2.5.1. Additionally, parabolic geometries allow a uniform normaliza-
tion condition: The curvature form K of ω lies in Ω2(M,AM), with AM =
G×P g the adjoint tractor bundle of (14). In notation of 2.2.4.3, Ω2(M,AM)
is the chain space C2 for the G-representation g. Thus one can use the
Kostant codifferential ∂∗ : C2 → C1 to define a normalization condition:

Definition 2.2.7. A Cartan connection form ω is called normal if

∂∗(K) = 0.

In this case one has the harmonic curvature KH = Π2(K) ∈ H2(AM).

In the picture of P -equivariant functions on G the harmonic curvature
corresponds to the composition of the curvature function κ with the projec-
tion Π2 : Z2(g)→ H2(g), i.e., to κH = Π2 ◦ κ .
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2.2.6. Weyl structures. A Weyl structure for (G, ω) is aG0-equivariant
section σ : G0 → G. There always exist global Weyl structures and they form
an affine space modelled on

C∞G0
(G0, p+) = Γ(gr(T ∗M))

(cf. [ČS03] or [ČS09]).
2.2.6.1. Reductions of structure group from P to G0:

Lemma 2.2.8. Given a natural bundle V = G×PV for a P -representation
V , a choice of Weyl structure σ : G0 → G yields an isomorphism

gr(V) ∼= V.

Proof. For u ∈ G0, v ∈ V , [u, v] ∈ G0 ×G0 V is the orbit of (u, v) under
the G0-action

(u, v) · g = (u · g, g−1 · v), g ∈ G0,

and analogously

[u, v] = (u, v) · P,with

(u, v) · p = (u · p,Ad(p−1)v) for u ∈ G, v ∈ V, p ∈ P.
This immediately gives that

G0 × V ∼= G ×P V, (32)

[u, v] 7→ [σ(u), v]

is well defined by G0-equivariance of σ. This yields an isomorphism G0 ×G0

V ∼= G ×P V = V, but by Lemma 2.2.3 we have G0 ×G0 V = gr(V). �

We say that a bundle which associated to G via a P -representation is a
natural bundle for (G, ω); and as we have just seen, every natural bundle can
be written as a G0-associated bundle to G0 after a choice of Weyl structure.

In particular, one gets a reduction of structure group from P to G0 of
the chain spaces Cl via Cl

∼= G0 ×G0 Cl = gr(Cl) and ∂ and � lift to maps
on C∗ = ⊕Cl.

We now discuss transformation rules for g, where gr(TM) = TM . More-
over, we will need the transformation law only for the case where the (g, P )-
representation V has just 3-grading components, i.e., where V = V0⊕V1⊕V2.

We will write [v]σ ∈ [V]σ = gr(V) for the the element in gr(V) corre-
sponding to a v ∈ V via the isomorphism of Lemma 2.2.8.

Let σ̂ = σ · exp(Υ) be another Weyl structure for a Υ ∈ Ω1(G0, T
∗M).

Then it is shown in [ČS09], following Proposition 5.1.5, that for

[v]σ =

v2

v1

v0

 ,

one has

[v]σ̂ =

v2 + Υ•v1 + 1
2Υ•(Υ•v0)

v1 + Υ•v0

v0

 . (33)

Here we employ the canonical action • of T ∗M on gr(V), which is in fact
the restriction of the algebraic action of AM discussed in 2.2.4.3.
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2.2.6.2. Soldering form, Weyl connections and Schouten tensors: Given
a Weyl structure σ : G0 → G one can consider the pullback σ∗ω ∈ Ω1(G0, g),
which will be G0-equivariant. Since the decomposition of g into g−⊕g0⊕p+

is G0-equivariant, we can decompose σ∗(ω) correspondingly into

σ∗(ω) = θ ⊕ γ ⊕ P. (34)

Then θ is easily seen to be a soldering form: this means that θ ∈
Ω1(G0, g−) is G0-equivariant, and with ΠG0 : G0 → M the canonical sur-
jection one has that for every u ∈ G0,

kerTuΠG0 = ker θu. (35)

It is a standard statement that θ therefore yields an isomorphism

G0 ×G0 g− ∼= TM. (36)

This also follows from Lemma 2.2.8 since gr(g/p) = g− as a G0-module.
Let us treat the other two components in the decomposition (34): Since

γ ∈ Ω1(G0, g0) reproduces fundamentalG0-vector fields and isG0-equivariant
it is a principal connection form on G0. In particular, after a choice of Weyl
structure, every P -associated bundle V = G ×P V , is endowed with a linear
connection, denoted by D and called the Weyl connection.

The p+-component P ∈ Ω1(G0, p+) of σ∗ω is called the Rho- or gener-
alized Schouten tensor. Since P is a horizontal, P -equivariant, p+-valued
1-form on G, and since the P -associated bundle to p+ is T ∗M , P factorizes
to a section of T ∗M ⊗ T ∗M

Under a achange of the Weyl structure to σ̂ = σ · exp(Υ) for a Υ ∈
Ω1(G0, T

∗M) it is shown in [ČS09], that for s ∈ Γ(V ),

D̂ξs = Dξs− {ξ,Υ}•s (37)

and

(iξP̂)a = (iξP)a − (DξΥ)a +
1
2
{Υ, {Υ, ξ}}a. (38)

2.2.7. The adjoint tractor bundle. The adjoint tractor bundle AM
of (G, ω) comes about as the associated bundle to the adjoint representation
of G on g, as already defined in (14): AM = G ×P g. The filtration of g

carries over to a filtration AM = A−kM ⊃ · · · ⊃ AkM ⊃ {0} of AM . The
geometry (G, ω) is said to be torsion-free if K ∈ Ω2(M,A0M).

The Lie bracket of g carries over to an algebraic bracket {·, ·} on AM .
Since TM = G ×P g/p, one has a natural projection ΠA : AM → TM .
Moreover, since the Killing form on g provides a P -equivariant duality be-
tween p+ and g/p, one has that T ∗M = G×P p+. But p+ ⊂ g as a P -module,
which yields the canonical embedding

T ∗M ↪→ AM. (39)

The algebraic brackets on gr(TM) and T ∗M introduced above are induced
by the algebraic bracket on AM .

Since g− includes into g as a G0 module and AM is reduced by a Weyl
structure σ : G0 → G to G0 ×G0 g, a choice of Weyl structure yields the
embedding

TM = G0 ×G0 g− ↪→ G0 ×G0 g = AM.
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That T ∗M always includes canonically into AM was already observed in
(39). In particular, since AM acts on V by

• : AM ⊗V→ V,

we obtain actions

• : TM ⊗V→ V and (40)

• : T ∗M ⊗V→ V,

the first of which depends on the choice of Weyl structure.
2.2.7.1. Formulas for ∂ and ∂∗. The reduction of structure group of the

chain space Cl = ΛlT ∗M ⊗V from P to G0 provided by a Weyl structure
was seen in 2.2.6 to provide an isomorphism Cl

∼= gr(Cl), and one can then
view ∂ as a map ∂ : Cl → Cl+1.

On the first chain space gr(V) = gr(C0) it is easy to see that one has
for x ∈M , X ∈ TxM and v ∈ Vx,

∂(v)(X) = X•v, for v ∈ Vx, X ∈ TxM (41)

In fact, one has more generally that for x ∈ M , φ ∈ (ΛlT ∗xM ⊗ V)x and
X0, . . . Xl ∈ TxM

∂φ(X0, . . . , Xl) =
l∑

k=0

(−1)kXk•φ(X0, . . . , X̂k, . . . , Xl) (42)

+
∑

0≤i<j≤l
(−1)i+jϕ({Xi, Xj}, X0, · · · , X̂i, · · · , X̂j , · · · , Xl),

where the bracket {·, ·} is just the bracket of AM restricted to TM ⊂ AM .
The action • of T ∗M on V provides a map T ∗M ⊗ V → V: for ϕ ∈

T ∗M ⊗ V we write •(ϕ) for the corresponding element in V. Take some
x ∈ M . Then every ϕ ∈ C1x is a sum of terms of the form Y ⊗ v for
Y ∈ T ∗xM and v ∈ Vx. Since ∂∗(Yi ⊗ v) = −Yi•v we see ∂∗(ϕ) = −•(ϕ).

One has similar formulas for all chain spaces, but we will only need one
for the second chain space C2, and this only in the special situation when g
is 1-graded. Since then g− and g+ are abelian the last terms in formulas (19)
and (21) disappear. An element ϕ ∈ C2x = Λ2T ∗xM ⊗Vx can be written as
a sum of terms Y1 ∧ Y2 ⊗ v for Y1, Y2 ∈ T ∗xM and v ∈ Vx. Now

Y1 ∧ Y2 ⊗ v = Y1 ⊗ Y2 ⊗ v − Y2 ⊗ Y1 ⊗ v.

Since T ∗M acts trivially on itself via •, we can view • as a map T ∗M ⊗(
T ∗M ⊗V)→ T ∗M ⊗V where the first term T ∗M acts on the other terms

tensorially. Again, this map is denoted by •(ϕ) for ϕ ∈ C2x. Then

•(Y1 ∧ Y2 ⊗ v) = Y2 ⊗ Y1•v − Y1 ⊗ Y2•v = −∂∗(Y1 ∧ Y2 ⊗ v).

Thus, for ϕ ∈ C2 we have ∂∗(ϕ) = −•(ϕ).
More generally, one can check that ∂∗ : Cl+1 → Cl coincides with (the

negative of)

Λl+1T ∗M ⊗V ⊂ T ∗M ⊗ ΛlT ∗M ⊗V •→ ΛlT ∗M ⊗V, (43)

where we have T ∗M acting on ΛlT ∗M ⊗V via •.
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2.2.7.2. The fundamental derivative. A section s of of AM corresponds
to a P -equivariant function f from G to g. But taking ξu := ω−1

u (f(u)), one
obtains a P -invariant vector fields on G, and this provides a 1:1 correspon-
dence between Γ(AM) and X(G)P . Let now v be a section of a P -associated
bundle V. Then we define Dω

s v ∈ Γ(V) for s ∈ Γ(AM) by differentiating
the P -equivariant function g corresponding to v with the P -invariant field ξ
corresponding to s; so the result will be P -equivariant again. This operation
is tensorial in ξ ∈ X(G)P resp. s ∈ Γ(AM) and thus yields a map

Dω : Γ(V)→ Γ(AM∗ ⊗V), (44)

called the fundamental derivative. Since g = g∗ via the Killing-form, one
can also view it as an operator Dω : Γ(V)→ Γ(AM ⊗V).

2.3. The tractor connection

Given a representation of G on V , we called the associated bundle
V = G ×P V a tractor bundle in 2.2.4.3. If we form the extended bundle
G′ := G ×P G, which is now a G-principal bundle over M , we can equivari-
antly extend ω to a g-valued 1-form on G′, which turns out to be a principal
connection form on G′. In particular, this yields a linear connection on every
tractor bundle V since we have V = G×P V = G′×G V . This is the induced
tractor connection ∇ = ∇V on V.

For a tractor bundle V associated to a (g, P )-representation, which need
not necessarily extend to a G-representation, one defines the tractor con-
nection as follows: Let ξ ∈ X(M) and s ∈ Γ(AM) be some lift of ξ, i.e.,
ΠA(s) = ξ. Let v be a section of V. Then one checks that

∇ξv := Dω
s v + s•v (45)

is in fact independent of the lift s of ξ and defines a connection ∇ on V.
In the case where V is in fact a G-representation, this construction of the
tractor connection coincides with the construction via the extended bundle
G′.

If f : C∞(G, V )P is the equivariant function corresponding to v and
ξ̂ ∈ X(M) is a P -invariant lift of ξ, then (45) translates to ∇ξv being the
section corresponding to the equivariant function

ξ̂ · f + ω(ξ̂) · f. (46)

If R ∈ Ω2(M,End(V)) denotes the curvature of the tractor connection
∇, then one has in fact by construction that

R = K•. (47)

Thus, for ξ1, ξ2 ∈ X(M) and v ∈ Γ(V), one has thatR(ξ1, ξ2)v = K(ξ1, ξ2)•v.
In other words: the curvature of the induced tractor connection is the action
of K ∈ Ω2(M,AM) on V.
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The tractor connection∇ on V induces the covariant exterior derivatives

d∇ : Ωl(M,V)→ Ωl+1(M,V),

(d∇ϕ)(ξ0, · · · , ξl) =
l∑

k=0

(−1)k∇ξkϕ(ξ0, · · · , ξ̂k, · · · , ξl)

+
∑

0≤i<j≤l
(−1)i+jϕ([ξi, ξj ], ξ0, · · · , ξ̂i, · · · , ξ̂j , · · · , ξl).

With Cl = Ωl(M,V) the space of sections of the chain spaces Cl = G ×P Cl
already introduced in 2.2.4.3 we obtain the sequence

Γ(V) =: V ∇→ C1
d∇→ · · · d∇→ Cn. (48)

This however is a complex if and only if the geometry (G, ω) is locally flat:
d∇ ◦ d∇ : Cl → Cl+2 is well known (cf. for example [Mic08], 19.13) to be
the (algebraic) action of the curvature R = K•; i.e.,

d∇d∇ϕ = alternation(K•ϕ).

To be precise, i.e., to fix the factor of this action, for ξ1, · · · , ξl+2 ∈ X(M)
this is

1
2(l!)

∑
σ∈Sl+2

sgn(σ)K(ξσ(1), ξσ(2))•ϕ(ξσ(3), . . . , ξσ(l+2)).

with Sl+2 the permutation group of 1, · · · , l + 2.
As we have seen in 2.2.6, a choice of Weyl structure σ : G0 → G yields

a Weyl connection D : V → Ω1(M,V), and we ask how it relates to the
tractor connection ∇. First recall that σ∗ω ∈ Ω1(G0, g) decomposes into
η⊕ γ ⊕P (see (34)), with η being a soldering form yielding an isomorphism
TM = G0 ×G0 g−, γ ∈ Ω1(G0, g0) a principal connection form and P ∈
Γ(T ∗M ⊗ T ∗M) the Schouten tensor.

One can view ∂ : V→ C1 = T ∗M ⊗V, which depends on σ, also as an
element of

T ∗M ⊗ End(V). (49)

Similarly, also the algebraic action • : T ∗M ⊗V → V can be viewed as an
element of TM ⊗ V∗ ⊗ V = TM ⊗ End(V). Since P ∈ Γ(T ∗M ⊗ T ∗M)
we can compose P with the tensor product of the identity on T ∗M and
• ∈ TM ⊗ End(V): We will write

P• ∈ T ∗M ⊗ End(V). (50)

Now according to (46) (to be precise, we restrict this formula to the G0-
subbundle σ(G0) ⊂ G), one calculates ∇ξv ∈ Γ(V) for ξ ∈ X(M) and s ∈
Γ(V) as follows: let ξ̂ ∈ X(G0) be the horizontal lift of ξ ∈ X(M) with respect
to the principal connection form γ; then ξ is automatically G0-equivariant.
Let f ∈ C∞(G0, V )G0 be the G0-equivariant function corresponding to v.
Then ∇ξv corresponds to the (again G0-equivariant) function

ξ̂ · f + ω(ξ̂) · f.
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The first term is just the function corresponding to Dξs. For the second
term, the decomposition ω = η ⊕ γ ⊕ P and γ(ξ̂) = 0 yields that

ω(ξ̂) · f = η(ξ̂) · f + P (ξ̂) · f.

Now η(ξ̂) ∈ g− and P (ξ̂) ∈ p+ correspond to ξ ∈ Γ(TM) resp. P (ξ) ∈
Γ(T ∗M), where we view P as a section of T ∗M ⊗ T ∗M , as discussed in
2.2.6. Then, via (49) and (50), we obtain

∇ = ∂ +D + P•. (51)

Now D : V → C1 is homogeneous of degree ≥ 1, and so is P• : V → C1: For
P• this means that for every v ∈ V i and ξ ∈ X(M)j one has P(ξ)•v ∈ Ci+j+1

1 ,
and analogously for D. Since, as was already remarked in 2.2.4, ∂ : Cl →
Cl+1 has homogeneity 0, we see that ∇ and ∂ coincide in homogeneity 0. If
the curvature K ∈ Ω2(M,AM) is of homogeneity ≥ 1, i.e., if ω is regular,
one can show that also d∇ − ∂ is always of homogeneity ≥ 1. In fact, this
is a special case of Lemma 3.1.1 in the next chapter. We will then say that
d∇ and ∂ agree in lowest homogeneity, and this will be an important fact
for several constructions, in particular for the BGG-machinery below in 2.4.

For a precise formulation of ∂ and d∇ coinciding in lowest homogeneity
for a regular parabolic geometry, we introduce the canonical surjections

πl,i : Cil → Cil/Ci+1
l = gri(Cl), (52)

which project elements of homogeneity ≥ i in Cl to gri(Cl). Then we have,
for v ∈ Cil ,

πl+1,i(d∇v) = ∂(πl,i(v)) ∈ gri(Cl+1). (53)

This says that one can consider d∇ as a natural lift of the algebraic map
∂ : gr(Cl)→ gr(Cl+1) to the differential operator d∇ : Cl → Cl+1.

Once one has chosen a Weyl structure one gets a reduction of structure
group of C0 ⊕ · · · ⊕ Cn to G0. Recall that the inclusion of Hi into Zi
as ker� ⊂ Ci is G0-equivariant and that the Hodge decomposition on the
algebraic level (22) implies

Ci = im ∂ ⊕ ker�⊕ im ∂∗. (54)

Thus one can also view Hi as included into Ci as ker�. This gives the
decomposition

Zi = Hi ⊕Bi, (55)

which depends on the choice of Weyl structure.

2.4. The BGG-sequence

We now introduce the BGG-machinery. As above, V will be a (g, P )-
representation. The main object here is a differential splitting operator
Li = LVi : Hi → Ci of the natural projection Πi : Zi → Hi. This was first
done in general in [ČSS01], and with a simplified construction in [CD01].
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2.4.1. Unique lifts. We will show that there is a unique maximal sub-
space Li ⊂ Zi such that

d∇(Li) ⊂ Zi+1 ⊂ Ci+1. (56)

Note that for a general section s ∈ Zi ⊂ Ci one need not have that also
∂∗(d∇s) = 0. But this will hold on the subspace Li.

Lemma 2.4.1. ([Čap05]) ∂∗ ◦ d∇ : Bl → Bl is invertible. The inverse is
a differential operator, which will be denoted by Il.

Proof. The inverse of the operator ∂∗◦d∇ : Bl → Bl will be constructed
via a choice of Weyl structure, the choice of which doesn’t matter since the
inverse, if it is shown to exist, is necessarily unique.

Having chosen a Weyl structure, we have � acting on Bl, and can there-
fore form

Nl := (�|Bl
)−1 ◦ ∂∗ ◦ d∇ − idBl

: Bl → Bl.

Assume s ∈ Bl is of homogeneity ≥ i, i.e., s ∈ Bil . Recall from (53) that
πl,i ◦ ∂∗ ◦ d∇ = ∂∗ ◦ ∂ ◦ πl,i on Cil . Thus πl,i ◦ (�−1 ◦ ∂∗ ◦ ∂ − idBl

) vanishes
on Bil for any homogeneity i. This means that in fact Nls ∈ Bi+1

l . Thus,
if the highest nontrivial homogeneity of Bl is k0, we have that N k0+1

l = 0.
I.e, Nl : Bl → Bl is nilpotent. Therefore (�|Bl

)−1 ◦ ∂∗ ◦ d∇ = idΓ(Bl) +Nl is
invertible on Bl and so is ∂∗ ◦ d∇. �

2.4.2. BGG-splitting-operators. It is now easy to show

Lemma 2.4.2. For every σ ∈ Hl there is a unique s ∈ Zl such that
Πl(s) = σ and ∂∗(d∇s) = 0.

Proof. First take an s ∈ Zl such that ∂∗(d∇s) = 0 and assume that
Πl(s) = 0. This means that s ∈ Bl. However, ∂∗(d∇s) = 0 already implies
s = 0 for s ∈ Bl by Lemma 2.4.1. This shows uniqueness.

For existence, let s ∈ Zl be an arbitrary lift of σ. Since ∂∗(d∇s) ∈
Bl, Lemma 2.4.1 shows that there exists a b ∈ Bl such that ∂∗(d∇b) =
∂∗(d∇s). But then s − b ∈ Zl projects onto σ as well but additionally
satisfies ∂∗(d∇(s− b)) = 0. �

By 2.4.2 we can define a differential splitting operator Ll : Hl → Zl by
associating to σ ∈ Hl the unique lift s in Zl which satisfies d∇s ∈ Zl+1.
Now we can define Ll = im Ll(Hl). The operators

Ll : Hl → Ll ⊂ Zl
are called the BGG-splitting-operators.

As a surprisingly direct consequence one has ([Čap05])

Corollary 2.4.3. If the geometry (G, ω) is regular and normal, i.e,
K ∈ Ω2(M,AM)1 and ∂∗(K) = 0, the full curvature can be recovered from
the harmonic curvature KH = Π2(K) ∈ H2; in particular, KH is the full
obstruction to flatness.

Proof. We have already observed that we can project K to H2 since K
lies in the kernel of ∂∗. Now K ∈ Ω2(M,AM) is the curvature of the tractor
connection ∇ on AM , but every linear connection satisfies the differential
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Bianchi identity d∇K = 0. Thus K = L2(KH). I.e: the full curvature can
be recovered from KH . �

In chapter 7 we will often only need the following consequence of the
definition of L0 : H0 → V: if s ∈ V is parallel, one trivially has ∂∗(∇s) = 0,
and thus s = L0(Π0(s)). This is important enough to merit a

Lemma 2.4.4. On the space of parallel sections of a tractor bundle V,
L0 ◦Π0 is the identity. I.e., if s ∈ V with ∇Vs = 0, then

s = L0(Π0(s)). (57)

In particular, if the projection of a parallel s ∈ V to its lowest homogeneity
part in Γ(H0) = Γ(V/V1) vanishes, then s = 0.

2.4.3. BGG-operators. We can now form the BGG-operators θl =
θVl ,

θl : Hl → Hl+1, (58)

θl := Πl+1 ◦ d∇ ◦ Ll. (59)

Diagrammatically,

Ll
d∇ // Zl+1

Πl+1

��
Hl

Ll

OO

θl // Hl+1.

Note that this construction makes sense since for σ ∈ Hl one has by con-
struction d∇(Llσ) ∈ Zl+1 = ker ∂∗ ⊂ Cl+1 and this element is projectable
into Hl+1.

The BGG-operators thus form a sequence

Γ(V/V1) = H0
θ0→ H1

θ1→ · · · θn−1→ Hn.
This sequence won’t be a complex in the general curved situation. In the
case where (G, ω) is a flat parabolic geometry, i.e.,Ω ∈ Ω2(G, g) as defined
in (13) vanishes, it does form a complex: For this, we first note that in the
flat case the diagram

Ll
d∇ // Zl+1

Hl

Ll

OO

θl // Hl+1

Ll+1

OO
(60)

commutes, i.e., Ll+1 ◦ θl : Hl → Ll+1 agrees with the composition
d∇ ◦ Ll : Hl → Cl: this commutativity is evidently equivalent to
d∇(Ll) ⊂ Ll+1 ⊂ Cl+1. But if K ∈ Ω2(M,AM) vanishes, one has ∂∗ ◦
d∇ ◦ d∇ = 0 trivially since

d∇ ◦ d∇ = alternation ◦K• = 0.

Thus, having commutativity of (60), we see that

θl+1 ◦ θl = Πl+2 ◦ d∇ ◦ d∇ ◦ Ll = 0,

and the BGG-sequence does indeed form a complex in flat case.
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In the curved case, one can in some cases restrict to certain subcomplexes,
see [ČS05].

Commutativity of (60) will play a major role in the next two sections.





CHAPTER 3

A natural adjustment procedure for tractor
connections

In all of the following, (G, ω) will be a regular parabolic geometry of type
(G,P ).

3.1. A natural space of modifications

In this section we will mainly be concerned with mending the non-
commutativity of the diagram

L0
∇ // Z1

H0

L0

OO

Θ0 // H1

L1

OO (61)

This will be done by changing the tractor connection ∇ on V by a modifica-
tion Ψ ∈ Ω1(M,End(V)). For such a Ψ, ∇̃ = ∇+ Ψ is the new connection
∇̃s = ∇s+ Ψs defined by

∇̃ξs := ∇ξs+ Ψ(ξ)s

for ξ ∈ X(M) and s ∈ V = Γ(V).
The basic step in the construction of the BGG-splitting operators in

section 2.4 was Lemma 2.4.1, where we constructed an inverse of

∂∗ ◦ d∇ : Bl → Bl. (62)

The important point here was that we knew what ∂∗ ◦ d∇ did in lowest
homogeneity: by regularity of (G, ω), we have, via the canonical surjections

πl,i : Cil → Cil/Ci+1
l = gri(Cl),

that on Bil ,

πl,i ◦ ∂∗ ◦ d∇|Bi
l

= � ◦ πl,i|Bi
l
. (63)

This was used to invert ∂∗ ◦d∇ on Bl. If we want to obtain a BGG-sequence
for a modified connection ∇̃ = ∇ + Ψ it is therefore natural to demand
that also ∇̃ equals ∂ in lowest homogeneity, which just says that Ψ ∈
Ω1(M,End(V)) should be of homogeneity ≥ 1, or Ψ ∈ Ω1(M,End(V))1.
Explicitly, this means that for all ξ ∈ Γ(TM)i = X(M)i and s ∈ Vj one has
that Ψ(ξ)s ∈ V i+j+1. In fact, we have to following simple lemma.

Lemma 3.1.1. If Ψ ∈ Ω1(M,End(V))1, then one has for the modified
connection ∇̃ = ∇+ Ψ that, for all homogeneities j ∈ Z,

πl+1,j ◦ d∇̃|Cj
l

= ∂ ◦ πl,j . (64)

27
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Proof. Choose a Weyl structure σ : G0 → G. This yields the decompo-
sition (51), ∇ = ∂ + D + P• with D the Weyl-connection on V and P the
Schouten tensor; and we have observed that ∂ : V → C1 is of homogeneity
0 while D and P• are homogeneous of degree ≥ 1 as maps V → C1.

For ξ ∈ X(M)i and s ∈ Vj one has by assumption on Ψ, Ψ(ξ)s ∈ V i+j+1.
Therefore also Ψ is homogeneous of degree ≥ 1 as a map V → C1. This
gives ∇̃ − ∂ = D + P•+ Ψ, and thus

(∇̃ξs− ∂s(ξ)) = Dξs+ P(ξ)•s+ Ψ(ξ)s ∈ V i+j+1;

In particular,

π0,i+j(∇̃ξs) = π0,i+j(∂s(ξ)) = ∂(π0,j(s))(ξ),

which holds for all homogeneities i, j, and therefore yields (64) for l = 0.
Take now s ∈ Cjl and ξi ∈ X(M)ji for 0 ≤ i ≤ l and homogeneities

ji ∈ Z. Then, by definition,

(d∇̃s)(ξ0, · · · , ξl) =
l∑

k=0

(−1)k∇̃ξkϕ(ξ0, · · · , ξ̂k, · · · , ξl) (65)

+
∑

0≤i<k≤l
(−1)i+kϕ([ξi, ξk], ξ0, · · · , ξ̂i, · · · , ξ̂k, · · · , ξl).

And by regularity of the geometry,

[ξi, ξk]− {ξi, ξk} ∈ Vji+jk+1

for all x ∈M, 0 ≤ i < k ≤ l. Together with (64) for l = 0, (65) implies that

π0,j+
Pl

k=0 jk
((d∇̃s)(ξ0, . . . , ξl)) =

π0,j+
Pl

k=0 jk

( l∑
k=0

(−1)kξk•ϕ(ξ0, · · · , ξ̂k, · · · , ξl)

+
∑

0≤i<k≤l
(−1)i+kϕ({ξi, ξk}, ξ0, · · · , ξ̂i, · · · , ξ̂k, · · · , ξl)

)
This is the formula for ∂ by (42). �

Since � = ∂∗ ◦ ∂ on gr(Bl) ⊂ gr(Cl), this implies that (63) also holds
with d∇̃ instead of d∇: we have πl,i ◦ ∂∗ ◦ d∇|Bi

l
= � ◦ πl,i|Bi

l
for all l, i. The

resulting seqeunce of BGG-(splitting)-operators for ∇̃ = ∇ + Ψ is denoted
L̃0, · · · , Θ̃0, · · · .

In view of our prolongation problem, apart from this necessary homo-
geneity condition, another natural condition on the modification Ψ is that
the first BGG-operator

Θ̃0 : H0 → H1

of ∇̃ coincides with the original first BGG-operator Θ0. I.e.: we want
to achieve commutativity of diagram (61) without changing the bottom
operator. For this, one makes the following simple observation:

Lemma 3.1.2. Let Ψ ∈ Ω1(M,End(V)) be such that for all s ∈ V one has
that Ψs ∈ B1 = im ∂∗. Then the first BGG-splitting operator L̃0 : H0 → V
coincides with L0, and also Θ̃0 = Θ0 : H0 → H1.
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Proof. Take s ∈ L0. Then, by Lemma 2.4.2, s = L0(Π0(s)). Thus
∇̃s = ∇s+ Ψs. Since s ∈ L0, we have that ∇s ∈ ker ∂∗. But by assumption
on Ψ, Ψs ∈ im ∂∗ ⊂ ker ∂∗. Thus ∇̃s = ∇s + Ψs ∈ ker ∂∗. I.e.: s ∈ V is a
lift of Π0(s) ∈ H0 into V such that ∂∗(∇̃s) = 0. By Lemma 2.4.2 this split
is unique, and by the definition of splitting operators it is s = L̃0(Π0(s)).
Thus indeed L̃0 = L0.

To see that Θ̃0 = Θ0 we just consider the definition

Θ̃0 = Π1 ◦ ∇̃ ◦ L̃0 = Π1 ◦ (∇+ Ψ) ◦ L0 :

Since Ψ is a map V → B1 = Γ(im ∂∗) = Γ(ker Π1), we have in fact

Θ̃0 = Π1 ◦ ∇ ◦ L0 = Θ0.

�

Thus the natural space of modifications of ∇ we will allow is

Definition 3.1.3.

DB := {Ψ ∈ Ω1(M,End(V))1 : Ψs ∈ B1 ∀s ∈ V}.

We endow the space DB ⊂ Ω1(M,End(V)) with the filtration

DiB := {Ψ ∈ Ω1(M,End(V))1 : Ψs ∈ Bi1 ∀s ∈ V}.
If the the tractor bundle is filtered

V = V0 ⊃ V1 ⊃ · · · ⊃ Vr ⊃ {0},
the filtration of DB is

DB = D2
B ⊃ · · · ⊃ Dr+kB ⊃ Dr+k+1

B = {0}.

3.2. The normalization condition, existence and uniqueness

The basic observation is now

Proposition 3.2.1. Let Ψ ∈ DB and RΨ be the curvature of the modified
connection ∇̃ = ∇+Ψ. Assume that one has for all s ∈ V that ∂∗(RΨs) = 0.
For this we will also write

∂∗ ◦RΨ = 0. (66)

Then the diagram

L0
∇̃ // Z1

H0

L0

OO

Θ0 // H1

L̃1

OO (67)

commutes.

Proof. Take σ ∈ H0. Then ∇̃(L0(σ)) ∈ Z1 and by construction of Θ0,

Θ0 = Π1 ◦ ∇̃ ◦ L0,

so ∇̃(L0(σ)) ∈ Z1 is a lift of Θ0σ ∈ H1. By assumption on Ψ resp. RΨ,

d∇̃(∇̃(L0(σ))) = RΨL0(σ) ∈ Z2.
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Thus d∇̃(∇̃(L0(σ))) ∈ L1 is the unique lift of Π1(∇̃(L0(σ))) = Θ0(σ) ∈ H1,
and by construction this is L̃1(Θ0(σ)). I.e, we have

∇̃(L0(σ)) = L1(Θ0(σ))

for all σ ∈ H0 and thus commutativity of (67). �

The next two Lemmas lie at the heart of our adjustment procedure em-
ployed afterwards in Proposition 3.2.4, which obtains existence and unique-
ness of Ψ ∈ DB with ∂∗ ◦ RΨ = 0. The goal is to control the change in
curvature which occurs when one changes ∇ to ∇+ Ψ: first recall that with
R the curvature of ∇ and RΨ the curvature of ∇ + Ψ one has the basic
formula

RΨ = R+ d∇Ψ + Ψ ∧Ψ, (68)

cf. for instance [Ram05], Chapter 5, Proposition 5.3. Here

∧ :
(
T ∗M ⊗ End(V)

)
⊗
(
T ∗M ⊗ End(V)

)
→ Λ2T ∗M ⊗ End(V), (69)

Ψ ∧Ψ′(ξ, η)s = Ψ(ξ)Ψ′(η)s−Ψ(η)Ψ′(ξ)

for x ∈M,Ψ,Ψ′ ∈ T ∗xM ⊗ End(V), ξ, η ∈ TxM, s ∈ Vx.

Written out, (68) is given by

RΨ(ξ, η)s = R(ξ, η)s

+∇ξ(Ψ(η)s)−Ψ(η)∇ξs−∇η(Ψ(ξ)s) + Ψ(ξ)∇ηs−Ψ([ξ, η])s

+ Ψ(ξ)Ψ(η)s−Ψ(η)Ψ(ξ)s.

Lemma 3.2.2. Let Ψ ∈ Ω1(M,End(V))1 and ϕ ∈ DiB for some
2 ≤ i ≤ r + k. Define

∆(Ψ, ϕ) := d∇ϕ+ ϕ ∧Ψ + Ψ ∧ ϕ+ ϕ ∧ ϕ ∈ Ω2(M,End(V)). (70)

Then

π1,i

(
∂∗(∆(Ψ, ϕ)s)

)
= �π1,i(ϕs).

Proof. We will work with some Weyl structure σ : G0 → G. By defini-
tion

d∇ϕ(ξ, η)s = ∇ξ(ϕ(η)s)− ϕ(η)∇ξs−∇η(ϕ(ξ)s) + ϕ(ξ)∇ηs− ϕ([ξ, η])s.

With D the Weyl connection on V and P the Schouten tensor, ∇ξ = ∂ξ +
Dξ + (iξP )•. Now

Dξ + (iξP )• : V → V

is homogeneous of degree ≥ 0 for all ξ ∈ X(M). By assumption, ϕ(η)s ∈
Bi+j by for all s ∈ V and η ∈ X(M)j , Furthermore, regularity of ω implies
that for ξ ∈ X(M)r and η ∈ X(M)s the Lie-bracket [ξ, η], coincides with the
algebraic bracket {ξ, η} in homogeneity r + s. Taking this together, we see
that in homogeneity i the map

(ξ, η) 7→ ∇ξ(ϕ(η)s)−∇η(ϕ(ξ)s)− ϕ([ξ, η])

agrees with

(ξ, η) 7→ ∂ξ(ϕ(η)s)− ∂η(ϕ(ξ)s)− ϕ({ξ, η})s = ∂(ϕs)(ξ, η).
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The V-valued 2-forms [ϕ,Ψ]s, [ϕ,ϕ]s and (ξ, η) 7→ ϕ(ξ)∂ηs−ϕ(η)∂ξs are
all of the form (ξ, η) 7→ ϕ(ξ)(τ(η)) − ϕ(η)(τ(ξ)), with τ ∈ Ω1(M,V). But
by assumption on ϕ, this is seen to be homogeneous of degree ≥ i+ 1.

The only term left in ∆(Ψ, ϕ) is (ξ, η) 7→ Ψ(ξ)(ϕ(η)s) − Ψ(η)(ϕ(ξ)s).
But this too is homogeneous of degree ≥ i+ 1.

Thus we see that (∆(Ψ, ϕ)s agrees with ∂(ϕs) in homogeneity i for all
s ∈ V. But this immediately implies the result. �

Lemma 3.2.3. Let Ψ ∈ Ω1(M,End(V))1 and ϕ ∈ DiB for some 2 ≤
i ≤ r + k. Denote by R,R′ the curvature of ∇ + Ψ, resp. ∇ + Ψ + ϕ. If
∂∗ ◦R ∈ DiB then

(1) ∂∗ ◦R′ ∈ DiB.
(2) π1,i ◦ ∂∗ ◦R′ = π1,i ◦ ∂∗ ◦R+� ◦ π1,i ◦ ϕ.

Proof. We have

R′ = R+ d∇ϕ+ ϕ ∧Ψ + Ψ ∧ ϕ+ ϕ ∧ ϕ = R+ ∆(Ψ, ϕ).

We have seen in the proof of Lemma 3.2.2 that ∂∗(∆(Ψ, ϕ)s) lies in Bi1, and so
does ∂∗(Rs) by assumption. Also by assumption, ∂∗ ◦R ∈ Ω1(M,End(V))1,
were the focus is on the homogeneity ≥ 1. Thus to see that ∂∗ ◦ R′ ∈ DiB
it remains to check that ∂∗ ◦ ∆(Ψ, ϕ) ∈ Ω1(M,End(V))1. However, it is
evident that d∇ϕ+ [ϕ,Ψ] + [Ψ, ϕ] + [ϕ,ϕ] is homogeneous of degree ≥ 1 as a
2-form on M with values in End(V), and so is ∂∗ ◦∆(Ψ, ϕ). Thus we have
(1). (2) follows immediately from Lemma 3.2.2. �

Having these technical Lemmas, we can now prove the main result of
this chapter:

Theorem 3.2.4. There is a unique Ψ ∈ DB with ∂∗ ◦RΨ = 0.

Proof. Again we work with some Weyl structure. We will show the
following by induction in i:

(*) There is a Ψi ∈ DB such that the curvature R of ∇̃ = ∇+Ψi has the
property that ∂∗ ◦ R ∈ Di+1

B . I.e.: ∂∗ ◦ R ∈ Ω1(M,End(V))1 and for every
s ∈ V one has ∂∗(Rs) ∈ Bi+1

1 .
(**) If also Ψ′i ∈ DB has this property, then (Ψi −Ψ′i) ∈ D

i+1
B .

Ψ1 = 0 satisfies the conditions for i = 1, because B1
1 = {0} and K• is

homogeneous of degree ≥ 1 by regularity of the geometry. At the end of this
induction Ψr+k will be the solution we sought for and will be unique.

Now assume that for 1 ≤ i < r + k we have constructed Ψi. Define

ϕ := −�−1 ◦ ∂∗ ◦R. (71)

By inductive assumption ϕ ∈ Di+1
B . Let Ψi+1 = Ψi + ϕ and consider ∇′ =

∇+ Ψi+1 and its curvature R′. One has

R′ = R+ d∇ϕ+ ϕ ∧Ψi + Ψi ∧ ϕ+ ϕ ∧ ϕ = R+ ∆(Ψi, ϕ).

Now Lemma 3.2.3 tells us that

π1,i+1(∂∗(R′s)) = π1,i+1(∂∗(Rs)) + π1,i+1(∂∗(∆(Ψi, ϕ)s)) =

= π1,i+1(∂∗(Rs)) +�π1,i+1(ϕ) =

= π1,i+1(∂∗(Rs))−�π1,i+1(�−1∂∗(Rs)) = 0.
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Since, as seen in Lemma 3.2.3, ∂∗ ◦R′ ∈ Ω1(M,End(V))1, we therefore have
∂∗ ◦R′ ∈ Di+2

B , which shows that Ψi+1 solves (*) for i+ 1.
For the uniqueness part, assume that for some 2 ≤ l ≤ i+ 1 an η ∈

Ω1(M,End(V))1 has the following properties: for every s ∈ V, ηs ∈ Bl1 and
the curvature R′′ of ∇+ Ψi+1 + η also satisfies ∂∗(R′′s) ∈ Bi+2

1 .
Then R′′s = R′ + ∆(Ψi+1, η) and

0 = π1,l(∂∗(R′′s−R′s)) = π1,l(∂∗(∆(Ψi+1, η)s)) = �π1,l(η);

Invertibility of � on Bl and induction in l yields ηs ∈ Bi+2
1 for every s ∈

V. �

Since Ψ ∈ DB is uniquely determined by the natural condition ∂∗◦RΨ =
0, it is natural.

Remark 3.2.5. When one works with a torsion-free, 1-graded parabolic
geometry, the proof shows that the modification Ψ ∈ Ω1(M,End(V))1 ac-
tually lies in Ω1(M,End(V)1): Since the filtration TM = T−1M is trivial
for g = g−1 ⊕ g0 ⊕ g1 1-graded, Ψ ∈ Ω1(M,End(V))1 means that for every
ξ ∈ X(M) = X(M)−1 and s ∈ V i one has Ψ(ξ)s ∈ V i. I.e.: Ψ(ξ) ∈ End(V)0

for all ξ ∈ X(M).
Having additionally that ω is torsion-free means that its curvature K

sits in Ω2(M,A0M) ⊂ Ω2(M,AM). Then K• is homogeneous of degree ≥ 2
as a map from V to C2, and so is ∂∗ ◦K•. But again it follows immediately
from TM = T−1M that Ω1(M,End(V))2 = Ω1(M,End(V)1). The first
adjustment step in the proof above (which employs a Weyl structure) is
given by

∇ ∇+ ϕ

with

ϕ = −�−1 ◦ ∂∗ ◦K•.

Since � preserves homogeneities, we have ϕ ∈ Ω1(M,End(V)1). That then
also prolongation connection Ψ lies in Ω1(M,End(V)1) follows inductively:
the inductive step in the adjustment procedure employs the change in cur-
vature (70), and this is again seen to be of homogeneity ≥ 2.

3.3. A natural formula

In the context of Theorem 3.2.4 it is even possible to arrive at a natu-
ral formula for Ψ. This depends on the simple nature of the action of the
Kostant Laplacian �: for an 0 ≤ i ≤ n consider gri(B1) = gri(C1) ∩ im ∂∗.
Let F be a G0-isotypical component of gri(B1). Then �, which is G0-
equivariant, preserves F ; in fact, the proof of Kostant’s version of the Bott-
Borel-Weyl Theorem even shows that � acts by scalars on isotypical com-
ponents, and since � is symmetric with respect to a canonical G0-invariant
inner product on C1 and im ∂∗ ∩ ker ∂∗ = {0}, we have that � acts by a
non-zero real number on F .

The construction of a natural formula proceeds similarly as Theorem
3.2.4, but now the inductive procedure will go on finer than before, namely
via the isotypical components of B1. Let us say that for 1 ≤ i ≤ r + k the
space gri(B1) has τi ∈ N0 isotypical G0-components Fi,1, . . . Fi,τi . By our
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conventions on the filtration, τ1 = τr+k+1 = 0. The associated bundles are
denoted Fi,l = G ×P Fi,l and the space of sections of Fi,l is Fi,l.

For 0 ≤ j ≤ τi we will denote by DiB,j the space of all elements ϕ of DiB
which have the property that for every s ∈ V the section π1,i(ϕs) of gri(B1)
has trivial projections to Fi,j+1, . . .Fi,τi .

Theorem 3.3.1. There is a natural formula for the adjustment
∇̃ = ∇+ Ψ,Ψ ∈ DB constructed in Theorem 3.2.4.

Proof. We will proceed by a nested induction upward in i and down-
ward in j via the following statement:

(*) For 1 ≤ i ≤ r+ k and 0 ≤ j ≤ τi there is an Ψi,j ∈ DB such that the
curvature R of ∇̃ = ∇ + Ψi,j has the property that ∂∗ ◦ R ∈ DiB,j . Ψi,j is
natural; more precisely, it is given by a formula only involving multiplications
by real numbers and compositions of the operators ∂∗, d∇ and the algebraic
commutator-bracket [·, ·] of (69).

We know that (*) is satisfied for i = 1, j = 0 for the trivial reason that
gr1(B1) = {0} and by regularity of the geometry. Having shown (*) for
(i, 0), we have in fact (*) for (i + 1, τi+1). The solution we sought for will
be obtained at (r + k, 0) respectively (r + k + 1, 0).

So lets assume now that we have shown (*) for (i, j) with 1 < i ≤ r + k
and 0 < j ≤ τi. We form ϕ = ∂∗ ◦ R, with R the curvature of ∇ + Ψi,j .
We have the natural projections πFi,l

: Bi1 → Fi,l. By assumption, for every
s ∈ V one has that πFl

(ϕs) = 0 for l > j.

Assume that � acts by c ∈ R\{0} on Fi,j . Take Ψi,j−1 := Ψij − 1
cϕ and

form

∇̃′ := ∇̃ − 1
c
ϕ =: ∇+ Ψi,j−1.

Note that by assumption ϕ ∈ DiB, and in particular, Ψi,j−1 ∈ DB.

The curvature R′ of ∇̃′ is

R′ = R+ ∆(Ψi,j ,−
1
c
ϕ).

By Lemma 3.2.3, we have

πFl
◦ ∂∗ ◦R′ = (1− c

c
)πFl

◦ ∂∗ ◦R.

Thus it is immediately clear that ∂∗◦R′ has only j−1 nontrivial projections.

Also by Lemma 3.2.3, we know that ∂∗ ◦ R′ sits again in DiB, and thus
Ψi,j−1 solves (*) for (i, j − 1). �

Remark 3.3.2. The formula constructed in Theorem 3.3.1 is natural
but not canonical: it depends on an an order on the isotypical-typical com-
ponents of B1. The problematic terms here are the commutators [, ], which
result in higher order dependence on the eigenvalue of the component one
started with. We note that in the case of a 1-graded, torsion-free geometry
these terms vanish if V = V0 ⊕ V1 ⊕ V2. That all formulas which can be
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arrived at by this procedure are equal also in the general case follows only
by uniqueness of the solution shown in Theorem 3.2.4.



CHAPTER 4

Natural prolongation of first BGG-operators via
the adjusted tractor connection

4.1. Geometric prolongation of Θ0

Given a tractor bundle V for a G or (g, P )-representation V , we have
the first BGG-operator Θ0 : H0 → H1. In chapter 3 we found a natural
adjustment ∇̃ = ∇ + Ψ, Ψ ∈ Ω1(M,End(V))1, such that we have com-
mutativity of the first BGG-diagram (67); i.e., with the splitting operators
L0 : H0 → V and L̃1 : H1 → Z1:

L̃1 ◦Θ0 = ∇̃ ◦ L0. (72)

Theorem 4.1.1. Let V be a (g, P )-representation, V the associated trac-
tor bundle and V its space of sections. Let Ψ ∈ Ω1(M,End(V))1 be the
unique modification of the standard tractor connection ∇ on V with the
properties

(1) Ψs ∈ im ∂∗ ∀s ∈ V,
(2) ∂∗ ◦RΨ = 0 for RΨ the curvature of ∇+ Ψ.

constructed in Theorem 3.2.4. Then, with ∇̃ = ∇ + Ψ, (V, ∇̃,Π0, L0) is a
geometric prolongation of Θ0: The maps Π0 : V → H0 and L0 : H0 → V
restrict to inverse isomorphisms between the space of ∇̃-parallel sections of
V and the kernel of Θ0. Since Ψ is uniquely determined by natural conditions
(1) and (2) it is natural, and so is ∇̃.

Proof. Let s ∈ V be such that ∇̃s = 0. For the parallel section s one
has s = L̃0(Π0(s)) by construction of the first splitting operator. But by
Lemma 3.1.2 L̃0 = L0 and thus s = L0(Π0(s)). Then, by definition of Θ0

(see (58)),

Θ0(Π0(s)) = Π1(∇̃(L0(Π0(s)))) = Π1(∇̃s)) = 0.

Conversely, let σ ∈ ker(Θ0) ⊂ H0. Then, by (72),

∇̃(L0(σ)) = L̃1(Θ0(σ)) = L̃1(0) = 0,

which proves the claim. �

The connection ∇̃ on V will occasionally be referred to as the prolonga-
tion connection on V or the prolongation connection of Θ0.

One immediately has the following corollary:

Corollary 4.1.2. Let V be a (g, P )-representation and (V, ∇̃,Π0, L0)
the geometric prolongation of Theorem 4.1.1. The grading of V is assumed
to be V = V0 ⊕ · · · ⊕ Vr for r ∈ N. (See 2.2.3). Then

(1) The space ker Θ0 ⊂ H0 has rank ≤ dim V .

35
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(2) Every σ ∈ ker Θ0 is determined by its r-jet at some point.
(3) If σ ∈ ker Θ0 is nontrivial, its singularity set σ−1({0}) has an open

dense complement.

Proof. Let x ∈ M and let ∇̃ be the prolongation connection of Theo-
rem 4.1.1. Take some identification of V with Vx and denote by Holx(∇̃) ⊂
GL(V ) the holonomy group of ∇̃ at x. Then it is well known that the space
of parallel sections of V with respect to a ∇̃ is in 1:1- correspondence with
Holx(∇̃)-invariant elements in V ; in particular, ∇̃-parallel sections are de-
termined by their value at x. This immediately shows (1). For (2), one
observes inductively that the first BGG-splitting operator L0 : H0 → V is a
differential operator of order r; thus the r-jet of σ ∈ ker Θ0 at x determines
(L0σ)(x) ∈ Vx, which again determines the ∇̃-parallel section L0σ as we
have just observed. To see (3), assume that for some x ∈M there is a neigh-
borhood on which σ vanishes. Then evidently (L0σ)(x) = 0, since L0 is a
differential operator. Alas, since s = L0(σ) is ∇̃-parallel, it is determined
by its value at x and therefore vanishes globally. To be precise, we assume
here that M is connected. �

We remark that the notion of r-jets used in Corollary 4.1.2 is the usual
one and ignores the filtration of TM .

Proposition 4.1.3. Let s ∈ V such that ∇s = 0. Then Ψs = 0. Other-
wise put: ∇-parallel sections of V are also ∇̃-parallel.

Proof. We will use Theorem 3.3.1, respectively its proof. Let

ϕ := ∂∗ ◦ (K•).
Then, since s is ∇-parallel and K• is the curvature of ∇, one has ϕs = 0.
But then also (d∇ϕ)s = 0 and [ϕ,ϕ]s = 0. Since Ψ is generated from ϕ by
these operations we thus have Ψs = 0. �

Remark 4.1.4. Of course, in general, for Ψ 6= 0, the converse does not
hold. Another way to see Proposition 4.1.3 is (see also [Čap08], Corollary
3.5): Let s ∈ V be ∇-parallel, then Θ0(Π0(s)) = 0, and thus ∇̃(L0(Π0(s))) =
∇̃s = 0 by Theorem 4.1.1.

Definition 4.1.5. Generalizing [Lei05] we say that the normal solu-
tions of

Θ0σ
!= 0, σ ∈ H0

are those which split to ∇-parallel sections of V, i.e., we define kernorΘ0 ⊂
ker Θ0 by

kernorΘ0 := {σ ∈ H0 : ∇L0(σ) = 0}.

This yields additional equations on σ. For specific examples of this see
6.2 and 7.3.3.

4.2. Curvature and obstructions

4.2.1. The Curvature of the prolongation connection and ten-
sorial obstructions.
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Lemma 4.2.1. Let R be the curvature of the adjusted connection ∇̃ =
∇+Ψ. Assume that K ∈ Ω2(M,AM)l. Then, for s a section of V, one has

π2,l(Rs) = projgrl(Z2)

(
π2,l(K•s)

)
. (73)

Proof. In the proof of Theorem 3.2.4 we started out with a regular
parabolic geometry: By Proposition 2.2.6, regularity of the Cartan geom-
etry (G, ω) is equivalent to K ∈ Ω2(M,AM)1; i.e., the curvature form K
satisfies that for all ξ ∈ X(M)i and η ∈ X(M)j one has K(ξ, η) ∈ Ai+j+1M .
This condition is exactly what is needed for the map ϕ ∈ Ω1(M,End(V)
defined (after choice of a Weyl structure) by ϕs = −�−1(∂∗(K•s)) to be
homogeneous of degree ≥ 1, i.e., for ϕ to lie in Ω1(M,End(V))1. Likewise,
when one starts with a curvature form K which is homogeneous of degree
≥ l, l ≥ 2, one sees that ϕ ∈ Ω1(M,End(V))l, and also the final adjust-
ment Ψ of Theorem 3.2.4 will be homogeneous of degree ≥ l. In this case
the induction process in the proof of Theorem 3.2.4 starts at i = l, since
for s ∈ V = V0 ⊃ · · · ⊃ Vr arbitrary, ϕs is automatically homogeneous of
degree ≥ l.

Now the resulting Ψ ∈ Ω1(M,End(V))l can be written as Ψ = ϕ + ϕ′

with ϕ′ ∈ Dl+1
B ; in particular, for every s ∈ V, ϕ′s ∈ Bl+1

1 . If we apply
Lemma 3.2.2, we see that in homogeneity l, Rs = R(∇ + ϕ + ϕ′)s equals
R(∇ + ϕ)s; but the last line of the proof of this Lemma tells us thus that
with ϕ = −�−1 ◦ ∂∗ ◦ (K•)

π2,l(Rs) = π2,l(K•s) + π2,l(∂(ϕs))l =

= π2,l(K•s)− π2,l(∂(�−1(∂∗(K•s)))),

which is the projection of π2,l(K•s) ∈ grl(C2) to grl(Z2). �

Corollary 4.2.2. Let (G, ω) be a 1-graded, torsion-free parabolic ge-
ometry, V a (g, P )-representation. Let R be the curvature of the adjusted
connection ∇̃ = ∇+ Ψ of Theorem 3.2.4. With the first two BGG-operators
Θ̃1 and Θ0 of ∇̃ we define the natural map

Φ : H0 → gr2(H2),

Φ := projgr2(H) ◦ Θ̃1 ◦Θ0.

Then Φ is tensorial and

Φ(σ) = π2,2(RL0(σ)) = projgr2(H2)(K•π0,0(σ)) (74)

for all σ ∈ H0.

Proof. Let s = L0σ, then (73) for l = 2 gives us

π2,2(Rs) = projgr2(H2)(π2,2((K•s)))

since gr2(Z2) = gr2(H2).
By commutativity of (67), we have R•s = d∇̃(∇̃(s)) = L̃2(Θ̃1(Θ0(σ))),

which gives (74). Since π2,2(K•s) only depends on σ = π0,0(s) the map Φ
is indeed tensorial. �

By construction, Φ is in tensorial obstruction map in the sense that
ker Θ0 ⊂ ker Φ. Of course, this is only interesting when gr2(H2) 6= {}.
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In the next two chapters 5 and 6 we will treat examples from projective
and conformal geometry and calculate this map explicitly.

Remark 4.2.3. One can obtain stronger obstructions when one works on
the tractor bundle; this is analogous to the constructions of Gover-Nurowski
in [GN06]. Fix some Weyl structure. Then we can couple the the prolon-
gation connection ∇̃ on the tractor bundle V with the Weyl connection D
on T ∗M ; we will denote the coupled connection on tensor products of T ∗M
with V by ∇̂. If s ∈ V is a parallel with respect to ∇̃ then necessarily Rs = 0
with R the curvature of the prolongation connection ∇̃. For ξ ∈ X(M) we
then have 0 = ∇̂ξ(Rs) = (∇̂ξR)s + R(∇̃ξs). But the last summand van-
ishes by parallelicity of s, and thus we see inductively that (∇̂kR)s = 0
for all k ≥ 0. Therefore this system of equations is a necessary condition
for a section s ∈ V to be a parallel section. This system of obstructions is
invariant in the following sense: if the first l − 1 expressions vanish, then
the l-th expression doesn’t depend on the choice of Weyl structure resp.
Weyl connection. Again, analogous to the constructions in [GN06] one
can form determinant-like expressions which are then conformally invariant
sequences of functions which determine injectivity of the maps (∇̂kR) and
thus obstruct existence of ∇̃-parallel tractors. While it is clear that one can
compute these expressions, this would, a priori, yield quite unmanageable
formulas in the general case.

4.3. Infinitesimal automorphisms of parabolic geometries.

In this section we relate the prolongation connections one obtains by the
method presented above to those constructed in [Čap08] for the special case
of adjoint tractor bundles. Nothing new is contained here, but it is useful
to recall this case here for later applications in chapter 7.

Since G →M is a P -principal bundle overM and the geometric structure
is encoded in the Cartan connection form ω ∈ Ω1(G, g), one defines an
automorphism of (G, ω) as a P -equivariant diffeomorphism Ψ of G preserving
ω, as was done in (10). The set of infinitesimal automorphisms is defined
by

inf .aut.(G, ω) := {ξ ∈ X(M)P : Lξω = 0}.

Thus the Lie algebra aut(G, ω) (see (11)) of the automorphism group of
(G, ω) is formed by the complete vector fields in inf .aut.(G, ω).

It was shown in [Čap08] that infinitesimal automorphisms of ω are in
1:1-correspondence with adjoint tractors s ∈ Γ(AM) which are parallel with
respect to the modified connection

∇̃s = ∇s+K(ΠA(s), ·). (75)

Here one employs the natural projection

ΠA : AM = G ×P g→ G ×P g/p = TM

which projects s ∈ Γ(AM) to a vector field ΠA(s) ∈ X(M) on M and
thus allows for the insertions of adjoint tractors into the curvature form
K ∈ Ω2(M,AM).
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Recall that ω : TG → g is a P -equivariant trivialization of TG, and thus,
for a ξ ∈ inf .aut.(G, ω), the function f = ω ◦ ξ : G → g is P -equivariant. f
therefore defines a section of the adjoint tractor bundle AM = G ×P g.

We have an explicit formula for the tractor connection ∇A on AM , see
(45): To compute ∇Aη s for η ∈ X(M) and s ∈ Γ(AM) we take a P -invariant
lift η′ ∈ X(G) of η and let s ∈ Γ(AM) be the adjoint tractor corresponding
to f ∈ C∞(G, g)P . Then ∇Aη s corresponds to the P -equivariant map

u 7→ η′u · ω(ξ) + [ωu(η′), ωu(ξ)]. (76)

Proposition 4.3.1 ([Čap08]). Let s ∈ Γ(AM) be the adjoint tractor
corresponding to the P -invariant vector field ξ ∈ X(G)P . Then

Lξω = 0 iff ∇Aη s+K(ΠA(s), η) = 0 ∀η ∈ X(M).

I.e., ξ ∈ inf .aut.(G, ω) if and only if the corresponding adjoint tractor s =
sξ ∈ Γ(AM) is parallel with respect to the connection

∇̃As = ∇As+K(ΠA(s), ·). (77)

Proof. It is a standard formula that Lξ = iξ ◦d+d◦ iξ as a differential
operator on forms. Thus, with η′ ∈ X(G)P a P -equivariant vector field which
then factorizes to a field η ∈ X(M),

(Lξω)(η′) = (iξdω)(η′) + dω(ξ)(η′) = dω(ξ, η′) + η′ · ω(ξ).

Now use that K ∈ Ω2(M,AM) was defined as the quotient of the horizontal,
P -equivariant form Ω ∈ Ω2

hor(G, g)P defined in (13), which is:

Ω(ξ, η′) = dω(ξ, η′) + [ω(ξ), ω(η′)].

We can thus rewrite dω(ξ, η′) as Ω(ξ, η′) + [ω(η′), ω(ξ)]. Therefore

Lξω(η′) = η′ · ω(ξ) + [ω(η′), ω(ξ)] + Ω(ξ, η′).

But now Ω(ξ, η′) corresponds to K(ΠA(s), η) and according to (76) the P -
equivariant function η′ · ω(ξ) + [ω(η′), ω(ξ)] corresponds to ∇Aη s. �

Let us now compare this modification to the one obtained by our proce-
dure: Let R be the curvature of the modified connection ∇̃ of (75). Then it
is shown in Lemma 3.3, [Čap08] that for an adjoint tractor s ∈ AM one has
Rs = Dω

sK ∈ Ω2(M,AM), with Dω the fundamental derivative of 2.2.7.2.
Thus, if (G, ω) is normal, i.e, ∂∗K = 0, by naturality of Dω

s one has

∂∗(Rs) = ∂∗(Dω
sK) = Dω

s (∂∗(K)) = Dω
s 0 = 0.

I.e, Ψs = iΠA(s)K satisfies condition (66), namely ∂∗ ◦RΨ = ∂∗ ◦R = 0.
We have that H0 = AM/(AM)−k+1 = TM/TM−k+1. With the first

BGG-splitting operator L̃0 : H0 → AM of ∇̃ and the first BGG-operator
Θ̃0 : H0 → H1 the proof of Proposition 3.2.1 shows that (AM, ∇̃,Π0, L̃0) is
a geometric prolongation of Θ̃0. In particular, the operator Θ̃0 constructed
via ∇̃ has as its kernel the space of infinitesimal automorphisms of ω.

Let us assume that (G, ω) is torsion-free, i.e., K ∈ Ω2(M,A0M). More-
over, we demand that the H1 resp. H1 = H1(p+, g) is concentrated in
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non-positive homogeneity : The condition on H1 = H1(p+, g) means that
Π2(Z1

2 (p+, g)) = {0}. It is shown in Theorem 3.4 of [Čap08], that

Ψ = K(ΠA(·), ·) : V → Ω1(M,AM) = C1

has values in B1 = im ∂∗. By uniqueness of Ψ with ∂∗ ◦ RΨ = 0 and
Ψs ∈ im ∂∗ ∀s ∈ V, we see that in this case Ψs = iΠ(s)K coincides with
the solution provided by Theorem 3.2.4 and ∇̃AM = ∇AM + iK is the
geometric prolongation of the (usual) first BGG-operator Θ0 : H0 → H1.
That H1(p+, g) is concentrated in non-positive homogeneity is satisfied for
parabolic geometries other than projective and contact projective structures
(cf. [ČS09]).

In chapter 7 we will employ the following corollary (Lemma 4.10 in
[Čap08]),

Corollary 4.3.2. If (G, ω) is regular, normal, torsion-free and H1 is
concentrated in non-positive homogeneity, every ∇AM -parallel section of
AM inserts trivially into the curvature form K ∈ Ω2(M,AM).

Proof. We just observed that under the given conditions the modifica-
tion K(Π(·), ·) agrees with the modification Ψ constructed in Theorem 3.2.4.
Thus the claim follows immediately from Proposition 4.1.3. �

Recall that ∇AM -parallel sections of AM are in 1:1-correspondence with
kernor(Θ0) be Definition 4.1.5. These are the normal infinitesimal automor-
phisms.



CHAPTER 5

Explicit examples of prolongations in projective
geometry

5.0.1. Index notation. Before we start with examples in projective
geometry we introduce some general notation which will be very useful for
all explicit calculations occurring in chapters 5, 6 and 7. This index notation
is derived from [GŠ08], which is itself a version of the so called Penrose
abstract index notation (cf. [PR87]):

We denote the tangent bundle by Ea = TM and the cotangent bundle
by Ea = T ∗M . Tensor products are written by sequences of indices, e.g.,

Ea1···ai
b1···bj = ⊗iTM

⊗
⊗jT ∗M

or

T ∗M ⊗ TM ⊗ T ∗M = E b
a c.

Symmetric powers will be denoted by round brackets,

S2T ∗M = E(ab),

exterior powers by square brackets, e.g,

T ∗M ⊗ ΛkT ∗M = Ec[a1···ak].

The space of sections of E∗∗ (with ∗ being a placeholder for some indices)
is E∗∗ := Γ(E∗∗) and the modelling vector space will be denoted E∗∗. The
space of vector fields is thus Ea = X(M) = Γ(TM) and one forms are Ea =
Ω1(M) = Γ(T ∗M). For an n-dimensional manifold Ea ∼= Rn, Ea ∼= (Rn)∗.

Taking traces is done by using the same symbol for an upper and a
lower index, resembling the Einstein sum convention for usual indices: for
instance, when ϕ ∈ E b

a , then ϕ p
p ∈ C∞(M) is the trace of ϕ. A subscript

0 will denote complete trace-freeness, e.g.:

E0
c

[ab] = {φ ∈ Γ(Λ2(T ∗M)⊗ TM)) : φ p
ap = 0}.

When TM is endowed with a metric g ∈ E(ab) we can also contract two
lower or two upper indices, e.g., with g−1 ∈ E(ab) the inverse of g, we have
gpqg

pq = dim(M).
A subscript � will denote the highest weight parts (with respect to the

structure group of the geometry), e.g.:

E�[ab]c = {φ ∈ Γ(Λ2(T ∗M)⊗ T ∗M) : gpqφapq = 0 and φ[apq] = 0}.

Brackets around indices of a section will denote projections to the corre-
sponding spaces: for instance, if ϕabc = ϕ ∈ Eabc = ⊗3T ∗M , then ϕ[ab]c :=
1
2(ϕabc − ϕbac) ∈ E[ab]c.

41
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Both for projective and conformal structures there is an adapted notion
of densities, and the corresponding rank 1-line bundles will be denoted by
E[w] for w ∈ R; its space of sections is again E [w] and the modelling 1-
dimensional representations are denoted R[w]. Instead of Eab⊗E[w] we will
simply write Eab[w].

5.1. Projective Structures

Let M be a manifold of dimension n ≥ 2 endowed with a projective
class of linear, torsion-free connections [D]; here D and D̂ are projectively
equivalent if there is a Υa ∈ Ea such that for ωb ∈ Eb (cf. e.g. [BEG94] or
[Eas08]))

D̂aωb = Daωb −Υaωb −Υbωa (78)

resp. for ξa ∈ Ea

D̂aξ
b = Daξ

b + Υaξ
b + Υpξ

pδ ba ;

here δ = idTM is the Kronecker-symbol for the identity on TM . We re-
mark that this transformation is such that projectively equivalent connec-
tions have the same geodesics up to reparametrization. As in [EM07] and
[BEG94] we will restrict ourselves to projective equivalence classes of affine,
torsion-free connections D which induce the flat connection on the bundle of
n-forms Ωn(M) = E[a1···an]. There is a simple proof in [EM07] which shows
that for a torsion-free connection D this is equivalent to symmetry of the
Schouten tensor of D defined below in (82).

There is a unique normal Cartan geometry (G, ω) on M of type
(G,P ) = (SL(n + 1), P ) which induces the given projective equivalence
class of connections on (the oriented bundle) TM . P can be realized as
the stabilizer of the ray through the first canonical basis vector of Rn+1,
explicitly,

P = {
(
a v
0 A

)
: a ∈ R\{0}, A ∈ GL(n), v ∈ Rn∗ with aDetA = 1}.

G/P is then seen to be projective n-space RPn.
The Lie algebra g = sl(n+ 1) is 1-graded

g = g−1 ⊕ g0 ⊕ g1 = Rn ⊕ gl(n)⊕ (Rn)∗,

where an element X ⊕A⊕ ϕ ∈ g for A ∈ sl(n) corresponds to the matrix(
0 −ϕ
X A

)
(79)

and In ∈ gl(n) embeds in g as

−E :=
(
− n
n+1 0
0 1

n+1In

)
; (80)

E is the grading element of g introduced in 2.2.1: it is uniquely determined
by ad(E)|gi

= i idgi .
With this convention the adjoint actions of G0 = GL(n) ⊂ SL(n+ 1) on

g−1 = Rn and g1 = (Rn)∗ are the standard representation and its dual. As
an abelian Lie group the subgroup P+ of P formed by all unipotent matrices
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is seen to be isomorphic to g1 = (Rn)∗, and since P+ is a normal subgroup
of P one gets the semidirect decomposition P = SL(n) n (Rn)∗.

The P -associated bundle to the 1-dimensional representation which in-
finitesimally maps In to multiplication with w n

n+1 is denoted by E[w]-its
space of sections E [w] is the space of projective w-densities.

5.1.1. The adjoint tractor bundle and curvature. The curvature
of the Cartan connection form ω ∈ Ω1(G, sl(n+1)) can be viewed as a section
K of Ec1c2 ⊗ AM , with AM = G ×P g the adjoint tractor bundle. Via a
connection D ∈ [D] which induces the flat connection on E[a1···an], one has
according to (79) and (80) an isomorphism of AM = G ×P sl(n+ 1) with

[AM ]D = {
(

0 −ϕ
ξ A

)
for ϕ ∈ Ea, ξ ∈ Ea, A ∈ E0

a
b}

⊕ R
(
− n
n+1 0
0 1

n+1δ
a
b

)
.

Then the curvature is given by

K =
(

0 −Aac1c2
0 Cc1c2

a
b

)
(81)

with A the Cotton-York tensor and C the (projectively invariant) Weyl
curvature.

Let R be the curvature of D. With the Schouten tensor P ∈ E(ab),

Pab =
1

n− 1
R p
pa b (82)

one has

C a
c1c2 p = R a

c1c2 p + Pc1pδ
a
c2 − Pc2pδ

a
c1 , (83)

Aac1c2 = 2D[c1Pc2]a.

Using (83) and the differential Bianchi identity D[pC
a

c1c2] b = 0 one obtains

DpC
p

c1c2 b
= (n− 2)Abc1c2 .

We will later use that the Schouten tensor transforms as

P̂ab = Pab −DaΥb + ΥaΥb (84)

under a transformation D  D̂ corresponding to Υa.
Recall that if V = G ×P V is some tractor bundle corresponding to a

(g, P )-representation on V , the map

g⊗ V → V,

(Z, v) 7→ Z · v

is P -equivariant and defines an algebraic action of the adjoint tractor bundle

AM ⊗ V → V,

(s, v) 7→ s•v.

Via the inclusions Ea ↪→ AM and Ea ↪→ AM we can also act on V by TM
and T ∗M .
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5.1.2. A brief summary of the necessary steps involved in some
explicit computations of tractor connections, BGG-splitting oper-
ators and first BGG-operators.

Remark 5.1.1. It turned out in chapter 2, section 2.2.6, that one pro-
ceeds as follows: first, one chooses a Weyl structure σ : G0 → G, i.e., a
G0-equivariant splitting of Π : G → G0. In the case of projective structures
every choice of D ∈ [D] yields such a reduction. This provides a reduction
of structure group of every P -associated bundle to G0, recall (32). In par-
ticular, one obtains an isomorphism between gr(Cl) = gr(ΛlT ∗M ⊗V) and
Cl, and therewith the algebraic differential ∂ : Cl → Cl+1. After inclusion
of TM and T ∗M into AM one obtains actions • of these spaces on V. After
having calculated these, one immediately obtains a formula for the tractor
connection ∇, since ∇ = ∂ +D+P•. Moreover, according to (42) and (43)
we can express ∂∗ : Cl+1 → Cl via the algebraic action • of T ∗M . Having ∂
and ∂∗, we can compute � = ∂ ◦ ∂∗ + ∂∗ ◦ ∂ and its inverse. This will allow
us to compute the first splitting operator L0 and the first BGG-operator Θ0.
In the examples below.

5.1.3. The Lie algebra differentials. Let now V be an arbitrary
(sl(n+1), P )-representation. In 2.2.4 we introduced Lie algebra differentials
∂ and ∂∗ on the chain spaces Ck := E[c1···ck] ⊗ V . Since g is 1-graded,
g− and g+ are pointwise abelian Lie algebras the formulas for Lie algebra
differentials ∂ and ∂∗ introduced simplify:

For ϕ ∈ Ck ∼= Λkg∗− ⊗ V and X0, . . . , Xk ∈ g− we have (after choice of
D ∈ [D],

∂ϕ(X0, · · · , Xk) =
k∑
j=0

(−1)jXj · ϕ(X0, · · · , X̂j , · · · , Xk). (85)

The Kostant codifferential ∂∗ : Ck+1 → Ck is given by

∂∗(Y0 ∧ · · · ∧ Yk ⊗ v) =
k∑
j=0

(−1)j+1Y0 ∧ · · · ∧ Ŷj ∧ · · · ∧ Yk ⊗ (Yj · v). (86)

for v ∈ V, Y0, . . . , Yk ∈ Ω1(M).
One has ∂ ◦ ∂ = ∂∗ ◦ ∂∗ = 0. We recall that it is a consequence of a

general result by Kostant ([Kos61]), that ∂ and ∂∗ are naturally adjoint
with respect to a (pointwise) inner product on the chain spaces Ck. This
gives a Hodge decomposition

Ck = im ∂ ⊕ ker�⊕ im ∂∗ (87)

with � = ∂ ◦ ∂∗ + ∂∗ ◦ ∂.
It is a crucial fact that ∂∗ is P -invariant, in contrast to ∂, which is only

G0 = SL(n)-invariant. We use ∂∗ to define the spaces Zk = ker ∂∗∩Ck,Bk =
im ∂∗∩Ck andHk = Zk/Bk. Using the Hodge decomposition, one can embed
Hk as ker� ⊂ Ck as a GL(n)-submodule. The corresponding P -associated
spaces to Zk, Bk and Hk are denoted by Zk, Bk and Hk. Their spaces of
sections are Zk,Bk and Hk.
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5.1.3.1. The projective standard tractor bundle S. The projective stan-
dard tractor bundle EA := S is associated to the standard representation of
P = GL(n) n (Rn)∗ ⊂ SL(n+ 1) on EA := V := Rn+1.

As discussed in Remark 2.2.4, we associate to V the Dynkin diagram of
sl(n+ 1) (or rather its complexification) and we write the coefficient of the
fundamental weight of the complexified dual representation (Cn+1)∗ over
each node. Thus, V corresponds to

0 0 0 1

.

This notation is useful for employing the algorithms of [BE89] for computing
the homologies H∗(p+, V ), which we won’t discuss here.

With respect to a choice of D ∈ [D] we have that S decomposes as

[S]D =
(

E[−1]
Ea[−1]

)
. (88)

The space of sections of S is denoted S. Let s ∈ EA = Rn+1 be given by

s =
(
ρ
σa

)
∈ for ρ ∈ R[−1] and σa ∈ Ea[−1]. Then for Xp ∈ Ep = Rn, Yp ∈

Ep = (Rn)∗

Xp ·
(
ρ
σa

)
=
(

0
ρXa

)
,

Yp ·
(
ρ
σa

)
=
(
−Ypσp

0

)
.

This gives the action • of AM resp. TM and T ∗M on V, which depends
on D ∈ [D] for TM . For s ∈ S with

[s]D =
(
ρ
σa

)
it follows from (33) that one has for D̂ given by (78) for a Υa ∈ Ea that

[s]D̂ =
(
ρ−Υpσ

p

σa

)
.

Now, having chosen a D ∈ [D], we have according to 2.2.7.1,

∂(v)(X) = X•v, for v ∈ Vx, X ∈ TxM.

Let (
ρ
σa

)
∈
(
E [−1]
Ea[−1]

)
. = [S]D.

The tractor connection ∇ = ∂ +D + P• on EA is

∇Sc
(
ρ
σa

)
=
(
Dcρ− Pcpσp

Dcσ
a + ρδ ac

)
,

The curvature RS of ∇S is given by the algebraic action of K ∈ Ω2(M,AM)
on S: one has for s ∈ S that RSs = K•s. (Cf. (47)).
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The first BGG-splitting operator LS0 : Ea[−1] → S is now computed as
follows. In the first step one simply has the inclusion

L0
0 : σa 7→

(
0
σa

)
.

Composing this with the tractor connection we have

σ 7→ ∇S(L0
0(σ)) =

(
−Pcpσp

Dcσ
p

)
.

In 2.2.7.1 we saw that for ϕ ∈ C1 = Ec ⊗V, ∂∗(ϕ) = −•(ϕ), which is the
action of the Ec-slot of Ec ⊗V on V. Therefore

∂∗(∇S(L0
0(σ))) =

(
−Dpσ

p

0

)
.

Now � = ∂∗ ◦ ∂ on V is easily computed to be(
−n
0

)
,

and thus, −�−1 ◦ ∂∗ ◦ ∇S ◦ L0
0 : Ea[−1]→ V is given by

σa 7→
(
− 1
nDpσ

p

0

)
,

which gives the complete first splitting operator

LS0 : Ea[−1]→ S,

σa 7→
(
− 1
nDpσ

p

σa

)
.

Having this, we can compute ΘS
0 = Π1◦∇S◦L0: First, we observe (either cal-

culate it directly or use Kostant’s algorithm [Kos61]), that H1 = E0
a
c [−1].

Then

ΘS
0 : Ea[−1]→ E0

a
c [−1]

σa 7→ Dcσ
a − 1

n
δ ac Dpσ

p.

Thus, ker ΘS
0 consists of vector fields which are mapped to multiples of the

identity by D.
Denoting the dual of the standard tractor bundle S = EA by S∗ = EA

we can regard the action of the curvature Kab• on EA as an element of
E C
p1p2 D

. By (81), this action is given by

Kp1p2

(
ρ
σa

)
=
(
−Aqp1p2σq
C a
p1p2 qσ

q

)
.

Composing this with ∂∗ : E A
p1p2 → E

A
p1 gives

∂∗ ◦ (K•)(
(
ρ
σa

)
) =

(
C u
p1u qσ

q

0

)
, (89)

which vanishes by trace-freeness of the Weyl curvature tensor C. Thus ∇S
already satisfies condition ∂∗ ◦ (K•) = 0 introduced in 3.2. Therefore, ac-
cording to Theorem 4.1.1, ∇S is the prolongation connection for the equation
0 = ΘS

0σ
a = Dcσ

a − 1
nδ

a
c Dpσ

p on σa ∈ Ea[1].
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5.1.4. The dual standard tractor bundle. The dual standard trac-
tor bundle, corresponding to the diagram

1 0 0 0

,

is S∗ = EA; with respect to a connection D ∈ [D] it decomposes into

[S∗]D =
(

Ea[1]
E[1]

)
. (90)

Dually to the case of the standard tractor bundle, we have the following

actions: Let s =
(
ϕa
σ

)
∈ EA = (Rn+1)∗ for σ ∈ R[1] and ϕa ∈ Ea[1]. Then,

with Xp ∈ Ep = Rn, Yp ∈ Ep = (Rn)∗ one has

Xp ·
(
ϕa
σ

)
=
(

0
−Xpϕp

)
,

Yp ·
(
ϕa
σ

)
=
(
σYa

0

)
.

Thus the tractor connection is given by

∇S∗c
(
ϕa
σ

)
=
(
Dcϕa + Pcaσ
Dcσ − ϕc

)
.

Let s ∈ S∗ with

[s]D =
(
ϕa
σ

)
∈
(

Ea[1]
E[1]

)
= [S∗]D.

Then, for D̂ ∈ [D] given by (78) for Υa ∈ Ea, one has

[s]D̂ =
(
ϕa + Υa

σ

)
.

Since the computations are completely analogous to the previous case, we
just state the results: The first splitting operator is

LS
∗

0 : E [1]→ S∗,

σ 7→
(
Daσ
σ

)
and with H1 = E(ab)[1] we obtain

ΘS∗
0 : E [1]→ E(ab)[1],

σ 7→ DaDbσ + σPab.

Similarly to the previous case of the projective standard tractor bundle, it
is again easy to see that ∇S∗ is already the prolongation connection of the
equation ΘS∗

0 σ
!= 0, σ ∈ E [1]. In particular, according to Corollary 4.1.2,

every nontrivial solution σ ∈ E [1] of this equation is non-vanishing on an
open dense subset.

Let therefore 0 6= σ ∈ ker ΘS∗
0 ⊂ E [1] and set U = {x ∈ M : σ(x) 6= 0}.

Let σ̄ ∈ C∞(M) be the trivialization of σ ∈ E [1] and take the 1-form

Υa = Da(log
1
|σ̄|

)
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on U and consider the projectively equivalent connection D̂, (78). Then

Υa = −σ̄−1Daσ̄,

DaΥb = σ̄−2(Daσ̄)(Dbσ̄)− σ̄−1DaDbσ̄,

ΥaΥb = σ̄−2(Daσ̄)(Dbσ̄)

and thus, according to (84), P̂ = 0. I.e.: On U the projectively equivalent
connection D̂ is Ricci-flat.

5.1.5. The adjoint tractor bundle. Let us now treat the adjoint
bundle AM

AM = sl(S) = (S⊗ S∗)0 = E0
A
B,

which corressponds to the diagram

1 0 0 1

.

Define

τS+ :=
(

1
0

)
⊗ 1 ∈ S ⊗ R[1], τS

∗
− :=

(
0
1

)
⊗ 1 ∈ S∗ ⊗ R[−1].

Choosing D ∈ [D], we have decompositions (88) and (90), and can use τS+
and τS

∗
− to define sections τS

+ ∈ Γ(S ⊗ E[1]), τS∗
− ∈ Γ(S ⊗ E[−1]), which

correspond to the respective inclusions of E[−1] into the top slot of (88)
and E[1] into the bottom slot of (90).

They allow us to decompose

[AM ]D =

 gr1(AM)
gr0(AM)

gr−1(AM)

 =

 Ea

E[0] | E0
a
b

Ea


via the associated bundle maps to

ϕa ∈ Ea 7→ τS+ ⊗ ϕa

1 ∈ R 7→ − n

n+ 1
τS+ ⊗ τS

∗
− +

1
n+ 1

δab

µab ∈ E0
a
b 7→ µab

σa ∈ Ea 7→ σ ⊗ τS∗− .

To be precise, the identification of Ea with gr−1(g) = g−1 = Ea used here
employes the embedding Ea ↪→ S ⊗ R[1], which yields the embedding σa ∈
Ea 7→ σ⊗τS∗− ∈ (S⊗R[1])⊗ (S⊗R[−1]) = S⊗S∗, and completely similarly
for the other components.

In this picture, Xp ∈ Ep and Yp ∈ Ep act on g by

Xp ·

 ϕa
ρ | µab
σa

 =

 0
n+1
n Xpϕp | (Xaϕb)0

−ρXa − ϕapXp


Yp ·

 ϕa
ρ | µab
σa

 =

 −ρYa − µpaYp
n+1
n σpYp| (σaϕb)0

0

 ,



5.2. METRIZATION OF CONFORMAL STRUCTURES 49

and this yields

�

 ϕa
ρ | µab
σa

 =

 −(n+ 1)ϕa
−(n+ 1)ρ | − µab

0

 .

It is now straightforward to compute the tractor connection and the first
BGG-splitting operator:

∇Ac

 ϕa
ρ | µab
σa

 =

(
Dcϕa−ρPca−Pcpµ

p
a

Dcρ+ n+1
n

Pcpσp+ n+1
n
ϕc | Dcµa

b+Pcaσb− 1
n

Pcpσpδa
b+δa

cϕb− 1
n
ϕcδa

b
Dcσa−ρδa

c−µa
c

)
.

LA0 : Ea → Γ(AM),

σa 7→

− 1
n+1(DpDaσ

p + 2Papσp)
1
nDpσ

p | (Daσ
b)0

σa

 .

Employing Kostant’s algorithm [Kos61], one finds that H1 = E0
c

(ab). An
element µ c

ab ∈ E0
c

(ab) includes into p+ ⊗ g0 ⊂ p+ ⊗ g = C1 via

µ b
ca 7→

 0
0 | µ b

ca ∈ Ec ⊗ E0
b
a

0

 .

Now one computes that for a σ ∈ Ea the lowest slot of ∇A(LA0 (σ)) vanishes
and the Γ(Ec⊗E0

b
a )-component is given by (DaDbσ

c+Pab)0, with subscript
0 denoting the complete trace-free part. Now im ∂∗ ⊂ Ec ⊗ E0

b
a is easily

seen to consist of those elements in Ec⊗E0
b
a which are alternating in c and

a. Therefore

ΘA0 : Ea → E0
c

(ab),

σa 7→ (D(aDb)σ
c + Pabσc)0.

The infinitesimal symmetries of the projective structure are those vector
fields whose flows preserve the projective class of linear connections; they
are also called projective vector fields. Since the homological condition
Π2(Z1

2 (p+, g)) = {0} is not satisfied for projective structures (see 4.3), ΘA0 is
not the operator governing projective vector fields. To obtain this operator,
one needs to form the first BGG-operator of the tractor connection ∇A+ iK
with K the curvature (81). One finds that this yields the operator

σa 7→ (D(aDb)σ
c + Pabσc)0 + C c

p(a b)σ
p.

Observe that C c
p(a b)σ

p already lies in E0
c

(ab) by complete trace-freeness of the
Weyl curvature C.

5.2. Metrization of conformal structures

In [EM07] M. Eastwood and V. Matveev gave an explicit prolongation
of an overdetermined equation in projective geometry which governs the
metrizability of a projective class of metrics. The authors also construct a
prolongation connection for this system. We will show how our algorithm
of chapter 3 can be applied in this case.
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We are going to construct the prolongation of the BGG-operator of the
tractor bundle V associated to the second symmetric power EĀ := V :=
S2Rn+1 of the standard representation of P on Rn+1, which corresponds to
the diagram

0 0 0 2

.

Looking at the Hasse diagram of (g, P ) and employing Kostant’s Version
of the Bott-Borel-Weyl theorem [Kos61] one sees that with respect to a
connection in the projective class the resulting first BGG-operator Θ0 :
H0 → H1 is

Θ0 : E(ab)[−2]→ E0
(ab)
c [−2],

σab 7→ (Dcσ
ab)0.

One could also proceed as in 5.1 and compute this directly.
We will write

EĀ = E(AB) =

 E[−2]
Ea[−2]
E(ab)[−2]


via the following identification: Let σa, ηa ∈ Ea[−1]: 0

0
σ(aη′b)

AB

=
(

0
σ

)A(0
η

)B
+
(

0
σ

)B (0
η

)A
∈ E(AB).

For σ = εσ′ with σ′ ∈ Ea[−1] and ε ∈ R[−1], 0
σa

0

AB

=
(

0
σ′

)A(
ε
0

)B
+
(

0
σ′

)B (
ε
0

)A
∈ E(AB).

For ε, ε′ ∈ R[−1], εε′0
0

AB

=
(
ε
0

)A(
ε′

0

)B
∈ E(AB).

An element s ∈ EĀ = V will be written

s =

 ρ
µa

σab

 ∈
 E[−2]

Ea[−2]
E(ab)[−2]

 =

V2

V1

V0

 . (91)

One can project to the lowest and include the highest slot P -equivariantly.
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As in the previous section it is completely straightforward to compute
the actions of Ea = Rn and Ea = Rn on V : For Xa ∈ Ea, Ya ∈ Ea one has

Xa ·

 ρ
µa

σab

 =

 0
ρXa

X(aµb)

 ,

Ya ·

 ρ
µa

σab

 =

−2Ypµp

−2Ypσpa

0

 .

This allows us to compute the Lie algebra differentials ∂ and ∂∗, which we
will only need on the first chain spaces: ρ

µa

σab.

 ∂7→

 0
ρδc

a

δc
(aµb)

 .

 ρc
µc
a

σc
ab.

 ∂7→

 0
2δ[c1

aρc2]

2δ[c1
(a1µc2]

a2)

 .

 ρc
µc
a

σc
ab.

 ∂∗7→

−2µpp

−2σppa

0

 .

 ρc1c2
µc1c2

a

σc1c2
ab.

 ∂∗7→

 2µcpp

2σcppa

0

 .

As G0-representations, V2, V1 and p+⊗ V2 are irreducible and are contained
in the image of ∂∗; p+⊗V1 decomposes into the trace-free part im ∂∗∩p+⊗V1

and the trace part which lies in the image of ∂. The Kostant Laplacian �
acts by multiplication by the scalars −2n

−(n+ 1)
0


on V , by multiplication with −2(n−1) on p1⊗V2 and by multiplication with
−n on the trace-free part of p1 ⊗ V1. This is all the algebraic information
we need to calculate the splitting operators and the prolongation.

Now take a D ∈ [D]. Then a section s ∈ V decomposes to

[s]D =

 ρ
µa

σab

 ∈
 E [−2]
Ea[−2]
E(ab)[−2]

 . (92)

If we transform D  D̂ for a Υa ∈ Ea then according to (33),

[s]D̂ =

ρ− 2Υpµ
p + ΥpΥqσ

pq

µa − 2Υpσ
pa

σab

 . (93)
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The tractor connection ∇ on V is easily calculated with the above actions
of Ea and Ea on V together with the formula ∇ = D + ∂ + P•:

∇

 ρ
µa

σab

 =

 Dcρ− 2Pcaµa

Dcµ
a − 2Pcbσab + ρδc

a

Dcσ
ab + δc

(aµb)

 .

It is then straightforward to calculate that the first splitting operator L0 :
H0 → V is given by

σ(ab) 7→

 1
n(n+1)DpDqσ

pq + 1
2nPpqσpq

− 1
n+1Dpσ

pa

σab

 .

5.2.1. Prolongation. The prolongation procedure is also straightfor-
ward enough: The action of the curvature K ∈ Ω2(M,AM) is given by

Kc1c2•

 0
0
σab

 =

 −2Apc1c2µ
p

−2Apc1c2σ
pa + C a

c1c2 pµ
p

2C (a1
c1c2 pσa2)p

 (94)

Therefore we define

Ψ1(

 0
0
σab

) :=

 0
Ψ̄1σ

0

 := −�−1(∂∗(K•

 0
0
σab

)) =

 0
2
nC

a
cp qσ

pq

0

 .

Now the curvature of the modified connection ∇+ Ψ1 is

R = K•+ d∇Ψ1

since Ψ1 ∧Ψ1 vanishes. For ξ1, ξ2 ∈ X(M) and s ∈ V

(d∇Ψ1)s(ξ1, ξ2) = (95)

= ∇ξ1(Ψ1(ξ2)s)−Ψ1(ξ2)(∇ξ1s)−∇ξ2(Ψ1(ξ1)s) + Ψ1(ξ1)(∇ξ2s)−Ψ1([ξ1, ξ2])s.

We may expand (95) and write (d∇Ψ1)s as
∗Dξ1

(
Ψ̄1(ξ2)σ

)
− Ψ̄1(ξ2)

(
Dξ1σ

)
−Dξ2

(
Ψ̄1(ξ1)σ

)
+ Ψ̄1(ξ1)

(
Dξ2σ

)
−Ψ̄1([ξ1, ξ2])σ

−Ψ̄1(ξ2)∂ξ1ϕ+ Ψ̄1(ξ1)∂ξ2ϕ− Ψ̄1(ξ2)∂ξ1µ+ Ψ̄1(ξ1)∂ξ2µ


∂ξ1Ψ̄1(ξ2)σ − ∂ξ2Ψ̄1(ξ1)σ

 ,

(96)

where we don’t care about the top component since it will vanish after an ap-
plication of ∂∗. The lowest component is simply ∂(Ψ̄1σ) = −∂�−1∂∗(K•σ).
Thus ∂∗(Rs) lies in the top slot (i.e., in homogeneity 1). So our first ad-
justment had the effect of moving the expression ∂∗ ◦R one slot higher, and
∂∗ ◦R only has values in the top slot.

The new connection ∇ + Ψ1 has the following curvature R = RΨ1 in
the middle slot: From (143) we obtain the terms 2D[c1Ψ1c2] and (via an
application of the algebraic Bianchi identity for C), C a

c1c2 pµ
p. By (94), the
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contribution of K•s to the middle slot is −2Apc1c2σ
pa + C a

c1c2 pµ
p. In total,

we obtain the action of the curvature R = RΨ1 : ρ
µa

σab

 7→
 ∗

2
n(D[c1C

a
c2]p q)σ

pq − 2Apc1c2σ
pa + 2C a

c1c2 pµ
p

∗

 .

Here the lowest slot is by construction in the kernel of ∂∗ and the highest
slot aways lies in ker ∂∗. Now define

Ψ2(

 ρ
µa

σab

) := −�−1∂∗((RΨ1(

 ρ
µa

σab

))

Using DpC
p

c1c2 a = (n− 2)Aac1c2 and trace-freeness of C we calculate

Ψ2(

 ρ
µa

σab

) =

− 4
nApcqσ

pq

0
0

 .

we have that Ψ = Ψ1 + Ψ2 ∈ Γ(Ec ⊗ End(V)) is given by ρ
µa

σab

 7→ 2
n

−2Apcqσpq

C a
cp qσ

pq

0

 . (97)

Now, with RΨ the curvature of ∇̃ = ∇ + Ψ, one has by construction ∂∗ ◦
RΨ = 0. Thus,by Theorem 4.1.1, ∇̃ is the prolongation connection for
(Dcσ

ab)0
!= 0.

5.2.2. Projective invariance. The Theorem also tells us that ∇̃ is
natural and therefore doesn’t depend on the choice of D ∈ [D] used to
construct it. In this case this is easy to see directly:

Let D̂ ∈ [D] be the modified connection of (78) corresponding to Υa ∈
Ea. We use (78) to find

Âcab = Acab + ΥpC
p

ab c. (98)

Let Ψ̂ ∈ Ω1(M,End(V)) be the adjustment map calculated with respect to
to D̂.

Take s ∈ V. Then Ψ̂ only depends on Π0(s) = σ, and since C is projec-
tively invariant and A transforms according to (98) we have

Ψ̂[s]D̂ =
2
n

−2Apcqσpq − 2ΥuC
u
cp q

C a
cp qσ

pq

0

 .

On the other hand, if we first calculate Ψ[s]D with (97) and then transform
according to (93), the middle slot doesn’t change and the top slot changes
by −2ΥuC

u
cp q, which shows projective invariance directly.

Remark 5.2.1. One can ask whether a given class of projective equiv-
alence class of connections [D] contains the Levi-Civita connection of some
Riemannian metric g. It is shown in [EM07] that, for a D ∈ [D] which
has a parallel volume form, such Riemannian metrics correspond to positive
definite σab ∈ E(ab)[−2] with Θ0σ = (Dcσ

ab)0 = 0.
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5.3. S2Λ2S∗

We now treat a more complicated example. Let V be the highest weight
part of

S2Λ2Rn+1,

which corresponds to the diagram

0 2 0 0

,

and V = G ×P V. Then V ⊂ S2Λ2S∗, and we will treat the corresponding
prolongation problem. Recall (90). We will write

EĀ = E[AB] =
(
E[ab][2]
Ea[2]

)
via the following identification: Let σa, σ′a ∈ Ea[1]:(

σ[aσ
′
b]

0

)
AB

=
(
σ
0

)
A

(
σ′

0

)
B

−
(
σ
0

)
B

(
σ′

0

)
A

∈ E[AB].

For σ = εσ′ with σ′ ∈ Ea[1] and ε ∈ R[1],(
0
σ

)
AB

=
(
σ′

0

)
A

(
0
ε

)
B

−
(
σ′

0

)
B

(
0
ε

)
A

∈ E[AB].

We define

EÂ := E�(Ā1Ā2) =

E�[ab][cd][4]
E�[ab]c[4]
E(ab)[4]

 .

Here we use the following identification: For σ, σ′ ∈ E[ab][2], ϕ,ϕ′ ∈ Ea[2],σabσ′cd + σcdσ
′
ab ∈ E([ab][cd])

0
0


Â

=
(
σ
0

)
Ā1

(
σ′

0

)
Ā2

+
(
σ
0

)
Ā2

(
σ′

0

)
Ā1

;

 0
σabϕc

0


Â

=
(
σ
0

)
Ā1

(
0
ϕ

)
Ā2

+
(
σ
0

)
Ā2

(
0
ϕ

)
Ā1

;

 0
0

ϕ(aϕ
′
b)


Â

=
(

0
ϕ

)
Ā1

(
0
ϕ′

)
Ā2

+
(

0
ϕ

)
Ā2

(
0
ϕ′

)
Ā1

.

The space E�[ab][cd] has Young diagram (see e.g. [Ful97]) , and ϕabcd ∈
E[ab][cd] actually lies in E�[ab][cd] iff the alternation over any three indices
vanishes, which already implies the symmetry ϕabcd = ϕcdab. The Young

diagram of E�[ab]c is and µabc ∈ E[ab]c lies in E�[ab]c iff ϕ[abc] = 0. We
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thus write, employing Young tableaux schematically,

V =

V2

V1

V0

 :=

E�[ab][cd][4]
E�[ab]c[4]
E(ab)[4]

 =




Recall from 5.1 that the actions of Ea and Ea on EA are:

Xp ·
(
σa
ε

)
A

=
(

0
−Xpσp

)
A

Yp ·
(
σa
ε

)
A

=
(
εYp
0

)
A

On EĀ = E[AB] one acts via:

Xp ·
(
φab
σa

)
AB

=
(

0
2Xpφpa

)
Yp ·

(
φab
σa

)
AB

=
(
−Y[pσa]

0

)
And finally, on EÂ = E�(ĀB̄) we have:

Xp ·

φabcdµabc
σab

 =

 0
−2φabcpXp ∈ E�[ab]c[4]

+2Xpµp(ab) ∈ E(ab)

 ;

Yp ·

φabcdµabc
σab

 =

µab[cYp] + µcp[aYb] ∈ E�[ab][cp][4]
−2Y[pσa]b ∈ E�[pa]b[4]

0

 .

We can therefore calculate the differentials ∂ and ∂∗:

∂p

φabcdµabc
σab


Â

=

 0
−2φabcp ∈ E�[ab]c[4]

2µp(ab) ∈ E(ab)[4]


∂p1

φp2abcdµp2abc
σp2ab


Â

=

 0
−4φ[p1p2]cab ∈ E�[ab]c[4]
−4µ[p1p2](ab) ∈ E(ab)[4]


Â

∂∗

φpabcdµpabc
σpab


Â

=

1
2

(
µpabc − µcabp + µbcpa − µacpb

)
∈ E�[ab][cp][4]

−σpab + σapb ∈ E�[pa]b[4]
0


Â

∂∗

φp1p2abcdµp1p2abc
σp1p2ab


Â

=

1
2

(
µp1p2abc − µp1cabp2 + µp1bcp2a − µp1acp2b

)
∈ E�[ab][cp2][4]

−σp1p2ab + σp1ap2b ∈ E�[p2a]b

0


Â

Then � = ∂ ◦ ∂∗ + ∂∗ ◦ ∂ acts by the scalar multiplications

�

ρµ
σ

 =

−4ρ
−3µ

0


on V .
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In schematic Young-diagram notation the space Ec ⊗ V splits into the
following components :

Ec ⊗ V =

 T1 ⊕ T2

M1 ⊕M2 ⊕M3

L1 ⊕ L2

 =


⊕

⊕ ⊕

⊕

 . (99)

The projections to the irreducible components (99) of an

s =

φpabcdµpabc
σpab

 ∈ E Â
p

are:

projT1
(φpabcd) =

1
4

(2φpabcd + φcabdp + φbacdp + φabdcp − φdabcp − φbadcp − φabcdp)

projT2
(φpabcd) =

1
4

(2φpabcd − φcabdp − φbacdp − φabdcp + φdabcp + φbadcp + φabcdp)

projM1
(µpabc) =

1
8

(3µpabc + 2µabpc + 2µbpac + µbpca − µapcb − µcabp)

projM2
(µpabc) =

1
4

(µpabc − µcabp + µbcpa − µacpb)

projM2
(µpabc) =

1
8

(3µpabc + 3µcabp − 2µabpc − 2µbcpa − 2µbpac + 2µacpb − µbpca + µapcb)

projL1
(σpab) = σpab − σ(pab)

projL2
(σpab) = σ(pab).

One finds that L2 = H2 = ker�, L1⊕M2 = im ∂ and T1⊕T2⊕M1⊕M3 =
im ∂∗ = B1. We only need the Kostant Laplacian on B1 = im ∂∗: On
T1 ⊕ T2 the Kostant Laplacian acts by −6idT1 ⊕−2idT2 and on M1 ⊕M3 it
acts by −6idM1 ⊕−2idM3 .

Let us now fix some D ∈ [D]. An element s ∈ EÂ corresponding to

[s]D =

φabcdµabc
σab


transforms to

[s]D̂ =

φ̂abcdµ̂abc
σ̂ab

 =

φabcd + µab[cΥd] + µcd[aΥb] + ΥaΥ[cσd]b −ΥbΥ[cσd]a

µabc − 2Υ[aσb]c
σab


(100)

under the change D  D̂ given by (78) with Υa ∈ Ea.
The tractor connection on V is given by

[∇ps]D = ∇p

φabcdµabc
σab

 =

Dpφabcd + µab[cPd]p + µcd[aPb]p
Dpµabc − 2φabcp − 2Pp[aσb]c

Dpσab + 2µp(ab)


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Recall that the curvature form of ω is

Kp1p2 =
(

0 −Aap1p2
0 C a

p1p2 b

)
.

Thus

Kp1p2•s = Kp1p2•

φabcdµabc
σab

 =

=

−2C q
p1p2 [aφb]qcd + 2C q

p1p2 [cφd]qab + µab[c]Ad]p1p2 + µcd[aAb]p1p2
2C q

p1p2 [aµb]qc − C
q

p1p2 cµabq − 2A[a|p1p2|σb]c
−2C q

p1p2 (aσb)q

 .

Calculating

Ψ1 := −�−1(∂∗(Kc1c2•

 0
0
σab

))

we obtain

Ψ1(

 0
0
σab

) =

− 1
12
C q
pc aσbq +

1
12
C q
pc bσaq +

1
3
C q
pa cσbq −

1
3
C q
pb cσaq −

1
4
C q
ab cσpq

+
5
12
C q
pa bσcq −

5
12
C q
pb aσcq ∈ Epabc[4].

Changing of ∇ to ∇ + Ψ1 changes the curvature K to R = RΨ1 = K +
d∇Ψ1 + [Ψ1,Ψ1], and the commutator expression vanishes. The terms in
d∇Ψ1 involving the Schouten tensor are either trivial or lie in the top slot of
Ec1c2 ⊗V, which is contained in the kernel of ∂∗. The terms in the middle
slot of

(K•+ d∇Ψ1 + [Ψ1,Ψ1])

φabcdµabc
σab


have three contributers: first, the ones coming from Kc1c2•s, which are

2C q
p1p2 [aµb]qc − C

q
p1p2 cµabq + 2A[a|p1p2|σb]c.

Then we have

2Ψ1
[c1
∂c2]µabc = −2Ψ1

[c1
µc2]ab −−2Ψ1

[c1
µc2]ba =

= −Ψ1
c1µc2ab + Ψ1

c2µc1ab −Ψ1
c1µc2ba + Ψ1

c2µc1ba;

and morever the terms 2(D[c1Ψ1
c2])σ.

The computation of Ψ2 := −�−1 ◦ ∂∗ ◦ RΨ1 is alrady quite calcula-
tion intensive, and has been supported with computer algebra. We use the
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projections

proj : Eabcd → E�[ab][cd],

proj (ϕabcd) :=
1
2
(
ϕ[ab][cd] + ϕ[cd][ab]

)
,

proj : Eabc → E�[ab]c,

proj (µabc) :=
1
2
(
µa(bc) − µb(ac)

)
.

One obtains Ψ = Ψ1 + Ψ2 ∈ Γ(Ea ⊗ End(V)):

Ψ(

 0
µabc
σab

) = (101)



proj



1
3C

q
bc dµpaq −

1
3C

q
bd cµpqa −

1
3C

q
pc dµabq

− 2
3C

q
pc bµadq −

2
3C

q
pd bµaqc

− 2
3(DaC

q
bd c)σpq −

2
9(DdC

q
pc b)σaq

− 5
9(DcC

q
pb d)σaq −

7
9(DbC

q
pc d)σaq

−Abpcσad − 1
3Aacdσpb −

1
3Adbcσpa


proj

[
− 1

4C
q

ab cσpq −
4
3C

q
pb cσaq −

5
3C

q
pb aσcq

]
0



∈

Γ(Ep ⊗E�[ab][cd])
Γ(Ep ⊗E�[ab]c)

0

 .

By Theorem 4.1.1, ∇̃ = ∇+Ψ is the prolongation connection forD(cσab)
!= 0.

Remark 5.3.1. Like in 5.2 we checked projective invariance of Ψ directly.
One employes (100), (98) and

D̂pC
c

ab d = DpC
c

ab d − 2ΥpC
c

ab d + ΥqC
q

ab dδ
c
p −ΥdC

c
ab p + 2Υ[aC

c
b]p d,

which follows from (78).



CHAPTER 6

Invariant prolongation in conformal geometry

Interesting equations in conformal geometry described by first BGG-
operators are those for Einstein scales, conformal Killing forms, conformal
Killing tensors and twistor spinors.

In section 6.2 we will discuss our natural prolongation procedure of chap-
ter 4 in the conformal setting and specifically apply it to obtain an invariant
prolongation of the equation for conformal Killing forms.

We then proceed to lay out the interesting case of twistor spinors in
section 6.3, where similarly to the almost Einstein case no adjustment of
the standard tractor connection is necessary.

6.1. Conformal structures

Two pseudo-Riemannian metrics g and ĝ with signature (p, q) on a n =
p+ q-dimensional manifold M are said to be conformally equivalent if there
is a function f ∈ C∞(M) such that ĝ = e2fg. The conformal equivalence
class of g is denoted by [g] and (M, [g]) is said to be a manifold endowed
with a conformal structure. If D is the Levi-Civita connection of g and D̂
the connection of D̂, then, according to (37),

D̂cωa = Dcωa −Υcωa −Υaωc + Υpωpgca

for ωa ∈ Ea = Ω1(M).
Let ḡ ∈ S2(Rn)∗ be a symmetric bilinear form on Rn of signature (p, q).

We will also regard ḡ as a symmetric n×n-matrix via the usual identification
employing the standard Euclidean inner product on Rn. The conformal class
of metrics [g] yields a reduction of structure group of the full frame bundle
of TM to CO(ḡ) = CO(p, q) = R+ ×O(p, q): this CO(ḡ)-frame bundle will
be denoted by G0. In fact, a reduction of structure group of TM to CO(ḡ)
is an equivalent description of a conformal structure of signature (p, q).

The associated bundle to G0 for the 1-dimensional representation R[w]
of CO(ḡ) given by

(c, C) ∈ CO(ḡ) = R+ ×O(ḡ) 7→ cw

for w ∈ R is called the bundle of conformal w-densities and denoted by E[w]
with space of sections E [w].

Given a metric g ∈ [g], a section σ ∈ E [w] trivializes to a function
[σ]g ∈ C∞(M) and one has

[σ]e2fg = ewf [σ]g.

The conformal class of metrics [g] defines a tautological section g in E(ab)[2] =
Γ(S2T ∗M ⊗ E[2]), called the conformal metric, such that the trivialization
of g with respect to g ∈ [g] is just g. The conformal metric g allows one to

59
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raise or lower indices with simultaneous adjustment of the conformal weight:
e.g., for a vector field ξp ∈ Ep = X(M) one can form ξp = gpqξ

q ∈ Ep[2] =
Γ(T ∗M ⊗E[2]), which is a 1-form of weight 2.

6.1.1. Conformal structures as parabolic geometries. Let P be
the stabilizer in SO(p+1, q+1) of an isotropic ray in Rp+1,q+1. It is a classical
result of Élie Cartan [Car23] that an oriented conformal structure on M
can be equivalently described as a parabolic geometry of type (SO(p+1, q+
1), P ), which we will now discuss. The homogeneous model SO(p+1, q+1)/P
of Cartan geometries of type (SO(p + 1, q + 1), P ) is the space of rays in
Rp+1,q+1, which can be identified with the pseudo-sphere Sp,q = (Sp×Sq): it
is endowed with the conformal class of metrics with representative gp⊕(−gq),
with gp,gq the round metrics on Sp and Sq.

It will be useful to realize the groups P and SO((p+ 1, q + 1) explicitly
via the symmetric bilinear form h of signature (p+ 1, q+ 1) on Rn+2 defined
by

h =

0 0 1
0 ḡ 0
1 0 0

 : (102)

When P is realized as the stabilizer of the isotropic ray

R+e0 = (R+, 0, . . . , 0) ⊂ Rn+2

one computes

P = {

c−1 −c−1vtḡC − 1
2c ḡ(v, v)

0 C v
0 0 c

 ∈ SO(h) :

c ∈ R+, C ∈ SO(ḡ), v ∈ Rp+q}.
The Lie algebra so(p+ 1, q + 1) = so(h) is 1-graded

so(p+ 1, q + 1) = so(h) = so(h)−1 ⊕ so(h)0 ⊕ so(h)1 :=

= Rn ⊕ co(ḡ)⊕ (Rn)∗.

Realized in gl(n+ 2) it is given by matrices of the form−α −Ztḡ 0
X A Z
0 −Xtḡ α

 , α ∈ R;X,Z ∈ Rn, A ∈ so(ḡ).

The grading element E ∈ so(h) which is uniquely determined by ad(E)|gj
=

j idgj is −In ∈ co(ḡ) ∈ g0; explicitly,

E =

1 0 0
0 0 0
0 0 −1

 .

Let P+ denote the set of unipotent matrices in P , i.e., P+ = {p ∈ P :
(p − In+2)2 = 0}. The exponential map induces an isomorphism between
the abelian Lie groups (Rn)∗ and P+; and since P+ is a normal subgroup of
P one sees that P is the semidirect product P = CO(ḡ) n (Rn)∗.

Given a manifold M endowed with a geometry (G, ω) of type (SO(p +
1, q + 1), P ) , we can see how it is endowed with a conformal structure very
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easily: first note that since g− = g−1 has just one component, the filtration
of TM introduced in (28) is trivial: TM = T−1M ⊃ T 0M = {0}. Since
the filtration is trivial, TM is automatically a filtered manifold in the sense
of (29). Since T−2M = T−1M = TM , gr−2TM = T−2M/T−2M = {0}, so
the Levi bracket (30), L : TM × TM → gr−2(TM) = {0} is trivial. Since
also g− = g−1 is abelian, the geometry is also automatically regular in the
sense of Definition 2.2.5. Recall moreover that we showed in 2.2.6 that there
is a natural isomorphism gr(TM) = G0 ×G0 g−1. But since gr(TM) = TM
this provides a reduction of structure group of TM to G0 = CO(ḡ), which
is the same as the choice of a conformal structure of signature (p, q) on M .

For inducing the conformal structure on TM from the parabolic geom-
etry (G, ω) we only needed the identification

TM = gr(TM) = G ×P gr(g/p) = G0 ×G0 ×g−. (103)

If ω ∈ Ω1(G, g) is replaced by another Cartan connection form ω′ ∈ Ω1(G, g)
such that ω′ − ω ∈ Ω1(G, g0), this won’t change the identification (103),
and thus there is no unique Cartan connection inducing a given conformal
structure. However, using the notion of normality introduced in Definition
2.2.7 one has:

Theorem 6.1.1 ([Car23]). Up to isomorphism there is a unique P -
principal bundle G over M endowed with a normal Cartan connection form
ω̃ ∈ Ω1(G, so(h))) such that G/P+ = G/(Rn)∗ = G0 is the conformal frame
bundle of (M, [g]).

Remark 6.1.2. Let G0 be the conformal frame bundle of (M, [g]). We
remark that the Cartan bundle G can be realized as the bundle of torsion-
free principal connections on G0 (see for instance [ČS09]): In contrast to
the (pseudo)-Riemannian case, there is no unique torsion-free co(ḡ)-valued
principal connection form on G0, and one can define the fiber of Gu of G over
u ∈ G0 by

{γu ∈ L(TuG0, co(ḡ))

: γ ∈ Ω1(G0, co(ḡ)) is a torsion− free principal connection form}.

Now every choice of g ∈ [g] yields the unique Levi-Civita connection which
can be extended to a CO(ḡ)-principal connection form γ ∈ Ω1(G0, co(ḡ))
on G0. γ can thus be regarded as a smooth section G0 → G. The CO(ḡ)-
equivariancy of γ as a principal connection form means that this section is
likewise CO(ḡ)-equivariant. We therefore have a Weyl-structure as intro-
duced in 2.4 for every g ∈ [g]. These are in fact special Weyl structures
which even yield reductions of structure group not only to CO(ḡ) but to
O(ḡ). ♦

6.1.2. Tractor bundles for conformal structures. With S = Rp+q+2 =
Rn+2 the standard representation of P ↪→ GL(n + 2), the standard trac-
tor bundle of conformal geometry is defined as the associated bundle S :=
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G ×P S. It corresponds to the diagrams (Cf. Remark 2.2.4)

1 0 0 0 0
resp.

1 0 0 0
0

0

for p+ q odd resp. p+ q even.
S is naturally graded S−1⊕S0⊕S1 via the grading element E of so(h):

we write

S =

 S1

S0

S−1

 =

E[−1]
Ea[1]
E[1]

 .

We have the canonical elements

τS+ =

1
0
0

⊗ 1 ∈ S ⊗ R[1], τS− =

0
0
1

⊗ 1 ∈ S ⊗ R[−1]. (104)

τS+ ∈ S ⊗ R[1] is P -invariant and defines a canonical section, denoted by
τ+, of S[1]. This corresponds to the canonical inclusion of E[−1] into S.
A choice of g ∈ [g] provides a reduction of structure group of S from P to
G0 = CO(ḡ), and we obtain the decomposition With respect to a metric
g ∈ [g] one has

[S]g =

E[−1]
Ea[1]
E[1]

 . (105)

Then τS− ∈ S⊗R[1] is CO(ḡ)-invariant and the corresponding section of E[1],
which depends on the choice of g, is again denoted by τ−. This correspond
to the inclusion of E[1] into [S]g.

Let s ∈ Γ(S) = S with

[s]g =

 ρ
ϕa
σ

 ∈
E [−1]
Ea[1]
E [1]

 .

Then for ĝ = e2fg one has the transformation

[s]ĝ =

 ρ̂
ϕ̂a
σ̂

 =

ρ−Υaϕ
a − 1

2σΥbΥb

ϕa + σΥa

σ

 (106)

with Υ = df .
Since h ∈ S2T ∗Rn+2 is P -invariant it defines a tractor metric h on

S = G′×SO(h) Rn+2. With respect to g ∈ [g] and the decomposition (105) of
an element s ∈ Γ(S)

h =

0 0 1
0 g 0
1 0 0

 . (107)
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Via the tractor metric h we can identify Λ2S with so(S), which is the adjoint
tractor bundle AM = G ×P so(h) for conformal structures. The decomposi-
tion (105) via a g ∈ [g] yields a decomposition of AM , and employing matrix
notation, we will write its elements in the fiber over x ∈M as

[AMx]g = (108)

{

−c −ηb 0
ξa C ηb

0 −ξa c

 with c ∈ R, C ∈ so(TxM, gx), ξa ∈ TxM,ηa ∈ T ∗xM}.

(109)

One has a natural surjection (projection to ξa) of AM onto TM and an
inclusion (inserting of ηb) of T ∗M into AM , while the inclusion via (108) of
TM depends on the choice of g.The algebraic action • of AM on a tractor
bundle V restricts to actions of TM and T ∗M ; so according to formula
(51), the tractor connection ∇S can be written as D + ∂ + P• with D be
the Levi-Civita connection of a g ∈ [g]. Here

P = P(g) =
1

n− 2
(Ric(g)− Sc(g)

2(n− 1)
g) (110)

is the Schouten tensor of g, which is a trace modification of the Ricci cur-
vature Ric(g) by a multiple of the scalar curvature Sc(g). The trace of the
Schouten tensor is denoted J = gpqPpq.

Using (108) it is then easy to compute for s ∈ S with

[s]g =

 ρ
ϕa
σ

 ∈ Γ([S]g)

that

[∇Sc s]g = ∇Sc

 ρ
ϕa
σ

 =

 Dcρ− P b
c ϕb

Dcϕa + σPca + ρgca
Dcσ − ϕc

 . (111)

As an so(S)-valued form K ∈ Γ(E[c1c2]⊗AM), the curvature of the standard
tractor connection is

Kc1c2 =

0 −Aec1c2 0
0 C c

c1c2 d Ae c1c2
0 0 0

 . (112)

Here C is the Weyl curvature and A = Aec1c2 = 2D[c1Pc2]e is the Cotton-
York tensor. We recall that both Aec1c2 and C c

c1c2 d are trace-free. Further-
more the skew-symmetrization over any 3 indices of Cabcd vanishes, as does
the skew-symmetrization of Aabc. The Weyl curvature doesn’t satisfy the
differential Bianchi identity, however one has

D[aCbc]de = gd[aA|e|bc] − ge[aA|d|bc].

We will later need the transformation behavior of P: According to 38, the
Schouten tensor changes under ĝ = e2fg, Υa = Daf as follows:

P̂ab = Pab −DaΥb + ΥaΥb −
1
2

ΥpΥpgab. (113)
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We note here that a reader who looks for an introduction to tractor calculus
in conformal geometry and an explanation of related notational issues could
also find the careful and detailed exposition in the first part of [Šil06] useful.

Remark 6.1.3. The standard tractor bundle of conformal geometry pro-
vides a notion of conformal holonomy : we define the holonomy of the con-
formal class of metrics [g] by

Hol([g]) := Hol(∇S) ⊂ SO(p+ 1, q + 1).

(Cf. [Arm07], [Bau07]). To be precise, Hol([g]) is only given up to SO(p+
1, q+1)-conjugacy. Hol([g]) is well defined, since the standard tractor bundle
(S,∇S) is unique up to isomorphism. Another way to introduce Hol([g])
is to define it as the holonomy of the principal connection form ω′ on the
extended bundle G′ := G×PG (cf. 2.3). Since S = G′×GRp+q+2 with ∇S the
linear connection induced by ω′, these two definitions coincide. Conformal
holonomy will play a central role in chapter 7.

6.1.3. The standard tractor bundle and almost Einstein scales.
The first splitting operator for the standard tractor bundle is

LS0 : E [1]→ S, (114)

σ 7→

 1
n(4− J)σ

Dσ
σ


with the convention 4 = −DpDp. By (111),

∇S ◦ LS0 (σ) =

 1
nDc(4σ − Jσ)− P p

c Dpσ
(DaDbσ + Pabσ) + 1

n(4σ − Jσ)gab
0

 .

Since 1
n(4σ−Jσ)gab is minus the trace part of (DaDbσ+Pabσ) andH1(S) =

E0(ab) we have that the first BGG-operator of S is

ΘS
0 : E [1]→ E0(ab), (115)

σ 7→ (DaDbσ + Pabσ)0.

One has, for s =

 ρ
ϕa

σ

,

Kc1c2•s =

 −Apc1c2ϕp
C a
c1c2 pϕ

p + σAa c1c2
0


and thus

∂∗(K•s) =

C q
cq pϕp + σAq cq

0
0

 =

0
0
0


Thus ∇ satisfies ∂∗ ◦ (K•) = 0, and one has 1 : 1-correspondence of ker Θ0

with ∇-parallel standard tractors.
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Now take σ 6= 0 such that (116) holds and let U = {x ∈M : σ(x) 6= 0}.
By Corollary (4.1.2), U is open dense. On U we rescale g to ĝ = σ−2g. Then

Υa = −σ−1Daσ = Da(
1

log(|σ|)
)

DaΥb = σ−2(Daσ)(Dbσ)− σ−1DaDbσ = ΥaΥb + Pab

Thus, according to (113),

P̂ab = −1
2

ΥpΥpgab,

which is purely trace, and thus Ric(ĝ), which differs only by a trace from P ,
is a multiple of ĝ. I.e.: ĝ is an Einstein-metric on U , or

(DaDbσ + Pabσ)0 = 0 ⇔ σ−2g is Einstein on U, (116)

which is well known. U always has to be an open dense subset of M , and
we call the set of solutions of (116) the space of almost Einstein scales
([Gov10]), i.e.

aEs([g]) = ker ΘS
0 ⊂ E [1]. (117)

Thus one recovers the well known fact

Proposition 6.1.4. The space of ∇S-parallel sections of the standard
tractor bundle is isomorphic to aEs([g]).

6.1.4. Conformal Killing fields. The symmetries of the associated
conformal structure [g] = [g]D are the conformal Killing fields cKf([g]) ,

cKf([g]) = {ξ ∈ X(M) : Lξg = e2fg for some g ∈ [g] and f ∈ C∞(M)}.
(118)

This condition on ξ is easily seen not to depend on the choice of g ∈ [g].
Since Lξg decomposes into a multiple of g and a trace-free part one can
equivalently demand that Lξg is purely trace. Now, with D the Levi-Civita
connection of g ∈ [g] one has that Lξg being purely trace is equivalent to

D(cξa)0 = D(cga)0pξ
p = 0;

i.e., the symmetric, trace-free part of Dcξa vanishes.
As an equation on 1-forms of conformal weight 2 this is in fact described

by the first BGG-operator of AM : The first BGG-splitting operator and
tractor connection are calculated for Λk+1S below in 6.2 for all k ≥ 0, so we
will use these results for the special case k = 1, since Λ2S = so(S,h) = AM :

By (134) the splitting operator

LΛ2S
0 : X(M) = Ea[2]→ Γ(Λ2S)

is given by

σ 7→


(
− 1

2nD
pDpσa + k

2nD
pD[aσp + k

n2DaD
pσp

+ 2
nPpaσp − 1

nJσa

)
D[a0

σa1] | − 1
ngpqDpσq

σa

 . (119)
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Here indices within bars are not skewed over. Now the first BGG-operator
ΘΛ2S

0 of Λ2S defined by the composition

ΘΛ2S
0 : X(M) = Ea[2]→ E0(ab)[2],

ΘΛ2S
0 = Π1 ◦ ∇Λ2S ◦ LΛ2S

0

is seen by direct calculation employing (127) to be

ξa 7→ D(cξa)0

for ξ ∈ X(M); i.e., ΘΛ2S
0 is indeed conformally invariant operator governing

conformal Killing fields.
We now proceed to prove a technical Lemma, which will be used in the

proof of Theorem 7.4.2 below. It is a general fact that normal infinitesimal
automorphisms of normal, torsion-free parabolic geometries insert trivially
into curvature, as was discussed in 4.3, Lemma 4.3.2. It is however easy to
see this directly for conformal Killing fields, in which case this has first been
observed in [Gov06]. We only give a simple proof for conformal structures
of dimension ≥ 4, which is all we need:

Lemma 6.1.5. Let s ∈ Γ(AM) be ∇A-parallel; i.e., ∇As = 0. Then
K(Π(s), ·) = 0.

Proof. Since ∇As = 0 one has Rc1c2s = 2∇A[c1∇
A
c2]s = 0, with R ∈

Ω2(M,End(AM)) the curvature of ∇A. But since ∇A is the induced tractor
connection of the Cartan connection form ω one thus has

Rs = K•s = 0 (120)

Let s ∈ Γ(AM) = Γ(Λ2T ) be of the form ρa
ϕab | µ
σa

 .

Then via the projection Π : Λ2S→ Ea[2] = X(M), s projects to the confor-
mal Killing field σa ∈ X(M). We want to show that K(Π(s), ·) = K(σa, ·) =
0. By formula (112) this is equivalent to

Aapcσ
p = 0 (121)

C a
pc bσ

p = 0. (122)

By (120), 0 = Π(Kc1c2•s) = Cc1c2paσ
p. But by the symmetries of the Weyl

curvature Cabcd = −Cbacd = −Cabdc = Ccdab, having σa insert trivially into
one slot is equivalent to trivial insertion into any other slot. Thus the second
equation holds. Now just use the fact that (n − 3)Aabc = DpCpabc, which
gives the first equation in our case for n ≥ 4. �

6.2. Invariant prolongation of conformal Killing forms.

Conformal Killing forms were first prolonged by U. Semmelmann [Sem03],
however the discussion there did not take into account conformal invariance
of the equation. In [GŠ08] an invariant prolongation was calculated directly
(see also [Šil06]). Here we calculate the prolongation connection of chapter
4 for this system.
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We are going to proceed as follows: In 6.2.1 we describe the exterior
powers of the standard tractor bundles, give explicit formulas for the Lie
algebraic differentials on the first chain spaces and determine their CO(p, q)-
decompositions. In 6.2.4 we describe explicitly how the operator governing
conformal Killing k-forms comes about as the first BGG-operator for the
k + 1-st exterior power of the standard tractor bundle. In 6.2.5 we obtain
a geometric prolongation by constructing a modification map Ψ with the
properties called for in section Theorem 3.2.4 resp. Theorem 4.1.1. In 6.2.7
we show directly the conformal invariance of Ψ. This section is based on
[Ham08].

6.2.1. The tractor bundle. In the following k will be ≥ 1. Let

V = Λk+1Rp+q+2,

which corresponds to the diagrams

0 0

(k+1)st node

1 0 0
resp.

0 0

(k+1)st node

1 0
0

0

for p+ q odd resp. p+ q even.
The grading element E ∈ so(h) induces the following G0-invariant grad-

ing on V :

V =

 V1

V0

V−1

 :=

 E[a1···ak][k − 1]
E[a0···ak][k + 1] | E[a2···ak−1][k]

E[a1···ak][k + 1]

 ;

Here we use the identification ρa1···ak

ϕa0···ak
| µa2···ak

σa1···ak

 7→ τS− ∧ σ + ϕ+ τS− ∧ τS+ ∧ µ+ τS+ ∧ ρ. (123)

This is to be understood as follows: Since gr0(V ) = V0 = Ea[1], we have
that Ea1···ak

[k] ↪→ gr0(ΛkS). Therefore Ea1···ak
[k + 1] ↪→ gr0(ΛkS) ⊗ R[1].

With the canonical element τS− ∈ gr−1(S)⊗ R[−1] defined above, it is then
easy to see that the map

Ea1···ak
[k + 1]→ gr−1(V ) = gr−1(Λk+1S),

σ 7→ τS− ∧ σ

is an isomorphism of CO(p, q)-modules; and completely analogously for the
other irreducible components of V .

Another way to view the expression τS− ∧ σ as an element of V = Λk+1S

would be to directly identify E[a1···ak][k+ 1] with E[a1···ak][−k+ 1] via ḡ and
then use the embedding of Ea[−1] into the middle slot of S.
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For V = Λk+1S the associated tractor bundle we have the semidirect
composition series

V = V−1 +�� V0 +�� V1 := (124)

E[a1···ak][k + 1] +�� (E[a1···ak+1][k + 1]⊕E[a1···ak−1][k − 1]) +�� E[a1···ak][k − 1],
(125)

which splits into V−1 ⊕V0 ⊕V1 after a choice of g in the conformal class.
With respect to g ∈ [g], for k ≥ 0 an element s ∈ V = Λk+1S is written

[s]g =

 ρa1···ak

ϕa0···ak
| µa2···ak

σa1···ak

 ∈
 E[a1···ak][k − 1]

E[a0···ak][k + 1] | E[a2···ak][k − 1]
E[a1···ak][k + 1]

 .

Similarly as in (106), we have transformations ρ̂a1···ak

ϕ̂a0···ak
| µ̂a2···ak

σ̂a1···ak

 =

ρa1···ak
−Υbϕba1···ak

− kΥ[a1
µa2···ak] − 1

2ΥbΥbσa1···ak

ϕa0···ak
+ (k + 1)Υ[a0

σa1···ak] | µa2···ak
−Υbσba2···ak

σa1···ak

 .

(126)

The standard tractor connection (111) gives rise to the invariantly defined
tractor connection ∇ on V:

∇c

 ρa1···ak

ϕa0···ak
| µa2···ak

σa1···ak

 = (127)

=


Dcρa1···ak

− P p
c ϕpa1···ak

− kPc[a1
µa2···ak](

Dcϕa0···ak
+ (k + 1)gc[a0

ρa1···ak]

+(k + 1)Pc[a0
σa1···ak]

)
|
(

Dcµa2···ak

−P p
c σpa2···ak

+ ρca2···ak

)
Dcσa1···ak

− ϕca1···ak
+ kgc[a1

µa2···ak]

 .

6.2.2. Description of the first homology groups. ∂∗ : C1 → C0 =
V is given (see (86)) by Z⊗s 7→ −Z•s for s ∈ V , Z ∈ p+. Thus B0 = im ∂∗ :
C1 → V is simply p+•V , which is all of V 0. Therefore H0 = V/V 0. By the
Hodge decomposition (22) we can embed H0 as V−1 = ker� = ker ∂ ⊂ V .

Also, Hi will be embedded into Ci as ker� = ker(∂∂∗+∂∗∂) for i = 1, 2.
The calculation of the CO(p, q)-decomposition of the spaces Hi is purely al-
gorithmic using Kostant’s version of the Bott-Borel-Weyl theorem [Kos61];
the details of which are not important for us here. We just state the results
for H1 and H2, which are all homologies we are going to need: We will write

Ck =

 E[c1···ck] ⊗ V1

E[c1···ck] ⊗ V0

E[c1···ck] ⊗ V−1

 ,

and speak of the top, middle and bottom slots, which we will say have
homogeneities 1, 0 and −1.

Ec ⊗ V−1 contains the highest weight part E�c[a1...ak][k + 1], and this
is all of H1. Explicitly, E�c[a1...ak][k + 1] sits in Ec[a1...ak][k + 1] as those
σ = σca1···ak

which have both zero trace and vanishing alternation:

0 = ḡpqσpqa2···ak
, 0 = σ[ca2···ak].
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If k ≥ 2 then the analogous statement holds also for the second chain
space: in this case H2 is exactly the highest weight part of E[c1c2] ⊗ V−1 =
E[c1c2][a1...ak][k + 1]. i.e., H2 = E�[c1c2][a1...ak][k + 1] ⊂ E[c1c2] ⊗ V−1.

In particular, for i = 0, 1 we have that Hi lies in the lowest grading part
of Ci and if k ≥ 2 this also holds for i = 2: V1

V0

H0 = V−1

 ∂→

 Ec ⊗ V1

Ec ⊗ V0

H1 ⊕ im ∂|V0

 ∂→

 E[c1c2] ⊗ V1

E[c1c2] ⊗ V0

H2 ⊕ im ∂|Ec⊗V0


Now we describe what ∂,∂∗ and � do on the first few chain spaces

C0 = V,C1 = Ec ⊗ V and C2 = E[c1c2] ⊗ V :

6.2.3. Explicit formulas for ∂, ∂∗ and � on the first chain spaces.

∂c

 ρa1···ak

ϕa0···ak
| µa2···ak

σa1···ak

 =

 0
(k + 1)ḡc[a0

ρa1···ak] | ρca2···ak

−ϕca1···ak
+ kḡc[a1

µa2···ak]

 (128)

∂c1

 ρc2a1···ak

ϕc2a0···ak
| µc2a2···ak

σc2a1···ak

 =

 0
2(k + 1)ḡ[a0|[c1ρc2]|a1···ak] | − 2ρ[c1c2]a2···ak

2ϕ[c1c2]a2···ak
+ 2kḡ[a1|[c1µc2]|a2···ak]


∂∗

 ρca1···ak

ϕca0···ak
| µca2···ak

σc a1···ak

 =

 ḡpqϕpqa1···ak
+ kµ[a1···ak]

−(k + 1)σ[a0···ak] | ḡpqσpqa2···ak

0


∂∗

 ρc1c2a1···ak

ϕc1c2a0···ak
| µc1c2a2···ak

σc1c2a1···ak

 =

 −2ḡpqϕcpqa1···ak
− 2kµc[a1···ak]

2(k + 1)σc[a0···ak] | − 2ḡpqσcpqa2·ak

0

 .

The image of ∂∗ in V = C0 is simply V 0 = V0 ⊕ V1, and the Kostant
Laplacian thus acts by positive real scalars on V1 and the two components
of V0. It vanishes on V−1 by (87). Explicitly, � is given on V by n

(k + 1) | (n− k + 1)
0

 . (129)

The image of ∂∗ in C1 contains all of Ec ⊗ V1 (since we have (87)). Now
Ec ⊗ V1 decomposes into three parts: the alternating maps, E[p0···pk][k + 1],
the purely trace maps, Ep2···pk

[k−1], and finally those maps which have both
trivial trace and trivial alternating part, E�c[a1...ak][k + 1]. We will denote
the three irreducible components of Ec⊗V1 by (Ec⊗V1)alt, (Ec⊗V1)� and
(Ec ⊗ V1)tr. We will write this decomposition of gr1(B1) = Ec ⊗ V1 ∩ im ∂∗

as

gr1(B1) = Ualt ⊕ U� ⊕ Utr (130)

and one computes that the Kostant Laplacian � acts by

2(n+ k − 1)idUalt
⊕ 2(n− 2)idU� ⊕ 2(2n− k − 1)idUtr . (131)

Now to the middle slot: We have

Ec ⊗ V0 = Ec[a0···ak][k + 1]⊕ Ec[a2···ak][k − 1]
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and both parts split into alternating, � (highest weight)- and trace com-
ponents. Both highest weight-components, the ’left’ alternating and the
’right’ trace component lie in the image of ∂∗. The only other component
of im ∂∗ ∩ Ec ⊗ V0 is E[a1···ak][k − 1], which embeds into Ec ⊗ V0 via

τa1···ak
7→

 0
−k(k + 1)ḡc[a0

τa1···ak
| (n− k)τca2···ak

0

 .

We will write the decomposition of gr0(B1) = Ec ⊗ V0 ∩ im ∂∗ ⊂ Ec ⊗ V0 as

gr0(B1) =

alt | ∗
� | �
tr | tr

 , (132)

where the component ∗ in the upper right corner is determined by the trace
component in the lower left corner. One computes that the Kostant Lapla-
cian acts by the scalars4(k + 1) | ∗

2k | 2(n− k)
2n | 2(n− k − 1)

 . (133)

6.2.4. The first BGG-operator Θ0 : H0 → H1 and conformal
Killing forms. Using (127), (128) and (129), we compute that the first
BGG-splitting operator L0 : H0 → V is given by

σ 7→


(
− 1
n(k+1)D

pDpσa1···ak
+ k

n(k+1)D
pD[a1

σ|p|a2···ak] + k
n(n−k+1)D[a1

Dpσ|p|a2···ak]

+2k
n Pp[a1

σ|p|a2···ak] − 1
nJσa1···ak

)
D[a0

σa1···ak] | − 1
n−k+1gpqDpσqa2···ak

σa1···ak

 .

(134)

In 6.2.2 we saw that

H0 = E[a1···ak][k + 1],

H1 = E�c[a1···ak][k + 1],

H2 = E�[c1c2][a1···ak][k + 1].

Thus we immediately see using (127) that

Θ0 : H0 → H1,

Θ0 = Π1 ◦ ∇ ◦ L
is given by

Θ0cσa1···ak
= Dcσa1···ak

−D[a0
σa1···ak] −

k

n− k + 1
gc[a1

gpqD|pσq|a2···ak].

We also denote this expression, which is the projection of Dσ to the highest
weight-component in Ec[a1···ak][k + 1], by

(
Dcσa1···ak

)
�. This is exactly the

conformal Killing operator. Thus our prolongation procedure will yield an
isomorphism between the space conformal Killing k-forms

σa1···ak
∈ E[a1···ak][k + 1],

(
Dcσa1···ak

)
� = 0 (135)

and the space of parallel sections of a natural connection on V.
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For k = 1 we get exactly the operator describing conformal Killing fields,
i.e., infinitesimal automorphisms of the conformal structure; see also remark
6.2.1. This case has been treated in detail in [Gov06]. The main result of
this section, an explicit geometric prolongation, will also work for k = 1.
We only need k ≥ 2 for obtaining the algebraic obstruction tensor which
was described in subsection 6.2.6.

6.2.5. The adjustment of the tractor connection. We are now
going to construct a Ψ ∈ Γ(Ec ⊗End(V)1) with the properties called for in
Theorem 4.1.1.

The calculations will be made more readable by providing beforehand
the mappings which will appear: We will make use of the vector bundle
maps

Li : E[a1···ak][k + 1]→ Ec[a1···ak+1][k + 1], i = 1, 2 and

Ri : E[a1···ak][−k + 1]→ Ec[a1···ak−1][k − 1], i = 1, 2,

of homogeneity 1 defined by

L1(σ) = C p
[a0a1 |cσp|a2···ak] L2(σ) = gc[a0

C pq
a1a2

σ|pq|a3···ak] (136)

R1(σ) = C pq
c[a2

σ|pq|a3···ak] R2(σ) = C pq
[a2a3

σ|cpq|a4...ak].

Recall that indices within bars | are not skewed over. In homogeneity 2 we
will need the maps

Fi, Gi : E[a1···ak][k + 1]→ Ec[a1···ak][k − 1],

Ei : E[a1···ak+1][k + 1]→ Ec[a1···ak][k − 1], and

Ti : E[a1···ak−1][k − 1]→ Ec[a1···ak][k − 1]

defined by

E1(ϕ) = C pq
c[a1

ϕ|pq|a2···ak] E2(ϕ) = C pq
[a1a2

ϕc|pq|a3···ak] (137)

T1(µ) = C p
c [a1a2

µ|p|a3···ak] T2(µ) = gc[a1
C pq
a2a3

µ|pq|a3···ak]

F1(σ) = A p
[a1|c|σ|p|a2···ak] F2(σ) = Apc[a1

σ|p|a2···ak]

F3(σ) = Ap[a1a2
σc|p|a3···ak] F4(σ) = gc[a1

A pq
a2

σ|pq|a3···ak]

G1(σ) = (DcC
pq

[a1a2
)σ|pq|a3···ak] G2(σ) = (DpC q

c [a1a2
)σ|pq|a3···ak]

G3(σ) = (D[a1
C pq
|c|a2

)σ|pq|a3···ak].
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With respect to the CO(p, q)-decompositions (130) and (132) a more natural
basis for the linear space formed by these maps is formed by

Ltr = − k − 1
n− k

L2 L = L1 − Ltr (138)

Ralt =
2
k
R1 +

k − 2
k

R2 R =
k − 2
k

(R1 −R2)

Ealt =
2

k + 1
E1 +

k − 1
k + 1

E2 E =
k − 1
k + 1

(E1 − E2)

Ttr = − k − 2
n− k + 1

T2 T = T1 − Ttr

Ftr =
k

n− k + 1
F4 Falt =

2
k + 1

F2 −
k − 1
k + 1

F3

Fi = F1 −
1

k + 1
F2 +

k − 1
2(k + 1)

F3 −
k − 1
k

Ftr Fii =
k − 1
k + 1

(F2 + F3)− k − 1
2k

Ftr

Gi = G1 + 2Falt −
2
k

(n− k − 1)Ftr Gii = G2 −
2(k − 2)

k
Ftr

Giii = G3 − 2Falt −
n− 3
k

Ftr.

Ltr, Ttr and Ftr are purely trace, Ralt,Ealt and Falt are alternating and all
other maps have both vanishing alternation and trace.

The maps of (136) and (137) can be expressed as

L1 = L+ Ltr L2 = −n− k
k − 1

Ltr R1 = R+Ralt (139)

R2 = − 2
k − 2

R+Ralt E1 = E + Ealt E2 = − 2
k − 1

E + Ealt

T1 = T + Ttr T2 = −n− k + 1
k − 2

Ttr

and

F1 = Fi +
1
2
Falt +

k − 1
k

Ftr F2 = Fii + Falt +
k − 1

2k
Ftr

F3 =
2

k − 1
Fii − Falt +

1
k
Ftr F4 =

n− k + 1
k

Ftr

G1 = Gi − 2Falt +
2
k

(n− k − 1)Ftr G2 = Gii +
2(k − 2)

k
Ftr

G3 = Giii + 2Falt +
n− 3
k

Ftr.

For s =

 ρa1···ak

ϕa0···ak
| µa2···ak

σa1···ak

 we have

(K•s) = kC p
c1c2[a1

ρ|p|a2···ak] − kA[a1|c1c2|µa2···ak] −A
p
c1c2ϕpa1···ak

(k + 1)C p
c1c2[a0

ϕ|p|a1···ak] + (k + 1)A[a0|c1c2|σa1···ak] | (k − 1)C p
c1c2[a2

µ|p|a3···ak] −A
p
c1c2σpa2···ak

kC p
c1c2[a1

σ|p|a2···ak]

 .
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We calculate

∂∗(K•s) =

2kF1 + 2kF2 − kE1 + k(k − 1)T1

−k(k + 1)L1 | − (k − 1)R1

0

 (140)

and thus have that the lowest homogeneous component of ∂∗(K•s), which
is of homogeneity 1, is given by (−k(k + 1)L1| − (k − 1)R1). Now we use
(139),(129) and (138) to apply −�−1 to this expression, which yields

Ψ1 :=

 0
λ1L1 + λ2L2| ρ1R1 + ρ2R2

0

 (141)

where

λ1 =
1 + k

2
λ2 =

(k − 1)(k + 1)
2n

ρ1 =
(k − 1)(n− 2)

2(n− k)n
ρ2 = −(k − 1)(k − 2)

2(n− k)n
.

Now the curvature of the modified connection ∇+ Ψ1 is

R = K•+ d∇Ψ1 + [Ψ1,Ψ1],

but [Ψ1,Ψ1] obviously vanishes. Let us calculate R: The only term which

needs our attention is d∇Ψ1. Take any s =

 ρa1···ak

ϕa0···ak
|µa2···ak

σa1···ak

 ∈ Γ(V).

Then for ξ1, ξ2 ∈ X(M), we have, since Ψ1 is a 1-form on M with values
in End(V),

(d∇Ψ1)s(ξ1, ξ2) = (142)

= ∇ξ1(Ψ1(ξ2)s)−Ψ1(ξ2)(∇ξ1s)−∇ξ2(Ψ1(ξ1)s) + Ψ1(ξ1)(∇ξ2s)−Ψ1([ξ1, ξ2])s.

We expand (142) and write (d∇Ψ1)s as
∗Dξ1

(
Ψ1(ξ2)σ

)
−Ψ1(ξ2)

(
Dξ1σ

)
−Dξ2

(
Ψ1(ξ1)σ

)
+ Ψ1(ξ1)

(
Dξ2σ

)
−Ψ1([ξ1, ξ2])σ

−Ψ1(ξ2)∂ξ1ϕ+ Ψ1(ξ1)∂ξ2ϕ−Ψ1(ξ2)∂ξ1µ+ Ψ1(ξ1)∂ξ2µ


∂ξ1Ψ1(ξ2)σ − ∂ξ2Ψ1(ξ1)σ

 ,

(143)

where we don’t care about the top component since it vanishes after an
application of ∂∗. The lowest component is ∂(Ψ1σ) = −∂�−1∂∗(K•σ).
Thus ∂∗(Rs) lies in the top slot (i.e., in homogeneity 1). So ∂∗ ◦ R has
values in the top slot only. This can be repeated: it is a straightforward
calculation using the expression in the middle component of (143) and, in
that order, (140), (139),(131) and (138) to find, with φ := −�−1 ◦ ∂∗ ◦R,

Ψ = Ψ2 = Ψ1 − φ =


 ε1E1 + ε2E2 + τ1T1 + τ2T2

+φ1F1 + φ2F2 + φ3F3 + φ4F4

+γ1G1 + γ2G2 + γ3G3


λ1L1 + λ2L2| ρ1R1 + ρ2R2

0

 , (144)
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with the constants

ε1 =
k − 1

2(n− k)
ε2 =

(k − 1)k
2(k − n)n

τ1 =
(k − 1)(n(n− k + 1)− 2k)

2(k − n)n
τ2 = −(k − 2)(k − 1)

2n

φ1 = −n+ k − 3
n− 2

φ2 =
1− k
n

φ3 =
(k − 1)(n+ k)

2(k − n)n
φ4 =

(k − 1)(2 + k − 2n)
2(k − n)(n− 2)

γ1 = − k − 1
2(n− 2)n

γ2 =
k − 1

2(n− 2)

γ3 =
(k − 1)k

2(k − n)n
.

Now the curvature R′ of ∇+ Ψ = ∇+ Ψ1 + φ is given by

R+ d∇φ+ [Ψ1, φ] + [φ,Ψ1] + [φ, φ].

One sees that for every s ∈ V, ([Ψ1, φ] + [φ,Ψ1] + [φ, φ])s has values only
in the top component and we may therefore forget about this term when
calculating ∂∗(R′s). As in the calculation (143), we see that (d∇φ)s has only
values in the middle and top slots and the middle slot is given by 2∂[c1φc2]s.
Therefore, by construction of φ, we see that ∂∗(Rs) vanishes, and thus, via
the considerations of chapter 4, we have solved the prolongation problem for
conformal Killing forms.

We have already remarked there that this solution must already be con-
formally invariant by virtue of uniqueness, but we are going to check inde-
pendence of the choice of metric by hand in 6.2.7.

Remark 6.2.1. For k = 1, we have V = Λ2S = so(S) = Γ(AM). Thus
∇+ Ψ prolongs the first BGG-operator for the adjoint tractor connection in
this case. Since conformal geometries are torsion-free and, as one can calcu-
late, the first homology of the adjoint tractor bundle H1 is concentrated in
non-positive homogeneity, the corresponding first BGG-operator describes
infinitesimal automorphisms of the structure (cf. section 4.3), and the pro-
longation connection is ∇̃ = ∇+ iK. This can also be read off directly from
(144). ♦

Remark 6.2.2. The invariant connection prolonging the conformal Killing
equation (135) which was constructed in [GŠ08] differs from our result
Ψ as defined in (144): it can be checked that the image of the modifica-
tion map calculated there has nontrivial intersection with im ∂; but recall
that our solution Ψ ∈ Ω1(M,End(V)1) obeys in particular the condition
Ψs ∈ im ∂∗ ∀s ∈ V, and thus its image has trivial intersection with im ∂ by
the Hodge decomposition (87). If one wants to translate the solution (144)
into the notation used in [GŠ08] for an explicit comparison, one has to use
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the automorphism ρa1···ak

ϕa0···ak
|µa2···ak

σa1···ak

)

 7→
 (k + 1)ρa1···ak

ϕa0···ak
| − k(k + 1)µa2···ak

(k + 1)σa1···ak

)


which transforms an element of

E[a1···ak][−k + 1] +�� (E[a1···ak+1][−k − 1]⊕E[a1···ak−1][−k + 1]) +�� E[a1···ak][−k − 1]

in our notation to the equivalent element in the notation of [GŠ08]. Then
Ψ as defined in (144) has the following form with respect to the conventions
of Gover-Šilhan:

Ψc(

 ρa1···ak

ϕa0···ak
|µa2·sak

σa1···ak

)

 =


(k + 1)(ε1E1 + ε2E2)ϕ− 1

k (τ1T1 + τ2T2)µ
+(φ1F1 + φ2F2 + φ3F3 + φ4F4

+γ1G1 + γ2G2 + γ3G3)σ


1

k+1(λ1L1 + λ2L2)σ| − k(ρ1R1 + ρ2R2)σ
0

 .

♦

6.2.6. Algebraic obstruction tensors obtained via the curvature
of the modified connection. Since Ψ ∈ Γ(Ec ⊗End(V)1), we know that
the curvature R ∈ E[c1c2](End(V)) of ∇̃ = ∇ + Ψ agrees with K• in ho-
mogeneity 0. But if σa1···ak

∈ E[a1···ak][k + 1] is a conformal Killing k-form,
then L0σ is given by (134); and thus 0 = d∇̃∇̃s = Rs agrees with K•L0σ in
Γ(E[c1c2]⊗gr−1(V)). But by (112) this is simply (minus) C p

c1c2 [a1
σ|p|a2···ak].

For k ≥ 2 we have H2 = E�[c1c2][a1···ak][k + 1] and projecting the previous
expression to this space gives the conformally invariant tensorial map

Φ : σ 7→ proj�
(
C p
c1c2 [a1

σ|p|a2···ak]

)
.

This obstruction has also been constructed T. Kashiwada in [Kas68], U.
Semmelmann in [Sem03] and recently by R. Gover and J. Šilhan in [GŠ08].
Our derivation describes this map as the composition of the first two BGG-
operators for the modified connection ∇̃: Φ = Θ̃1 ◦ Θ0. This evidently
explains both conformal invariance of Φ and why it vanishes on conformal
Killing forms. That Φ is tensorial has the cohomological reason that H2 is
concentrated in lowest homogeneity. Cf. section 4.2.

Remark 6.2.3. Apart from the (trivial) cases of Einstein scales and
twistor spinors where one doesn’t need any adjustments and automatically
has ∂∗◦(K•) = 0, the case of conformal Killing forms is the simplest situation
in which to explicitly compute the prolongation. Another interesting case to
treat will be conformal Killing tensors, for which, as far as we know, there
has not yet been given any invariant prolongation, and which can be treated
similarly as the form case. There the situation becomes more complicated
however, since the modelling representations Skg are 2k + 1-graded. This
case has interesting relations to symmetries of the Laplacian ([Eas05]). ♦

Remark 6.2.4. The holonomy Hol(∇̃) of the thus obtained prolonga-
tion connection ∇̃ describes the solution space of the operator Θ0. For the
standard tractor bundle and the spinor tractor bundle, which will be treated
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in the next section, one has ∇ = ∇̃. In particular, the solution space is gov-
erned by the conformal holonomy of the structure, i.e., existence of Einstein
scales and twistor spinors correspond to reductions of the conformal holo-
nomy. In general, the existence of nontrivial solutions of Θ0 doesn’t imply a
holonomy reduction: for instance, full conformal holonomy doesn’t obstruct
the existence of conformal Killing fields or conformal Killing forms. (See for
instance [Ham07]).

Parallel sections of a tractor bundle give special solutions to Θ0. In
the case of conformal Killing Forms, those coming from parallel sections
were called normal conformal Killing forms by F. Leitner in [Lei05]. This
notion of normal solutions of first BGG-operators makes sense for every
tractor bundle and they correspond to reductions in conformal holonomy,
cf. Definition 4.1.5. ♦

Remark 6.2.5. Using the tractor approach above for describing Ein-
stein scales as parallel sections, R. Gover and P. Nurowski [GN06] used
the curvature R of the standard tractor connection and its derivatives to
obtain (under a genericity condition on the Weyl curvature) a conformally
invariant system of tensors which provides a sharp obstruction against the
existence of Einstein scales. For a general tractor bundle and R the curva-
ture of the prolongation connection, one can similarly build natural systems
of obstruction tensors, but it is not known whether these will be sharp; See
also Remark 4.2.3. ♦

6.2.7. Conformal invariance of Ψ. For this calculation we need some
transformation formulas. We will denote by D̂ the Levi-Civita connection
of the metric rescaled by e2f . More generally, we will denote by a hatted
symbol the corresponding quantity calculated with respect to the metric ĝ.
With Υ = df we have

D̂uCabcd = DuCabcd − 2ΥuCabcd − 2Υ[aC|u|b]cd − 2Υ[cC|u|d]ab

+ 2(n− 3)gu[aAb]cd + 2(n− 3)gu[cAd]ab

Âabc = Aabc + ΥdCdabc

In the calculation the following transformation maps

Hi : E[a1···ak][k + 1]→ E[a1···ak][k − 1]

will appear:

H1(σ) = ΥcC
pq

[a1a2
σ|pq|a3···ak] H6(σ) = gc[a1

ΥuC pq
a2a3

σ|upq|a4···ak]

H2(σ) = ΥcC
pq

[a1a2
σ|pq|a3···ak] H7(σ) = ΥdC

dp
[a1a2

σc|p|a3···ak]

H3(σ) = ΥpC q
[a1a2c

σ|pq|a3···ak] H8(σ) = ΥdC p
d[a1c

σ|p|a2···ak]

H4(σ) = gc[a1
ΥdC pq

|d|a2
σ|pq|a3···ak] H9(σ) = ΥdC

dp
ca1

σ|p|a2···ak]

H5(σ) = Υ[a1
C pq
a2a3

σ|cpq|a4···ak].
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The maps (136) of homogeneity 1 are invariant with respect to the choice
of g ∈ [g] since the Weyl curvature is conformally invariant. It is straight-
forward to calculate that the individual maps (137) transform like

Ê1 = E1 + 2H9 − (k − 1)H2 Ê2 = E2 +H1 − 2H7 − (k − 2)H5

Ĝ1 = G1 − 2H1 − 2H2 − 2H3 + 2H4 + 2H7 Ĝ2 = G2 −H1 −H2 −H3 +H7 + 2H8

Ĝ3 = G3 −H1 −H2 −H3 +H4 + 2H9,

and

F̂1 = F1 +H8 F̂2 = F2 +H9 F̂3 = F3 +H7

F̂4 = F4 +H4 T̂1 = T1 −H3 T̂2 = T2 −H6.

Thus, if we switch to another metric ĝ respectively the corresponding
linear connection D̂ and then calculate Ψ̂ using (144), the result differs from
Ψ only in the top slot of C1, and it does so by

(ε2 − 2γ1 − γ2 − γ3)H1 − τ2H6 − ((k − 1)ε1 − 2γ1 − γ2 − γ3)H2 (145)

+ (−2ε2 + φ3 + 2γ1 + γ2)H7 − (τ1 − 2γ1 − γ2 − γ3)H3 + (φ1 + 2γ2)H8

+ (φ4 + 2γ1 + γ3)H4 + (2ε1 + φ2 + 2γ3)H9 − (k − 2)ε2H5.

On the other hand, if we calculate Ψ with respect to g and then transform
the expression via ρ̂ = ρ − Υdϕda1···ak

− kΥ[a1
µa2···ak], the difference to Ψ

also lies in homogeneity two and is

− λ2
1

k + 1
H1 − ρ1H2 +

k − 1
k + 1

λ1H3 +
2

k + 1
λ2H4 (146)

− kρ2H5 +
k − 1
k + 1

λ2H6 −
2

k + 1
λ1H8.

Now it is straightforward to check that the expressions (145) and (146)
coincide. Thus Ψ is seen not to depend on the choice of the metric in the
conformal class used to construct it. As we already remarked this is in
fact a consequence of uniqueness of Ψ with the normalization conditions of
Theorem 4.1.1.

6.3. Twistor spinors

6.3.1. Algebraic description. Let Ĝ = Spin(p+1, q+1) be the (con-
nected) spin group of signature (p + 1, q + 1), which is a double-cover of
G = SO0(p+ 1, q + 1) and Ĝss

0 := Spin(p, q) the covering of Gss
0 = SO0(p, q)

by the spin group of signature (p, q).
Conformal structures of signature (p, q) which preserve both orientations

are modelled on Cartan geometries of type (G,P ), with P ⊂ G the stabilizer
of the ray R+e+ ∈ Rp+1,q+1.

The preimage P̂ of P under the covering Ĝ
π→ G is the stabilizer in

Spin(p+ 1, q + 1) of R+e+.
We know that P ∼= (R+ ×Gss

0 ) n (Rp,q)∗. Since Spin(p, q) = Ĝss
0 embeds

canonically into Spin(p+ 1, q + 1) and R+,(Rp,q)∗ are simply connected, we
see that

P̂ = (R+ × Spin(p, q)) n (Rp,q)∗.
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Thus Ĝ0 = CSpin(p, q) := R+ × Spin(p, q) is the conformal Spin group of
signature (p, q).

Let ∆p+1,q+1 and ∆p,q the spin representations of Spin(p+1, q+1) resp.
Spin(p, q). We are going to describe the structure of ∆p+1,q+1 as a (pseudo)-
hermitian Clifford bundle directly in terms of the representations ∆p,q. This
is an alternative approach to the construction of [Lei08a].

We claim that

∆p+1,q+1 = ∆p,q ⊕∆p,q =
(

∆p,q

∆p,q

)
as a Spin(p, q)-representation. To show this we give explicitly the action of

Rp+1,q+1 = Re+ ⊕ Rp,q ⊕ Re− :

X ·
(
v
w

)
:=
(
−X · v
X · w

)
e+ ·

(
v
w

)
:=
(√

2w
0

)
e− ·

(
v
w

)
:=
(

0
−
√

2v

)
.

Then we have, for s =
(
v
w

)
and X ∈ Rp,q:

e+ · (e+ · s) = 0

e− · (e− · s) = 0

e+ · (e− · s) + e− · (e+ · s) = −2s

e+ · (X · s) +X · (e+ · s) = 0

e− · (X · s) +X · (e− · s) = 0

X · (X · s) = −‖X‖2p,qs;

Thus indeed, for all Z1, Z2 ∈ Rp+1,q+1, we have

Z1 · (Z2 · s) + Z2 · (Z1 · s) = −2h(Z1, Z2).

∆p+1,q+q, as defined by the direct sum ∆p,q ⊕∆p,q, is therefore a (complex)
Clifford module for (Rp+1,q+1, h) of dimension 2dim(∆p,q) and in particular
a Spin(p+1, q+1)-representation. If p+q is even, there is only one complex
Clifford module of this dimension and the restriction to Spin(p + 1, q + 1)
must thus be ∆p+1,q+1. If p + q is odd, there are exactly two complex
Clifford modules of this dimension, one of them is thus realized via the action
just defined on ∆p,q ⊕∆p,q, but they are isomorphic as Spin(p + 1, q + 1)-
representations, and as such are both equal to ∆p+1,q+1.

The identity in ĝ0 = g0 = co(p, q) = R+ ⊕ so(p, q) is just e+ ∧ e− ∈

Λ2Rp+q+2. This element acts on a spinor s =
(
v
w

)
∈
(

∆p,q

∆p,q

)
by

1
4

(e+ · (e− · s)− e− · (e+ · s)) =
(
−1

2v
1
2w

)
.
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We will also need

e+ ∧X•
(
v
w

)
=
( 1√

2
X · w
0

)
, e− ∧X•

(
v
w

)
=
(

0
1√
2
X · v

)
.

Now CSpin(p, q) is realized as R+ exp(e+ ∧ e−) × Spin(p, q) ∈ P̂ ⊂ Ĝ.
Since we use the convention that the spin representation of Spin(p, q) on
∆p,q is trivially extended to R+ × Spin(p, q) = CSpin(p, q), we thus obtain
the decomposition

∆p+1,q+1 =
(

∆p,q[−1
2 ]

∆p,q[1
2 ]

)
of ∆p+1,q+1 as a CSpin(p, q)-representation.

The Clifford action Rp,q ×∆p,q → ∆p,q is Spin(p, q)-invariant. As a map
Rp,q ×∆p,q → ∆p,q ⊗ R[1] it becomes CSpin(p, q)-invariant.

∆p,q is endowed with a (pseudo-)Hermitian metric (cf. [Bau81] or
[Kat99]) kp,q, which satisfies that for all X ∈ Rp,q and v, v′ ∈ ∆p,q one
has

kp,q(X · v, v′) + (−1)p+1kp,q(v,X · v′) = 0.

This property shows that kp,q is Spin(p, q)-invariant. For p odd we define

kp+1,q+1 :=
(

0 kp,q
kp,q 0

)
(147)

and for p even we set

kp+1,q+1 :=
(

0 ikp,q
−ikp,q 0

)
. (148)

One checks that then for all X ∈ Rp+1,q+1 and v, w ∈ ∆p+1,q+1 one has that

kp+1,q+1(X · v, v′) + (−1)pkp+1,q+1(v,X · v′) = 0, (149)

and thus kp+1,q+1 is the Spin(p+1, q+1)-invariant (pseudo)-Hermitian metric
on ∆p+1,q+1 satisfying (149).

Let now (Ĝ → M,ω) be a (Spin(p + 1, q + 1), P̂ )-structure. Then
Ĝ0 = G/(Rp,q)∗ is a reduction of structure group of TM to CSpin(p, q)
and therefore a conformal spin structure.

Conversely, assume that (M, [g]) is a conformal class of metrics together
with a reduction of the COp,q-bundle G0 to a a CSpin(p, q)-bundle Ĝ0. Let
(G →M,ω) be the torsion-free Cartan geometry of type (SO0(p+1, q+1), P )
encoding [g]. Take some g ∈ [g]; Then the corresponding Weyl structure
σ : G0 → G yields the decomposition G = G0×(Rp,q)∗. Since P = G0n(Rp,q)∗

and P̂ = Ĝ0n(Rp,q)∗, the P -principal action can be translated into an action
on the decomposition G = G0 × (Rp,q)∗; on the other hand, the extension of
this definition to an action by P̂ = Ĝ0× (Rp,q)∗ makes Ĝ := Ĝ0× (Rp,q)∗ into
a reduction of structure group of G to Ĝ by the double cover P̂ → P . We
thus see that conformal spin structures on (M, [g]) correspond to torsion-free
Cartan geometries of type (Ĝ, P̂ ).



80 6. INVARIANT PROLONGATION IN CONFORMAL GEOMETRY

6.3.2. The spin-tractor bundle. Let now (M, [g]) be a conformal
class of metrics with a choice of spin structure and (Ĝ → M,ω) the corre-
sponding parabolic geometry. Let Σ be the (complex) spin-tractor bundle
Ĝ ×P̂ ∆p+1,q+1 corresponding to

0 0 0 0 1

resp.

0 0 0 0
1

0
⊕ 1 0 0 0

0

1

for p+q odd resp. p+q even. Denote by ∆ = Ĝ0×Ĝ0
∆p,q the spin bundle of

(M, [g]). Then it immediately follows from our discussion above that under
a choice of metric g ∈ [g] one has the decomposition

[Σ]g =
(

∆[−1
2 ]

∆[1
2 ]

)
.

We encode the Clifford action TM → End(∆) via the Clifford symbol
γa ∈ Γ(Ea[1]⊗ End(∆)); Spinor indices will always be suppressed. Then a
vector field ξ ∈ X(M) acts on a tractor-spinor s ∈ Γ(Σ) with

[s]g =
(
v
w

)
∈ Γ([Σ]g) = Γ(

(
∆[−1

2 ]
∆[1

2 ])

)
)

by

ξ•s =
(

0
ξ · v

)
=
(

0
1√
2
ξpγpv

)
.

A one form ϕ ∈ Ω1(M) acts by

ϕ•
(
v
w

)
=
( 1√

2
gpqϕqγqw

0

)
.

Accordingly,

[s]ĝ =
(
v + 1√

2
Υpγpw

w

)
The spin tractor connection ∇ is given by

∇c
(
v
w

)
=

(
Dcv + 1√

2
Pcpγ

pw

Dcw + 1√
2
γcv

)
, (150)

with D the spin connection on ∆. To check conformal invariance of this
connection, one uses

D̂cσ = Dcσ −
1
2

Υpγcγpσ −
1
2

Υpγpσ.

for σ ∈ Γ(∆).
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The Lie algebra differentials are

∂c

(
v
w

)
=
(

0
1√
2
γcv

)
∂∗
(
vc
wc

)
=
( 1√

2
γpwp

0

)
,

and thus the Kostant Laplacian acts by

�

(
v
w

)
=
(
−n

2
0

)
and the first splitting operator L0 : Γ(∆[1

2 ])→ Γ(Σ) is given by

σ 7→
(√

2
n D/ σ
σ

)
with D/ : Γ(∆[1

2 ]) → Γ(∆[−1
2 ]) the Dirac-operator, D/ = γpDp. As an

operator D/ : Γ(∆[−n−1
2 ])→ Γ(∆[−n+1

2 ]) the Dirac-operator is conformally
invariant. The first BGG-operator is now

Tw := Θ0 : Γ(∆[
1
2

])→ Γ(Ec ⊗Σ[
1
2

]),

σ 7→ Dcσ +
1
n
γcD/ σ,

which is called the Twistor-operator ; Tw takes values in the Twistor bundle
Tw := Ea �∆[1

2 ], which is defined by

{σa ∈ Γ(Ea ⊗∆[
1
2

]) : γpσp = 0},

i.e., it is the kernel of the Clifford multiplication, where one views the Clifford
multiplication as a map Ea ⊗∆→∆ via the conformal metric g.

The curvature acts by

Kc1c2•
(
v
w

)
=
(1

2Cc1c2pqγ
pγqv + 1√

2
Apc1c2γ

pw
1
2Cc1c2pqγ

pγqw

)
Thus

∂∗(Kc1c2•
(
v
w

)
) =

1

2
3
2

(
Cpabcγ

aγbγcw
0

)
;

Now Cpabc has symmetries 0 in a, b, c: i.e: Cpabc = −Cpacb, Cp[abc] = 0
and gabCpabc = 0. But

0 → End(∆[
1
2

]) = ∆⊗∆∗,

Xa[bc] 7→ Xabcγ
aγbγc

vanishes since ∆⊗∆∗ ∼= ∆⊗∆ does not contain 0. To see this directly,
one writes

Xabcγ
aγbγc = X[ab]cγ

aγbγc +X(ab)cγ
aγbγc,
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and has, since X is trace-free and γ(aγb) = −gab, that

Xabcγ
aγbγc =

1
2

(Xabc +Xbca)γaγbγc;

Applying X[abc] = 0 yields

Xabcγ
aγbγc =

1
2
Xcbaγ

aγbγc.

Repeating this we see

Xabcγ
aγbγc =

1
4
Xabcγ

aγbγc

and thus Xabcγ
aγbγc = 0. This implies vanishing of Cpabcγaγbγc since

Cpabc = Cpa[bc] and Cp[abc] = 0.
Thus, we see that

Proposition 6.3.1. Twistor-spinors are in 1:1-correspondence with the
space of parallel sections of of the spin tractor bundle endowed with the
canonical spin tractor connection ∇ (150).

This is an alternative proof of a well known fact; it has previously be
shown by calculating the differential consequences of the Twistor equation
directly, cf. e.g [BFGK90].



CHAPTER 7

Applications of BGG-techniques and prolongation
connections for the Fefferman construction

G2 ↪→ SO(3, 4).

In this chapter we are going to apply methods from tractor calculus,
the BGG-machinery and prolongation connections to the (generalized) Fef-
ferman construction which associates a conformal class of (2, 3)-signature
metrics to a generic rank two distribution in dimension 5.

There is a similar and well studied result: this is the classical Fefferman
construction ([Fef76],[BDS77],[Čap02],[ČG06],[ČG08],[Lei06],[Lei08b],[Bau07])
of a (pseudo-)conformal structure on an S1-bundle over a CR-manifold. It
has been observed in [Čap06] that both Nurowski’s and Fefferman’s results
admit interpretations as special cases of a very general construction relat-
ing parabolic geometries of different types. This viewpoint as a generalized
Fefferman construction lays the groundwork for this chapter.

The outline of this chapter is as follows: In section 7.1 we briefly intro-
duce generic rank 2- distributions D ⊂ TM and describe them as parabolic
geometries. In section 7.2 we describe the association of conformal structures
to generic rank two distributions as a generalized Fefferman construction.
In section 7.3 it is shown that given a holonomy reduction of a conformal
structure [g] of signature (2, 3) to G2, the conformal class [g] is induced by
a distribution D ⊂ TM . This is then used to give precise criteria for a
(2, 3)-signature conformal structure [g] to come from a generic distribution
D: We provide characterizations via normal conformal Killing 2-forms and
twistor-spinors. Finally, in section 7.4, we show that every conformal Killing
field of [g]D decomposes into an almost Einstein scale and a symmetry of
the distribution D.

The general procedure to characterize induced Fefferman geometries and
decompose their automorphisms is largely analogous to the constructions of
[ČG06] and [ČG08] for the (classical) Fefferman spaces.

The results of this chapter mostly grew out of a joint project with K.
Sagerschnig to apply the BGG-methods which underly this thesis and ex-
plicit calculations of 6.2 in chapter 6 resp. [Ham08] to the Fefferman con-
struction studied in [Sag08]. A joint article is in progress, [HS09]. In this
presentation we will mostly focus on holonomy considerations and applica-
tions of the BGG-machinery. For some algebraic calculations necessary to
compare normality we will only refer to [HS09].

7.1. Generic rank two distributions as parabolic geometries of
type (G2, P )

83
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7.1.1. The distributions. Let D1 and D2 be subbundles of TM . For
x ∈M we define

[D1,D2]x := span({[ξ, η]x : ξ ∈ Γ(D1), η ∈ Γ(D2)}). (151)

In general [D1,D2] does not define a subbundle of TM . One has that a
subbundle D ⊂ TM , D is integrable if and only if [D,D] ⊂ D. We are
interested in maximally non-integrable rank 2-subbundles of 5-manifolds:
We say that a rank 2 subbundle D ⊂ TM is generic if [D,D] is a subbundle
of rank 3 and [D, [D,D]] = TM . Thus, we are looking at distributions of
maximal growth vector (2, 3, 5) in each point. We will also say that D is a
generic distribution. Classically, there is a well known class of second order
ODEs which yield generic rank 2-distributions, but we won’t discuss this
aspect here (cf. e.g. [Nur05]).

A generic distribution D automatically gives rise to a filtration of the
tangent bundle by subbundles

T−1M := D (152)

T−2M := [D,D] (153)

T−3M := TM. (154)

By construction, this filtration is compatible with the Lie bracket of vec-
tor fields in the sense that for ξ ∈ Γ(T iM) and η ∈ Γ(T jM) we have
[ξ, η] ∈ Γ(T i+jM); i.e.: M is a filtered manifold (compare with 2.2.5). The
Lie bracket of vector fields thus induces a tensorial bracket L on the associ-
ated graded bundle gr(TM) =

⊕
gri(TM), where gri(TM) = T iM/T i+1M .

This is the Levi bracket

L : gr(TM)× gr(TM)→ gr(TM)

introduced in general in section 2.2.5. It makes the bundle gr(TM) into
a bundle of nilpotent Lie algebras; the fiber (gr(TM)x,Lx) is the symbol
algebra at the point x. Note, that we can equivalently characterize generic
rank two distributions in terms of their symbol algebras: A distribution is
generic if and only if the symbol algebra at each point is isomorphic to the
graded Lie algebra g = g−1 ⊕ g−2 ⊕ g−3, where dim(g−1) = 2, dim(g−2) =
1, dim(g−3) = 2, and the only nontrivial components of the Lie bracket,
g−1 × g−2 → g−3 and Λ2g−1 → g−2 define isomorphisms.

7.1.2. The embedding G2 ↪→ SO(3, 4). Let us recall one of the possi-
ble definitions of an exceptional Lie group of type G2: It is well known (see
e.g. [Bry87]) that the canonical GL(7)-representation on the space Λ3(R7)∗

of 3-forms has two open orbits, and the stabilizer of a 3-form in either of
these open orbits is a 14-dimensional Lie group. For one of these orbits it is
a compact real form of the complex exceptional Lie group GC

2 and for the
other orbit it is a split real form.

Consider the symmetric bilinear map

R7 × R7 → Λ7R7∗,

(X,Y ) 7→ iXΦ ∧ iY Φ ∧ Φ

associated to a 3-form Φ. Using the classification of orbit-types in [Wes81],
it turns out that this map is non-degenerate if and only if Φ is contained
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in an open orbit. It is positive definite if the stabilizer is the compact real
form and it has signature (3, 4) if the stabilizer is the split real form of GC

2 .
By construction, the map will be GLΦ-equivariant with GLΦ the stabilizer
of of Φ in GL(7).

Now this GLΦ-invariant bilinear map determines an invariant element
vol on R7 given by the 9-th root 9

√
D ∈ Λ7(R7∗) of its determinant D ∈

(Λ7R7∗)9, see e.g. [Hit01]. One finds that for any Φ in one of the two open
GL(7)-orbits, vol 6= 0, and thus GL(7)Φ ⊂ SL(7), and we will henceforth
take vol the standard-volume form on R7.

Thus, for any Φ in one of the two open orbits,

H(Φ)(X,Y )vol := iXΦ ∧ iY Φ ∧ Φ (155)

defines a non-degenerate R-valued bilinear form H(Φ) on R7 which is in-
variant under the action of the stabilizer of Φ. In particular, GL(7)Φ ⊂
SO(H(Φ)).

Consider the standard basis e1, · · · , e7 on R7 and e∗1, · · · , e∗7 its dual
basis. We fix the representative

Φ̄ :=
1√
6
e∗1 ∧ e∗4 ∧ e∗7 −

1√
3
e∗2 ∧ e∗3 ∧ e∗7 −

1√
3
e∗1 ∧ e∗5 ∧ e∗6

− 1√
6
e∗2 ∧ e∗4 ∧ e∗5 −

1√
6
e∗3 ∧ e∗4 ∧ e∗6

of a split real form of GC
2 and always work with G = G2 := GL(7)Φ̄.

One computes that

H(Φ̄)(X,Y ) =
1√
6

(x1y7 + x2y5 + x3y6 − x4y4 + x5y2 + x6y3 + x7y1).

In matrix form, the resulting metric H(Φ̄) on R7 is (up to a factor)

h =

0 0 1
0 ḡ 0
1 0 0

 (156)

with

ḡ =


0 0 0 1 0
0 0 0 0 1
0 0 −1 0 0
1 0 0 0 0
0 1 0 0 0

 . (157)

Since G2 ⊂ SO(h), we can define it equivalently as the stabilizer in GL(7)
of the 3-vector corresponding to Φ̄ via h:

Φ :=− 1√
3
e7 ∧ e2 ∧ e3 +

1√
6
e5 ∧ e4 ∧ e2 +

1√
6
e6 ∧ e4 ∧ e3 (158)

− 1√
6
e7 ∧ e4 ∧ e1 −

1√
3
e1 ∧5 ∧e6. (159)
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The Lie algebra so(3, 4) = so(h) has the matrix representation−α −Ztḡ 0
X A Z
0 −Xtḡ α

 , α ∈ R;X,Z ∈ R5, A ∈ so(ḡ).

The Lie algebra g of G = G2, i.e. the Lie algebra of elements M ∈ gl(7)
such that Φ(Mv, v′, v′′) + Φ(v,Mv′, v′′) + Φ(v, v′,Mv′′) = 0, is a subalgebra
in so(h) consisting of matrices of the form

tr(A) Z s W 0
X A

√
2JZt s√

2
J −W t

r −
√

2XtJ 0 −
√

2ZJ s

Y − r√
2
J

√
2JX −At −Zt

0 −Y t r −Xt −tr(A)

 (160)

with A ∈ gl(2), X,Y ∈ R2, Z,W ∈ R2∗, r, s ∈ R and J =
(

0 −1
1 0

)
.

For later use let us note here that the complement of g in so(h) with
respect to the Killing form is isomorphic to the seven dimensional standard
representation of G2. That means we have a G2-module decomposition

so(h) = g⊕ R7. (161)

This can be understood via the sequence

0→ g ↪→ so(h) iΦ→ R7 → 0, (162)

which is G2-equivariant and exact. Here

iΦ : so(h) = Λ2R7 → R7 (163)

is the insertion of so(h) into Φ. The factor of Φ as given in (158) was chosen
such that the insertion

iΦ : R7 → Λ2R7 = so(h) (164)

splits sequence (162).
Let P̃ be the stabilizer of isotropic ray R+e1 ⊂ R7. As we discussed in

section 6.1, parabolic geometries of type (SO(h), P̃ ) correspond to (oriented)
conformal structures of signature (2, 3).

Define P = P̃ ∩G2; this is now a parabolic subgroup in G2. To describe
explicitly the corresponding parabolic subalgebra p ⊂ g, we introduce vector
space decompositions of the Lie algebra. We consider the block decomposi-
tion 

g0 g1 g2 g3 0
g−1 g0 g1 g2 g3

g−2 g−1 0 g1 g2

g−3 g−2 g−1 g0 g1

0 g−3 g−2 g−1 g0

 ,

of matrices (160), which defines a grading

g = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3.

Note that the subalgebra g− = g−3 ⊕ g−2 ⊕ g−3 coincides with the symbol
algebra of a generic rank two distribution in dimension five as discussed in
7.1.1. The grading induces a filtration g3 ⊂ g2 ⊂ g1 ⊂ g0 ⊂ g−1 ⊂ g−2 ⊂
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g−3, which is preserved by the action of P on g. The subalgebra p = g0

is the Lie algebra of the parabolic P and the subalgebra g0
∼= gl(2) is the

Lie algebra of the subgroup G0 ⊂ P that also preserves the grading. The
subgroup G0 is isomorphic to GL+(2) = {M ∈ GL(2) : det(M) > 0}.

7.1.3. The homogeneous model and associated Cartan geome-
tries. Let us look at the Lie group quotient G2/P : The action of G2 on the
class eP̃ ∈ SO(h)/P̃ induces a smooth map

G2/P → SO(h)/P̃ .

Since both homogeneous spaces have the same dimension, the map is an
open embedding. Since G2/P is a quotient of a semisimple Lie group by a
parabolic subgroup, it is compact, and the map is in fact a diffeomorphism.
The group SO(h) acts transitively on the space of isotropic rays in R7,
which can be identified with the pseudo-sphere Q2,3

∼= S2×S3. It turns out
that the (3, 4)-metric h on R7 defined in (156) induces the conformal class
of (g2,−g3) on Q2,3, with g2,g3 being the round metrics on S2 resp. S3.
The pullback of that conformal structure yields a G2-invariant conformal
structure on G2/P . Thus G2/P = SO(h)/P̃ = (Q2,3, [(g2,−g3)].

Explicit descriptions of the canonical rank two distribution on the pseudo-
sphere Q2,3

∼= S2×S3 can be found in [Sag06]. In an algebraic picture, the
distribution corresponds to the P -invariant subspace g−1/p ⊂ g/p. Via the
identification of T (G/P ) with G×P g/p this invariant subspace gives rise to
a rank two distribution which is generic in the sense of 7.1.1.

More generally, suppose (G, ω) is any parabolic geometry of type (G2, P ).
Recall from chapter 2 that the Cartan connection ω defines an isomorphism
TM ∼= G×P g/p. Hence for any such geometry the subspace g−1/p gives rise
to a rank two distribution. In general, this distribution will not be generic.
To obtain genericity, one imposes the regularity condition of definition 2.2.5
on ω. Let us recall this condition: Let

TM = T−3M ⊃ T−2M ⊃ T−1M ⊃ {0}
be the sequence of subbundles of constant ranks 2, 3 and 5 coming from
the P -invariant filtration g/p = g−3/p ⊃ g−2/p ⊂ g−1/p. Consider the
associated graded bundle gr(TM). This bundle can be naturally identified
with

G ×P gr(g/p) ∼= (G/P+)×G0 g−.

We recall from chapter 2 that since the Lie bracket on the nilpotent
Lie algebra g− is invariant under the adjoint representation, it induces a
bundle map {, } : gr(TM) × gr(TM) → gr(TM), algebraic bracket. A
Cartan connection form ω was defined to be regular in section 2.2.5 if the
underlying manifold M is filtered and the associated Levi bracket on gr(TM)
coincides with the algebraic bracket. But since g− is the symbol algebra of
a generic rank 2 distribution one immediately has that a regular parabolic
geometry (G, ω) of type (G2, P ) endows M with the structure of a generic
distribution D := T−1M = G ×P g−1/p ⊂ TM .

Moreover, we recall that regularity can be expressed as a condition on
the curvature of a Cartan connection (Proposition 2.2.6): Since g has a P -
invariant filtration, we have a notion of maps in Λk(g/p)∗⊗g of homogeneous



88 7. APPLICATIONS OF BGG-TECHNIQUES TO G2 ↪→ SO(3, 4)

degree ≥ l, and the set of these maps is P -invariant. A Cartan connection
form is regular if and only if the curvature function is homogeneous of degree
≥ 1; this means that κ(u)(gi, gj) ⊂ gi+j+1 for all i, j and u ∈ G. Note that
if the curvature function takes values in Λ2p+ ⊗ p, i.e. if the geometry is
torsion-free, it is automatically regular.

We have seen above that a regular parabolic geometry of type (G2, P )
determines an underlying generic rank two distribution D, and for our choice
of P the distribution turns out to be orientable. Conversely, the prolonga-
tion procedures for parabolic geometries, see e.g. [ČS09], show that we
can always associate a regular parabolic geometry of type (G2, P ) to a
generic distribution D. However, there are many regular Cartan connec-
tion forms inducing the same underlying structure. To obtain uniqueness,
one additionally imposes the normality condition of parabolic geometries,
as was discussed in 2.2.7: Let (G, ω) be a regular parabolic geometry of type
(G2, P ). Let K ∈ Ω2(M,AM) be the curvature of the Cartan connection
form ω. Then we said that ω is normal if ∂∗(K) = 0.

Now we can state Cartan’s classical result in modern language. We
restrict our considerations to orientable distributions. Equivalently, this
means that the bundle Λ2D be orientable. Then one has:

Theorem 7.1.1 ([EC10]). One can naturally associate a regular, nor-
mal parabolic geometry (G, ω) of type (G2, P ) to an orientable generic rank
two distribution in dimension five, and this establishes an equivalence of
categories.

An important point to be used in the Fefferman construction later, is
that given a regular Cartan connection form ω which is already normalized
up to a certain homogeneity, it only differs from the unique Cartan form
by terms of higher homogeneity: This follows from the Proposition below.
It will be employed in 7.3.3. Note that for two Cartan connections the
difference ω − ω̃ is a P -equivariant, horizontal, g- valued 1-form on G and
thus it can be described by a P -equivariant function Ψ : G → (g/p)∗ ⊗ g.
We say that Ψ has homogeneous degree ≥ l if Ψ(u)(gi) ⊂ gi+l for all i and
u ∈ G.

Proposition 7.1.2 ([ČS09]). Let (G, ω) be a regular parabolic geometry
with curvature function κ and suppose that ∂∗κ is of homogeneous degree ≥ l
for some l ≥ 1. Then there is a normal Cartan connection ωN ∈ Ω1(G, g)
such that (ωN − ω) is of homogeneous degree ≥ l.

7.2. The Fefferman construction for G2 ↪→ SO(3, 4)

The relation observed in section 7.1.3 between the homogeneous models
G2/P and SO(h)/P̃ suggests a relation between Cartan geometries of type
(G2, P ) and (SO(h), P̃ ), i.e. between generic rank two distributions and
conformal structures. Indeed, it was Pawel Nurowski who first observed
in [Nur05] that any generic rank two distribution on a five manifold M
naturally determines a conformal class of metrics of signature (2, 3) on M .
Starting from a system of ODEs he explicitly constructed a metric from the
conformal class. A different construction of such a metric can be found in
[ČS07].
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Here we shall discuss Nurowski’s result as a special case of an extension
functor of Cartan geometries, called a generalized Fefferman construction;
cf. [Čap06]. This was first done in [Sag08]. Let i′ : g ↪→ so(h) denote
the derivative of the inclusion i : G2 ↪→ SO(h). Given a Cartan geometry
(G →M,ω) of type (G2, P ), we can extend the structure group of the Cartan
bundle, i.e., we can form the associated bundle G̃ = G ×P P̃ . Then this is a
principal bundle overM with structure group P̃ . We have a natural inclusion
j : G ↪→ G̃ mapping an element u ∈ G to the class [(u, e)]. Moreover, we
can uniquely extend the Cartan connection ω on G to a Cartan connection
ω̃ ∈ Ω1(G̃, so(h)) such that j∗ω̃ = i′ ◦ ω.

The construction defines a functor from Cartan geometries of type (G2, P )
to Cartan geometries of type (G̃, P̃ ).

We will later need the relations between the curvatures of ω̃ and ω: In
the next Lemma we use the inclusion of adjoint tractor bundles AM ↪→ ÃM
via

AM = G ×P g ↪→ G ×P so(h) = G̃ ×P̃ so(h) = ÃM.

Lemma 7.2.1.
(1) The curvature form Ω̃ ∈ Ω2(G̃, so(h)) of ω̃ pulls back to the curva-

ture form Ω ∈ Ω2(G, g) of ω:

j∗(Ω̃) = Ω. (165)

(2) The factorizations K ∈ Ω2(M,AM) of Ω and K̃ ∈ Ω2((M, ÃM) of
Ω̃ agree:

K̃ = K ∈ Ω2(M,AM). (166)

In particular, K ∈ Ω2(M, ÃM) has in fact values in AM ⊂ ÃM .

Proof. Since the exterior derivative d is natural, it commutes with
pullbacks: j∗dω̃ = d(j∗ω̃) = dω. Since also j∗([ω̃, ω̃]) = [j∗ω̃, j∗ω̃] = [ω, ω],
we thus see that by Definition of curvature (13) we have j∗Ω̃ = Ω.

Now the inclusion j : G → G̃ is a reduction of structure group from P̃

to P . Therefore factorizing Ω̃ ∈ Ω2
hor(G̃, so(h))P̃ to the curvature form K̃ ∈

Ω2(M, ÃM) is the same as pulling back Ω̃ via j and then factorizing. �

By Theorem 7.1.1, we can associate a canonical Cartan geometry (G, ω)
of type (G̃, P̃ ) to a generic rank two distribution on a five manifold M . As
discussed in section 6.1 any Cartan geometry (G̃, ω̃) of type (SO(h), P̃ ) de-
termines a conformal structure on the underlying manifold M . Thus the
above generalized Fefferman construction shows that a generic rank two dis-
tribution D naturally determines a conformal class [g] of metrics of signature
(2, 3). However, a priori we do not know whether ω̃ is the normal Cartan
connection associated to that conformal structure; one has to prove that
normality of ω implies normality of ω̃:

Proposition 7.2.2. Let (G → M,ω) be a regular Cartan geometry of
type (G2, P ) and let (G̃ → M, ω̃) be the associated Cartan geometry of
type (G̃, P̃ ). Then normality of ω ∈ Ω1(G, g) implies normality of ω̃ ∈
Ω1(G̃, so(h)).
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For the proof we refer to [HS09] or [Sag08].

7.2.1. The parallel tractor three-form and the underlying con-
formal Killing 2-form. Let S = G̃ ×P̃ R7 be the standard tractor bundle
for a conformal structure [g] associated to a generic rank 2-distribution D
on a five manifold M . Then S is easily seen to carry an additional structure:

Proposition 7.2.3.
(1) The standard tractor bundle S for a conformal structure [g] asso-

ciated to a generic 2-distribution carries a parallel tractor 3-form
Φ ∈ Γ(Λ3S∗) = Γ(Λ3S).

(2) The tractor 3-form Φ determines an underlying normal conformal
Killing 2-form φ ∈ E[ab][3] which is locally decomposable, or equiv-
alently, satisfies φ ∧ φ = 0.

Proof.

(1) By construction, the conformal Cartan bundle is the associated
bundle G̃ = G ×P P̃ , where G is the Cartan bundle for the distri-
bution. Hence, the tractor bundle can be viewed as S = G ×P R7.
It follows that the P -equivariant function fΦ : G → Λ3R7 mapping
constantly onto the 3-vector Φ stabilized by G2 induces a section
Φ ∈ Γ(Λ3S). It follows from Proposition 7.2.2 that the normal
tractor connection ∇Λ3S is induced by the normal Cartan connec-
tion ω ∈ Ω1(G, g). Hence, according to (46), ∇Λ3S

ξ Φ corresponds
to the function u 7→ (ξ′u · fΦ) + ωu(ξ′(u))(fΦ(u)), where u ∈ G and
ξ′ ∈ X(G) is a P -invariant lift of a vector field ξ ∈ X(M). Since fΦ

is constant and ω takes values in the isotropy algebra g of Φ, this
means that ∇Λ3SΦ = 0, i.e. Φ is a parallel 3-tractor.

(2) Since Φ is ∇Λ3S-parallel, φ := Π0(Φ) lies in the kernel of the first
BGG-operator of Λ3S, which, according to 6.2, is the operator gov-
erning conformal Killing 2-forms. By Definition 4.1.5, the parallel
tractor Φ therefore gives rise to a normal conformal Killing 2-form,
subject to additional equations, to be stated explicitly in 7.3, (170).

Let V = Λ3R7. With respect to the conformal parabolic P̃ ⊂
SO(h), V is filtered V = V −1 ⊃ V 0 ⊃ V 1 ⊃ {}. We see from our
explicit formula for Φ, (158), that, up to a factor, a representative
in gr−1(V ) = V/V 0 is given by e7 ∧ e2 ∧ e3. Around every point
x ∈ M we can choose a local section σ : U → G; on σ(U) ⊂
G ⊂ G̃ we define 3 constant functions, mapping to e7, e2 and e3;
these correspond to sections s7, s2 and s3 of the standard tractor
bundle S. s7 is simply τ− of (104); to be precise, we use that
σ : U → G gives in particular a trivialization of the conformal
weight bundles, and we can view τ− as an (unweighted) section of
S. The tractors s2 and s3 lie in S0, and therefore project to elements
ϕ2 and ϕ3 in Γ(gr0(S)) = Γ(S0/S1) = EEa, where we again use the
trivialization of the conformal weight bundles. Thus τ−∧ϕ2∧ϕ3 is
a representative of ϕ = Π0(Φ) ∈ V/V0, and the identification (123)
of V/V0 with E[ab] tells us that ϕ = ϕ2 ∧ ϕ3 ∈ E[ab].

�
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Remark 7.2.4. The parabolic subgroup P preserves a filtration of the
standard representation, and thus the standard tractor bundle is naturally
filtered

S = S−2′ ⊃ S−1′ ⊂ S0′ ⊃ S1′ ⊃ S2′ ⊃ {0}.
The isotropic line bundle S2′ corresponds to the subspace generated by e1 ∈
R7. The bundle S−1′ is the orthogonal complement to S2′ with respect to
the tractor metric. The explicit form of the 3-form Φ (see (158)) shows
how the additional filtration components can be characterized in terms of
Φ. Recall the canonical insertion τ+ ∈ Γ(S ⊗ E[1]) of E[−1] into S2 ⊂ S,
which was defined in section 6.1.1. Then the subbundle S1′ can be described
as the set of all tractors s ∈ Γ(S) such that isiτ+Φ = 0. The subbundle S0′

is the bundle orthogonal to S−1′ . ♦

Remark 7.2.5. The distribution D can be recovered from the conformal
class [g] associated to the distribution and the conformal Killing 2-form φ.
The kernel of the 2-form is the rank three distribution [D,D]. Restricted
to [D,D], a metric g ∈ [g] is degenerate, and in fact the rank two distribu-
tion can be recovered as the kernel of the restriction ofg to the rank three
distribution. ♦

7.3. Holonomy reduction and characterization via conformal
Killing forms and twistor-spinors

The goal of this section is to characterize conformal structures arising
from generic rank 2 distributions in dimension five in terms of normal con-
formal Killing 2-forms satisfying certain additional equations. See Theorem
7.3.8 for a precise statement of the result. We will obtain another charac-
terization in terms of twistor spinors in Theorem 7.3.11.

We proceed as follows. First, we prove that a conformal manifold of sig-
nature (2, 3) whose conformal holonomy is contained inG2 is obtained from a
generic rank two distribution via a Fefferman construction. Then we aim for
a characterization of the conformal structures in terms of underlying confor-
mal data; we derive conditions to distinguish those normal conformal Killing
2-forms coming from parallel tractor 3-forms defining holonomy reductions
to G2. This is done analogously to [ČG06], where the authors arrive at a
version of Sparling’s characterization [Gra87] of Fefferman spaces in terms
of a conformal Killing field.

Remark 7.3.1. Recently there has been an interest in conformal struc-
tures with holonomy G2, since this seems to imply interesting properties
for the ambient metric construction; this has been studied so far for certain
classes of examples in [Nur08] and [LN09].

7.3.1. Conformal holonomy. Let (M, [g]) be a conformal structure
of signature (2, 3) encoded in a Cartan geometry (G̃, ω̃) as described in sec-
tion 6.1. The standard tractor bundle S of [g] is endowed with the tractor
connection ∇S and we recall the conformal holonomy

Hol([g]) = Hol(∇S).

introduced in 6.1.3. Now S comes about as associated bundle to G̃′ :=
G̃×P̃ SO(p+1, q+1), and∇S is just the induced connection from the principal
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connection form ω̃′ ∈ Ω1(G̃′, so(h)). Thus we have that Hol(∇S) = Hol(ω̃′).
Recall that by construction the pullback of ω̃′ to G̃ ⊂ G̃′ is simply the Cartan
connection form ω̃.

In the generalized Fefferman construction of section 7.2 we started with
a parabolic geometry (G, ω) of type (G2, P ) encoding a generic rank 2 dis-
tribution and associated to this the parabolic geometry (G̃ := G ×P P̃ , ω̃) of
type (SO(h), P̃ ) by equivariantly extending ω to ω̃. If we add the extended
bundles G′ = G ×P G2 and G̃′ = G̃ ×P̃ SO(h) = G ×P SO(h) to the picture
we obtain the commuting diagram of inclusions

(G′, ω′) � � // (G̃′, ω̃′)

(G, ω)
?�

OO

� � // (G̃, ω̃)
?�

OO

In particular, this yields a holonomy reduction of (G̃′, ω̃′) to (G′, ω′), and
thus Hol(ω̃′) = Hol(ω′) ⊂ G2. By Proposition 7.2.2, ω̃ is normal. Hence
Hol(ω̃′) is indeed the conformal holonomy Hol([g]D), which is thus seen to
be contained in G2.

We are now going to show the converse: if, for a conformal structure
(M, [g]) of signature (2, 3) one has that Hol([g]) ⊂ G2, then there is in
fact a canonical generic rank 2-distribution D on M such that [g] = [g]D.
To be precise, the group Hol(ω̃) is only defined up to SO(3, 4)-conjugacy:
it is defined for a point u ∈ G̃′, and one then writes Holu(ω̃). Since for
g ∈ SO(3, 4), Holu·g = gHolug−1, one can always choose a point in the fiber
of u with a given representative of Hol(ω̃) in the SO(3, 4)-conjugacy class.

Let π : G̃′ → M be the surjective submersion of the SO(h)-principal
bundle G̃′. The next Theorem treats the holonomy reduction of a Cartan
geometry. A similar procedure was stated in [Alt08].

Proposition 7.3.2. Let (G̃, ω̃) be such that (G̃′, ω̃′) has holonomy in G2

and let H ⊂ G̃′ be a holonomy reduction of (G̃′, ω̃′) to G2. Then

(1) H ⊂ G̃′ and G̃ ⊂ G̃′ intersect transversally. We denote the resulting
submanifold by G := H ∩ G̃.

(2) For every u ∈ G, Tuπ(TuG) = Tπ(u)M .
(3) G is a P -principal bundle over M .
(4) Let ω be the pullback of ω̃ ∈ Ω1(G, so(h)) to G. Then ω ∈ Ω1(G, g)

is a Cartan connection form.

Proof. The holonomy reduction H
j
↪→ G2 has by definition the fol-

lowing properties: H is a G2-principal bundle over M and and j : H ↪→ G̃′
is a G2-equivariant embedding of H into G̃′. One has that the pullback
j∗(ω̃) of the principal connection form ω̃ ∈ Ω1(g, so(h) has values in g2, i.e.,
j∗(ω̃) ∈ Ω1(H, g2) is a G2-principal connection form. In the following we
will regard H as a subbundle of G̃′.

(1) We have that TuH+TuG̃ ⊃ u ·g+u · p̃ = u ·so(h) = ker(Tuπ). Since
Tuπ : TuG̃ → Tπ(u)M is surjective, we have that dim (TuH+TuG̃) =
dim (so(h)) + dim (g/p) = dim (TuG̃′).
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(2) Take u ∈ G = H ∩ G̃ and ξ ∈ Tπ(u)M . Since the restriction of π
to H and G̃ are surjective submersions, there exist ξ1 ∈ TuH and
ξ2 ∈ TuG̃ such that ξ = Tuπξ1 = Tuπξ2. Then

ξ1 − ξ2 ∈ kerTuπ = u · so(h) = u · g + u · p̃.

Thus there exist η1 ∈ u ·g and η2 ∈ u · p̃ such that ξ1− ξ2 = η1 +η2.
Let

ξ′ = ξ1 − η1 = ξ2 + η2 ∈ TuG.

Then indeed Tuπξ
′ = ξ.

(3) Assume first that for an x ∈M there is a u ∈ Hx ∩ G̃x = Gx. Then
evidently Gx = u · (G2 ∩ P̃ ) = u · P . It therefore remains to show
that Hx ∩ G̃x is always non-empty: let u ∈ Hx. Then there is a
g ∈ SO(h) such that u · g ∈ G̃. But since G2/P = SO(h)/P̃ (see
7.1.2) there is a p ∈ P̃ with gp = g′ ∈ G2; then u · g′ ∈ H since H
is a G2-subbundle and u · g′ = (u · g) · p ∈ SO(h); i.e., u · g′ ∈ G.

(4) We now consider G as a reduction of the P̃ -principal bundle G̃ to
P and denote by ω the pullback of ω̃ ∈ Ω1(G̃, so(h)). By construc-
tion, H ⊃ G was obtained by holonomy reduction of (G̃′, ω̃′) to
G2. In particular, ω̃′|TH has values in g, and thus ω ∈ Ω1(G, g).
P -equivariance and reproduction of p-fundamental vector fields is
clear since G is just a P -principal subbundle of G̃ and ω̃ is a Car-
tan connection form satisfying (C.1)-(C.2) by assumption. We thus
need to check that also (C.3) holds for ω. I.e., for every u ∈ G we
need that ωu : TuG → g is an isomorphism. We have seen that
Tuπ(TuG) = Tπ(u)M . Since u · p̃ = ker(Tuπ) ⊂ TuG̃, we see that
TuG ⊂ TuG̃ must span at least dim (g/p)-complementary dimen-
sions and thus already TuG+u ·p = TuG̃. But then ωu(TuG/u ·p) =
ω̃u(Tug̃/u · p̃) = g̃/p̃ = g/p. This, together with ωu(u · p) = p
by reproduction of fundamental vector fields, gives that indeed
ωu(TuG) = g.

�

Proposition 7.3.3. Suppose (M, [g]) is a conformal structure of sig-
nature (2, 3) such that Hol([g]) ⊂ G2. Let (G̃, ω̃) be the normal parabolic
geometry of type (G̃, P̃ ) associated to the conformal structure and let (G, ω)
be the parabolic geometry of type (G2, P ) obtained via reduction as explained
in Proposition 7.3.2. Then ω is regular and there is a normal Cartan con-
nection ωN ∈ Ω1(G, g) such that the difference (ωN − ω) is of homogeneous
degree ≥ 3.

For the proof we refer to [Sag08] or [HS09]. Having Propositions 7.3.2
and 7.3.3 we can now show:

Theorem 7.3.4. Let (M, [g]) be a conformal structure of signature (2, 3)
with conformal holonomy Hol([g]) ⊂ G2. Then [g] is canonically associated
to a generic rank two distribution D via a generalized Fefferman construc-
tion.
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Proof. Let (G̃, ω̃) be the normal parabolic geometry of type (SO(h), P̃ )
associated to the conformal structure [g]. Let (G, ω) be the Cartan geometry
of type (G2, P ) constructed in Proposition 7.3.2. Then we know by Propo-
sition 7.3.3 that ω is regular and that there is a normal Cartan connection
ωN ∈ Ω1(G, g) that differs from ω only in homogeneous degree ≥ 3.

Recall that the Cartan connection ω determines an isomorphism G ×P
g/p ∼= TM . Regularity of ω implies that the image of G×P g−1/p under this
isomorphism is a generic rank two distribution D. Furthermore, we have a
P -invariant conformal class of bilinear forms of signature (2, 3) on g/p, and
the conformal structure induced via the above isomorphism on M is just [g].
On the other hand, the Fefferman construction associates a conformal struc-
ture [g]D to the distribution D. This is the conformal structure induced via
the isomorphism G ×P g/p ∼= TM defined by the normal Cartan connection
ωN ∈ Ω1(G, g) associated to the distribution D. Since ωN −ω is of homoge-
neous degree ≥ 3, the difference (ω−ωN ) takes values in p. But this implies
that ω and ωN induce the same isomorphism TM ∼= G ×P g/p and hence
the same conformal structure on M ; i.e., the conformal structure [g] is the
one induced by the distribution D: [g] = [g]D. �

7.3.2. Characterization via the tractor 3-form. We have seen that
conformal structures associated to generic rank two distributions in dimen-
sion five precisely correspond to reductions in conformal holonomy from
SO(h) to G2. As the next step towards the desired characterization re-
sults we show that such a holonomy reduction can be encoded in terms of a
parallel tractor 3-form satisfying a certain compatibility condition with the
tractor metric.

The group G2 ⊂ SO(h) has been realized as the isotropy subgroup
SO(h)Φ of Φ ∈ Λ3R7 given by (158). Let u ∈ G̃′ = G̃ ×P̃ SO(h) be an
arbitrary point in the extended SO(h)-principal bundle over M . Recall that
we have extended the Cartan connection form equivariantly to an SO(h)-
principal connection form ω̃′ ∈ Ω1(G̃′, so(h)). We consider the conformal ho-
lonomy Holu = Holu(ω̃′) of [g]. For g ∈ SO(h) one has Holu·g = gHolu g−1,
and of course Hol([g]) really is the SO(h)-conjugacy class of Holu.

Let Hu ↪→ G̃′, u ∈ G̃′, be the reduction of the SO(h)-bundle G̃′ to Holu.
If Ψ ∈ Γ(Λ3S) is parallel it corresponds to a SO(h)-equivariant function
f : G̃′ → Λ3R7, which is a constant Ψu ∈ Λ3R7 on Hu. In particular
Holu ·Ψu = Ψu, or Holu ⊂ SO(h)Ψu . If u′ is another point in G̃′ one has
Holu′ = gHolu g−1 for some g ∈ SO(h) and Ψu′ = g · Ψu. Thus f(G̃′) =
SO(h) · Ψu. We say that SO(h)Ψu is the orbit type of the parallel tractor
Ψ. To be precise, the orbit type is of course only given up conjugacy under
SO(h).

Now compatibility condition (155) singles out the unique SO(h)-orbit of
Λ3S whose isotropy type is G2. Hence Hol([g]) reduces to G2 if and only if
there is a ∇Λ3S-parallel Φ ∈ Λ3S satisfying the global version of (155), i.e.,

H(Φ) = λh for a λ ∈ R\{0}, (167)

where, for s1, s2 ∈ Γ(S),

H(Φ)(s1, s2) = is1Φ ∧ is2Φ ∧Φ. (168)
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We remark that this formula at first only defines a section of in S2S∗⊗Λ7S∗;
However Λ7S∗ is trivial by orientability of S, resp. since P̃ ⊂ SO(h).

7.3.3. Characterization in terms of the underlying conformal
Killing 2-form. We want to express compatibility condition (167) of the
∇Λ3S-parallel tractor Φ ∈ Γ(Λ3S) in terms of the underlying normal con-
formal Killing 2-form φ = Π0(Φ) ∈ E[ab][3].

By Lemma 2.4.4 and (134), we have

Φ =

 ρa1a2

ϕa0a1a2 | µa2

φa1a2

 = (169)

=


(
− 1

15D
pDpφa1a2 + 2

15D
pD[a1

φ|p|a2] + 1
10D[a1

Dpφ|p|a2]

+4
5Pp[a1

φ|p|a2] − 1
5Jφa1a2

)
D[a0

φa1a2] | − 1
4gpqDpφqa2

φa1a2


∈

 E[a1a2][1]
E[a0a2][3] | Ea2 [1]
E[a1···a2][3]

 .

According to (127), the tractor connection ∇Λ3S is given by

∇Λ3S
c

 ρa1a2

ϕa0a1a2 | µa2

φa1a2

 =

=

 Dcρa1a2 − P p
c ϕpa1a2 − 2Pc[a1

µa2]

Dcϕa0a1a2 + 3gc[a0
ρa1a2] + 3Pc[a0

φa1a2] | Dcµa2 − P p
c φpa2 + ρca2

Dcφa1a2 − ϕca1···a2 + 2gc[a1
µa2]

 .

Thus Φ ∈ Γ(Λ3S) being ∇Λ3S-parallel is equivalent to the following 4 equa-
tions: The equation in the lowest slot just says that φa1a2 ∈ E[a1a2][3] is a
conformal Killing 2-form:

Dcφa1a2 −D[a0
φa1a2] −

1
2
gc[a1

gpqD|pφq|a2] = 0.

The additional 3-equations, for which we don’t write out ϕ, µ and ρ as given
by (169), are then

Dcρa1a2 − P p
c ϕpa1a2 − 2Pc[a1

µa2] = 0 (170)
Dcϕa0a1a2 + 3gc[a0

ρa1a2] + 3Pc[a0
φa1a2] = 0

Dcµa2 − P p
c φpa2 + ρca2 = 0.

We now consider the map (168). As a SO(h)-representation S2R7∗ decom-
poses into the irreducible components S2

0R7∗ of trace-free symmetric 2-forms
and the space Rh of multiples of h. The corresponding decomposition on
the tractor level is

S2S∗ = S2
0S∗ ⊕ Rh. (171)

Accordingly H(Φ) decomposes into H(Φ)0 and H(Φ)tr. Compatibility con-
dition (167) then means that H(Φ)0 = 0 and H(Φ)tr 6= 0.
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Lemma 7.3.5. One has H(Φ)0 = 0 if and only if

φ ∧ φ ∧ µ = 0. (172)

Proof. S2
0S∗ is the tractor bundle associated to the irreducible repre-

sentation of SO(h) on S2
0R7∗. By assumption Φ is ∇Λ3S-parallel; the map-

ping Φ 7→ H(Φ) 7→ H(Φ)0 is algebraic, and thus naturality of the tractor
connection implies that H(Φ)0 is ∇S2

0S
∗
-parallel. By Lemma 2.4.4, the sec-

tion H(Φ)0 ∈ Γ(S2
0S∗) can thus be recovered via the BGG-splitting operator

L
S2

0S
∗

0 from its projection to H0(S2
0S∗) = E [2]. This projection is achieved

by inserting twice the top slot τ+ into H(Φ)0, and since h(τ+, τ+) = 0 this
is the same as evaluating H(Φ)(τ+, τ+). Now according to (168),

H(Φ)(τ+, τ+)vol = (iτ+(Φ)) ∧ (iτ+(Φ)) ∧Φ.

Here vol ∈ Λ7S is the canonical volume-form. We use the representation
(123) with respect to a metric g ∈ [g] and calculate

H(Φ)(τ+, τ+)vol =

= (φ− τ+ ∧ µ) ∧ (φ− τ+ ∧ µ) ∧ (τ− ∧ φ+ ϕ+ τ+ ∧ τ− ∧ µ+ τ+ ∧ ρ) =
= φ ∧ φ ∧ τ+ ∧ τ− ∧ µ− τ+ ∧ µ ∧ φ ∧ τ− ∧ φ− φ ∧ τ+ ∧ µ ∧ τ− ∧ ϕ =
= 3τ+ ∧ τ− ∧ φ ∧ φ ∧ µ.

This vanishes if and only if φ ∧ φ ∧ µ = 0. �

Remark 7.3.6. It follows from the proof of Lemma 7.3.5 that φ ∧ φ ∧
µ ∈ E[a1···a5][7] is conformally invariant. To see this directly observe that
with a change of metric ĝ = e2fg, µ̂a2 = µa2 − Υpϕpa2 according to the
transformation rules (126). But

0 = φ ∧ φ ∧ φ = iΥp

(
φ ∧ φ ∧ φ

)
= 3φ ∧ φ ∧ (iΥpφ).

Assume now that H(Φ)0 vanishes, i.e. H(Φ) = H(Φ)tr = λh, and since
0 = ∇S2S∗0 (λh) = (dλ)h we have that λ ∈ R is a constant.

Lemma 7.3.7. If H(Φ)0 = 0, one has H(Φ) = λh for a constant λ ∈ R.
λ 6= 0 if and only if

φ ∧ µ ∧ ρ 6= 0. (173)

Proof. We check that λ 6= 0 by inserting τ+, τ− sinceH(Φ)(τ+, τ−)vol =
λh(τ+, τ−)vol = λvol:

H(Φ)(τ+, τ−)vol = (iτ+Φ) ∧ (iτ−Φ) ∧Φ =

= (φ− τ+ ∧ µ) ∧ (τ− ∧ µ+ ρ) ∧ (τ− ∧ φ+ ϕ+ τ+ ∧ τ− ∧ µ+ τ+ ∧ ρ) =
= φ ∧ τ− ∧ µ ∧ τ+ ∧ ρ+ φ ∧ ρ ∧ τ+ ∧ τ− ∧ µ− τ+ ∧ µ ∧ ρ ∧ τ− ∧ φ =
= 3τ+ ∧ τ− ∧ φ ∧ µ ∧ ρ.

Thus λ 6= 0 if and only if φ ∧ µ ∧ ρ 6= 0. Note that this fixes the constant λ
and φ ∧ µ ∧ ρ either vanishes globally or nowhere. �

We are now ready to prove Theorem 7.3.8:
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Theorem 7.3.8. Let [g] be a conformal class of signature (2, 3) metrics
on M . Then [g] is induced from a generic rank 2 distribution D ⊂ TM if
and only if there exists a normal conformal Killing 2-form φ ∈ E[ab][3] that
is locally decomposable and satisfies the following genericity condition: for

µa2 = gpqDpφqa2 ∈ Ea[1],

ρa1a2 = − 1
15
DpDpφa1a2 +

2
15
DpD[a1

φ|p|a2] +
1
10
D[a1

Dpφ|p|a2]

+
4
5

Pp[a1
φ|p|a2] −

1
5
Jφa1a2 ∈ E[ab][1]

one must have

0 6= φ ∧ µ ∧ ρ ∈ E[a1···a5][5].

Proof. Normal conformal Killing 2-forms φab ∈ E[ab][3] correspond to
∇Λ3S-parallel sections of Λ3S via (169). The explicit conditions for a con-
formal Killing 2-form φab ∈ E[ab][3] to be normal are (170).

Now it was shown in 7.3.2 that a parallel Φ ∈ Γ(Λ3S) yields a reduction
to a parabolic geometry of type (G2, P ) if and only if Φ satisfies compati-
bility condition (167). In fact, (167) is equivalent to the orbit type of the
parallel tractor Φ ∈ Γ(Λ3S) being G2. Lemmata 7.3.7 and 7.3.5 above yield
that (167) is equivalent to conditions (172) and (173) on the normal confor-
mal Killing 2-form φ = Π0(Φ), resp. on its differential splitting components
as given by (169). The orbit type of Φ being G2 actually implies locally de-
composability of the underlying 2-form φ, as was shown Proposition 7.2.3,
which then implies that already φ ∧ φ = 0.

We thus see that (172)+(173) is in fact equivalent to local decompos-
ability of φ together with condition (173). �

Remark 7.3.9. It is a well known consequence of the classical Plücker
relations (cf. [EM00]) that a two form φ is locally decomposable if and only
if φ ∧ φ vanishes globally. ♦

Remark 7.3.10. Throughout this chapter we have assumed orientabil-
ity of TM . This was however only a minor point so far: If we remove
this assumption and denote by O the 2-fold covering of M which is the
orientation-bundle, we would obtain a twisted normal conformal Killing 2-
form ϕ ∈ Λ2T ∗M ⊗ E [3]⊗O. The real gain in orientability is that one has
in fact a canonical spin structure in that case: ♦

7.3.4. Characterization via twistor-spinors. Since we work with
G2 connected, G2 ↪→ SO0(h). In fact one has that this embedding lifts to
G2 ↪→ Spin(h) = Spin(3, 4). It is shown in [Kat99] that G2 ⊂ Spin(h) can
be realized as the isotropy group of an arbitrary non-isotropic element of
the spin representation ∆3,4.

Let now (M, [g]) be a conformal spin manifold of signature (2, 3). As dis-
cussed in 6.3, (M, [g]) corresponds to a Cartan geometry of type (Spin(3, 4), P̂ )
with P̂ ⊂ Spin(3, 4) the preimage of the conformal parabolic P̃ ⊂ SO0(3, 4)
under the double-covering Spin(3, 4)→ SO0(3, 4). Let ∆ be the spin bundle
of (M, [g]).
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Now let Σ = Ĝ×P̂∆3,4 = G×P∆3,4 be the spin tractor bundle introduced
in 6.3. We showed there that with respect to any g ∈ [g]

[Σ]g =
(

∆[−1
2 ]

∆[1
2 ]

)
.

Furthermore, parallel sections of Σ were shown to be in 1 : 1-correspondence
with twistor spinors χ ∈ Γ(∆[1

2 ]) via the projection Π0 : Σ→∆[1
2 ] and the

splitting operator

L : Γ(∆[
1
2

])→ Γ(Σ), (174)

χ 7→
(√

2
n D/ χ
χ

)
(175)

with D/ : Γ(∆[1
2 ])→ Γ(∆[−1

2 ]) the Dirac-operator.

Theorem 7.3.11. Let (M, [g]) be a conformal spin structure of signature
(2, 3) and ∆ its (complex 4-dimensional) spin bundle, which is endowed
with a pseudo-hermitian inner product 〈·, ·〉 of signature (2, 2). Then [g] is
induced from a generic rank 2-distribution D ⊂ TM if and only if there
exists a twistor spinor χ ∈ Γ(∆[1

2 ]) with nowhere vanishing imaginary part
Im(〈χ,D/ χ〉).

Proof. We only give a sketch of the proof, which employs similar ar-
guments to the characterization with normal conformal Killing 2-forms:

First, let D be an oriented generic rank 2-distribution and (G, ω) the
corresponding regular normal Cartan geometry of type (G2, P ). We regard
G2 as an embedded subgroup of Spin(3, 4), realized as the stabilizer of an
element X ∈ ∆3,4. The Fefferman construction G̃ := G ×P Spin(3, 4) is
then seen to yield a normal Cartan geometry of type (Spin(3, 4), P̂ ), which
corresponds to a conformal spin structure of signature (2, 3). Now, as in
the proof of Proposition 7.2.3, X ∈ ∆3,4 determines a parallel spin-tractor
X ∈ Γ(Σ), where Σ = G ×P ∆3,4 = Ĝ ×P̂ ∆3,4 is the spin-tractor bundle.
We have seen in 6.3 that then X projects to a twistor-spinor χ ∈ Γ(∆[12).

Conversely, let χ ∈ Γ(∆[1
2 ]) be a twistor-spinor for a conformal spin

structure of signature (2, 3). Let X := L(χ) ∈ Γ(Σ) and recall the decompo-
sition (148) of the pseudo-hermitian metric k3,4 on Σ: with 〈·, ·〉 the pseudo-
hermitian metric on ∆ one has, for v, v′ ∈ Γ(∆[1

2 ]) and w,w′ ∈ Γ(∆[1
2 ])

k3,4(
(
v
w

)
,

(
v′

w′

)
) = i

(
〈v, w′〉 − 〈w, v′〉

)
.

Thus k3,4(X,X) is a multiple of the imaginary part of 〈χ,D/ χ〉, which is non-
zero by assumption on χ. Since χ is a twistor-spinor, L(χ) is ∇Σ-parallel (cf.
Proposition 6.3.1). Thus the holonomy of the extended conformal tractor
bundle G̃′ := G̃ ×P̂ Spin(3, 4) is contained in the stabilizer of a non-isotropic
element in ∆3,4 and is therefore contained in G2. The rest is analogous to
the proof of Theorem 7.3.4. �

Remark 7.3.12. ∆3,4 and ∆2,3 admit real structures ∆3,4
R resp. ∆2,3

R .
∆3,4

R is endowed with an invariant symmetric (4, 4)-form, which can be ex-
pressed in terms of an invariant non-degenerate skew-form on ∆2,3

R . Then,
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with ∆R the real spin bundle of dimension 4 over M and ω the skew-form
on this bundle, one can also show that a conformal spin structure is induced
by a generic distribution iff if there is a real twistor spinor χ ∈ Γ(∆R)[1

2 ]
with ω(χ,D/ χ) 6= 0. ♦

7.4. Decomposition of conformal Killing fields of [g]D

The goal of this section is to prove Theorem 7.4.3: We will show that
every conformal Killing field of [g]D decomposes into a symmetry of the
distribution D and an almost Einstein scale. The space of almost Einstein
scales aEs([g]) was defined in (117) of section 6.1.3. Now we discuss sym-
metries:

Since D and [g] are equivalently described by Cartan geometries (G, ω)
resp. (G̃, ω̃) we can determine their symmetry algebras by determining the
symmetries of their corresponding Cartan geometries - in fact one can define
them in this way. For this purpose, recall the general description [Čap08]
of the Lie algebra of infinitesimal automorphisms of a parabolic geometry
presented in 4.3.

Before this Cartan geometric description, let us discuss the classical
notions: an infinitesimal automorphism or symmetry of the distribution
D ⊂ TM is a vector field on M whose Lie derivative preserves D, i.e.,

sym(D) = {ξ ∈ X(M) : Lξη = [ξ, η] ⊂ Γ(D) ∀η ∈ Γ(D)}. (176)

Remark 7.4.1. In this text we won’t show directly that the symmetries
of the distribution sym(D) defined via (176) agree with the infinitesimal
automorphisms inf .aut.(ω) of the corresponding Cartan geometry. We just
use the fact that associating a regular normal parabolic geometry of type
(G2, P ) to a generic rank 2-distribution D is an equivalence of categories.
The explicit form of the splitting from vector fields on M into the adjoint
tractor bundle relating the classical and the Cartan- viewpoint is only needed
in the conformal case, which was treated in 6.1.4. ♦

7.4.1. Decomposition of the conformal adjoint tractor bundle.
We will use the description [Čap08] laid out in 4.3 of the symmetry Lie
algebra of a parabolic geometry (G, ω) of type (G,P ). This will be applied for
(G, ω) the geometry of type (G2, P ) describing the generic rank 2 distribution
D and for the conformal geometry encoded in the Cartan geometry (G̃, ω̃)
of type (SO(h), P̃ ).

Let now AM := G ×P g be the adjoint tractor bundle of the generic
distribution D and let ÃM := G̃ ×P̃ so(h) be the conformal adjoint tractor
bundle. The tractor connection on AM will be denoted by ∇A and the one
on ÃM by ∇Ã.

Recall from section 7.1.2 that as a G2-module,

so(h) = R7 ⊕ g, (177)

I.e., so(h) decomposes into the direct sum of the standard representation of
G2 ⊂ SO(h) on R7 and the adjoint representation Ad : G2 → GL(g). This
decomposition was realized by the exact sequence (162) of section 7.1.2 and
its splitting (164).
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On the level of associated bundles this yields a decomposition of the
conformal adjoint tractor bundle:

ÃM = G̃ ×P̃ so(h) = G ×P so(h) = (G ×P R7)⊕ (G ×P g) = S⊕AM.
(178)

I.e., the conformal adjoint tractor bundle ÃM is the direct sum of the stan-
dard tractor bundle S and the adjoint tractor bundle AM of the generic
distribution.

Let us check that we can also decompose the tractor connection

∇Ã = ∇S ⊕∇A : (179)

Take a vector field ξ ∈ X(M) and its horizontal lift ξ′ to a vector field on
the extended bundle G′ = G ×P G2. Then, for s ∈ Γ(ÃM), the tractor
derivative ∇ξs is defined by differentiating the G2-equivariant function f :
G → so(h) corresponding to s in direction ξ′. But evidently taking this
derivative commutes with the algebraic projections of f to its components
fS : G → R7 and fAM : G → g; thus (179) holds.

Theorem 7.4.2. Let s ∈ Γ(ÃM). s splits into s1 ∈ Γ(S) and s2 ∈
Γ(AM) via the decomposition (178). Then s is parallel with respect to ∇̃Ã =
∇Ã + iK̃ if and only if s1 is ∇S-parallel and s2 is ∇̃A = ∇A + iK-parallel.

Proof. Let Ω ∈ Ω2
hor(G, g)P be the curvature of ω ∈ Ω1(G, g), which is

given by Ω(ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)]. We have the inclusion

j : G → G̃

which satisfies by construction j∗ω̃ = ω.
Recall that according to (166) we have K̃ = K ∈ Ω2(M,AM). Now

according to Proposition 4.3.1, we have an identification of inf .aut.(G̃, ω̃)
with parallel sections of ÃM with respect to ∇̃Ã = ∇Ã+iK, with iΠA(s)K =
K(ΠA(s), ·) and an identification of inf .aut(G, ω) with parallel sections of
AM with respect to the connection ∇̃A.

Let s1 ∈ Γ(S) and s2 ∈ Γ(AM) be∇S- resp. ∇̃A- parallel sections. Since
the restriction of ∇Ã to Γ(S) ⊂ Γ(ÃM) is just ∇S we have that s1 includes
as a ∇Ã-parallel section into Γ(ÃM). But by Lemma 6.1.5, we have that
K(ΠA(s1), ·) = 0, and thus also ∇̃Ãs1 = 0. For s2 we have ∇̃Ãs2 = 0 by
(166), and we see that s1 +s2 corresponds to an infinitesimal automorphism
of (G̃, ω̃).

Conversely, we take a s ∈ Γ(ÃM) with ∇̃Ãs = 0 and decompose

s = s1 ⊕ s2 ∈ Γ(S)⊕ Γ(AM)

according to (178). Since K has values in AM we have that s1 ∈ Γ(S) is
parallel with respect to the standard tractor connection ∇S by (179). We
still need to show that s2 is parallel with respect to ∇̃A = ∇A + iK, while
so far we only know that

∇As2 +K(ΠA(s1), ·) +K(ΠA(s2), ·)
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vanishes. But since s1 is parallel as a section of ÃM with respect to the
usual adjoint tractor connection ∇Ã according to (179), we can again apply
Lemma 6.1.5, which tells us that s1 inserts trivially into the curvature K̃ =
K. Thus also ∇̃As2 = 0. �

We can now translate Theorem 7.4.2 into a decomposition of conformal
Killing fields:

Theorem 7.4.3. Let D be a generic rank 2-distribution on a 5-manifold
M and [g]D the induced conformal class of signature (2, 3)-pseudo-Riemannian
metrics. Let φ ∈ E[ab][3] be the normal conformal Killing 2-form of Proposi-
tion 7.2.3. Then one has:

Every conformal Killing field decomposes into a symmetry of the distri-
bution D and an almost Einstein scale:

cKf([g]) = sym(D)⊕ aEs([g]). (180)

The mapping which associates to an almost Einstein scale σ ∈ E [1] a
conformal Killing field is given by

σ 7→ φapD
pσ − 1

4
σDpφpa (181)

where D is the Levi-Civita connection of an arbitrary metric g in the con-
formal class.

The mapping which associates to a conformal Killing field ξ ∈ X(M) its
almost Einstein scale part with respect to the decomposition (180) is given
by

ξa 7→ φpq(Dξ)pq −
1
2
ξpDqφpq (182)

Proof. By Proposition 4.3.1 conformal Killing fields of [g] are in 1:1-
correspondence with ∇̃Ã-parallel sections of ÃM . By Theorem 7.4.2 above,
every such section decomposes into a parallel standard tractor in S = Γ(S)
and a ∇̃A-parallel section of AM . By Proposition 6.1.4 and again Proposi-
tion 4.3.1, now for AM , this yields the decomposition (180).

It is now straightforward to make this decomposition explicit in terms of
the normal conformal Killing 2-form of Theorem 7.3.8 encoding the generic
distribution D:

To map an almost Einstein scale σ ∈ E [1] to a conformal Killing field we
use the splitting operator LS0 : E [1]→ S) given in (114), contract this section
into the characterizing ∇Λ3S-parallel 3-form Φ ∈ Γ(Λ3S) given by (169) via
the tractor metric h and project the resulting section of Λ2S = ÃM down
to X(M): This yields (181).

To project a conformal Killing field ξ ∈ X(M) to its almost Einstein
scale part we proceed similarly: we split it into Γ(Λ2S) via LΛ2S

0 of (119),
contract it into Φ ∈ Γ(Λ3S) and project the resulting standard tractor to
E [2]. This gives (182). �

Remark 7.4.4. We remark that this theorem employs the 2-form φ ∈
E[ab][3] with the ’correct’ factor, i.e, the one corresponding to (158) con-
structed in Proposition 7.2.3. This depends on the tractor-version of the
exact sequence (162) and its splitting (164). If φ is a normal conformal
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Killing 2-form as described by Theorem 7.3.8 may differ from the one ob-
tained by Proposition 7.2.3, but it can be multiplied with a scalar that is
unique up to sign such that one has an analogous exact sequence on the
tractor-level. Then the composition of (182) with (181) is the identity.

Remark 7.4.5. Mapping (181) actually works more generally: in the
presence of an almost Einstein scale it was shown in [GŠ08], Corollary 5.2,
that one can associate to every conformal Killing 2-form, not only to normal
ones, a conformal Killing field. ♦

Remark 7.4.6. In terms of the Twistor spinor χ ∈ Γ(∆[1
2 ]) and the

skew-symmetric form ω of Remark 7.3.12 this decomposition is given as
follows: An almost Einstein scale σ ∈ E [1] corresponds to the Killing field

ξa := ω(
2
5
σD/ χ+ (Dσ)pγpχ, γaχ).

The almost Einstein scale part of a Killing field ξa ∈ Ea[2] is given by

ω(−4
5
ξpγpD/ χ+ (D[pξq])γ

pqχ, χ).

We remark that φ = ω(χ, γ[aγb]χ). ♦
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