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CATEGORIES OF BISTOCHASTIC MEASURES, AND
REPRESENTATIONS OF SOME INFINITE-DIMENSIONAL GROUPS

YU. A. NERETIN

ABSTRACT. The following groups are considered: the automorphism group of a
Lebesgue measure space (with finite or o-finite measure), groups of measurable func-
tions with values in a Lie group, and diffeomorphism groups of manifolds. It turns
out that the theory of representations of all these groups is closely related to the the-
ory of representations of some category, which will be called “the category of G-
polymorphisms”. Objects of this category are measure spaces, and a morphism from
M 10 N is a probability measure on M x N x G, where G is a fixed Lie group.
For some of the above-mentioned infinite-dimensional groups & it is shown that any
representation of & extends canonically to a representation of some category of G-
polymorphisms. For automorphism groups of measure spaces this makes it possible
to obtain a classification of all unitary representations. Also “new” examples of repre-
sentations of groups of area-preserving diffeomorphisms of two-dimensional manifolds
are constructed.

Let G be an infinite-dimensional group having some supply of unitary represen-
tations. It turns out that, associated with G, there is usually (always?) a semigroup
I'> G (the “mantle” of G), which cannot be seen with the naked eye, such that all
unitary representations of G extend in a rigid way to I' (there are good reasons to
think that G is dense in I'; this does not mean that I is a completion of G in the
formal sense of the word “completion™).

The principle was formulated by G. I. Ol'shanskii about 1980. As the structure
of such semigroups was being clarified, it became clear that it is not semigroups
but categories that are concerned (see [12]-[16] and [24]). Namely, to an infinite-
dimensional group G there is usually (always?) associated a category Z (the train of
G), and the theory of representations of G is in a sense the theory of representations
of Z'. The group G itself plays the role of the automorphism group of one of the
objects of %', and the semigroup I plays the role of the endomorphism semigroup
of this same object.

One knows three methods of searching for the mantle and the train of a group G :
“multiplicativity theorems” (going back to [27] and [6]; see §3), weak closure (see
§§4.1 and 4.2), and holomorphic continuation (introduced by Ol’shanskii). None of
these methods gives a direct algorithm for constructing the mantle and the train. The
explicit construction contains, as a rule, some volitional steps which can be justified
only afterwards.

At present the most beautiful constructions of trains (the symplectic category.
the orthogonal category, the category Shtan; see [12]-[16], [23], and [24] have been
obtained by means of holomorphic continuation, which method is not used in this
Paper,

The motive for writing this paper was the fact that, in some strange way, one of
the universal categories connected with infinite-dimensional groups, the category of
———

1991 Mathematics Subject Classification. Primary 22A25, 22E67; Secondary 47D03, 81R10.

©1993 American Mathematical Society
1064-5616/93 $1.00 + $.25 per page



198 YU. A. NERETIN

G-polymorphisms, has not even been mentioned in the literature, whereas it forms
a basis for unifying several beautiful theories which seem to be completely different.
An object of this category is a measure space (M, u), and a morphism (M, u) —
(N,v) is a measure k on M x N x G (where G is a fixed group) such that the
projection of x on M is u and its projection on N is v (see §2). In §3 we
show that the theory of representations of the group of measurable functions on
a Lebesgue space with a group-valued measure is in some sense equivalent to the
theory of representations of the category of G-polymorphisms. On the other hand,
one can be fairly optimistic about describing all representations of this category;
unfortunately, in studying this problem, we did not manage to go as far as we wanted
to (i.e. to obtain the complete classification of representations, which has been done
only in the case of a compact group G). In §4 we show that studying the theory of
representations of diffeomorphism groups leads in a strange way to similar categories.
As an application we construct a new series of representations of the group of volume-
preserving diffeomorphisms of a compact two-dimensional manifold.

I thank G. 1. Ol'shanskii, R. S. Ismagilov, and A. M. Vershik for discussions on
the subject of this paper.

0. NOTATION AND PRELIMINARIES

0.1. Measure spaces. By a measure space M we shall always mean a Lebesgue
space, i.e. a space isomorphic to the union of an interval (finite or infinite) and a
set (empty, finite, or countable) of points of nonzero measure. We assume that the /
measure of the Lebesgue space is defined on the o-algebra of Borel sets. We shall
say that the measure is continuous if each point has measure 0.

By a finite partition h of M we shall mean a partition of A into a finite number
of measurable sets M = |JM;. We shall write h; < b, if the partition b, is finer
than bh; . We shall call the sequence of partitions h = b; < h, <--- basic if, for any
sequence Mill) D M,.(Zz) O --- such that MJ(.:‘) is an element of the kth partition, the

intersection [ M}f) consists of a single point.

Let (M, u) and (N, v) be measure spaces and n a Borel measure on M x N
whose projection on M coincides with x. Then by 7mn,(n) we shall denote the
conditional measures on N relative to the partition {m x N} of M x N.

0.2. The group Aut(M). We denote by Aut(M) the automorphism group of the
space M with a continuous probability measure. There is apparently only one rea-
sonable topology on this group. It can be described in the following three ways.

1. The group Aut(M) acts on L?(M) by transformations of the form f(m) —
f(gm), and consequently the weak operator topology on L?(M) induces a topology
on Aut(M).

2. Let g, g € Aut(M). Then g; — g if, for any measurable sets 4, B c M,
we have u(giANB) — u(gANB).

3. Let h: M = JM; and §': M = J M; be finite partitions and g € Aut(M). We
define, following [2], the “intersection matrix” P(g) with entries u(gM;NM}). Our
topology is the weakest topology in which all the functions g — P(g) are continuous.

0.3. The group B(G). Let G be a Lie group and M a space with a continuous
probability measure. Let the “current” group # (M, G) be the group of measurable
functions f: M — G such that the image f(M) is contained in a compact subset
of G (this is a technical requirement whose purpose is to make the group as small as
possible and hence to enlarge the number of its representations). The group B(G) is
the semidirect product of Aut(M) and ¥ (M, G). Representations of B(G) may
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be regarded as representations of the current group % (M, G) invariant under the
automorphisms of M (see, for instance, [11] for similar groups connected with affine
algebras). We have still to introduce some kind of convergence f; — f in F (M, G).
To be specific we require that

(a) the sequence f; converges to f pointwise, and that

(b) U fi(M) be contained in a compact subset of G .

A representation p of B(G) will be called continuous if its restriction to Aut(M)
is continuous and its restriction to # (M, G) is continuous in the sense of Heine. We
shall not deal with a thorough analysis of the dependence of the supply of representa-
tions on the topology; we only remark that, as one can see from the considerations of
§3.4, the given convergence guarantees the largest supply of unitary representations
(but there are many other topologies which guarantee the same supply of representa-
tions).

0.4. Categories and representations of categories. Let ¥ be a category and Ob{(#)
the set of objects of Z'. Let V and W be objects of .Z . Then Morgy (V, W)
is the set of morphisms V' — W, Endy (V) = Mory(V, V), and Autz (V) is the
group of automorphisms of ¥V .

Let Z be a category. By a representation 7 = (T, t) of .¥ we mean a functor
from Z to the category of vector spaces and linear operators; in other words, to
each object V' of Z we associate a Hilbert space 7(V) and to each morphism
¢: V — W an operator 17(¢): T(W) — T(V) such that

(0.1) (yo) = 1(p)T(y)
for all p € Mor(V, W) and y € Mor(W, Y). If (0.1) is replaced by

(we) = A, ¥)t(p)t(y),

where A(p, y) is a complex number, we shall say that 7 is a projective represen-
tation. In all cases to be considered below the group Aut(V) is nonempty. We
shall always require that the identity element of Aut(¥) be mapped to the identity
operator E . Of course, we also require that the representation be continuous.

Suppose, further, that the set of morphisms of .%Z is equipped with an involution
@ — ¢* from Mor(V, W) to Mor(W, V) so that (pw)* = y*p*. A representation
(T, 7) will be called a *representation if 1(¢*) = t(p)*.

We omit the more or less obvious definitions of irreducible representation, equiv-
alent representations, direct sum, tensor product and so on; see [16].

0.5. Schur-Weyl functors SW;. Let (T, t) be the identity representation of the
category Op of Hilbert spaces and bounded operators. Let A be an irreducible repre-
sentation of the symmetric group S, . By (SW;, ow,) we denote the representation
of Op on type A tensors. That is, to each ¥ € Ob(Op) we associate the space
Homg, (4, V®") of type A tensors (the group S, acts on V®" by permuting the
factors). The operators ow,(4) are the natural transformations of type A tensors,
(for details, see [16]).

1. ARAKI’S SCHEME

1.1.  The affine category. An object of the affine category Aff is a Hilbert space. By
a morphism H, —» H, we mean a pair (¢, y) =[A4, b. ¢] of inhomogeneous linear
mappings ¢: H, — H, and y: H, — H, of the form

p(z)=Az+b, w(z)=A"u+c,
where 4: H — H, is a linear operator with ||4|| < 1. If (¢, ) € Mor(H,, H,)
and (¢', y') € Mor(H,, H3), then their composition equals (¢’¢, wy').
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Remark. The affine category is a part of the affine symplectic category, and the Fock
representation of Aff constructed below is the restriction of the “Weil representation”
of the affine symplectic category (see [14]).

1.2. The Fock representation of Aff. We assign to each H € Ob(Aff) the boson
Fock space F(H), i.e. the space of holomorphic functions on H with the scalar
product
— dz;dz;
(f, &) = [[ reE@ ez [ Z5
(for details of this definition in the case where H is infinite-dimensional, see [20]).
To a morphism [4, b, c]: Hy — H, we assign the operator

(1.1) o([4, b, c])f(2) = f(Az + b)exp(z, ¢)
from F(H,) to F(H,). It is easy to see that

9141, by, a1l o [42, by, c2]) = exp(by, c2)o([4y, b, ci])e([42, b2, 2])
Thus, (F, @) is a projective representation of the category Aff.

Remark. If ||A| < 1, the operator (1.1) is bounded (see [14]). Otherwise it may not
be bounded, but it is still correctly defined. To prove that, take the dense subspace
Fy(H) of F(H) spanned by functions of the form

exp (43 pizizi+ Y hizi)

where ¥ |hi|2 < 0o, SIpij|> < 0o, pij = pji, and the norm of the matrix P with
entries p;; is less than 1. It is easy to see that ¢([4, b, c]) maps Fo(H,) to Fo(H,);
hence both the operators (1.1) and their products are correctly defined.

1.3. Araki’s scheme for groups. Let G be a group and p its unitary representation
on a Hilbert space H . Suppose there exists a continuous function y: G — H (we
shall call it cocycle) such that

y(g1&2) = p(&1)v(&) +7(&1)-

Then the formula

(1.2) A(g)v = p(g)v + 7(8)

defines an action of G on the Hilbert space H by affine isometries. The group of
all isometries of H will be denoted by Isom(H).

Further, the group Isom(H) can be embedded into Aut,g(H) in a natural way;
namely, to each mapping z — Uz + b one associates the morphism [U, b, U ~1p]
of the category Aff. Moreover, the mapping

Exp: (U, b) — exp (=(b. b)) o((U, b, UT"0))

is a unitary projective representation of the group Isom(H). We shall call it the Fock
representation.

Restricting the Fock representation of Isom(H) to the subgroup G, embedded
into Isom(H) by means of (1.2), we obtain a unitary projective representation of
G.

Suppose that the action (1.2) is equivalent to a linear action, i.e. it can be made
linear by shifting the origin. This means that

(1.3) 7(8)=p(gw -—w
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for some w € H. In such a case we get nothing interesting—the representation of
G we have constructed will be equivalent to the direct sum of all symmetric powers
of p.

One very effective method of constructing representations of infinite-dimensional
groups, the so-called Araki’s scheme, consists in the following: Construct an affine
action of the group G, not equivalent to a linear one, and apply the above construc-
tion.

Remark. Usually the cocycle y(g) still has the form (1.3) but with w not lying
in H. For instance, let p be the natural representation of the group S.. of all
finite permutations of positive integers on the space /,. Take as w any vector from
C>=\ [,. Then (1.3) defines a nontrivial cocycle on S

Remark. The restriction of the Fock representation Exp to the isometry group of a
real Hilbert space is a linear (not projective) representation.

1.4. The Fock representation of the group B(G) (see §0.3). Let p be a unitary
representation of G on H. Then the group B(G) acts naturally on the space
L%(M, H): the group Aut(M) acts by coordinate changes

(1.4) f(m)— f(p(m)),
and the group % (M, G) acts by transformations of the form

T,(g(m))f(m) = p(g(m))f(m),

where g € ¥ (M, G). Thus, we obtain a unitary representation 7, of B(G). Such
representations of B(G) will be said to be the simplest.

Now let G act on the Hilbert space H by transformations of the form (1.2). Then
an action of B(G) on L?(M, H) by affine transformations is also defined. Aut(M)
acts as before by (1.4), and ¥ (M, G) by

Ay(g(m)) f(m) = p(g(m))f(m) +y(g(m)).
Thus, we can define a unitary projective representation ¢, , = Expod, of B(G) on
F(L*(M, H)).

A vast literature has been devoted to this construction (we indicate only [3], [5],
[21], and [26]). Let us note that the existence of nontrivial affine cocycles is a fairly
rare phenomenon; it is connected with whether or not the trivial representatlon 1S
Hausdorff separated from the other ones in the topology of the dual Ob_]CCI G of G.
In the case of simple Lie groups a one-dimensional representation is, as a rule, an
isolated point in the dual object, the only exceptions being the groups SU(#, 1) and
SO(n, 1), and these are the only groups for which affine cocycles exist ([5]).

We shall need the explicit form of the cocycle in the case G = SL,(R). Let SL>(R)
be realized as the group of matrices of the form

G

where |a|?> — |B]2 = 1. Let H be the space of real-valued functions on the circle
z = e'% with zero mean value and with the scalar product

fir o) = /2"/2"111 Y| fio falw)dody .

Let p be the unitary representation of SLz(R) on H given by

p(5 B)oor-» (%:—ﬂ)lﬁ < +af™?

sin




202 YU. A. NERETIN

Then the affine cocycle equals

a B\ _ ~2_
y(ﬂ a)_|Bz<+oz| 1.
Note that it has the form p(g)l —1,but | ¢ H.

The representation ¢,, of the group B(SL,(R)) is irreducible (see [3]).

2. G-POLYMORPHISMS

2.1. Polymorphisms (see [2]). The objects of the category & are probability spaces.
Let (M, u) and (N, v) be objects of . A morphism of & (a polymorphism)
M — N isa measure 7 on M x N such that the projection of 7 on M is u and
the projection of 7 on N is v.

For instance, if the spaces M and N are finite, i.e. consist of a finite number
of points with measures m,, ..., m, and n;, ..., ng respectively, then a polymor-
phism is simply an o x f matrix such that } . 7;; = m; and Zj mij = n;. Let
n: M — N and y: N — K be polymorphisms of finite measure spaces. Then their
composition ¥ o 1 can be expressed in terms of ordinary matrix product by the
formula

yom=yA ' (N)x,
where A(N) is the diagonal matrix with eigenvalues n;, ..., ng.

We now define the composition of n: M — N and w: N — K in the general
case. Let n be a polymorphism M — N ; associated to it is a family of conditional
measures T,,(n) on N (m running over M). We put

(¥ 0 W)m(k) = /N Yn(K) d (7).

It is natural to regard the polymorphism #: M — N as a multivalued mapping
which “smears” each point m € M into a probability measure n,,(n) on N.

A sequence of polymorphisms =n,: M — N converges to n: M — N if, for
arbitrary measurable sets 4 C M and B C N, we have n;(4 x B) — n(4 x B).

We define an involution in the category 4. One and the same measure 7 on
M x N may be regarded both as a polymorphism M — N and a polymorphism
N — M . These two polymorphisms will be considered to be conjugate to each other.

Next, to each p € Aut(M) we can canonically associate a polymorphism 7,: M —
M, the measure m, being concentrated on the graph of p. Thus, Aut(M) —
Ende(M). It is not hard to check (see [2]) that the group Aut(M) is dense in the
semigroup Ends(M).

We now define the simplest *-representation (7', ) of the category %2 . To this
end we put 7(M) = L?(M) and, for each polymorphism ¢: M — N, we define an
operator

o) f(m) = /N £(n) dgm(n).

This operator is especially transparent in the case where M and N have finite
measures. In such a case t(¢) has matrix A~1(M)g.

The representation (7', 1) is reducible, since (@) -1 = 1 for any ¢. Take in
each space T(M) the orthogonal complement Ty(M) to the subspace of constants.
This will give us an irreducible representation (as we shall see later, irreducibility is
obvious), of the category &, which we shall denote by (Ty, 19).

2.2. The classification of representations of the category #. Denote by % the
category of the finite measure spaces of polymorphisms.
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Lemma 2.1 (Approximation lemma). (a) Any *-representation of & is uniquely de-
termined by its restriction to %, .

(b) Any *-representation (T, 1) of Py such that|t(p)|| < 1 for all ¢ can be
extended to P .

Remark. The condition |jz(¢)|| < | is not burdensome. It holds for any *-representa-
tion of Z, since any polymorphism ¢ can be approximated by elements g €
Aut(M) and the operators 7(g) are unitary. On the other hand, it follows from
the proof of Proposition 2.1 that any representation (T, 7) of % satisfies the con-
dition ||7(@)|| < 1.

Proof. Let (M, 1) be a measure space and § a finite partition of it, M = |JM;.
Let M(h) = M/h be the quotient space, i.e. a finite space consisting of points m;
whose measures are 2(M;). We define a canonical polymorphism «(h): M — M(b)
by setting x(m; x M;) = u(M;) and x(m; x M;) =0 for i # j. We also define a
canonical polymorphism 6(h): M — M by setting 0(M; x M;) =0 for i # j and
on M; x M; taking h to be (1/u(M;))u x u. It is easy to see that

6(h)* =0(b),  «k(b)'x(h) =0(),
k(9)0(h) =k(h),  x(h)r(h)” =1.

If b, < by, then b, induces a partition of M(h;) and hence defines a polymor-
phism x(bh2/b): M(h;). It is easy to see that

k(1) = x(h2/h1)x(b2).

Consider in End(M) the subsemigroup I'(h) of all morphisms of the form
6(h)nB(h). Let a € End(M(h)). Then s(a) = k(h)*ax(h) € I'(h), and it is easy
to see that the mapping o — s(a) establishes an isomorphism of End(M(h)) and
T'(h) . We thus see that the semigroup End M (h) can be embedded canonically into
End(M) . If, moreover, bh; < b, then End M(h;) can be embedded canonically into
End M((h2) .

We turn directly to the proof of the lemma. We start with (a). Let (7', 7) be a
*_representation of . Let h = h; < h; < --- be a basic sequence of partitions of
M . The operator 7(k(h;/bx))*, where j > k, maps T(M(b)) to T(M(h;)), and
1(k(h)*) maps T(M(h)) to T(M). Therefore, T(M) contains as a subspace the
inductive limit lim T(M (b)) . The polymorphisms 6(h,) approximate the identity
of End(M), and hence m T(M (b)) is dense in T(M). Finally, 6(by)n0(b;) —
n for any n € End(M). Thus, t(n) is completely determined by the operators
7(0(hx)mO(hy)) , which proves (a).

We prove (b). Let # € Mor(M, N). Let m = m; < my; < --- be a basic se-
quence of partitions of M and n = n; < n; < --- a basic sequence of partitions
of N. Let (T, 7) be a *-representation. Put T(N) = l_1r_g T(N(n;)) and T(M) =
lit_g T(M(m;)). Let P; be the projection onto 7(M(m;)) in T(M). Define the
operator t(n): T(M) — T(N) as the weak limit of the operators 7(x(m)*zk(n))P,
(it is here that we use the condition ||7(¢)|| < 1). We have still to verify the equality
(@ o w) = 7(p)7(w). It holds on a dense subset (the inductive limit) and hence
everywhere. The lemma is proved.

Let (To, 1o) be the simplest representation of & (see §2.1) and SW; the Schur-
Weyl functors (see §0.5).
Proposition 2.1. The representations SW; oTy are irreducible, pairwise distinct, and
exhaust all the irreducible *-representation of the category % .
Proof. We shall of course prove the proposition for the category %% .

(2.1)
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Let us first study the representations of the semigroup Endg, (M), where M is an
(n+ 1)-point object of % . This semigroup acts faithfully on L?(M) and hence is a
subsemigroup of Mat, . (R). Let EndO(M ) — End(M) be the subsemigroup consist-
ing of invertible matrices. Then End®(M) leaves invariant the vector (1,...,1)and
also the orthogonal complement v+ to v (v is the subspace of functions in L2(M)
with zero mean value). Therefore, Endo(M ) embeds into the group G, = GL(n, R)
of all operators leaving v and v+ invariant. The center of End®(M) consists of
matrices A(h) with entries a,’»’j =hé;j+ (1 —h)m;m;, where 0 < h <1 and m; are
the measures of the points of M ; they satisfy A(h)A(t) = A(ht). It is easy to see
that, for any g € G, , there is an & > 0 such that g4, € EndO(M ).

So let (X, &) be an irreducible *-representation of the category &,. The opera-
tors £(A(h)) are (real) scalars, and hence the representation &(g) of the semigroup
EndO(M ) extends in a unique way to a representation of the group GL;(R) (the
group of real matrices with positive determinant). Moreover, there is an involution
on GL}(R) > End’(M) which is an extension of the involution on End’(M); with
a suitable choice of a basis this involution turns out to be the ordinary transposition.

Lemma 2.2. Let £ be an irreducible representation of GL; (R) on a Hilbert space H
and let £(g') =&(g)*. Then & is finite-dimensional.

Proof. Choose a basis X, ..., X,, Y;,..., Y, of the Lie algebra gl,(R) so that
Xj’- =—X; and Y/ = Y. The operators exp(t&(Y;)) = &(exp(1Y)) are bounded and
selfadjoint (we denote the representation of the Lie algebra by the same letter as the
corresponding representation of the Lie group). Therefore, the operators &(Y,) are
also bounded and selfadjoint.

The Lie algebra spanned by the X; is the Lie algebra of the group SO(n); hence
the set of common analytic vectors for £(X;) is dense in H . On the other hand, any
vector in H is an analytic vector for i&(Y)) (since these operators are bounded).
Thus, the set of common analytic vectors for the operators &(X;) and i&(Yy) is dense
in H . Therefore (see, for instance, [1], 11.6), the representation X — &(X;), iY; —
ié(Yy) of the Lie algebra u(n) can be integrated to an (irreducible) representation of
the group U(n), and all irreducible representations of U(n) are finite-dimensional.
The lemma is proved.

Corollary. Any *-representation of the semigroup EndO(M ) has the form

(2.2) Pa,s(8) = ow,(g) ® det(g)*,
where A is a representation of some group S, .

A representation p can be written in the forrrl (2.2) not uniquely; the point is that
the representation ow;(g)®det(g), where A € S,, can itself be written as ow; (g),
where 1’ € §p+,, . We call A minimal if cw,(g) cannot be represented in the form
ow(g) ®det(g) .

So let ¢ have the form (2.2) with 4 minimal. Let us discuss what a continuous
extension of £ to End(M) looks like. First of all, let us note that, for s < 0, such
an extension does not exist, so this case need not be considered. For s > 0, the
extension has inevitably the form (2.2). Therefore, for s > 0, the extension vanishes
on End(M)\ End’(M).

So we have examined the representations of the individual semigroups Endg, (M).
Let us turn now to the representations of the category %, .

For each fixed M , the representation £ has the form (2.2) with (4, s) depending
a priori on M, and in a multivalued way. Let b be a partition of M into two-point
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and one-point sets. We saw in the proof of the approximation lemma that End(M (b))
embeds canonically into End(M), the image being contained in End(M)\End®(M) .
Thus, for s > 0 we have Z(M(h)) = 0, and for s = 0 we have &(g) = cw;(g) on
End(M(h)). Now the existence of a universal A such that &é(g) = ow,(g) for all
g € End(M) and for all M becomes obvious.

Now let # € Mor(K, L). There isan M such that K has the form M(h) and L
has the form AM(n). It is easy to see that 7 can be written as 7 = k*(n)ak(h), where
o € End(M). Thus, the groupoid of morphisms of the category & is generated by
the semigroups End(M) and morphisms of the form x(m) and x(m)*. We already
know what the representation ¢ looks like on End(M). We must show that the
operators x(m) are defined unambiguously. It suffices to do that in the case where
m is a partition of M into two-point and one-point sets. The operator &(x(m))
is End(M(m))-intertwining and the restriction of an irreducible representation of
SL,;1(R) to SL,(R) is without multiplicities, so &(k(m)) is defined unambiguously.

The assertions about irreducibility and pairwise nonequivalence of our represen-
tations follow from irreducibility and pairwise nonequivalence of the representations
ow; for each group GL,,;(R).

2.3.  G-polymorphisms. Let G be a Lie group. Objects of the category GZ of G-
polymorphisms are probability spaces. A morphism (M, u) — (N, v) is a measure
n on M x N x G such that the projection of 7 on M is u and the projection of n
on N is v. We require also that the following technical condition should hold: The
projection of = on G is contained in a compact set. The polymorphism 7 may be
regarded as a vector-valued measure 77 on M x N taking values in positive measures
on the group G.

Objects of the subcategory G, of G are finite probability spaces. Then
the morphisms may be regarded as matrices whose entries are measures on G . If
#:M — N and 6: N —» K are polymorphisms, computing their composition 6 o
reduces to multiplying matrices according to the formula 6o & = A~ (N)#, where
A(N) is the same matrix as in §2.1 (addition of measures is the ordinary addition
and multiplication is the ordinary convolution).

Nowlet K, M, and N be arbitrary objectsof G ,and n: M — N and 6: N —
K morphisms. We define their composition ¢ = 6 o n in terms of conditional
measures:

[ e ndwis, m -/ Fgh, n)dOu(h. n)dni(g. m).
GxN GxM JGxN

We define convergence of G-polymorphisms. Let n,, n € Mor(M, N). The
sequence 7, converges to z if 1) the union of supports of the projections of =,
on G is compact, and 2) for any measurable sets 4 C N and B C M the sequence
of measures 7,(B x A) converges weakly to m(B x A) in the sense of the weak
convergence of measures on G.

Let n: M — N and 8: N — K be G-polymorphisms. Then, by definition,
0* = n if the mapping (m, n, g)— (n, m, g7!) (from M xNxG to NxM xG)
maps 7 into 6.

Let M be a space with a continuous measure. It is easy to see that Autg..(M) =
B(G).

Proposition 2.2. The group B(G) is dense in the semigroup Endg..(M).

The proof is fairly easy, and we omit it. For more subtle results of this kind. see
§4; see also Proposition 4.1.
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2.4. Representations of the category G&°. Let p be a unitary irreducible represen-
tation of G on H. We define a representation (7, 7,) of the category G& . Put
T,(M)=L*(M, H) and

2,(p) f(n) = /G

It is easy to see that these representations are irreducible except for the trivial case
p(g) = 1. In that case, the operator 7,(¢) depends only on the projection of ¢ on
M x N . We then denote by (Tp, 7o) the subrepresentation such that To(M) C L2(M)
consists of function with zero mean value.

The representations 7, and T, will be said to be the simplest.

Now let G act on the Hilbert space H by affine transformations according to the
formula (1.2). Then B(G) acts by affine transformations on L?(M , H) and this
action extends in its turn to an embedding n — [A(®), b(%), c(n)] of the category
G into the category Aff (see §1.1). Let # € Morg»(M , N). Then

A = [

Gx

p(g)f(m)den(g, m).
M

X

Mp(g)f(m)d%(g, m),
b(n) = /G _r(e)dpnlz, m),

c(m) = /G _H&)dei g, n).

Restricting the Fock representation of Aff to G, we obtain a projective (in
general) representation of G& .

Let G act on a real Hilbert space K according to (1.2). Then G acts also on the
complexification H = K¢ of K. Application of our construction gives a projective
representation of G2 which, however, can be linearized by means of the following
substitution:

9p.4(1) = €xD [ [ inteiPdnm, n, )| oA bim, o).

Such representations of G will be called Fock representations and will be de-
noted by (Fp 5, ¢5.5) -

2.5. An attempt to classify the representations.

Theorem 2.1. Let the group G be compact. Then each irreducible representation of
the category G has the form

(2.3) é[swi, 0T,

i=1

where T are pairwise distinct simplest representations of GP (i.e. TV =T, or
To), and 4; are irreducible representations of the symmetric groups Sy, . All represen-
tations of the form (2.3) are irreducible, and no two of them are equivalent.

Proof. Let (M, u) be a measure space and b its finite partition M = |JM;. As
before, let M(h) be the space consisting of the points m; with measures u(M;). We
define a G-polymorphism x¢(h): M — M(h) which is an analog of the polymor-
phism x(h) of §2.2. Let the measure x¢(h) be the product of the measure x(h) on
M x M(h) and a J-like measure concentrated at the identity of G. Polymorphisms
0%(h) € Morg»(M) are defined in a similar fashion.
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The proof of the approximation lemma can be repeated verbatim for all the cate-
gories G (not only for the case of compact G), so we can confine ourselves to the
category G%,.

First of all we must examine representations of the semigroups Endgs (M). A
function on G will be said to be simple if it can be represented as a finite sum
of matrix elements of irreducible representations of G. Consider the dense sub-
semigroup End*(M) — Endgz, (M) consisting of matrices with entries of the form
mij = ¢;j(g)dg , where g;; is a simple function and dg is Haar measure.

We are interested in the structure of End*(M). Let p;, p;, ... be a collection
of irreducible representations of G such that, for any irreducible representation s,
exactly one of the representations x4 and % ison thelist p;, p,, ... (by & we denote

the contragredient (complex conjugate) representation). Let 7U) = T, or T be the
corresponding simplest representations of G and let V; be the representation
space TU)(M). Let Mat(¥;) be the space of all operators on V;.

We define the Fourier transform % on End*(M) by

F ()= (TW(n), TP(n),...) € é.oBMat(Vj).
j=0

Let T" be the image of End*(M) under the Fourier transform. It is clear that
all the elements of I" are sequences that have only a finite number of nonzero ele-
ments. Let the subsemigroup I'y, c T consist of the sequences having zeros in the
positions starting from n + 1. Let the subsemigroup I'0 ¢ T, consist of sequences
(Ar,...,4,,0,...) €T, with 4; invertible.

The semigroup I', has n-dimensional center Z,. It consists of the images under
the Fourier transform of measures on M x M x G of the form v x y , where v isa
central element of the semigroup of ordinary polymorphisms and x is a measure on
G whose density with respect to Haar measure is a linear combination of characters
of the representations p; ©p;. Let a=(41,...,4,,0,...) with 4; € GL(V}),
which in the case where p; = p; satisfy 4; = A; and detd; > 0. It is not hard
to verify that there is an o = (¢, E, @;E, ...) € Z, such that aa € I'y (one should
take for y a linear combination of characters close to 1 and for v a measure close
to uxu).

Now, as in the proof of Proposition 2.1, the problem of describing *-representa-
tions of I'Y reduces to the problem of describing *-representations of some group of
the form @}_, GL(dim V}, K;), where K; = R if p; = p; and K; = C otherwise.
Reasoning as in the proof of Proposition 2.1, we conclude that each representation
of I', has the form

S(Ar, ..., 4,,0)= | Q) (ow;(4;) ®det(4))")

j5,0_,=l_J]

(2.4)

® | @ (ow,(4)) ®ow,(4;)®det(4))" @det(4))")]
J i p#p,
where s;, t;, t;€Rand t; -1/ € Z.

Now note that I' = | JTI', . The restriction of the representation (2.4) to I',_; is
different from zero only when the factor corresponding to A, in (2.4) is the trivial
one-dimensional representation of GL(dim ¥, K,). Therefore each representation
¢ of I' depends only on a finite part of the sequence (A4;, 4>, ...), and so we know
all the representations of T.
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The proof is completed by the same argument as in the proof of Proposition 2.1.

Conjecture. Let G be a type I group. Then all irreducible *-representations of the
category G have the form

’

QSW;, 0T ®
J

®Fﬁk,7k
k

where 7TU) = T,, or Tp are the simplest representations and F,, , the Fock rep-
resentations of G (the tensor product in the first factor may even be countable if
the p; converge sufficiently fast to the trivial one-dimensional representation).

2.6. The category G, % . Let G be a Lie group and y a homomorphism from G
to R*, where R* denotes the multiplicative group of positive real numbers. Objects
of the category G, are probability spaces. A morphism (M, u) — (N, v) is
a measure n(m,n, g) on M x N x G such that the projection of 7 on M is
4 and the projection of yx(g)t(m,n, g) on N is v. Composition is exactly the
same as in the category of G-polymorphisms. An involution is given by the formula
n*(m,n, g)=x(gn(n,m,g").

Each unitary representation p of G on H gives rise to a representation (7, 1,)
of the category G, : the representation space 7,(M)= L*(M, H), and

2,(m)f(n) = /G (&) o(e)f(m) dma(g m).

x

Presumably all *-representations of the category G, occur in the decomposition
of tensor products of the representations (7, 7,).

2.7. The one-point object. Here we merely want to remark that the semigroup
End;»(M) is quite an interesting object even if the space M consists of one point;
namely, Endg»(M) is then the semigroup .#(G) of probability measures on G.
There is a vast literature devoted to this semigroup, especially in the case G = R
(this is simply an essential part of probability theory), but several books have also
been published about the noncommutative case (see, for instance, [26]). Our consid-
erations show that the semigroup .# (G) has an interesting theory of representations
which does not reduce (at least in a broad sense of the word) to the theory of repre-
sentations of the group G.

3. TRAINS

3.1. Abstract construction of a train for (&, f)-pairs. Let & be au infinite-dimen-
sional group and £ a subgroup of ®&. Let f(a) be a family of subgroups of R.
Let 7 be a unitary representation of & on H. Let H(a) be the set of vectors in
H which are fixed by £(a), and let P(a) be the projection on H{a). Let a be a
double coset in R(B) \ &/K(a). Then an operator 7(a): H(a) — H(f) is correctly
defined by the formula
(3.1) t(a)v = P(B)t(g)v,
where v € H(a) and g is a representative of the class a. We shall say that the
family of subgroups f(a) satisfies the multiplicativity theorem if, for any unitary
representation 7 of &, the following conditions hold.

(a) U, H(a) is dense in H for any t.

(b) For any a, B, y and any a € R(a) \ 6/R(B), b € A(f) \ B/K(y), there is a
¢ € R(a) \ 8/8(y) such that, for any 7,

(3.2) 7(c) = 1{a)1(b).
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This gives rise to a category # (the train of the group ®&) whose objects are
labeled by a, and

Mor(a, B) = R(B) \ &/R(c)

with composition of morphisms defined by (3.2). Each unitary representation 7 of &
gives rise to a canonically defined representation (T, 7) of the category 7 ; namely,
T(a) = H(a) and t(a) is defined by (3.1).

Below, we give five examples of applying this scheme.

3.2. The train of Aut(M). Let M be a space with a continuous probability mea-
sure. Let & = Aut(M) = &. Let b be a finite partition M = |JM; and K(b)
the group of all automorphisms of M which map each A; into itself. The double
cosets in K(h,)\ &/K(b,) are parametrized by intersection matrices (see §0.2), and
intersection matrices may be regarded as morphisms of the category %, acting from
M(h,) to M(h,) (recall that the space M(h) consists of points m; with measures
n(M;)) .

Theorem 3.1. The family of subgroups K(b) satisfies the multiplicativity theorem with
double cosets being multiplied as morphisms of the category % .

We see that unitary representations of the group Aut(M) and *-representations
of the category % are in a sense the same objects.

Corollary. All irreducible unitary representations of Aut(M) are exhausted by repre-
sentations of the form ow; o Ty, where Ty is the simplest representation.

3.3. The proof of Theorem 3.1.

Lemma 3.1 (see [6] and [19]). Let G be a discrete group, p its unitary representation
on a Hilbert space H, and P the projection on the subspace of vectors fixed by the

operators p(g) (g € G). Then, forany &€ H andany ¢ >0, thereare g,. ..., g €
G and o), ...,a, suchthat a; >0, > a; = 1, and
(33) |3 cintene - P2 <.

Proof. Any closed convex subset ¥ of a Hilbert space contains a unique vector v
with minimal norm. Let ¥ be the convex hull of the set of p(g)¢, where g € G.
It is clear that v = P¢. The lemma is proved.

Let h =hy < h, < --- be a basic sequence of partitions of M. For any neigh-
borhood U of the identity in Aut(M), we can find a k such that K () C U. Let
g € K(b;). Then the convex combinations T agVE converge to & as i — x
(by viture of the continuity of p). Therefore, |J H(b;) is dense in H.

Consider the partition /b of M(by) induced by h. Consider the polynomial

O(hi/b) (see §2.2) of M(h). It defines a double coset in K(by)\ Aut(M)/M(hy).

Lemma 3.2. Let g € 0(hi/b). Then t(g:) converges weakly to the projection P(h)
(onto H(b)).

Proof. Tt suffices to check that P(h;)n(g;)P(h;) = P(h). To do that, in turn, it
suffices to check that, for any n € H and ¢ > 0, we have

(3.4) |1P(h,;)e(g)P(h;)n — P)nl <e.

We apply Lemma 3.1 to the subgroup K(h) of Aut(M) and the vector P(h;)n.
The inequality (3.3) remains valid if g; is replaced by gig. But g can be chosen
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so that all g;g lie in the coset 6(h;/bh). The inequality

|3 ait(gi8)Pb)n - Ployn|| < e
implies
|P®:) (3 aitaig)Pos)n - P(o)n) | <e.

But P(bh;)r(hg)P(h;) depends only on the corresponding double coset in
K(b;)\ Aut(M)/K(h;). The lemma is proved.

Lemma 3.3. Let ¢ € K(n)\Aut(M)/K(h) and v € K(h)\Aut(M)/K(m). Let g € ¢
and g € y. Let h = by < by < by < --- be a basic sequence of partitions of M .
Then, for each k, there is an hy € 6(b;/h) such that g h g € wogp.

Proof. This is obvious.

We turn directly to the proof of the theorem. Let ¢, g, and & be as in Lemma
3.3. Then

(Y o) = (g2 &1) = P(m)t(g) (A )T(8) 1w »
and as K — oo the latter expression converges weakly to

P(m)1(g2) P(h)1(&) () = T(¥)T(90)
as required.

3.4. The train of B(G). We shall now apply our scheme to the group B(G) =
Aut(M) x (M, G). Let K(h) C Aut(M) be the same family of subgroups as
above. The double cosets of K(h;)\ B(G)/K(h,) are in one-to-one correspondence
with G-polymorphisms M (h,) — M(h,).

Theorem 3.2. (a) The family of subgroups K () C B(G) satisfies the multiplicativity
theorem with multiplication of double cosets corresponding to multiplication of G-
polymorphisms.

(b) The quotient topology on K(b;)\‘B(G)/K(h2) coincides with the natural topol-
ogy on Morgz(M(h1), M(h2)).

Corollary. Let G be a compact group. Then all irreducible unitary representations
of the group B(G) have the form Rlow,, o T, where TY) are elementary the
simplest representations of B(G).

Proof. (a) contains nothing new as compared with Theorem 3.1. To prove (b), it
suffices to verify the following statement.

Lemma 3.4. Let K be parallelepiped in R" and x, — k a weakly convergent sequence
of probability measures on K. Let (M, u) be a space with a continuous probability
measure. Then there exists a sequence of measurable functions f,: M — K, converg-
ing almost everywhere, such that the image of the measure u under f, is x, and its
image under f is k.

Proof. We shall carry out the proof in the case where K is a rectangle, a general-
ization of higher dimensions being easy. Without loss of generality we may assume
that (M, u) is a countable product {0, 1}* of the two-point spaces {0, 1} (the
measure of the points 0 and 1 being 1/2). We fix a measure v on K and construct,
with the help of v, a descending sequence b, of partitions of K into 2”7 rectangles;
these rectangles, K, . ; , are labeled by sequences (s, ..., s,) of zeros and ones.
We also construct a sequence of measures v;, _ defined on K, ;. We take a
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horizontal partition y = yp in K so that

v{(x,y)eK:y>y}=v{(x,y)€K:y<yo}.

Put Ko={(x,y) €K,y <y} and K; ={(x,y) € K,y > yo}. We introduce on
the rectangle K; a measure vy such that

vo(4) = v(A\ {y = yo}) + 32(40 {y = yo}).

We introduce a similar measure v; on K;. Further, we divide each of the
rectangles K, and K; by vertical partitions, and so on. We define a function
£,:{0, 1} > K by

f;/(slys2:'-')= KS

1y-ra 85"

3

I
—_

J

It is easy to see that the measure v is the image of the Bernoulli measure x under f, .
Next, the weak convergence of the measures v implies convergence of the partitions
between the rectangles K, 5, ,.0 and K, 1. This, in turn, implies pointwise
convergence of the functions f, . The lemma is proved.

3.5. The train for Gut(M). Let Gut(M) be the group of transformations of a
space M with a continuous probability measure g that leave x4 quasi-invariant and
have bounded Radon-Nikodym derivative.

Let x: R* —» R* be the identity mapping. We are going to show that the theory
of representations of the group Gut(M) is more or less the same thing as the theory
of representations of the category R} . Let K(h) be the same family of subgroups
of Aut(M) as above. We describe the double cosets of K(h;)\ Gut(M)/K(hz). Let
g € Gut(M); let M; be the elements of the partition h, and MJ’- the elements of
the partition h,. Define a measure ¢;; on R* by

ij(A)=p{me M;ng ' (M]): g'(m) € A},

where g’(m) denotes the Radon-Nikodym derivative at m. It is clear that ¢;;
depends only on the double coset in K(h;) \ Gut(M)/K(h;) containing g. Hence

K(h1)\ Gut(M)/K(h2) = Morg,»(M(b1), M(h2)) .

Theorem 3.3. The family of subgroups K(bh) C Gut(M) satisfies the multiplicativity
theorem with multiplication of double cosets corresponding to multiplication of mor-
phisms of the category R}, & .

(The proof of this theorem and the next two contains nothing new as compared
with Theorems 3.1 and 3.2, and so we omit it.)

3.6. The train for Aut,(M). Let (M, u) be a space with an infinite continuous
measure and Aut., (M) its automorphism group. A sequence g; € Aut, (M) con-
verges to g if for arbitrary measurable sets 4, B C M of finite measure we have
u(giAN B) — u(g(4)N B).

By a finite partition h of M we mean a partition of the form M = (UL, M,)UM.
where u(M;) < oo and u(M,) = co. By K°(h) we denote the subgroup of Aut. (M)
consisting of the automorphisms that preserve the partition h. Let b’ be another
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partition M = (| MJf) U M!. Then the double cosets in K°(h) \ Auto (M) /K°(Y)
are labeled by numerical matrices ¢;; = u(M; N g~ 'M It is easy to see that

Z 9ij < u(M;), Z¢ij < u(Mj)).
i j

Theorem 3.4. The family of subgroups K°(h) satisfies the multiplicativity theorem.
Multiplication of double cosets
9 € K°(h) \ Auto(M)/K%(ty) and w € K°(H)\ Autoo(M)/K°(b")
corresponds to *-multiplication of matrices according to the formula
wop=yA (b,
where A(b) is the diagonal matrix with eigenvalues u(M;).

Representations of the resulting category are easy to classify (the proof repeats the
proof of Proposition 2.1).

Corollary. All unitary representations of Aut.(M) are exhausted by the representa-
tions of the form ow, o Ty, where Ty is the natural representation of Aut..(M) on
L2(M).
3.7. The train for Gut.,(M). Let M be a space with a continuous infinite measure
i . Let Gutoo(M) be the group of transformation of M thatleave u quasi-invariant,
Radon-Nikodym derivative of these transformations being bounded and vanishing
outside a set of finite measure.
Remark. Apparently the same theory of representations is obtained with the condi-
tion (g'(m)'/2 — 1) € L'(M) on the Radon-Nikodym derivative.

We shall construct some representations of Gut.,(M).

The simplest representations 7; are realized on L?(M) according to the formula

t5(g) = flgm)g'(m)" />,

Let g, ..., q be a collection of real numbers and 1 > 0. Let M™ = M x
...x M (n times). Let .Z be the subspace of L*(M™) consisting of functions
f(my, ..., m,) that are invariant under any transposition m, < mg such that
4o = qp - Let Gut, (M) acton .Z by affine transformations according to the formula

A(g)f(my, ..., m))=f(gmy, ..., gma)+ A [] &'(mp)!/*9 — 4.
J
Composing the Fock representation of Isom(.#’) with the embedding

A: Guty (M) — Isom(.%),

we get a series of representations ‘Pf}l,..., s Of Guis(M). By construction, these
representations are bound to be projective; in fact they turn out to be linear.

Remark. The representations (p{}l ....q, admit another very beautiful realization on
L? with the Poisson measure (see [28], and also the survey [4]).

Conjecture. Each irreducible unitary representation of Gut,(M) has the form

N
bl
®[0wm 07y} ® ®‘pq:.,....qk,, } )
j=1 k k
where the unordered collections Qy = (gk, - .- , dkn,) are pairwise distinct.

Now let K°(h) C Aut.(M) be the same family of subgroups as above. Let h: M =
(U, M))UM, and b : M = (U]L, Mj)U M, be two finite partitions of M . Assign



I ————————

CATEGORIES OF BISTOCHASTIC MEASURES 213

to each double coset 8 € K(h) \ Gut(M)/K(h') and (n+ 1) x (m + 1) block matrix

(4°%), whose entries are measures on R*, according to the rule
a,/(S) = p{w e Mn g™\ (M) : g'(w) € S},
b;(S) = u{w € M. rWg"(M’) g(w € S},
ci(S) = plwe Ming~(M!): g'(w) €S},
d(S) = pu{we M.ng~ ‘(M) w)eS}

where g€ 6 and S C R*.
Remark. The measure d of the point 1 equals oc.

Theorem 3.5. The family of subgroups K°(h) C Gut (M) satisfies the multiplicativity
theorem with multiplication of double cosets

9 € K°(h) \ Gutoo(M)/K (1), v € K°(b') \ Guto(M)/K°(h")
corresponding to o-multiplication of matrices according to the formula

A, bl Ay bz _ AlA_lAz AlA_Ibz + b|
Cy d[ C2 d2 - CA—]A2+C2 ClA_lb2+d1 +dy )
where A is the diagonal matrix with eigenvalues u(M!).

3.8. Comments. The theory of representations of the groups Aut(A/) and Aut., (M)
is similar to the theory of representations of the full symmetric group S.. (see [22]
and [25]) and the full unitary group U(cc) (and also Sp(oc) and O(oc, R); see [8],
[17)).

The other groups we have considered, B(G), Gut(M), and Gut (M), are typical
examples of (G, K)-pairs (see [18] and [19]). Proofs of multiplicativity theorems
for various (G, K)-pairs are similar; the idea of the proof goes back to [6].

In general, the topology introduced on an infinite-dimensional group substantially
affects the supply of representations. It is important to note that we have used in an
essential way only the topology in Aut(M) and Aut,,(M). In the case of Aut(M)
there seems to be no freedom of choice of the topology, and hence the assertions of
§83.2 and 3.3 remain valid (with slight changes) for various changes of topologies in
B(G) and Gut(M). In the case of Aut, (M) the situation is a bit more complicated.

4. COMPLETIONS OF DIFFEOMORPHISM GROUPS

4.1. Enveloping semigroups. Let G be an infinite-dimensional groupand I' > G a
semigroup. We shall say that I" is an enveloping semigroup for G if each unitary
representation p of G can be extended in a canonical way to a representation p of
I' so that the set of operators p(G) is dense in p(I') in the weak operator topology.

Remark. Of course, G is dense in I'. However, we knowingly avoid such a for-
mulation, because natural topologies on enveloping semigroups may be quite subtle.
We also remark that our definition implicity requires a construction of canonical ex-
tensions of representations, whereas if we said that G is dense in I' we could have
avoided this trouble.

Proposition 4.1. (a) Morg»(M) is an enveloping semigroup for B(G)

(b) Mork; »(M) is an enveloping semigroup for Gut(M).

In both cases the canonical extension of a representation from the group to the
semigroup is continuous.

This is a fairly simple consequence of the multiplicativity theorems and the ap-
proximation lemma.
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Remark. The proposition shows that the notion of enveloping semigroup is substan-
tial (which is not clear directly from the definition). For all (G, K)-pairs enveloping
semigroups are constructed in the same way (multiplicativity + approximation), but
not all infinite-dimensional groups are (G, K)-pairs.

4.2. Relative enveloping semigroups. Let S be a family of representations of an
infinite-dimensional group G. We say that a semigroup I' > G is an S-enveloping
semigroup for G if each p € S can canonically be extended to T with p(G) being
weakly dense in p(I').

4.3. The classes .%,[9]. Let M" be a compact n-dimensional manifold. Let
Diff(M") be the group of C* diffeomorphisms of M", Diff(M", Q) the group of
Ce diffeomorphisms leaving invariant a fixed volume form Q, and Diff(M" , w)
the group of C>° diffeomorphisms leaving invariant a symplectic form .

Let 2 be one of these groups. Consider a point x € M"”. Let 9(x) be the stabilizer
of x. Let 9,(x) C d(x) be the subgroup consisting of diffeomorphisms having the
same derivatives of order < p at x as the identity. Let J, = d(x) /op(x) be the
group of jets of order < p. We shall denote it by GJy, SJ,, or SyJ, according to
whether 0 = Diff(M"), Diff(M", Q), or Diff(M", w).

Consider a unitary representation p of J, on H (note that J, is an ordinary
Lie group) and extend it to a representation p of d(x) assuming it is trivial on
9,(x). Denote by P, the representation of ? induced by j. We shall say that a
representation 7" of o belongs to the class %, if it occurs as a subrepresentation in
some tensor product of representations of the form P,.

Remove from M" a union S of a finite number of submanifolds so that M”\ S
is diffeomorphic to a domain Q" C R”, the corresponding structure being preserved.
The representation P, can be realized on L*(Q", H) according to the formula

(4.1) Py(q)/f(x) = [Dq(x)/Dx]"?p(¢"®)(x)) f(a(x)),

where Dg(x)/Dx is the Jacobian of the mapping g at x (this factor occurs only in
the case ® = Diff(M")) and g'P)(x) is the jet of order p of g at x.

4.4. Enveloping semigroups for the class .7,. The group o can be embedded in a
natural way into the group Gut(Q") x #(Q", J,); namely, to each diffeomorphism
g(x) we associate the pair (¢(x), ¢¥)(x)) € Guy(Q") x F(Q", J,).

The representation P, extends in a natural way to the semigroup of Jp-polymor-
phisms of Q" (i.e. to MorG,,),#(Q") in the case d = Diff( M"), to Morg;,»(Q")
in the case o = Diff(M", Q), and to Morsy;,»(Q") in the case ? = Difff M", w),
the homomorphism x: GJ, — R* being the Jacobian).

Theorem 4.1. Let n > 1. The semigroups Morg,,),#(Q"), Mors;,»(Q") and
Mors, ;,»(Q") are Z,-enveloping semigroups for the groups ®» = Diff(M"),
Diff(M", Q), and Diff(M" , w), respectively.

The case n =1, i.e. the case where M" is the circle S', is slightly, different. Let
the subsemigroup A, of Endg,,»(S') consist of measures on S' x §2 x GJ, whose
projection on S!xS! is the graph of a diffeomorphism (so that A, is a subsemigroup
of the semidirect product of Diff(S') and the semigroup of functions on S! taking
values in measures on the group GJ,).

Theorem 4.2. A, is a %Z,-enveloping semigroup for Diff(S!).
The proofs of these theorems occupy §§4.5-4.8.
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4.5. The square rotation. Assume for simplicity that n = 2. Let I'" be the weak
closure of the set of all operators P,(g), where g € 0; see (4.1).

Lemma 4.1. Let g be a mapping Q? — Q? which is piecewise smooth, not necessarily
continuous, but leaving invariant the form Q in the case » = Diff(M?, Q). Then
P,(g)eTl.

Consider a square D C Q?. By a square rotation gp we mean a mapping which
on Q?\ D is the identity and on the square D is the central inversion with respect
to its center.

Lemma 4.2. There exists a family of diffeomorphisms g, = g, .p € Diff(Q?, Q) such
that P,(g: p) — P,(gp) weakly.

Proof of Lemma 4.2. Let D' C D be a square with the same center and with sides
parallel to those of D and shorter by €. We introduce in D polar coordinates
(r, ). We consider a smooth curve r = A(¢) in the interior of D\ D’ and construct
a family of curves /, given by the equations r’> — A2(¢p) = h, where 0 < h < kg
and hy = O(¢) is so small that /, is contained in the interior of D\ D’. Let
s=r2—1%(p). Let

(r,9) for s > hy,
&(r,p)=4 (r,p+n) fors <0,
SHE+s,9+1(s)) for0<s<hg,

where 7(h) is a monotone C* function such that 7(h) = for 4 <0 and 7(h) =0
for h > ho. It is obvious that P,(g, p) converges to P,(gp). The lemma is proved.

Remark 1. The cumbersome formula for g, means the following. Each curve I,
slides along itself under the “rotation”. The explicit form of the curves /, guarantees
the invariance of Lebesgue measure.

Remark 2. The “rotations™ g, can be chosen so that first-order partial derivatives of
g: have growth order O(¢~!). This will be essential in the proof of Theorem 4.3.
Now consider the rectangle £ = {0 < x < 24,0 < y < a} ¢ Q. It consists of
two squares E, and E, separated by the partition x = a. Let gg: Q2 — Q? be
a mapping which on Q?\ E is the identity and on the rectangle E is the central
inversion with respect to its center. A rectangle can be obtained by contraction from
a square, so by Lemma 4.2 we have P,(gg) € I'. Next we perform square rotations
in each of the squares E; and E,. We get a mapping pr which takes E, to E; ,
takes E; to E;, and leaves all the points of Q?\ E fixed. We see that Pype)el.

Lemma 4.3. Let p € Aut(Q?). Then the operator Z(p)f(x) = f(p(x)) liesin T.

Proof. Take any square D in Q? and divide it into small squares K;. For any
permutation o of two neighboring small squares, we have Z(o) € I'. Therefore, for
any permutation r of the small squares K;, we have Z(r) € I'. Now the lemma is
obvious.

Lemma 4.1 follows easily from Lemma 4.3.

4.6. Proof of the theorem in the case n = 2. Let D C Q? be a square and 7
a Jp-polymorphism of D. We show how to approximate the operator P,(n) by
the operators P,(p), where p is a piecewise smooth (not necessarily continuous)
mapping D — D.
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We divide D into small squares 4, ..., Ay and we let n;; be the measure on
J, corresponding to 4; x 4; C D x D . We divide each of the small squares A; into
rectangles in two ways: 4; = JB;; and 4; = UCij so that

w(Bi) = m(Jy),  m(Ciy) = /J x(hydmj;.

We shall construct a mapping p: D — D which takes B;; to Cj;;. We approx-
imate each measure 7z;; on J, by a measure with finite support consisting of the
points 4;,... € J,. Let the measures of these points be m;, ..., and let the jet
corresponding to a; be

1 _ (1) _ ) La,,p
x=aPx,y)= Y vxW,
a>0, >0,a+8<p
(4.2)
@) _ @ a8
y=aPx, )= Y vgxyh.

a>0,8>0,0+8<p

We divide B;; and C;; once more into rectangles FP;;z and Q;jp sothat u(P;g) =
mp and u(Q;jp) = x(a;)mg , where z(a;) is the Jacobian of the jet (4.2) at (x,y)=
(0, 0). Now, in each of the rectangles P;jz, we choose a slightly smaller rectangle
Pi’j 8 and divide it (for the last time) into many small (i.e. with small sides) identical
rectangles. We construct an injective mapping p: Pl.’j s Q;jp which on each small
rectangle with center (xg, ¥o) has the form

(x) L@ + ZUE:,),;(X - X0)2(y — yo)#
y o+ Zv;?ﬁ(x —x0)*(y —vo)? |

The image of each small rectangle will be a curvilinear quadrangle which differs
very little from a parallelogram, and almost the whole area of Q;js can be tiled
by identical parallelograms. Therefore, the mapping p: P;;z3 — Qijp can be made
injective.

Finally, we can extend our mapping to P;jg \ P,fj p as we like, provided it will be
piecewise smooth. We have thus constructed the required approximation.

4.7. Thecase n> 2. Here, a small modification of the construction is needed only
in the symplectic case.

In Lemma 4.3 we take (for simplicity) the product Q* = D? x D* of two squares
with the standard symplectic structure (dxAdy). We divide each of them into small
squares A4; and A4;. For any permutation p of all cubes of the form A4; x A} , where
j is fixed and i is arbitrary, we have Py(p) € I'. Similarly, we can make all kinds of
permutations of the cubes A4; x A; for a fixed i. Now Lemma 4.3 becomes obvious.

One more difficulty may arise in the last stage of the proof, since it is not clear
if there exists a piecewise smooth symplectomorphism P;jg \ P,.’j 5= Qijg \ p(Pl.’j ﬂ) .
But we can replace the symplectomorphism by any measure-preserving mapping (see
Lemma 4.3).

4.8. The case n = 1. The considerations of §4.4 are of course unnecessary here
and the considerations of §4.5 greatly simplify. The obstruction to the existence of
polymorphisms is the monotonicity of diffeomorphisms.

4.9. Comments. The group Diff(S!) is known (see [11]) to have three classes of
representations: representations of class .7, (including some generalizations, see [7]),
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highest weight representations, and representations connected with almost invariant
structures. The semigroup connected with the highest weight representations has
been constructed by the author in [10] (see also {12]). It does not resemble at all
the semigroups A, from §4.3, and it might seem that there is no relation whatever
between these objects. However, this is not the case. One knows (see [11]) many
series of unitary representations of Diff(S!) one end of which lies in %, and the
other in the class of highest weight representations. The question of a semigroup
connected with these series remains open.

4.10. New representations of Diff(M?2, Q). Let M? be a two-dimensional com-
pact manifold with a fixed volume form Q. The group of jets SJ; coincides
with SL,(R), and hence Diff(M?, Q) can be embedded into the group of SL,(R)-
polymorphisms of Q% = M2\ S; see §4.3.

Theorem 4.3. The restriction of the Fock representation ¢ of the semigroup
Endsy,r)»(Q?) to Diff(M?2, Q) is irreducible.

Proof. Of course, the assertion is based on the fact that Diff(M?2, Q) is dense in the
semigroup I' of all SL,(R)-polymorphisms. However, for the topology of §2.3 this
statement is not true; we shall prove instead that the set of operators ¢(Diff(M?, Q))
is weakly dense in ¢(I).

Let n; and n be measures on M x M x SLy(R). It is not hard to check that the
following conditions imply the weak convergence ¢(m;) — @(7).

1) =; — n weakly.

2) faprmxsiym 17(8)I1 dn; is uniformly bounded in ;.

In §§4.5 and 4.6, for each polymorphism n € I', a sequence of diffeomorphisms
p; was constructed which converges to 7 in some sense. We want to make sure that
this sequence converges in the sense we need (i.e. 1) and 2) hold).

Everything is all right with condition 1), and the only place where condition 2)
might fail is the convergence of g, p to a square rotation (see the proof of Lemma
4.2).

Let g(x) € Diff(M?, Q) have the 1-jet corresponding to the matrix

(5 2)esum  qor-1pe=1).
Then a direct calculation shows that ||y(g(x))||> = In(1 —|B/ca]). Thus, [[7(g)}* =
O(nT), where T is the maximum of first-order partial derivatives of g; as we saw,
T = O(¢7') (see Remark 2 in §4.5). On the other hand, the domain in M where
the partial derivatives are greater than 1 has measure order O(e); hence the numbers
Jas ll7(g(x))|I? are uniformly bounded, as required.
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