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On the correspondence between boson Fock space
and the L2 space with respect to Poisson measure

Yu. A. Neretin

Abstract. The properties of the integral transformation carrying boson Fock space
into the L? space with respect to Poisson measure are investigated. An explicit
formula is obtained for point configuration functions corresponding to Gaussian
vectors of boson Fock space.

Bibliography: 20 titles.

According to Fock’s original definition, boson Fock space is the direct sum of the
symmetric powers of a Hilbert space. In the 1950’s I. Segal showed that Fock space
can be regarded as the L? space with respect to a Gaussian measure on an infinite-
dimensional space (see the detailed description of this model in [1]; see also [2] about
applications in representation theory). At the beginning of the 1960’s Bargmann,
Segal, and Berezin introduced into circulation a holomorphic model of boson Fock
space (see [3], and also [4] and §2 below). There was also much discussion of the
¢anonical isomorphism between boson and fermion Fock space (the boson—fermion
correspondence; see [5]), as well as the isomorphism between Fock space and the
space of symmetric functions (see [5]). Along with these models there are a number
of other models that have not attracted much attention: for example, the space of
holomorphic functionals on the space of schlicht functions (see [6]), and the space
of functionals on a I-process (see (7).

The existence of a canonical isomorphism between boson Fock space and the
L? space with respect to Poisson measure was discovered in independent work of
Vershik, Gel’fand, and Graev [8] and of Ismagilov ({9], [10]); see the expositions of
these constructions in [11] and [4]. Our goal in the present article is to transfer the
Natural structures of boson Fock space into the L2 space with respect to Poisson
Measure (the question of the reverse transfer may be no less interesting). The main
result is an explicit formula for the point configuration functions corresponding to
Gaussian vectors of Fock space. This formula has the form

R(z) = 3 [ K(zey25,) - [ aten)] (0.1)
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The argument = = (1,2, . - . ) of the function R(z) is an unordered denumerable
(locally finite) subset of a continuum set (for example, R™), and the summation is
over all partitions of the set z1,Z2,... into two-point and one-point subsets, with
the number of two-point subsets finite. The product is over the two-point {zo,, Ts, }
and one-point {zx} subsets of the partition.

Although there is a broad literature (see [12]) about so-called symmetric func-
tions (that is, symmetric expressions of infinitely many variables), I have not previ-
ously encountered series of the form (0.1). These series are themselves the natural
limits of the coefficients of the polynomials

1/1 & ?
17 5 Z M;ij2iZ + Zaizi (02)

i,3=1

as p — oo and N — oo (here the set the indices i run through becomes infinite (a
continuum or countable)).

The coeficients of the polynomials (0.2), written out explicitly (see the proof of
Theorem 4.1 below), can be seen as not very pleasant conglomerations of factorials,
while the formula (0.1) is one of the simplest expressions of point configurations
that one could imagine.

The first section contains preliminary information about Poisson measures ([13]
is a standard source on this subject), while the second section contains information
about boson Fock space (see [3], [4] for details). The boson-Poisson correspondence
is introduced in §3, and the same section contains some of the simplest properties
of this correspondence. In §4 we formulate Theorem 4.2 on the form of Gaussian
vectors and we discuss certain explicitly computable integrals of functions of the
form (0.1). The proofs are contained in §5. Some comments about the operators
corresponding to integral operators with Gaussian kernels are contained in §6.

I thank R. S. Ismagilov for a discussion of this subject.

§ 1. Poisson measures

1.1. Configurations. Let M = (M, 1) be a Lebesgue space with finite or o-finite
measure g. In other words, as a measure space M is isomorphic to the union of an
interval (finite, empty, or infinite) of the line R and a collection (finite, empty, oI
countable) of points with non-zero measure.

A configuration in M is defined to be a denumerable, finite, or empty unordered
collection of points in M for which positive integer multiplicities are specified.

Remark. Suppose that a point m appears in a configuration w with some multiplic-
ity £ > 1. In this case it is convenient to think that there are k indistinguishable
points of the configuration at the point m of M (these points are also indistinguish-
able from all the remaining points of the configuration).

The set of all configurations in M will be denoted by 2(M). On the space QM)
we now introduce a certain probability measure v = vps.

1.2. The case of finite spaces. Let M be a space consisting of points my, ..., 7N
with measures ai,...,an. To each configuration w € Q(M) we associate the col-
lection of numbers

(p1,---,PN),
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where p; is the multiplicity with which m; appears in the configuration (if m; does
not appear in the configuration, then we let p; = 0). We can now identify Q(M)
with the set ZY (where Z, denotes the set of non-negative integers), or, what is
the same, with the set of functions M — Z,.

We now define the Poisson measure v = vy, on the (countable) set (M) by the
condition that the measure of a point p = (py, ..., pn) € Z¥ be given by

N a}?j
v(p) = vy (p) = H (#e—a;‘) .

J=1 \*

It is easily seen that

peZY
that is, v is a probability measure.
1.3. The case of infinite spaces. Suppose now that the space M is arbitrary

(infinite, in general). Let M,,..., My be disjoint (measurable) subsets of finite
measure in M. We denote by

Q(M,...,My;p1,...,pN)

the set of all configurations w € Q(M) such that the intersection of w with M;

consists of precisely p; points (counting multiplicity). The Poisson measure v = Um

on (M) is determined from the condition

N .
MM o

I/[Q(Ml,...,MN;pl,...,pN)] :H(Tﬂ—e #(M;) ) (1.1)

i=1 7

It is easy to show (with the help of Kolmogorov’s theorem on projective limits)
that the construction is correct, and that vy, is a probability measure on Q(M)
(that is, v(QUM)) = 1).

Remark 1. Suppose that M has finite measure. Then

I/(Q(M,p)) = ﬂi'i)fe—“(M) (1.2)

is the probability that a configuration w consists of p points. The sum of the
lumbers (1.2) is equal to 1, and the probability is thereby 1 that an w € Q(M)
Contains only finitely many points.

Remark 2. Suppose that the measure of M is infinite. Let L C M be a subset of
finite measure. Then the probability that an w € (M) contains > p points in L is

equal to _
S vl = 3 M e,

i>p ize 7
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This quantity tends to 1 as u(L) — oo. Therefore, with probability 1 a con-
figuration w € Q(M) consists of infinitely many points. We underscore that with
probability 1 any set L C M of finite measure contains only finitely many points
of a configuration.

Remark 3. Suppose that the measure u is continuous, that is, the measure of any
point is 0. Then with probability 1 all the points of a configuration w € Q(M) have
multiplicity 1. To see this we consider in M a subset L of finite measure. Let us
partition L into k pieces of equal measure. The probability that each of the pieces
contains at most one point of the configuration is equal to

(1 4008) v

As k — oo this quantity tends to 1, therefore the probability that L contains a
multiple point of the configuration w is equal to 0.

1.4. Cylindrical functions. We fix subsets M1, ..., My of finite measure in M.
Let A be a finite space with points of measure p(My), ..., u(My). We consider the

map
T = 7T[M1,...,MN]3 Q(M) — Q(A)

assigning to each configuration w € (M) the collection of numbers
p; = #(w N M;)

(where the symbol # denotes the number of points in a set).

Remark. The image of the measure vps under the map 7 obviously coincides with
the measure v4; see §1.2.
We next consider the space L2(Q(A),v4). This is none other than the space of

functions
h: Zﬁ{—% C

such that

3" h(@)Pralp) < oo

pezZ¥
To each function h € L2(f2(A)) we associate the function
J[Ml,...,MN]h =ho ﬂ[MI,".'MN]

on Q(M). This is simply the function whose value on Q(Mi,...,My;p1,.-- ,PN)
is equal to h(p1,...,pn). In other words, we get an isometric embedding

J[Ml,...,MN] : L2 (Q(A), VA) — L2 (Q(M), I/M) .
Its image, that is, the set of L2-functions that are constant on the sets

Q(Ml,---,MN;pla"'apN)v
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will be denoted by
L2(Q(M) | My,...,My) = L*(Q(M) | {Mi}).
It is easy to see that
L*(Q(M) | My, ..., M,) +L2(Q(M) | S1,...,83) C L*(QUM) | {M;nS;}).

The union of all possible subspaces L?(Q(M) | {M;}) over all possible collections
{M;} will be called the space of cylindrical functions.

It is easy to see that the space of cylindrical functions is dense in L2(Q(M)).
Computations with cylindrical functions reduce to computations with the sets Q(A)
for finite measure spaces A.

1.5. Independence. We consider a partition of the space M into a union of two
disjoint subsets:

M =M UM,
To each configuration w € Q(M) we associate the pair
w; =wN M, we =wNM,

of configurations.

We obtain a map w + (w1, ws) that is easily seen to establish an isomorphism
of measure spaces:

QM) = QM) x Q(M,). (1.3)
This implies the existence of a canonical isomorphism (see [14], I1.4)
L2(Q(M)) = L*(Q(M1)) ® L*(Q(Mp)). (1.4)

Namely, if f; € L2(Q2(M;)) and fo € L?((M>)), then corresponding to the element
f1 ® fa of the tensor product is the function
g(w) = f]((.d n M]) . fz(u} n Mz)
We note the (obvious) equality

/ 9(w) dvpg () = / fi(wr) dvag, (@) - / folwn) dvagy (w2). (L5)
QM) Q(My) Q(M2)

Suppose now that M; and M, are Lebesgue measure spaces. We denote their
disjoint union by M; U M,.
We consider a Hilbert-Schmidt operator
S: L(QUMz)) - L*(2(M)),
which is given by a formula

Sf(wr) = /Q o K1) ) iy ). (16)

Let us recall (see [14], IL.10) that K lies in L2(Q(M;) x Q(M)). Thus, to any
Hilbert-Schmidt operator S there corresponds a function K € L2(Q (M, U M,)).

For operators more general than Hilbert-Schmidt operators the question of the
correspondence between operators L?(Q(M,)) — L%(Q(M;)) and functions on
2 (M; U M) encounters the usual difficulties.

One of the cases when there are no such difficulties is the case of finite spaces M;
and M. Then any bounded operator S: L?(Q(Mz)) — L2(£2(M;)) can be written
in the form (1.6), where K(-,-) is a function on Q (M; U M,) (we have actually
claimed only that any operator acting in I, is given by a matrix).
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1.6. Campbell’s formula (see [13], [4]). Let ¥ € L'(M). We consider the
function
8#,((.4)) = H (1+1/)(m]-)) (17)
mjEw

on the space Q(M). If a point m; occurs in a configuration w with multiplicity > 1,
then we write the factor 1+t (m;) as many times as the multiplicity of m;.

Theorem 1.1 (Campbell’s formula). If ¥ € L'(M), then the product (1.7) con-
verges almost everywhere on Q(M), €, € LY(Q(M)), and

/Q(M) &y (w) dvm (w) = exp (/M Y(m) du(m)) _ (1.8)

Remark. For a one-point space M, Campbell’s formula can be verified by direct
computation. The case of a finite space can be reduced to the case of a one-point
space with the help of the isomorphism (1.3) and the formula (1.5). Arbitrary
spaces can be reduced to finite spaces by passing to the limit.

1.7. Remark: symmetric functions. The question naturally arises (as always
in analysis involving infinitely many variables) of how to write functions on Q(M).
| I present an example that is to some degree an answer.
| Let us consider a function ¢ on M. We set

Gg)(w) = Z Y(my)P(ms) - - P(ms),

{my,...,m,}€Ew

where the summation is over all unordered collections of r distinct points in w.
Campbell’s formula is a standard and quite convenient tool for working with this
kind of ‘polynomial’ expression. Indeed,

[e o]
Eip(w) = Y G (W).
r=0
Therefore,

/Q(M) GS[)(w) dv(w) = % (/M bm) du(m)>r_

Applying Campbell’s formula to the function

k
| '(Z(m) = _1+H(1+tsd’s(m))7
\ s=1
we obtain

/Q ﬁ &y, (W) dv(w) = exp{/M (ﬁ(l + tyhs(m)) — 1) du(m)}.

(M) =1 s=1
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Expanding the left-hand and right-hand sides in a series of powers of ti,. .., g, we
get that
. Biy.ip
/ )II Gy (@) dv(w) =Y [ Py ( / Ui (m) - g (m) du(m)> ] :
=1 1.
In this formula the product is taken over all collections i 1.5k, where the i, take

the values 0 and 1 and are not all zero at the same time. The summation is over
all collections a;, . ;, of non-negative integers satisfying the system of equalities

E Ay .. = Ta-

i1,k ba=1

1.8. The symmetry group. Suppose that M is a space with an infinite con-
tinuous measure. We denote by Gmse, (M) the group of transformations gof M
leaving the measure quasi-invariant and satisfying the following condition on the
Radon-Nikodym derivative:

[ 16/m) = 11 dutm) < oo
M
The transformation g obviously induces the transformation

g:w = (my,mg,...) = gw = (gmy, gma,...)

of the space Q(M).

Theorem 1.2. Let ¢ € Gmse,. Then the transformation w — gw leaves the
measure vy quast-invariant, and the Radon-Nikodym derivative is equal to

I o'ms)|exo (= [ (gm) = 1) duom))

m;ecw

Remark. The theorem is a simple exercise on the Campbell form. It was obtained
for smooth transformations with compact support in [8]-[{10], and in the above form
in [4].

§ 2. Standard structures in boson Fock space

It is mainly §§2.1-2.4 that are important for us. The material in §§ 2.5-2.10 will
be used only in §§3.5-3.6 and §6.

2.1. Boson Fock space. We consider a so-called Hilbert space with involution,
that is, a Hilbert space on which an antilinear isometric operator I is fixed that
satisfies the condition /2 = E. We shall be interested in the space H = L2(M); in
this case I'f = f.
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Thus, let H be a Hilbert space with involution. The boson Fock space F'(H) is
a Hilbert space in which a system of vectors (an ‘overcomplete basis’) ®y is fixed
that is labelled by the vectors h € H and satisfies the following conditions:

(1) (®n, ®n) rary = exp((R, h)r); (2.1)
(2) the set of linear combinations of the vectors ®;, is dense in F(H).

The space F(H) is unique in the following sense. Suppose that F and F are
two spaces with the respective total systems of vectors s &y, and @ satisfying (2.1).
Then there exists a unique unitary operator U: F — F for which U®), = 3.
| The existence of the space F(H) is not entirely obvious, but follows from the
holomorphic model described in the next subsection.

2.2. The Bargmann-Segal-Berezin holomorphic model (see [3], [4]). We
associate with each vector w € F(H) the function Jw(h) on H given by the formula

Jw(h) := (w, ®p). (2.2)

In this way we have realized the space F(H) as a space of holomorphic functions
on H. We now give a precise description of the image of the operator J.

Let ey, €2, ... be an orthonormal basis in H. We define the Hilbert space F(H)
as the space of forma.l series

flzey= Y. cup.A'd (2.3)
7120,3j220, ...

(where the summation is over all collections j1, ja, - - - with only finitely many non-
zero elements) satisfying the condition

3 Iejuse Zia kit - < o0

The inner product in F (H) is introduced by the condition that the vectors

11...
21 ZN

71l gn!

form an orthonormal basis in F(H ).

It is not hard to verify that the series (2.3) convergesif f € F(H)and ¥ ze; € H
(that is, 3 |2i|? < 00).

The system of functions ®4(z) is given by the formula

®u(z) = exp{Zz,ﬁi}.
It is easy to see that operator J given by (2.2) is an isometry F' (H) = F(H), and

J®y = &
We note also the following formula (the reproducing property):

F(h) = (£, ®n) papy- (2.4)

Henceforth we shall not distinguish between the spaces F(H) and F(H).
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2.3. The finite-dimensional case. We consider a finite measure space M with

points of measure ay,...,an. Then L?(M) is the space of vectors v = (vy, ..., vy),
with the inner product

((vl,...,v ); (wr, ... wN)>—Z'quJaJ

The space F(L?>(M)) can be identified with the space of holomorphic functions
on L2(M) = CV with the inner product

(i fa) = /L oy, BT {0} H (L)) (29)
The system of vectors ®,, is given by
®,(2) = exp{szﬁjaj}.

Remark. The formula (2.5) admits a rigorous interpretation also in the case of an
infinite-dimensional space H (see [1], [3], [4]), but we do not need this.

2.4. Gaussian vectors. Let K: H — H be a Hilbert-Schmidt operator with
IK|} <1 and let 3 € H. We consider the function b[K | »](z) on H given by the
formula

BK | (z) = exp{%(Kz,E) +zm). (2.6)

Proposition 2.1 (see, for example, [4], §6.2). The vector b[K | 5] lies in F(H),
and

(B[M | m],b[A | ) p
=det[(1—MA)—%]exp{%(am)(‘EA _@)_l(z)} (2.7)

Remark. It is useful to have in view the formula

-A E\7'_(ME-AM) (E-MA)

E -M TN (E-AM)TY  A(E-MAT
2.5. Symbols of operators. Let H; and H> be Hilbert spaces with involutions,
and let A be a bounded operator F(H,;) — F(H;). We associate with each such

operator a function K4(z,u) on Hy & Hs (the symbol or kernel of the operator;
see [3], and also [4]) in accordance with the formula

Ka(z,u) = (A®y, ®.) F(ay), (2.8)

where z € Hy, u € H,y, ®, € F(H;), and &, € F(H,).
See [3] and [4] on recovering the operator from the symbol. If H, = L?(M;) and
Hy = L*(M;), where M; and M, are finite, then

4160 = [ Kawswesn{- Yo I (% iy ;).

¥
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2.6. Gaussian operators. Let H; and H; be Hilbert spaces with involutions.
We consider an operator

SZ([Il(t ALI)ZHI@HQ—)Hl@HQ.

Here the sign t indicates transposition (S* := S"). Suppose that this operator
satisfies the conditions

1*. S= 8¢,

3*. |K|| <1and ||M] <1,

4*. K and M are Hilbert-Schmidt operators.

Let us consider the operator

with the symbol
1 _ 1,
K(z,u) =exp{§(Kz,z) + (Lz,u) + i(Mu,u)}. (2.9)

We write K(z,u) also in the form

exp{%(z,ﬁ) (f; AZ) (;ﬁ)} , (2.10)

where z denotes the row (2, 22 ...) and @ the row (U, U, ...), and z* and
! denote the transpose matrices of z and @.

Remark. The matrix expression (2.10) is convenient to use, but we should remember
that it is literally true only in the case when H = I, (or, what is the same, when
an orthonormal basis is fixed in H).

Theorem 2.2 ([15], [16]; also [4], [17}, [18}).

(a) The conditions 1*—4* are necessary for the boundedness of the operator with
symbol (2.9).

(b) If 1*-4* hold and if |S|| < 1, then the operator B[S] is bounded.

(c) If 1*-4* hold and if the matrices K and M are trace-class (or nuclear)
operators, then B[S] is bounded.

(d) Consider the bounded operators

B{S]]F(Hz)——)F(Hl), B[Sz] F(Hg)—')F(Hz),

ae(55) (59

B[S$1]B[S,] = det[(1 — MP)~#] B[S, * Sa}, (2.11)

where

Then
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where the x-multiplication of the matrices is defined by the formula

o v5, = (K+LP(E-MP)'L!  L(E-PM)™'Q
1E2E QUE-MP)T'L! R+ QUE- MP)'MQ)-

Behind the awkward formula (2.12) is a simple algebraic structure, which we
now describe.

As before, suppose that H is a Hilbert space with involution. We consider the
Hilbert space

(2.12)

V(Hy:=HoH
and the subspaces
H*=H@o0, H =0aH
of it. Let I'(S) be the graph of the operator S as an operator
S:Ht e Hy — Hf @ Hy.

It turns out that the subspaces I'(S) multiply like linear relations (correspon-
dences).

Theorem 2.3. The set I'(S) * S2) C V(H1) @ V(Hs) consists of all the (vy,v3) in
V(H:) & V(H3) for which there ezists a vo € V(H>) such that (vy,vs) € T(S,) and
(v2,v3) € [(S2).

This assertion was obtained in [15] and [16]; see [4], [18] for more details; see
also {17], [19] for the finite-dimensional case.

2.7. Remark: the harmonic representation of the symplectic group. We
consider the group G of all operators on V(H) of the form

(2 %)

such that ¥ is a Hilbert—Schmidt operator and such that
«f 0 EN (0 FE
I\-E 0)97\-E 0)°

that is, such that the skew-symmetric form (_OE g) is preserved. The group G

is the so-called automorphism group of the canonical commutation relations. If the
dimension of H is finite and equal to n, then G is isomorphic to the real symplectic
group Sp(2n, R).

We associate with a matrix g € G the operator (see [3])
F 7 S
-l Y
acting in F(H). The formulae (2.11) and (2.12) imply that

p(91)p(92) = Mar,92)0(9192),

where A(g1,92) € C and |A(;,-)| = 1. In other words, the operators p(g) form a
projective unitary representation of the group G. This representation is called the
harmonic representation, as well as the Weil representation, the Segal-Shale-Weil
representation, and the Friedrichs-Segan-Berezin-Shale-Weil oscillator representa-
tion; for more details see [3], [4], [18].

p(g) = det™2($*®)B [ (2.13)
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2.8. Remark: the Hilbert—Schmidt condition for Gaussian operators.

Ili AZ) is such that || S} < 1,

the blocks K and M are trace-class operators, and the block L is a Hilbert-Schmidt
operator. Then B[S] is a Hilbert-Schmidt operator.

Proposition 2.4. Suppose that the matriz S =

Proof. Let us compute B[S]* B[S] by the formulae (2.11) and (2.12). We obtain
an operator of the form o - B[T], where T is a trace-class matrix, and ||T|| < 1.
According to § 6.3 in [4], the operator B[T] can be reduced to the form B [%— }g]
by conjugation with an operator of the form (2.13) in the symplectic group, where
IR|| < 1 and R is a selfadjoint trace-class matrix. We reduce R to the canonical
form R = UAU™1, where U is a unitary matrix and A is a diagonal matrix with
eigenvalues A1, Az,... (JA;] < 1, 3 || < 00). Let us consider the operator TU)
acting in F(H) according to the formula

T(U)f(z) = f(Uz).

Then

T(U)B [% ?}T(U)”:B[g 18]

It is obvious that the last operator is of trace class (this is the operator f(z) + f(Az)
and its eigenvalues are AJ" ... A*).

2.9. Remark: non-homogeneous Gaussian operators. In addition to the
Gaussian operators B[S] we often encounter operators with symbols of the form

1 — K L Zt t _ t
exp{i(z u)(Lt M) (at)+z-x +T- A, (2.14)
. K LY.
where the matrix S = It M is the same as before, 3¢ € Hy and A € H;. We
denote the operator with symbol (2.14) by
K L
t —
B[S|a]—B[Lt M )‘t].
A product of such operators is computed according to the formula
K L P Q|
B [L‘ M At] B [Q‘ R at]

(1- KR)™'(Ko' + ') + o
(I—RK)—I(RJ{t +0t) +/\t] ,  (2.15)

(s £)-(2 9

where the *-product is computed according to the formula (2.12) and

)\:det[(l—MP)‘%]exp{-;—()\ a)(_EM _EP)_I(’\Z)}. (2.16)

Qa

Behind these formulae there is also a simple algebraic structure: the operators
BI[S | 0*] are labelled by affine subspaces of V(H;) ® V(Hy); see (4], [16].
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2.10. The action of the group of affine isometries. An affine isometry of a
Hilbert space H is defined to be a transformation of the form

Ah =Uh +b, (2.17)

where U is a unitary operator and b € H. The group of all affine isometries of H
is denoted by Isom(H).
We associate with an affine isometry (2.17) the unitary operator

T(A) =T(U,b) (2.18)
on F(H) given by the formula

TU,b)f(z) =A- f(Uz+b)exp{—(z,U*b)},

where ]
A= exp{—i(b, b)}. (2.19)
A direct check shows that
T(U,b)T(U,b) = 3 - T(UU,Ub +b), (2.20)
where )
s = exp{iIm(b,U~'b)}, (2.21)

that is, we get a unitary projective representation of the group Isom(H).
Computing the symbol (kernel) of the operator according to the formula (2.8),
we get that
_ 0 U|-U-1
T(U,b)_/\~B[Ut 0' b ] (2.22)
The group Isom(H) contains, in particular, the additive group of H acting on
H by parallel translations. The operators
_ 1, 0 E|-b
T(1,b) —exp{—illbll }B [E 0 l b ] (2.23)
form a projective unitary representation of the additive group of H or a linear
representation of the so-called Heisenberg group (see, for example, [3], [4]).

§3. The simplest properties of the beson-Poisson correspondence
3.1. Definition of the correspondence (see [4] for more details). Suppose that

M is a Lebesgue space with a finite or o-finite measure. We consider the Fock space
F(L?(M)) and the system of functions

®n € F(L*(M)),
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where h € L?(M). Let us recall that by definition

(®h, ®n) r(za(ar)) = EXP { / W G )}

In L2((M)) we consider the system of functions

¥y (w) = H (1 + h(m;)) exp {— /M h(m) dp(m)} . 3.1

m;Ew

The formal use of Campbell’s formula gives us that

(T, Tn)L2((p)) = €XP {/M h’(m)Wdu(m)} . (3.2)

We get a canonical unitary isomorphism between F(L*(M)) and L*(Q(M)): cor-
responding to each function &), € F(L*(M)) is the function ¥ € L2(Q(M)).

Remark. Here it is necessary to exercise some caution. The product (3.1) converges
if b € LY(M), and (3.2) follows from Campbell’s formula if h,h' € L' N L?(M).
However, (3.2) implies (see [4], § 10.4) that the map h + ¥4, defined on L'nL?(M),
is continuous in the topology of L?(M) and it extends by continuity to a map
L*(M) — L*(Q(M)). Therefore, we can assume that ¥j is defined for all h in
L2(M) and we can regard the expression (3.2) as formal.

3.2. Formal integral expressions. Suppose that fll e L2(Q(M)). Then in
view of (2.2) the corresponding function f bl ¢ F(L?(M)) is given by the formula

FEIR) = (£, ) L2y

= /Q(M)f[p] (w)[ H(l + h(m;)) exp {— /Mh(m) du(m)}] dv(w). (3.3)

m;cw
The formula (3.3) appears outwardly to be more constructive than the definition
in §3.1. But the definition with a correspondence of the overcomplete bases is
actually more convenient.
Suppose now that M is a finite space and let fl?! € F(L*(M)). Then by the
reproducing property (2.4) and the integral expression (2.5) for the inner product,
the function fI?! € L?(Q(M)) corresponding to f1b] can be written as the integral

pe=[ £ T (14 homy)) exe {- [ som dutm) ||

m; €w

x exp(—||h}2) H (%ri dh; dﬁj) . (3.4)

It is natural to think that in the case of infinite M the integration must be carried
out over a canonical extension of the space L?(M) (the ‘abstract Wiener space’);
see, for example, [1] and [4], §6.1. However, in this case h is a generalized function
on M, and then it is not clear what is meant by the infinite product in (3.4). In
any case we do not know of a nice interpretation of (3.4) for infinite M.
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3.3. The case of a one-point space M. Suppose that M consists of a single
point with measure a.

Then F(L?*(M)) is the space of holomorphic functions on C with the inner prod-
uct

— a
() = [ A@RE exp(-ale?) (& dz dz).
C ™
Corresponding to the function A = const on M is the vector
®(z) = exp(ahz) € F(L*(M)).

The space L?((M)) is the space of sequences v(p), p = 0,1,2,..., with the

inner product
o0 aP .
(v, w2y = Y v(p)w(p) e (3.5)
p=0

The functions (sequences) ¥y, are given by the formula
Un(p) = (1 +R)Pe".

Let us see what in L2(Q(M)) corresponds to the standard orthogonal basis (non-
normalized) 2™ € F(L%*(M)). We expand ®; and ¥4 in a series with respect to h:

bi-(z) = Z a::"nﬁﬂ,
n=0 :
~ —OO . P p(p—l)(p—]+1) —a"*j
=2 {JZO T }

We see that corresponding to the vector 2™ € F(L?(M)) is the Charlier polyno-

mial
n

S0 = Safalp) =3 (M) -0 -+ D. (36)
7j=0

This was to be expected, because the Charlier polynomials form a standard
orthogonal basis in the space of sequences with the inner product (3.5) (see, for
example, [20]).

Let us next consider the sequence 6, (p) € L2(Q2(M)) (that is, there is a 1 at the
position with index a and 0’s elsewhere).

With the help of (2.4) we define a corresponding function ea(z) in F(L2(M)):

a® _
eo,(z) = <5a7 ‘I’Z)L2(Q(M)) = ‘Ilz(a)ae e
SR SN L £
a! a! ’
that is, we obtain the correspondence

{(1(1 + 2)]0 e—a(1+z)'

ba +— eq(2) = o

3.7
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Further, we consider in F(L?(M)) the operators

RO = 2f(@), @U@ = 5 f)

(the so-called creation and annihilation operators; see [3], [6]).
Let RP! and Q' be the corresponding operators on L2(Q(M)). It is easy to see
that

1
(R[b] + E)ea - a: €a+ls (Q[b] + a)eﬂ = 0€q—1-
Hence,

a+1

R[p]‘sa = —60 + 6(1-{-17

Q6 = —ady + ada-1-

3.4. The case of a finite space M. Assume now that M is a union of one-point
spaces (points) M1, ..., Mn with measures a1, ...,ay- Then

N
FIA(M)) = Q) F(L*(M;)),

=1

N
LA(Q(M)) = ® LX(Q(M;)).

Therefore, the correspondences in § 3.3 immediately imply the correspondences

=

N
Mz «— ISl
i=1 i=1
N N
laj (L + 2% 6142
H;ﬁi—e 3042) o ] e, (02)- (3.8)
j=1 J j=1

3.5. Multiplication by a function. Let M be an arbitrary measure space and
let o(m) be a function on M satisfying the conditions

1) lo(m)l < 1,
2) (o(m) — 1) € L}(M).

We consider the operator C(0) acting in L2(Q(M)) according to the formula

I1 otm) )

m;cw

Clo)f(w) = (

It is easy to see that [|C(a)l| < 1; if |o(m)| = 1, then C(0) is unitary. Obviously,

0(0102) = C(Ul)C(Gg).
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A simple computation shows that
OV = ¥z -oxp{ = [ (o) = 1) (1m) + 1) dutm) |
M

Let Cl!l(0) be the corresponding operator on F (H). By using (2.8) it is easy to get
a formula for the symbol (kernel) of C!*!(0):

exp {/M [ozu+2(0 — 1) - (0 — 1) — (o — 1)] du(u)} ,

where z,u € L*(M). We remark that we have obtained operators of the form
B[S { ot] (see §2.9).

Let us now consider the (multiplicative) group A consisting of functions o on M
such that |o(m)| = 1 and o(m) — 1 € L*(M). The group A acts on the Hilbert
space L?(M) as affine isometries of the form

A(o)z(m) = o(m)z(m) + o(m) — 1.

Restricting the representation T' of the group Isom(L?(M)) (see §2.10) to the
group A, we obtain a projective unitary representation T'(A(c)) of A.
Comparison of the symbols shows that

Cll(o) = exp {—i -Im /M (o(m) — 1) du(m)} T(A(0)), (3.9)

that is, the operators C!*)(¢) and T(A(0)) coincide up to a factor. Thanks to this
factor the projective representation T(A(c)) of A ‘is straightened’ into a linear
representation Cl%(o).

3.6. The action of the group Gms,. Let M be a measure space with an
infinite continuous measure (see §1.8). We consider the group Gms,, and the
unitary representation R(g) of it on L2(Q}(M)) given by the formula

Rio)fe) = Fio) | TT o' exp {~ [ (g'om) - 1) auim}.
e

It is easy to see that
R(9)¥n = ¥g(g)n

exp ] [ [HotmNg (17 = L)+ 3 = om| auom
where
S(o)h(m) = h(glm)g/(m)"/2 + o (m)"/* 1. (3.10)

This enables us to write out the symbol (kernel) of the operator RIY! (g) on
F(L*(M)) corresponding to the operator R(g) (we omit the formula).
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We now observe that the formula (3.10) determines an affine isometric action
of the group Gmsy on the space L?(M). Restricting the representation T of the
group Isom(L*(M)) to the subgroup Gms,,, we obtain a unitary representation
T(S(g)) of Gmse, on F(L*(M)).

Convolution of the symbols (kernels) shows that

RPl(g) = T(S(9))-

In other words, the boson-Poisson correspondence is an operator intertwining
the representations R(g) and T(S(g)) of Gms.,. It was revealed in this form (to
within some slight stipulations) in [8]-{10].

Remark. The construction of the preceding subsection can also be regarded as the
motivation for the boson-Poisson correspondence. We have a representation of the
Abelian group A on F(L?(M)) given by the formula T'(A(c)) (more precisely, the
formula (3.9)). It is natural to expect that this representation can be realized on
some space L?(X) by operators of multiplication by functions. The space Q(M) is
exactly this X (see the discussion of a similar construction in [7}).

§ 4. Gaussian vectors and the functions RIK, 0](w)

4.1. The functions R[K,6](w). We consider a configuration w € Q(M). A tangle
R in w is defined to be a finite (possibly empty) collection (61,01}, ., {0q,0,} Of
unordered two-point subsets of w (we write {§;,0;} € R). We let [w]g be the set
of all elements of w not appearing in the tangle R. The set of all tangles in w will
be denoted by tan(w).

Remark. To avoid ambiguity we must specify what the word “tangle” means in
the case of configurations with multiple points. We suppose that k points of a
configuration are concentrated at a point of multiplicity k, and that any of them
can occur on an equal footing in a tangle. For example, the total number of tangles
. on an n-point configuration (multiplicity is taken into account for the points) is

equal to
Y e
i .ql — 9+\1
jisonien @ 3 (= 20)!

and this number does not depend on whether the configuration has multiple points.

Let us fix a function K (m,m') on M x M satisfying the condition K (m,m') =
K(m',m), and a function 6(m) on M. We consider the function on Q(M) given by
the formula

RK,Ow) = 3 [ M xGon- 11 (1+0<mj>)] (1)

Retan(w) - {8j,0;}ER mj€lwlr

(provided that this formula makes sense). These functions are the basic subject of
our paper.
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4.2. The case of a finite space M. Suppose that the space M is finite and con-
sists of points m,, ..., my with measures a1, ...,an. Then the function K(m,m')
can be regarded as the matrix

x5 = K(m;, my),
and 6 as the column vector 8; = 6(m;).

Theorem 4.1. Suppose that the quadratic form
1
5 Z HijTiT;
is strictly less than 1 on the ellipsoid Yoa;22 < 1. Then

R[K, b)(w) € L*(Q(M))

and the corresponding vector in F(L?(M)) is given by the formula

1
exp{ 5 Z ;qj(z,- + 1)(Z]' + l)a,-a]- + Zb’jaj(zj + 1)} (42)
i, J
Proof. Let w € Q(M) be a configuration. We recall that w can be regarded as a
point (p1,...,pN) € Zf - It is convenient to represent the tangles in w as pictures
of the form
A A As
Here N = 3, the closed ovals represent the points mi,ms, .. -, and p; points of

the configuration are concentrated at the point m;. The elements of the two-point
sets of the tangle are joined by arcs.

Let s;; be the number of arcs leading from the ith oval to the jth oval (si5 = s4)
and let ¢; be the number of points in the ith oval that are not end-points of arcs.
We note the obvious equalities

pi = Z Si; + q; + 2545 (4.3)
J#£
Then for the given configuration the number of tangles with given s;; and q; (of
course, the equalities (4.3) are assumed) is equal to

pi! Y H (2si:)!
[T 565t (2533)! ! X H(s,]). o § Surr ot (4.4)
1 1 l<] s i1

The first factor of this product corresponds to partitions of the sets Aj; encircled
by the ovals into subsets of sij, qi and 2s;; elements. The second factor is the
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number of bijections between the distinguished subsets of A; and A;. The last
factor corresponds to partitions of the 2s;;-element sets into pairs.

The term
1 k(o). 69 T (1 +60ma)

in the sum (4.1) corresponding to a tangle with a given collection s;;, ¢; is equal to

Iy - TLa+eo.

i<y
Therefore,

R(K,0)(pr,--.,pN) = RIK,0)(w)
= Hpi! . 30H i
- Z [Hiéj sij! Hl qi! Hi 928ii s tj ];I(l + 01) ] > (4-5)

where the summation is over all the collections 3;;, ¢: satisfying (4.3) (we have
made the obvious canceliations in (4.4)). We now use (3.8) to compute the image
of the function R[K,¥] in boson Fock space. This image is equal to

Z { [Z i<, Sij!rll_f:i;i! I1; 25 g 5 ]':[(1 " 0,—)‘1‘]

(P1,-ees PN)Ezf
y H ((ai(zip: D" (s + 1») } (4.6)

where the summation in the square brackets is over all collections ¢i, Sij satisfy-
ing (4.3). Substituting (4.3) in place of pi, we transform our expression to the
form

z {H [“ijaiaj(zi +1)(z; + 1)] v < H [mia%(zl‘ + 1)2/2]3“
5i,9:i€Z4 “1<J Sij! i sii!

y H [(1 +6)ai(zi + 1)]‘1=‘ } y Hexp(“ai(zi +1))

qi!

1
= Hexp{zijaiaj(zi +1)(z; + 1)} x Hexp {—izi,vai(z,- + 1)2}
i<j i

X Hexp{(l +8;)ai(zi + 1)} x [J exp{—ai(zi + 1}, (4.7)

which coincides with the desired expression.

We have gone through the computations without considering the convergence of
the series in the Hilbert spaces F(L*(M)) and L*(Q(M)) =~ 12(Z¥); we have only
checked for coordinatewise convergence in I»(ZY ) and pointwise convergence in the
space of holomorphic functions on CN . However, we performed the computation
while identifying orthogonal bases in F(L?*(M)) and L*(Q(M). Therefore, in the
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case of R € L?(2(M)) we must get the right answer in F(L2(M)), while in the case
when (4.2) lies in F(L?(M)) the expression (4.6) is its expansion in the orthogonal
basis, so that (4.5) lies in Q(L%(M)).

Remark. The condition of convergence of the series in the Hilbert space played an
insignificant role in our proof. We see below in §6 that the correspondence for-
mula (4.2) can remain in force even when the convergence condition is not satisfied.
Theorem 4.1'. Suppose that ;; = K(m;, m;) satisfies the same conditions as in
Theorem 4.1. Then corresponding to the function

exp{ % Z 002z + Z 0jaj2j} e F(L*(M))

is the function

R*[K, () := exp{% Z ijea; — Zﬁjaj}%[K, f)(w) € LA (Q(M)),

where

éj = 0j — Z Qg
Proof. This is a reformulation of Theorem 4.1.

Remark. Theorem 4.1’ is not hard to prove directly without referring to Theo-
rem 4.1. To do this it suffices to expand the Gaussian vector b[K | 6!] with respect
to the orthogonal system [] eq, (2;) (see (3.9)), and this is not hard (it is convenient
first to perform a Heisenberg shift corresponding to the function —1 € L*(M) (see
§2.10)).

4.3. Some ‘integrals’. Suppose, as before, that the space M is finite, with the
measures of the points of M equal to a;,...,any. Let K and L be functions on
M x M satisfying the conditions of Theorem 4.1. We regard these functions as
N x N matrices. Let # and A be functions on M, regarded as row matrices. We
denote by 1 both the function equal to 1 on M and the corresponding row matrix.

Let
a

D=

anN
We introduce the notation

§=6.-DY2,  X=X.DY?, 1=1.D'?
K =D'?KD'? [ =pY2LD'/?,
Using the formula (2.7), we get that

R*[K, 8](w)R*[L, N(@) dv(w)
UM)

= det[(l — I?f)_lm] exp{% (6

]
—
|
&
|
S
~—
i
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Similarly,

ﬂ{M)mUceuuﬁﬁfﬁqaﬁdWw>=dﬂ[0""ﬁf)_uj

X exp{—Zaj + % (é+i /:\+i) <—§ _E-f)—l (g:ii))i)} (4.9)

(to see this formula we must compute the inner product of two vectors in F(L*(M))
of the form (4.2); for this we make the change of variables z' = z+1 and use (2.7)).

Remark. Theorem 4.1 is precisely equivalent to the formula (4.9) with L = 0.
Campbell’s formula is obtained if we set K = L =0and XA =0 in (4.9). We note
also the special case of these formulae with L =0 and A = 0:

/ R (K, 0](w) dv(w) = 1,
QM)

RIK, 0)(w) dv(w) = exp{% Z ;005 + Z ()jaj}.

Q(M)

Remark. A natural question is whether it is possible to compute the integrals (4.8)
and (4.9) (of course, these are not integrals but multiple series) directly, without
recourse to the boson—Poisson correspondence. The corresponding computation is
quite long and complicated; in the end the series turn into Gaussian integrals.

4.4. The case of infinite spaces. Suppose now that the Lebesgue space M is
arbitrary. For a function K (m,m') € L*(M x M) with K(m,m') = K(m',m) we
consider the integral operator

WWZAMWMNWMM~ (4.10)

Assume that K is such that the norm of the operator X on L?(M) is less than 1
and let 8 € L2(M). We take the function

R[K, 0)(w).

One would like to think (see Theorem 4.1) that the corresponding element of the
space F(L?(M)) is given by the formula

B(z) = exp {%(ﬂ((z +1),(z+ 1)>L2(M) + (0, (z + 1))L2(M)} , (4.11)

or, in expanded form,
B(z) = exp{% /M /M K(m,m")(z(m) + 1) (z(m') + 1) du(m) du(m')
+ /M (M) (z(m) +1) du(m)}, (4.12)

where z(m) € L?(M).
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Similarly, we consider the following Gaussian vector in F(L2(M )):
bX | 6](2) = exp { %(9(2,2) + (0,2)}
1 ! t !
=exp{5 [ [ Km,m)zm)z(n) dutm) )
+ /M (m)z(m) du(m) } (4.13)

One would like to think (see Theorem 4.1') that corresponding to this vector is
the function in L2(2(M)) given by

R*[K, 0](w) = RK, 6](w)

1 f '
X exp {5 /M /M K(m,m")du(m)du(m') — /M 0(m) d,u(m)} , (4.14)
where
6(m) = 6(m) — /M K(m,m')du(m'). (4.15)

However, it is a striking fact that the integrals in (4.12), (4.14), and (4.15) are
divergent in general. We prove the desired result under slight additional restrictions
on the functions K(m,m’) and 6(m).

Theorem 4.2. Suppose that K (m,m') € L2 N L' (M x M), 6(m) € L? N Li(M),
and || X|| < 1, and assume that the function

ok (m) = /M K(m, m’) du(m') (4.16)

lies in L?(M). Then:
(a) the ezpression

RIK,Ow) = > ( II k.6) II (1+9(m,-))) (4.17)

Retan(w) “{o;,6;}€R m;€lwlr

defining the function R[K, 6)(w) converges absolutely almost everywhere on
Q(M). Furthermore, R(K,0)(w) lies in L2(UM)) and corresponds to the
Gaussian vector 3(z) given by (4.12);

(b) the function R*[K, 6](w) given by (4.14) corresponds to the Gaussian vector
b[K | 6'] given by (4.13).

Remark. Theorem 4.2 looks outwardly like a theorem on pointwise convergence of
the function series (4.17). However, the summation set in (4.17) depends on w, and
hence the individual terms of the series are not functions of w. A kind of summation
of all values of a multivalued function at the given point is being carried out. In
reality it is possible to apply some ‘force’ and ‘cut’ the multivalued function into
branches. To do this it suffices to assume that M is the half-line with a Stielt-
jes measure. Then almost all configurations become ordered sets equivalent to Z_,
and we can speak of summation over tangles in Z .. Next, we could try to apply the
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monotone convergence theorem to the series (4.17). 1 do not feel that this path can
prove to be simpler than the proof presented below.

Remark. The functions R*[K,6](w) make sense for any 6 € L?(M) and K in
L*(M x M). This is so because they are images of Gaussian vectors under the
| boson-Poisson correspondence. They can be defined also as L2-limits of cylindrical
functions of the form R*[Kj,6;] (see §5.2 below).
Remark. Let us take a function @ > 0 such that § € L2\ L'. Tt can be shown
that $R[0,6](w) = +oo a.e. This shows that the functions R[K,6](w) can fail to
exist for some K, € L2. Therefore, the formula (4.14) for computing the function
R*[K, 6] (w) is not always true.
Proposition 4.3. Suppose that the functions K(m,m"), 8(m), L(m,m'), and
A(m) satisfy the conditions of Theorem 4.2. Then:

(a)

/Q oy R 6)(w)PAL, N(w) dv(w) = det[(E — XL)~/*]
‘ cen{20 0 (2 ) (8) v N (T %) ()
Gan[(F ) -G OIG)E e

| (b) the inner products of R*[K, 8] and R*[L, A] are computed by (2.7).

Remark. To avoid the possibility of ambiguity we underscore that in the expres-
sion (4.18) we are using notation of the type (2.9)-(2.10). The symbol 1 denotes
the function on M identically equal to 1.

Remark. The formula (4.18) is the formula (4.9) rewritten in a worse form. How-
ever, thanks to this worsening of the expression the two (divergent, in general)
terms (—p(M)) and (+p(M)) in (4.9) cancel.

§ 5. Proofs of Theorem 4.2 and Proposition 4.3

5.1. Continuity of the formula (4.18). First of all, we introduce on the space of
functions K, 8 a topology that is natural from the point of view of the statement of
the theorem. On the set of functions # we introduce the weakest topology in which
the norms of the spaces L' (M) and L*(M) are continuous. On the set of functions K
we take the weakest topology in which the norms of L}(M x M) and L*(M x M)
are continuous together with the map into L2(M) given by the formula (4.16) (that
is, K~ UK).
We denote the right-hand side of the formula (4.18) by

A(K,8| L, N).

Lemma 5.1. The function A(K,0 | L, \) is jointly continuous with respect to its
variables.
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Proof. This is more or less obvious but we go through it exactly. The map (X, L) —
KL from the space of Hilbert-Schmidt operators to the space of trace-class opera-
tors is jointly continuous (see [14], Problem 6.28). The determinant is continuous

with respect to the trace-class topology, and this implies continuity of the factor
det(-).
The first term in the exponential in (4.18) has the form

(Az,y), (5.1)

where z and y are vectors in a Hilbert space (in the present case it is the space
L?*(M) @ L*(M)) and A is a bounded operator depending on X and £. The expres-
sion (5.1) is jointly continuous in the variables , y, A if the usual Hilbert space
topology is introduced on z, y and the uniform topology on the set of operators.
Thus, the continuity of this term is obvious.

We write the second term in the exponential by using the identities

-X B\ _(L(E-XD)"' (E-LX)-!
E L T\ (E-XL)' XK(E-LK) )
K(E-LK)™' =(E-KL)"'X, (E-XL)™ = E+XL(E — XL) !,
which are true for || X|| < 1, ||£]| < 1. We get that
(BE~XL)7'0,L-1) + ((X(BE - LX)7'8,L - 1) + (6, 1))
+ (A1) + (T(E - XD K1) + ((E - TX) 3K - 1),
where X -1 = ok and (0,1) = [6du. In this expansion we see four terms of
the form (5.1) (here 2,y = A,f and K- 1,L -1 € L*(M)) and the two convergent
integrals [6du and [ Adp.
Finally, the third term in the exponential is equal to
((C-1,1)+((E-XL)7'K-[£-1],£-1))
+2((E -XL)~'[X-1],£-1)
+({(X-L)+((E-L%)7'L-[X-1],% - 1)).

We see three terms of the form (5.1) and the two terms

/ / K (m,m') du(m) du(m’), / / L(m,m") du(m) du(m").
The lemma is proved.

5.2. Cylindrical functions., We now show that the right-hand side of (4.18) is
not only continuous but also sometimes equal to the left-hand side.

We say that 6 is a step function if it takes only finitely many values and is equal
to 0 outside a set of finite measure. We say that K(m,m') is a step function if
there exist subsets My, ..., M, C M of finite measure such that

(1) K is constant on the sets M; x M;,
(2) K is equal to 0 outside the set ({J M;) x (| M;).
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| If K and @ are step functions, then the function R[K, 6] is a cylindrical function.
| The following statement is simply a reformulation of the formula (4.9).

Lemma 5.2. The formula (4.18) is true if K, 6, L, and X are step functions.
| 5.3. Pointwise limits of step functions. Suppose now that K(m,m’) > 0 and
| 6(m) > 0. We consider (not strictly) increasing sequences K;(m,m') and 6;(m) of

step functions converging to K and 8 pointwise.
Obviously, the sequence R[Kj,8;](w) is monotonically increasing for each w.

Proposition 5.3. The sequence R[K;,0;}(w) converges pointwise to some function
T(w) € L2(QUM)).

Lemma 5.4. K; — K and 0; — 6 in the sense of the topology in §5.1.

Proof of the lemma. In view of the Lebesgue dominated convergence theorem,
(K — K;) = 0 and (K — K;)* = 0. By the same theorem,

/Kj(m,m') du(m') - /K(m,m') du(m')

for almost all m, that is, ok, — ok pointwise. Next, we apply the dominated
convergence theorem to [(0x — 0k;).

Proof of the proposition.
/ZR[K]-,Oj](w) dv(w) = A(K;,0; | 0,0) = A(K,010,0).
The sequence of integrals is bounded, and therefore T'(w) = lim;_, R[Kj, ;](w)

almost everywhere by Beppo Levi’s monotone convergence theorem. Applying the
monotone convergence theorem to the sequence of integrals

2
/‘m[Kbo]](w)‘ du(w) = Ql(Kjvgj l Kj70j) - Q((K79 | Kva)y
we get that

/ IT(w)|2 dv(w) = A(K, 8 | K,6).

5.4. Convergence of the series R[K, 0](w).

Proposition 5.5. Suppose that K, 0, K;, and 0; are the same as above. Then the
series (4.17) defining the function R[K,0)(w) converges almost everywhere and

R[K,b)(w) = T(w) = lim RK;,0;}(w)

almost everywhere.
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Proof. We fix an w such that the sequence R[K j»8;}(w) has a finite limit for it.
Let us fix a tangle R € tan(w). Applying the monotone convergence theorem to

the sequence of series
Z In(1 + 6;(m,))

ma€lw]r
(which depends on j), we get that
lim H (146;(ma)) = H (1+6(my)).

j—ro0
ma€{w]r ma€wlr

The desired result is now obtained by applying the monotone convergence theorem
to the sequence of series RR[K;, §;](w) (this time the summation is over all tangles).

Proposition 5.6. Suppose that K and 6 are arbitrary functions satisfying the
conditions of the theorem. Then for almost all w:

(1) all the products in (4.17) converge absolutely;
(2) the series over R € tan(w) converges absolutely.

Proof. We compare the series defining the functions
R[K,6)(w) and R[|K][6](w).

In the right-hand expression everything converges absolutely. In particular, the
convergence of any infinite product in the right-hand series implies the convergence
of the corresponding product in the left-hand series. Moreover,

[T & (e5.05) - TT(1+ 50m))| < TT1K (o5.60)] - T[ (1 + 1850ma)),
which implies the absolute convergence of the series R[K, 6)(w).

5.5. Once again, pointwise limits of cylindrical functions. Suppose, as
before, that K and 6 are arbitrary functions satisfying the conditions of the theorem.
We consider sequences K; and 8; of step functions such that

(1) K| and |6;| are monotonically increasing (not strictly),
(2) Kj; and 6; converge pointwise to K and 6.

Proposition 5.7. The sequence R[K 4, 05](w) converges to R[K 6](w) almost every-
where.

Remark. This statement has a certain independent interest in comparison with
Theorem 4.2: namely, it gives another way of computing the functions R[K, §](w).
Proof. First of all, we have the pointwise (for a fixed w) convergence of the terms

II a+6;ma))» J[ (1+60ma)).

™Ma €lw]r ma€lw]r
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This convergence is ensured by the fact that the corresponding series of loga-
rithms is majorized by the convergent series

S (1 +16(ma)l)-

ma€[wlr

Further, the series defining R[K;,0;](w) are majorized by the series defining
R[|K}, 0|} (w), and the dominated convergence theorem yields the desired result.
5.6. L2-convergence of the sequence R[Kj,0;](w)-

Lemma 5.8. The sequence R[Kj,0;](w) converges to R[K, 6)(w) in the sense of L2

Proof. We show that R[Kj, 6;])(w) is a Cauchy sequence. Indeed, the quantity

2
/‘m[thi](w) — R[K;, 0:}(w)|” dv(w)
= A(K;,0; | K;,6;) + A(K;, 0: | Ki,0:)
- Q[(K.’“GJ ‘ K,’,H{) _Q((Kiyei | KJ,GJ)

tends to 0 as i,j — oo. Thus, the sequence R[K,0;](w) converges in L? and we
have seen that it converges pointwise to R[K, 0)(w). The lemma is proved, but the
proof used the following statement:

Lemma 5.9. The convergences K; — K and 8; — 0 described in §5.5 imply
convergences in the sense of the topology in §5.1.

Proof. We consider the set ¥ where K > 0, and the set ©_ where K < 0. Then we
restrict K to each of these sets and repeat the arguments in the proof of Lemma 5.4.

5.7. Completion of the proofs. We have seen (Lemma 5.2) that the formula
(4.18) is true if K, L, 6, and X are step functions. Lemma 5.8 and Lemma 5.1 imply
that it is always true.

We next substitute L = 0 and A = z in the formula (4.18). This gives us an
explicit formula for

(RIK, 0], 92) 12 a(a))

that is, for the image of the function R[K, 8] in boson Fock space. The rest is
obvious.

§ 6. Gaussian operators
6.1. Hilbert—Schmidt operators. We consider a Gaussian operator
B[S | d']: F(L*(M3)) = F(L*(My)). (6.1)

Suppose that S satisfies the conditions of Proposition 2.4. Then B[S | o] is a
Hilbert-Schmidt operator (to see this, use the simple arguments in §6.4 of [4] in
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conjunction with Proposition 2.4 (see also [16])). We identify the matrix S with
the kernel of the corresponding integral operator in L? (M U Ms). By the remarks
in § 1.5, the corresponding operator

BPI[S | ot]: L2 (M) — L (Q(My))

is given by the formula

BAS| ) = [ RS elwnwi@) ),  (62)
Q(Mz)
where w; € Q(M,;) and wy € Q(M,), and hence (w1,wz) € O (M U M,).
It is an interesting question as to whether the operators BIPI[S | o] corresponding
to Gaussian operators that are not Hilbert-Schmidt can be described explicitly
(examples of such correspondences were given above in §§ 3.5 and 3.6).

6.2. The case of finite spaces.

Proposition 6.1. Suppose that the spaces M; and M, are finite. Then the oper-
ator BIP[S | ¢*]: L2(Q(My)) — L*(Q(M,)) corresponding to an arbitrary bounded
operator of the form B[S | %] is given by the formula (6.2).

Remark. The spaces (M;) and Q(M,) are discrete, so, properly speaking, we have
obtained a formula for a matrix operator.

Proof. We need to see that

<B[P][S I Ut]“phn \I’h2> = (B[S | Ut](bhnq)hz

L2(Q(M)) )F(Lz(Mz))'

If we write out the left-hand side of the equality, then we get precisely an expression
of the same form as in the proof of Theorem 4.1.

Remark. In particular, we obtain formulae for actions on L2(Q(M)) of the symplec-
tic group Sp(2n, R), the group Isom(L2(M)), and the finite-dimensional Heisenberg
group (see §§2.7 and 2.10 above). Fairly amusing formulae are obtained in the last
two cases.

6.3. Some integrals. Let us consider the function R[S, o](w,&) on (M U M).
We fix the argument @. The resulting function on (M) does not have the form
R[K,0](w) in general, that is, we obtain a broader family of ‘special functions’ on
Q(M).

Suppose now that M', M, M" are measure spaces, with M’ and M" finite and
M arbitrary. Then the formula (2.15) can be rewritten in the form

R*[S), 01](w',w) - R*[S2, 0] (w, w") dv(w)
QM)

=R [(S1] 0t) o (S; | b)) ('™,

where )\ is taken from (2.16), and (S; | o%) o (S2 | o}) from the right-hand side
of (2.15).

This formula holds for any fixed ' € Q(M') and " € Q(M") under slight
restrictions on S1,0; and Ss, 09, but we shall not go through the restrictions.
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