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The group of diffeomorphisms of the
half-line, and random Cantor sets .

Yu. A. Neretin

Abstract. A certain one-parameter family of measures is constructed on the space
of closed totally disconnected subsets of the half-line without isolated points. It is
shown that these measures are quasi-invariant with respect, to the group of smooth
diffeomorphisms of the half-line, and the Radon-Nikodym derivatives are explicitly
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<In‘the past few years probability-theoretic methods have gradually become more

important in the theory of infinite-dimensional groups and their representations (see
[9], [12], {15], [20], [22]). Tt was remarked in [16] that all' the known constructions
of representations of the group of diffeomorphisms of the circle and of loop groups
are closely connected with diffusion of fractional order. In particular, this opens-
the possibility of using the- well-developed: theory of ordinary Brownian motion
(see’[7], [5], [21]) in the theory of representations of infinite-dimensional groups.
In the samé paper many quasi-invariant ‘detions: were constructed: for the group
of diffeomorphisms of the circle and for loop groups on' diverse measure spaces,
including examples of quasi-invariant measures on the space of Cantor subsets of
the circle. , : »

The question of the existence of such measures has been familiar in the theory
of representations since about 1970 (see [4], [1]): it is interesting that the very
measures that turned out to be quasi-invariant had long been well known and had
been extensively studied in probability theory, although the question of their quasi-
invariance and of their use in representation theory had not been raised. We are
concerned with the following standard construction ([5], [13], [19]), which goes back
to the book [7] of Lévy. Let us consider 4 random process with continuous sample
paths, and associate with each sample path its set of zeros. Thus, we get a map
of the space of sample paths (which is endowed with a measure by definition) onto
the space of closed subsets of an interval, and this map gives us a measure on
the space of closed subsets of the. interval. In the case when the random process
is a fractional diffusion (see, for example, [14] concerning fractional diffusion)
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the measure obtained in this way turns out to be quasi-invariant with respect to
smooth time changes (see [16]). However, in this form the construction does not
yet give the possibility of writing out explicit formulae for the representations.

In this paper we discuss a different construction of measures on the space of
Cantor sets (see [7],.§§47, 48, and [2]).  We consider an increasing stable process,
and we associate with each sample path its set of values. Thus, a measure is
obtained on the space of subsets of the half-line.’ We show that these measures are
quasi-invariant with respect to the group of diffeomorphisms of the half-line, and
we compute the Radon—-Nikodym derivative explicitly.

Our main assertions are formulated in §1. The construction of a measure on the
space of Cantor subsets is discussed in greater detail in §2, and the quasi-invariance
theorem is proved in §3.
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1.0. The space Cant(R,). We denote by R, the positive half-line u >0 By
a Cantor subset of R, we mean a closed subset of R, of measure zero without
isolated points and containing the point 0. The space of all Cantor subsets of R,
will be denoted by Cant(R,.).

We want to define on Cant(R+) a one-parameter family of probability meas-
ures s,. The first question arising is: in what language can a measure on Cant(R, )
be described? As is well known, the complement of a closed subset of R is a finite
or countable family of intervals. We give a description of the measures ¥y in terms
of the distribution of the end-points of the complementary intervals. ; o

Let a > 0. All our measures s will have the following property: For any a the
probability is 1 that an element X € Cant(R, ) does not. contain a. Thus, with
probability 1 there exists.a complementary interval (u,v).to X that contains a.

Suppose now that A is a finite subset of Ry, let ’

t 4 e R i ¥ - "

A1

a <a2<---<an

be its elements, and let a; > 0. For X ¢ Cant(Ry ) we consider the minimal
collection of complementary:intervals to X

(ur,v1);.. ., (uy,v,) (1.1)
that covers all the points a;; we assume for definiteness that
U <V <us <vy <
To specify a measure on Cant(R,) it suffices to describe the joint distribution
of the points u;, v; for all possible finite subsets A C R, . L
First of all we note that the points a; can be distributed in various ways over the
intervals (ug,vx). To take this into account we choose from the (n— l)st elementary

set {1,...,n — 1} an arbitrary subset I consisting of the elements

i1<i2<"'<i3



The group of diffeomorphisms of the half-line 859

(both the set {1,...,n — 1} itself and the empty set are allowed as I). We consider
next the polyhedron
I) = Q(a,...,a, |

in R2(s+1) given by the inequalities

0<u <ay,

Qi) <V <Upp1 <a41 Vk=1,2,...,5,

An < Vgy1.

With almost every point X € Cant(R, ) there is associated a point in one of the

2"~! polyhedra Q(A | I), namely, the end-points of the intervals (1.1) are associated

with X. Thus, to define the probability measures xa on Cant(R+) it suffices to
write out their projections on all possible sets

R4):= J Q(A;\?

Ic{1,2,..,n-1}

1.1. Drawmg lots for Cantor sets. Let 0 < o < 1. We define the probability
measure s, on Cant(R,).

For a > 0 the end-points of the complementary interval (u,v) of X € Cant(R. )
covering a are distributed according to the ‘generalized arcsine law’

Sln T du d'U
T ’ ul—a(v — u)1+a ’ u<a<v. (12)
The measure on Q(A I corresponding to the measure », on Cant(R, ) has the
form
s+1 s+1
<. ) H (uj —Vj— 1);1"0(17;:'- - 'u,j)l-i'a . (13)

(where vg is understood to be 0) This equality determines s, on Cant(R.).
Here, of course, there arise questions about whether this definition is unambig-

uous. In §2 we shall give another description of s, less convenient to work with but

more transparent in certain respects. For the present we only make some remarks.

Remark. The formula (1.2) for the distribution of the end-points of a random inter-
val (or of ‘a jump short’ and ‘a jump over’) is actually very natural (see Dynkin’s
paper [2] and Feller’s discussion of it in §XIV.3 of [11]).

Remark. The meaning of the formula (1.3) is as follows. Let the points a; < as <

- be given, and let (u;,v;) be the complementary interval containing a;. Its end-
points are distributed according to the law (1.2). The interval (u;,v;) may cover
some of the points ag,as,...; let a; be the first of the points not covered. Assume
that (ug,v;) is the 1nterva.l covermg a;. Then the numbers

'u.=u2—v1, 'U=’Uz~—’01

are also distributed according to the law (1.2). In other words, after the interval
(u1,v1) is ‘drawn’, the ‘drawing’ of the interval containing a; is carried out like the
drawing of the interval (u;,v;), except that we regard v; as the initial point of the
half-line instead of 0. For a thorough treatment of the case a = 1/2 see §§47, 48 in
Lévy’s book [7], and also [5].
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1.2. The group Diff° (R+). We denote by Diff°(R, ) the group of diffeomorphisms p
of the half-line u > 0 satisfying the conditions

(1) the second derivative of p is continuous,
(2) the limit
lim p'(u)

u—+o00

exists (denote it by p'(c0)) and is finite and non-zero,

(3)
/w pll (u)
o |P(u)]

(in other words, the function In '(u) has bounded variation).

Remark. The conditions (2) a.nd“(3) mean that the bdiffeomborphism p does not
differ greatly from a linear function au + B at infinity, so the two conditions can be
regarded as a kind of requirement that p be differentiable at the point u = co. We

note also that if p (u) has constant sign for sufficiently large u, then the condition
(3) follows from (2). Indeed,

/000 % du = Inp'(0c0) — Inp'(C).

1.3. The theorem on quasi-invariance.

Theorem. Let p € Diff°(R,). Then the map

Cant(Ry) — Cant(R, )

determined by the diffeomorphism p constitutes a measure o on Cant(R,) that is
quasi-invariant, and the Radon-Nikodym derivative of this transformation is given
by the formula ' B

_ p'(o0) P (u5) (v — u;)\ e
Ta(p, X) = 7'(0) H( p(v;) — p(u,) ) (14

where the product is over all intervals complementary to the set X € Cant(R,)
This product converges absolutely, and T e

p"(u)
P (u)

| Inva(p, X)| < (1 + @) /0°°

Jor almost all X € Cant(R )

1.4. Representations and the problem of constructing the enveloping
semigroup. For any a € (0,1) and any s € R we define a unitary representation
Pa,s of the group Diff’(R, ) on L*(Cant(R, ), »,) by the formula

Pa,s(P) F(X) = f(pv-‘X,,)'ya(p,X‘):l/?Ha
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Nothing is known at present about the properties of these representations. In
connection with the representations p, , I think it is a very interesting problem to
find the enveloping semigroup of the group Diff’(R,) in the sense of Olshanskif

(see [18], [17]). In our case the problem can be reformulated as follows.
We consider the space

Z = Cant(Ry) x Cant(R;) x Ry..
With each element p € Diff’(R, ) we associate the map

6{): Cant(R,) - Z
defined by the formula
00 (X) = (X,p" X,7a(p, X)).

Let h, be the image of the measure ¥4 under the map 0,(,‘?) . We have obtained
a family h, of probability measures ’ox}"_ Z indexed by the diffeomorphisms p in
Diff’(Ry). It is required to describe the closure Diff’(Ry) of the family hp m
the space of probability measures on Z with respect to weak convergence (see [9]).
According to [9], Diff°(R, ) is equipped with a natural operation of multiplication

that extends the usual multiplication in Diff®(R. ).

1.5. The local time. For almost every (with respect to #a) X € Cant(R,) we
now define a canonical measure Ax on the set X, called the local time on X. We
can also assume that Ax is a singular measure on R+ with support X.

Let b > a > 0. Then the measure Ax of the closed interval [a, b] is defined to be

1 3 a—1 !
where ¥’ is the sum of the lengths of the complementary intervals (a;, 4;) C [a, 8]
such that 8; — a; < e. o ’ S ‘
The same quantity Ax ([a, b]) is equal to
1

'&- ll_I)I(l) e* . Z", (16)
€

where X" is the number of complementary intervals (aj,B8;) C [a,b] such that
Bj —aj > €. : : =

Of course, we must show that the limits here exist, and that they coincide (see
§2.5 below). : : S

Let a be fixed, and let X € Cant(R;) and p € Diff’(R, ). Then on the set p- X
we have two measures: first, the local time Ap.x of the set p- X, and second, the
image p - Ax of the local time Ax under the map p. It follows from the formulae
(1.5) and (1.6) that A,.x is absolutely continuous with respect to P Ax, and the
density is equal to

pl(u)™™

Remark. For o= 1/2 this local time is the usual local time of Lévy.

Remark. It seems likely that the measures s, are equivalent to the measures arising
in the consideration of the zero level sets for diffusions of fractional order (see the
introduction to the paper). ' ' : i SR
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§ 2. Stable processes and random Cantor sets

2.1. Poisson measures. Let L be a space with a continuous o-finite measure A,
let © be the space of all unordered countable subsets of L, and let A C L be a
measurable subset of finite measure. Denote by (A, n) the set of all points w €
such that w N A consists of n points. We define a probability measure ¢ on by
the following rule: ‘

(1) o(2(4,n)) = 2AL e-2A); B

(2) if Ay,..., A are disjoint sets of finite measure, then the events Q(A;,n;) are
independent, that is,

k k
U(n Q(Aj,ﬂj)) = H a(Q(Aj,nj))
i=1 j=1

It is well known ([6], [1]) that this definition is unambiguous (as follows from the
Kolmogorov theorem on projective limits). The measure obtained in this way on
 is called a Poisson measure. ' ‘ ‘

Remark. ﬁFdr'a.ny measurable subs.ety B C A of inﬁnite measure the set of allwe 0
with w N B infinite has full measure in Q. If B C A has finite measure, then wN B
is finite with probability 1. ‘ o

2.2. Random discrete measures. Denote by M(R,) the set of all positive
discrete measures on R,.. Any such measure can be represented as a sum

h= Eu,-&t,.,

where d; denotes the unit measure on R, concentrated at a point ¢t € R, .

We fix an a such that 0 < a < 1, and construct a probability measure p,
on the space M(R,) according to the following rule. We consider the quadrant
L =Ry x Ry with coordinates (¢,u), and the measure A on L having density

1

with respect to Lebesgue measure dt du on L. Let Q be the set of countable subsets
of L equipped with the Poisson measure o constructed in the preceding subsection.
With each point h = Y~ u;é;, € M(R,) we associate the countable subset w €
consisting of the points of the form (¢;,u;). Thus, we have obtained a bijection
2 =+ M(R4), and to the measure o on § there corresponds a measure p, on

M(Ry)
Remark. For very small intervals (t,t + At) and (u,u + Au) it is easy to show that
the mean number of terms in the sum k = ¥ u;4;, such that '

t<t; <t+At, u<uj<u+Au

is approximately equal to
P AtAu

ua+1

(this property is usually taken as the definition of the measure u,)
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2.3. Remarks about the measures Ba. The remark at the end of subsection
2.1 has the following two consequences (A) and (B). : :

(A) For given v; > v; > 0 the Ha-probability is 1 that the expression 4 = Y u;d;,
contains infinitely many terms such that V1 < u4; < v2. In particular, Yuj = oé)
with probability 1. : ' T

(B) For given s > 3; > 0 the Ka-probability is 1 that the expression h = > u;b,
contains infinitely many terms such that $1 < tj < 83. In particular, th:a
Ko-probability is 1 that the points t; are dense on the half-line ¢ > 0.

The following three statements are also very simple and are well known.

(C).For given s3 > s; > 0 the quantity ‘ :

Jie<ti<s,

is finite with probability 1; its mean value is infinite.
(D) Let 33 > s; > 0. We consider the quantity

VO R ’ . ; 13
Jiuj<e, 81<t; <8z

Then for almost all A ]
lim (e (h)
1-aeato0el-a

=82 w81 o v oguy it
(E) Let s2 > s; > 0, and let N, be the numbér, of terms in the sum h= Zu,-&t ;
such that u; > ¢ and s; < t; < s5. Then for almost all A o

1 .
— hrz_xo E*N, =593 — 84
Q E—

2.4. Measures on the space of monotone functions. Let & € M(Ry). We

consider the function
8
wn(s) =/0 h= Z u;.

7:0<t; <8

By the property (C) in subsection 1.3, the probability is 1 that this integral
is finite for all s. It is also obvious that op(s) is monotonically increasing, and
¢r.(0) = 0 for almost all h. It is clear that the measure h can be uniquely recovered
from the function oy,.

We remark further that ¢ is a jump function, that is,

on(a) =) (o(t; +0) — p(t; - 0))

for any point of continuity a of the function ¢, where the summation is over all
the points ¢; of discontinuity of ¢ with ¢; < a.

Let J(R4+) be the space of all monotonically increasing jump functions f on the
half-line ¢ > 0 such that f(0) = 0. The map h — ¢}, carries M(R, ) into J(R.);
let v, be the image of the measure p, under this map.
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- The measure v, on J(R,) gives.one of the stable random- processes (see, for
example, [7]). AP , R - L
- The statements (A)—(E) in subsection 2.3 are easily carried over to the langiage
of monotone functions. For instance, (B) means that the points of discontinuity of
a function f € J(Ry) (for v,-almost all functions f)aredensein Ry. . -
Let ¢ € R. We consider the random variable , ., 4 (i - e criw oo (E

1a(f) = f(a), fe€JIJRy)

(with probability 1 the point a is not a point of discontinuity of f, and hence f(a)
is well defined). Let r,(u) be the distribution function of n,. With the exception
of the case a = 1/2 there is no nice analyti¢ expression for the function Ta(u). The
properties of the ‘special functions’ r,(u) have been extensively studied (see, for
example, [3], and [8], §§5.7-5.10). The characteristic function of the distribution
Ta(u) is given by the formula " ‘¢ i o ST e T e g e

5

Piikesl

w(-a(2)7), >0

Here the branch of the function (z/?)> in the upper half-plane is chosen so that
(z/3)* is real for £ =ir, 7 > 0. o L

2.5. Measures on the space of Cantor sets. Let f € J(R}). We consider
the graph Graph(f) of f, understood in the following sense. By definition, the set
Graph(f) contains all the points of the form (¢, f(t)), where ¢ is a point of continuity
of f, along with all the points of the form: = - R S

(5, f(t; — 0)), (t;, f(t; +0)),

where the t; are the points of discontinuity of f.

With each function f € J(R,) we associate the projection Q; of Graph(f) on
the vertical semiaxis. It is easy to see that Q 7 is closed and does not have isolated
points, and it is also easy to see that Q has Lebesgue measure zero (since f is a
jump function). B

Thus, f = Qy is a map J(R;) — Cant(R;). We note further that Q; is
equipped with a canonical measure, namely, the image of Lebesgue measure on R,
under the map f: Ry > Ry, This measure is the local time X of the set Qy; the
definitions (1.5) and (1.6) of the local time are reformulations of the expressions
(D)—(E) in subsection 2.3. _ ' o

Obviously, a function f € J(R4) is uniquely determined by the set Q s and
by the local time A on Q. Indged, let u be a point of the vertical axis, and let
I(u) == A([0,u]). Then ' =~~~
u = f(l(u)).

On the other hand, as we have just seen,; the local time on @y is uniquely
determined by Q; itself for almost all f. Therefore, the map f — Q £ is an injective
(up to a set of measure 0 in J(Ry)) map J(R;) — Cant(Ry). We denote by o
the measure on Cant(R;) that is the image of v, under the map f ~ Q. ‘
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(a) The first factor obviously tends to

o , 4 ()
(b) The second factor. We take its logarithm:

[T 201 2|7 (vj—1) - Inp'(u;)|

P (uj). R
o Y " w)] e
§§:Lj_l m"@wa SRR

[P, [ [P
gZ/ oI o

Let us consider the set
Y'(A4) = [vo, v} U.[ur, ua] U - U [0y41, 00)

The set Y'(A) decreases as the set’ A increases in size, and the intersection of
the sets Y (A) is a Cantor set of measure 0. Therefore, since the function |p”/p'| is
integrable and the Lebesgue integral is absolutely continuous, the expression

pn (w)

/Y(A) p'(w)

tends to 0 as A increases in size. Thus, the second factor in (3.1) tends to 1.
(c) The third factor. Again we pass to logarithms:

‘L “u] _ vj—l .

Pl(wj—1)(uj —vjt1) | _ x|y g2 b
In < Inp'(v;) +In —|. 3.3
e on T B DS L { R m s eyt SRR
We next choose §;_; € (vj—1,u;) such that
u;) — p(vj-1)
p( J) p( J 1) =P’(fj—1)<
Uj — V-1
Then the expression (3.3) can be rewritten in the form
Ei—1] uj |
, , =P (w) 7P (w)
e R M AR i EA M I -~

and this expression tends to 0 as A increases in size for the same reasons as (3.2).

(d) The fourth factor. Here new factors are adjoined to the product as A is
augmented, but the factors that were present before remain unchanged. We show
that the product stays uniformly bounded as A increases in size:

1550 ) < S - w B2

'Uj — Uj

< ) [inp'(u;) —np' ()],

Inp'(u;) -1

where §; € (u;,v;).
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Accordingly, we have constructed a family of measures o on Cant(R,
depends on the parameter o € (0,1).

It remains to bring the picture described into correspondence with subsection 1.1.
Let f € J(R,). For a > 0 let ¢ be the moment of time such that

ft—0)<a< f(t+0)

The problem is to compute the joint distribution of f(t=0) and f(t+ 0) for a
given value of a. The solution was obtained by Dynkin in [2], and this solution is
given by the formula (1.2). Since the random process (J(R4),v,) has the strong
Markov property, the formula (1.3) is a consequence of (1.2) (see, for example, [10],

“haat s

b

§ 3. Proof of the theorem

Let the set A = {ai,...,a,} be the same as in subsections 10 and 1.1, and let
p(A) be the set {p(a1);...,p(a,)}. The map Cant(R.) — Cant(R,.) given by the
diffeomorphism p induces a map of the polyhedra = | TR

R 75 R AP

Gt eyt ..

QUAIT) + Q(p(4) | I)

given by the formula y
uj = p(ug), v p(v;).

Furthermore, the Radon—Nikodym derivative is given by the formula

[ﬁ o dp(uy)dp(v;) L ]
i1 () = p(vi-1))~*(p(v;) — p(u;))+e]

ﬁ de dvj EEE SRR O B
(uj — vj—1)1 = (v; — uy)ite

Tl oo (e 22e) ™ (=)™

Jj=1

We rewrite this expression in the form

P'(Us41). [ P'(vo)p'(v1) - - P’ (vs) ]“
P(vo) [ P(u1)p'(uz): - p'(ussr)

T (P ) (s =) VT T (P ) (g = )\ 3.1
" H( p(uj) = p(vj-1) ) H( p(v;) — p(u;) ) (3.1)

j=1 Jj=1

where vg = 0. «
We now begin to augment the finite set A in such a way that a countable dense

subset of the half-line is obtained in the limit. We consider how the four factors in
the product (3.1) behave. ‘
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(a) The first factor obviously tends to

L o)
; . 154;:{« 3. p’(O) ’& :
(b) The second factor. We take its logarithm:

In H pp(’i(J;;;l < D[P (vj-1) - Inp/(uj)|
“ | p(w)
T,
<%/

uj

vale 5]

Let us consider the set
Y(A) = [vo,w1] U [vy,u2]U U [vs+1, 00).

The set Y (A) decreases as the set’ A 'increases in sizé, and the intersection of
the sets Y(A) is a Cantor set of measure 0. Therefore, since the function Ip" /9’| is
integrable and the Lebesgue integral is absolutely continuous, the expression

’/Y(A)

tends to 0 as A increases in size. Thus, the second factor in (3.1) tends to 1.
(c) The third factor. Again we pass to logarithms:

p"(w)
p'(w)

CU — Vg
p(u;) — p(vj-1)

o) = a7 S 2|

We next choose §;_; € (vj—1,u;) such that

p(uj)-—p(v._l)'— -
) 'uj:—vi—‘]l;z =p'(§-1)

Then the expression (3.3) can be rewritten in the form
/1
P'(w) ' do,

Ei-1| ! ()
lenpl(vj—l) - lnp’(fj—1)| < Z/v I;’((u))) dw < Z/ p'(w)

Vj-1
and this expression tends to 0 as A increases in size for the same reasons as (3.2).
(d) The fourth factor. Here new factors are adjoined to the product as A is
augmented, but the factors that were present before remain unchanged. We show
that the product stays uniformly bounded as A increases in size:

P (u)(v; —u;)\’ L P(vs) = p(u;)
50 %) <%

'Uj —'U,j

< Slnp(w) - g (&),

Uuj

Inp'(u;) -1

where ¢; € (uj,v,-)
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This quantity is bounded above by the variation of the function In p' (w), that is,
p'(w)

by the integral
[o o]
A P'(w)

We emphasize that this upper bound is independent of the choice of the sequence
of sets A and of the point X € Cant(R,.). Thus, we have shown that the family of
functions (3.1) converges pointwise to the desired expression (1.4) as A increases in
size.

Moreover, the functions (3.1) remain uniformly bounded (the moduli of the log-
arithms of the second and third factors are bounded above by the same integral
(3.4)). We can now use the Lebesgue dominated convergence theorem. As a result
we get that the family of functions (3.1) converges on Cant(R, ) to (1.4) in the L!-
sense with respect to the measure s, and this concludes the proof of the theorem.

dw : (3.4)
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