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Supercomplete Bases in the Space of Symmetric Functions*

Yu. A. Neretin UDC 517.9

As is known, various inner products are of importance in the theory of symmetric functions (3]. In
particular, in Macdonald’s book (3], a two-parameter family of inner products is considered (this family
includes, as special cases, the classical inner product and the Hall-Littlewood and Jack inner products).
A more general family of inner products that depends on countably many parameters was introduced by
Kerov in {2]. In all these cases, the products px of the Newton sums form an orthogonal basis, and the
various inner products of this form differ in the normalization of the basis p, .

It was noted in [6] that, in connection with the Poisson measures, in the space of symmetric functions
there arise inner products that differ from the Kerov products. In this case, the functions p, can be
nonorthogonal, and the simplest orthogonal (nonnormalized) basis is formed by the monomial symmetric
functions m, (the symmetrized monomials).

In all these situations, there exists a natural unitary isomorphism between the space Symm of symmetric
functions and the boson Fock space (for a discussion of this isomorphism in the case of the classical inner
product, see [8]). This raises the question of transferring the natural structures from the boson Fock space
to the space Symm and vice versa.

The main objective of the paper is to find out what are the images of the Gaussian vectors of the boson
Fock space in the space Symm. The answer to this question is given by Theorem 1 in the case of the
Kerov inner products and by formula (21) in the situation related to the Poisson measures.

We solve, in fact, a more general problem and consider a family of inner products (+, )k in Symm
that contains all the above inner products. These inner products are parametrized by a sequence w =
(w1, w, ...) of positive numbers and by a formal series K(h) =1+ 3" >0 % h? and are defined as follows.

We write
Volon, 2, )= [[5( T anst)
j “ k>0
set
(Ya, \pﬂ>K.u = exp (Zajﬂ—JwJ) )

k>0
and thus define uniquely an inner product in Symm. The Kerov inner products are obtained here for
K(h) = exp(h) (in particular, the classical case corresponds to w; = j), and K(h) =1+ h relates to the
Poisson measures.

In this more general situation, the formula for the Gaussian vectors is given by Theorems 2 and 2'.
Hence, in the space Symm (more exactly, in its Hilbert completion), we obtain some supercomplete bases
that consist of Gaussian vectors. Recall that by an supercomplete basis in a Hilbert space we mean a total
system of vectors that depends holomorphically on a parameter (ranging over a complex variety), and
admits an explicit formula for the pairwise inner products. As is known, it is often convenient to develop
the analysis in Hilbert spaces using supercomplete bases (or, which is the same, “systems of coherent
states”) instead of ordinary orthogonal bases.

The question arises as to how the supercomplete bases can be expanded with respect to the various
standard bases in Symm. Since there are numerous standard bases (3], we present only some of these
expansions (Theorem 3).

Finally, in §3 we discuss the space ASymm of skew-symmetric functions and the problem of transferring
the Gaussian fermion vectors to the spaces ASymm and Symm.
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§1. Multiplicative Boson-Symmetric Correspondences

1.1. The spaces l3(w) and I3(w). Let us choose a sequence
W= (wl,W2,.. )

of positive numbers. Denote by I3(w) the space of sequences a = (o, a3,

) ) satisfying the condition
2 laj]?w; < co. The inner product in l3(w) is given by the formula

(a,B) = Za,ﬁ,w,

Denote by {$(w) the space of sequences a = (ay, a3, ...) satisfying the condition ¥, lej [#w; < oo.
inner product in [3(w) is given by the formula

(@, =3 %P

=1 3

It is natural to regard l3(w) as the dual space of l2(w), where the pairing [3(w) X l3(w) = C is given by
the formula {a, 8} =Y o;B;.

1.2. The spaces H3(w). Let a sequence w be of at most exponential growth, i.e., let there exist
numbers C and o such that w; < Cexp(oj) for all j. Suppose that a € l(w). Then the series

f(2) =) (1)
3>0

is convergent in the circle |z|] < p := exp(—0o). Here we have f(0) = 0. Thus, the space [?(w) is
interpreted as the Hilbert space of the functions (1), which are holomorphic in the circle |z| < p, that is
endowed with the inner product

< Zajzj, Zﬂjzj> = Z a;Biw; .
i>0 >0 >0
We denote this space by H?(w).
The reproducing kernel of the space H?(w) is expressed by the formula
K(z,u)=) —. (2)
i>o 7

This means that, for an arbitrary function f € H?(w) and any a belonging to the circle of convergence,
the following reproducing property holds:

(f(2), K(z,0))m2(w) = f(a)
Example 1. Let w; = j. Then
z z z dzdz
(F(2), 9(2)) = //Mdf( Y26

and K(z,u) = —In(1 — 2%)

Example 2. Let w; =j(1-¢7)/(1 - t7) for some ¢, 0 <g<1,and t, 0 <t <1 Then the inner
product in H?(w) is given by the formula

(F(2),0(2) = o= Z ] T 3
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and the reproducing kernel of the space H?(w) is

1 - zatg™ |
K(z,u);ln“l- - 4
"Zol—zuq"J (4)

Formula (3) for the inner product in the space of holomorphic functions is somewhat unusual. For some
other inner products of a similar type, see {7].

1.3. Boson Fock space. Let H be a Hilbert space. A boson Fock space F(H) is a Hilbert space in

which a system of vectors (an “supercomplete basis”) ®, indexed by the vectors h € H is chosen such
that

(a) (Bn, Br)riy = exp((K, h)H);
(b) the linear span of the vectors @ is dense in F(H).
With each vector g € F(l2(w)) we associate a function f = f, on [$(w) that depends holomorphically

on z = (z1, 22, ...) according to the formula
falz1, 22, - 2) =@ Py fun 22 fwa, .. ) ) Flla () - (5)

For example, to an element ®,, 4,,...) of the supercomplete basis, the function exp (3> 2;@;) corresponds.
We identify the boson Fock space F(l2(w)) with the space of holomorphic functions f,(z1, 22,

...) on
3(w).
.. form an orthogonal basis i1n F(l2(w)), and we have
k.
EoN L | (%) ®)
1.4. The space of symmetric functions. Let z,,z,,... be a countable set of formal variables.
By a symmetric formal series we mean a formal series in the variables z;,z,,... that is not changed

under arbitrary permutations of the variables. A symmetric polynomial (a “symmetric function” in the
sense of [3]) is a symmetric formal series such that the degrees of the monomials x’f‘ 2'2" ... it involves
are bounded; note that the number of terms in a (nonconstant) symmetric polynomial is infinite. We
denote the space of symmetric polynomials by Symm or by Symm (z) if it is important to stress that the
polynomials in question are symmetric with respect to the variables z,, z,, ... .

Recall the following standard notation (see [3, §1.2]):

Pk =Pk(1') = 1:'1‘ +:I:’2c + ..., m,\(z:) = m,\l...,\_(:c) = Zz;ll ‘e .z;:’

where A; > 0. In the second sum, the monomial x’l\‘zé’ ... and all (different) monomials that can

be obtained from it by permutations of factors are added together. It is convenient to assume that
A1> A2,

1.5. Boson-symmetric correspondences. Let w = (w;,wa,...) be a chosen sequence. Following
Kerov (2], we introduce an inner product (-, ). in the space Symm by means of the condition that the
vectors p5! ---pke form an orthogonal basis and

k
e -+ per il = [T sty - (7)

Remark. (a) The classical inner product in Symm |3, §I_.4] corresponds to the sequence w; = j'.
(b) For the inner products corresponding to w; = j(1 —¢’)/(1 - ¢’) (in Sec. 1.2), see (3, §§IIL.5, VL.6].

Consider the completion Symm,, of the space Symm with respect to the norm defined by the inner
product (-, -),. We introduce the unitary operator I: F(lz(w)) — Symm,, under which to any holo-
morphic function f(z1,z22,...) € F(l2(w)) (where z = (21, 23, ...) € {3(w)) the formal symmetric series
f(p1(z), p2(z),...) corresponds. In other words, we simply perform the substitution z; = p;(z) (by
formulas (6)-(7), this operator is, in fact, unitary).

For example, to an element

exp (Zan:n> € F(l2(w))
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of the supercomplete basis, the symmetric formal series

exp ( Zanp,,(:c)) = Hexp (Za,@}‘) € Symm,,

corresponds. |

1.6. Gaussian vectors. The supercomplete basis ®, € F(l3(w)) can be included in a broader

supercomplete basis consisting of the Gaussian vectors b[Q|r]. These vectors (or functions on I3(w)) are
defined by the formula

1
{5 ZQijzizj + Z szj} € F(l2(w)), (8)
where g;; = gji. Denote by 2 the diagonal matrix with diagonal elements w; , wz,.... A vector b[Q|r]
is contained in F(I2(2)) if and only if the following conditions hold:
(i) re3(w),
(i) R:=Q~1/2QQ~'/2 i5 a Hilbert-Schmidt matrix (that is, the trace of the matrix R is finite),

(iii) the norm of the matrix R (in the sense of the operator norm in the (ordinary) space i,) is less than
unity.

The inner products of the vectors b[Q|r] (provided that they actually belong to F(lz(w))) can readily be
calculated; for instance, see [5, §6.2].

However, from the viewpoint of the present paper, it is more natural to interpret expression (8) as a
formal series, disregarding the above conditions (i)-(iii).
Let us find out what symmetric functions correspond to the Gaussian vectors b[Q|r].

Theorem 1. The element of Symm,, that corresponds to a vector b[Q|r] is given by the formula
m, n 1 n
Moo ( 3 amarss) [Tew (3 (m+; 3 ten)et)
i<j m,n>0 i n>0 a+f=n

The proof is obvious. The symmetric formal series corresponding to b[Q|r] is
1
€xp { 2 Z GmnPm(T) Pn(z) + Z rnpn(x)}

1
= exp {3 Y amalal + 27+ )(ah 403 o) + Soralal 425+
The further transformations are quite clear.

Remark. Thus, to the Gaussian formal series b[Q|r] of the form (8) precisely all possible products of

the form
[5G, zj) - [[ T(=s)
i>j i
correspond, where the formal series S and T have the form

S(zs y)=1+ Z SmnT"Y",  Smn = Snm, T(iB) =1+ 2 taz™
m>0,n>0 n>0

1.7. Example: the Virasoro algebra and the images of the Gaussian vectors. Let wj =j.
Choose a, 8 € C. Let us consider the representations of the Virasoro algebra in the Fock space F(H?(w))
by means of the operators L, (where n € Z) that are given by the following standard formulas (e.g.,
see [4, 5)):

L, = Z Znikk 8—2; + % Z Zm2k + (@ +1ifn)z, for n >0, 9)
k>0 k+m=n
- k>0, m>0
. 9 1 2 2
Ly:=L*, for k<0, L0=szka—zk+§(a +p%). (10)
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In this case, the relation

nd—n
sa 1 +128%)6,,,. 0

algebra (for explicit formulas, see [4]). This group acts in the boson Fock space
Symm,, as well. The orbit of the vector f(z) =1 in the boson Fo
Diff consists of Gaussian vectors; explicit formulas for these vecto
the orbit of the (symmetric) function 1 under the action of the

presented construction and the one in (4, §4] shows that the orbit
the form

» and hence in the Space
ck space under the action of the group
rs were derived in [4). We shall describe
group Diff. The consideration of the
consists of symmetric formal series of

Zo(z) =[] (\9(22 - iﬁx") ) RILC Rl | (m)ﬁ

i>j ¢
where 6(z) ranges over the functions of the form

0(2) = 2+ 052% + 0523 + . ..
that are one-sheeted in the circle [z| <1+¢ (where ¢ = e(6) > 0).

1.8. Operators. We consider the boson Fock spaces F(l3(w)) and F(ly(v)

) and the formal series
(the kernel)

L(Z, u) = Z lfl‘;’:z;‘ Z;’ .. .ﬁljlﬁzj’ cen
Set I,(u) := L(z, u). Furthermore, let I F(l3(w)) — F(l3(v)) be the operator defined by

Zf(z) = (fa lz)F(lz(u)) .

Recall (e.g., see [5, §6.1]) that any bounded operator from F(I5(w)) into F(l2(v)) can, in fact, be repre-
sented in this form.

We now describe how the corresponding operator

the formula

2 Symm,(y) = Symm,(z)

can be defined. Consider a formal series Az, 22, ..., 4, Y2,...) (a bisymmetric kernel) that is symmet-

ric with respect to the set of variables z,,z,,... and also with respect to the set of variables y;,y,, ...
and is given by the formula

L(=,9) = L(p1(@), p2(2), - .. p1(y), paly), ...) = DB pi@)ipa(z). .. py @Yipa () ... .

In this case, we have

—

-‘?g(z) = (g, _?(z, y))Symmw(y) .

1.9. Gaussian operators. A Gaussian operator from F(ly(w)) to F(l3(v)) is an operator with a
kernel of the form

1 - K L ¢ 1 _ 1 —
L(z,u):exp{i(z u)(L‘ M) (;t)}=exp{§Zk,~jzizj+Zlijz,‘uj+EZmijuiuj}

The corresponding bisymmetric kernel Lz, y) is

I exo { Z k.-jzf,xf,} gexp { ;:.-,-x:',yg} T exp { Zm,.,.y;yg}

<[Tow{; ko] [Texs (i S miit )
a i,j a 1,7
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1.10. Example: the bisymmetric kernel of the identity operator. The kernel of the identity
operator in F(l3(w)) is given by the formula

L(z,u):exp{zi:—?}

Note that the argument of the exponential function is the reproducing kernel of the space H%(w) (see
Sec. 1.2). The corresponding bisymmetric kernel & is

-Z’(x,y)=]_[exp{2§'—§} a1

w
a,f !

In particular, in the classical case w; = j

L(z,y) = H(l - xayﬂ)—l
a,p

and, by (4), for wj = j(1 — ¢7)/(1 — t7) we have

_ 1 - z,yptq™
a,An>0 adp

- We can now compare what has been said with some known theorems. Given an inner product (+,+)in
the space Symm such that the subspaces of homogeneous polynomials are pairwise orthogonal, consider a

homogeneous orthonormal basis u¢(z) in the space Symm. The reproducing kernel for the inner product
(+, ) is defined by the formula

> ug(z)ue(y) -
3

We can readily see that the operator in Symm,, that corresponds to the bisymmetric kernel (14) is exactly
the identity operator (in particular, this means that expression (14) does not depend on the choice of the
basis ug). Therefore, (11)—(13) are formulas for the reproducing kernels. Formula (12) is classical [3, I.4].
Formula (13) belongs to Macdonald [3, V1.2] (also see (3, §IIL.4}; the formula for the reproducing kernel

in the case of the Jack polynomials can be derived in a similar way (see [3, VI.10])). Formula (11) was
discovered by Kerov [2].

§2. Nonmultiplicative Boson-Symmetric Correspondences
2.1. The bases q(z). Choose a formal series
K(h)=1+) b, (15)
>0
where s; # 0. Consider the symmetric formal series
va(a) = [[K( L osed (16)
3 >0
where the product is taken over all variables z¢ = 21, z3,....
Let us expand the expression ¥, in a series with respect to the variables ay, as, .

Ya(z)= Y af'el®  dnyn,. .(7)

n1,n2,

We can readily see that the symmetric polynomials qn, n,,..(7) = q,’flm' () form a homogeneous basis
in Symm.
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Example. If K(h) = exp(h), then

Yl)
pv
Qny,na, (I) = H .

|
nj.

If K(h) =1+ h (see Sec. 2.3), then the basis q consists of the monomial symmetric functions m, ; see
Sec. 1.4. ,

2.2. Boson-symmetric correspondences. Let us choose a formal series K(z) (see (15)) and a

sequence w (see 1.1). Introduce the inner product (-, -)k,» in Symm by means of the condition that
the polynomials qfl na,...(z) form an orthogonal basis and
n;

W
lan,.n,. 12 =1] =2

A
n;:

We also give an equivalent (but more convenient) definition of the inner product (-, :)k,. by introducing
it on the elements of the supercomplete basis ¥, in the following way: '

Sesrt) [16(Taet)) =ew(Tebe) o

>0 j>o0

/

(\I’m ‘I’B)K,u = <1;IK&

Denote by Symmy ,, the completion of the space Symm with respect to this inner product (it is clear
that the elements of Symmy , can be realized as formal symmetric series).

A unitary isomorphism between F(l3(w)) and Symmy , is established as follows: with an element
®, € F(la(w)) (see 1.3) we associate the element ¥, € Symmy ,. By condition (a) in Sec. 1.3 and
formula (17), this correspondence defines, in fact, a unitary operator.

Consider an arbitrary function

n;
Z:
f(zliz21' ):Zcﬂl,n;, ﬂJ_J!

in F(l(w)). We can readily see that the symmetric formal series corresponding to this function is

F(z) =) Cnyna,ng,ms,. (D)

2.3. Example: K(h) =1+ h (see [6]). Consider a measure  on C* = C\ 0 that is invariant with
respect to the rotations. We assume that p satisfies the following condition: all the expressions

o= [P, =12, (18)

are finite. In particular, the measure of any disk |z| > ¢ is finite (however, the measure of the entire space
C* can be infinite).

Denote by 2 the set of all at most countable subsets of C*. Let us introduce the Poisson measure

v on €. Recall its definition. Suppose that M,..., M are pairwise disjoint subsets of finite measure
in C*. Then the probability that M; contains exactly p; points (for all j) is
p(M;)Ps
I1 [————7, exp (—u(M;))|- (19)
i Pj:
We now state this assertion in a somewhat different manner. Consider the set AMy, ..., Mc;pr,....0

consisting of all ¢ = {¢1,C2,- ..} € Q such that the intersection of { and M; is comprised of exactly
j points. Then the measure v([My, ..., Mi;p1,...,pk]) of this set is given by formula (19). If
p(C*) < 0o, then the measure v is supported by the set of finite subsets in C*. If u(C*) = oo, then the
support of v is the space of sequences convergent to 0.

With a symmetric polynomial f(zi,z2,.. .) we associate an ordinary function (defined almost every-
where) on Q according to the following rule. Let ¢ = {(1,¢2,-- .} € . Then the function in question
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is obtained by the substitution z1 = (1, z2 = (2, .... The resulting series are, in fact, convergent in
L3(Q,v).

Thus, the space of symmetric polynomials can be embedded in the space L?(R2, v), and hence an inner
product is induced on the space Symm (note that Symm is not dense in L?). It turns out that this inner
product corresponds to the function K(h) =1+ h and the sequence w; in formula (18).

2.4. The images of the Gaussian vectors. By a graph we mean a nonoriented graph with finitely
many edges (the set of vertices is assumed to be infinite), and we admit multiple edges (i.e., there can
be several edges from one vertex to another) and loops (i.e., edges from a vertex to itself). By a rigged
graph we mean a graph whose vertices are some variables z;, r,,... and to each of whose vertices zi, a

nonnegative integer w; is assigned (we call it a makeweight), and all makeweights w;, except for finitely
many of them, must be equal to 0.

For a rigged graph I" we introduce the following notation:

e s;; is the number of edges from z; to z;; in particular, s;; is the number of loops with the beginning
and end at z;;

e m; (the weight of a vertex) is the number of edges issuing from z; plus the makeweight w;; in other
words, m; = w; + 284 + Zj;éi Sij;

e edge(T") is the set of edges of the graph T';

e u(v) and v(y) are the endpoints of an edge ~y.

We next consider a Gaussian vector b[Q|r] € F(l3(w)). Set

Qz,y) = Zq‘jr‘zﬂ- r(z) = erzj.

Theorem 2. To the vector b[Q|r] € F(l2(w)) there corresponds an element BX[Q|r] of the space
Symmy , that is defined by the formula

m.' -~ _
Z { [Lis; 84! H:[&'i! 20wyl H ¥m, H Q(Zu(y) Tu(y)) - Hr(x.)‘”'}

r ’ v€edge(T') i

where the summation extends over all rigged graphs T".

The factorial coefficient in this formula can be deleted by means of a linguistic transformation that is
performed in Secs. 2.5-2.6.

Example. Let K(h) =1+ h. Denote by % the set of all partitions of the set 1,2,3,... of positive
integers into two- and one-point subsets among which there are only finitely many two-point subsets. Then
relation (20) can be rewritten in the form

Z( [ Q@aze)- [] G +F(za)))

SeR * (a,B)€S {s}es

where the summation extends over all partitions of the set of positive integers (or, equivalently, over all
partitions of the set of variables z;, z,, ...) satisfying the above condition and {a, 8} and o ranges over
all two-point and one-point subsets of the partition S € £, respectively.

2.5. Tangles. Let N be a countable set. In what follows, N will coincide with the set N of positive
integers or with the set 2 of symmetric variables z;, z3,.... With every element a € N we associate a
nonnegative integer [, so that all the numbers [, , except for finitely many of them, are equal to 0. This
set of data will be called a configuration over N. It is convenient to imagine that we choose points from
the set N, and I, is the number of occurrences of the point a. To avoid any possible ambiguity below,
we state a more formal definition.

By a configuration over N we mean a pair (L, 7), where L is a finite set and 7: L = N is a mapping.
Two configurations (L, ) and (L', ') over N are said to coincide if there exists a bijection §: L — L'
such that n =n'00.



2.8. Expansion of Gaussian vectors with respect to the bases n1,n,,.... Consider two formal
series K (h) = 2_ k7 and M(h) = 3" pihi, where 0 = po =1, 3 # 0, and #1 # 0, and also 5
Séquence w, which has no influence now. Let b[QIr] € F(l3(w)) be a Gaussian vector and let ‘BM{Q[r](I)
be its image in SymmM'u. We are interested in the expansion of the function ‘BM[Q]r}(z) with respect
to the basis q,’fl’nh_, To this end, we introduce the Young diagram ¥ — (171272 ), i.e., the diagram

with exactly nj rows of length j (for all j), By a row cut we mean the cut of the Young diagram into
horizontal bands of the form shown in the figure below.

In other words, to make a row cyt means to take an ordered Partition for each row of the diagram.
With every Piece of a row cut we associate a positive integer equal to the length of this piece. Then
the set of pieces of 5 Tow cut T' can be regarded as a configuration over N. We denote this configuration

by #4.. Furthermore, for a given row cut T, denote by ¢, = Cs(T) the number of pieces into which the
row with index s is cyt.

Theorem 3. Let M(h) = K(3is00ih7). Then
BY(QIr]

TTRLng,.Mp, N3,
ny,na,...

where the coefficients A,,l,,,z,__. are calculated by the formulg

In this formula, the Summation and multiplication extend over all row cyts and all rows of the diagram
Y= (1m2n ), respectively, and the Sunctions | are defined in the previous subsection.

Proof. The proof is reduced to the direct calculation of the expression

%M[Q;r](z) = exp {Zq:'j aa:%q. + ij (%} HK(Z Un(zaﬂ‘g) n)

n>0 71>0

We can write down the factor exp{ } using formula (24) and then directly calculate the derivatives,
after which the numerous factorials are canceled out.

Remark. In particular, we obtain formulas for the expansion of the functjong BX with respect to the
monomial symmetric functions ™ and also with respect to the functions pkt i ... (which makes sense
in the case of K (h) = exp (k) or K (h) =1+ k). Curiously, the form of the expansions relative to the
other standard bases (ex, ha, and the Schur functions; see [3]) closely resembles that of (26) (we omit
these formulas).

Remark. Consider two operators I,: F(ly(w)) — SymmM,w and I: F(l,(v)) — SymmK,,,. We have

U hbQI () = Y4y, 237

n1!n2!... )

§3. Space of Skew-Symmetric Functions

3.1. Fermion Fock space. Let ... ,6_1,50,61,52,... be a set of anticommuting variables (i.e.,
&€ = —¢ i&i). Consider the Space A whose basis is formed by all monomials

§io&i &iniy .. . (27)

where i5 > §; > i2>... and i = —k for sufficiently large k. The space A is one of the versions of the
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Consider a configuration (L, ) over N. For any a € N, we denote by l, the number of points in the
preimage of the point a. This number is called the multiplicity of the point a in the configuration (L, ).
Obviously, two configurations coincide provided that the multiplicities of all points in the set N coincide.
Thus, we return to the definition of a configuration in the beginning of this subsection. '

Let (L,x) be a configuration over N. By a tangle on (L, n) we mean a partition of the set L into
two- and one-point subsets:

N: % % % % % % -..

The asterisks, the heavy points, and the points in the circles in the figure mark the elements of the set N

the elements of L, and the one-point sets, respectively, and the arcs join the elements of the two-point
sets.

Denote by tng(L,7) the set of all tangles on a configuration (L, ), by one(S) the set of all one-point
subsets of a tangle S € tng(L, ), and by two (S) the set of its two-point subsets.

2.6. Another formula for Gaussian vectors. Denote by 2’ the set of all variables z,, 1,

... and
by Conf(Z) the set of all configurations over Z. Then Theorem 2 can be stated as follows.

Theorem 2. To a Gaussian vector b[Q|r] € F(l2(w)) there corvesponds an element BX(Q|r] of
Symmy,, that is determined by the formula

wrige= ¥ ([n £ T e T o)

LeConf(X) : Setng(L) {za;,2p; }Etwo(S) {::.,J. }€one(S)
where I; is the multiplicity of the variable z; in the configuration L.

Proof. We must prove that the coefficients of the expansion of the right-hand side of formula (22) with

respect to the functions m, coincide with those in formula (26) below. The equivalence of Theorems 2
and 2 follows from formula (25).

2.7. The functions R[Q|r]. Let Q = Q(n,#) = gns be a function on N x N such that Q(n,d) =

Q(t,n) and let r =r(n) =7y bea function on N. Define a function R[Q|r] on the set of configurations
by the formula

RQI(L, 7) = RQIA(L 2y ) = 3 I Q@ I r(m)

Setng(L,x) * {oi,d;}€two(S) {7a }€Eone(S)

where [,, is the multiplicity of the point n € N in the configuration (L,m).
We state two more definitions of R[Q|r](l1, 12, ...). First,

L
exp (%ZQQZ&ZJ' + erzi) = Z RQIrl(, b2, )HZ'

l1,l2,... 3

and. second,

1

s 8ii ti
Hlj!%[er](h,lz,...):Z{Hqs:.‘;!n_z%:__ - :_'} 5)

siig..|
i>j L

where the summation extends over all sets of nonnegative integers s;; and r; such that s;; = sj; and

T4 + ZS,'J‘ + 28_1]‘ = lj
i#]

for all j
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3.2. The standard supercomplete basis. Nonformally speaking, the standard supercomplete basis

in A consists of the products [;(£)12(£) ..., where [;(£) are linear forms. Since these products can be
divergent, this definition must be stated more accurately.

First method. Let C = {c;;}, i = 1,2,..., j =0,1,2,..., be a Hilbert-Schmidt matrix (that is
trC*C < oo). We set ,
0
=(C) = H (-5 + cj1€r +ci2éa + .. )= (50 + Z Cokfk) (f—l + Z Clkﬁk) (28)
j=o00 k>0 k>0 :

Then

(E(C), E(D))a = det (1 + CD*)
(and, in particular, the norm ||E(C)||s is finite).
Second method. Let R = {r;;} be a matrix in which i and j range over the integers 0, -1, —2

and over the set Z, respectively, so that r;; = 0 for j < i. Suppose that r;; = 1 for all i with sufﬁcientl).:
large absolute values. We set

0 o0
2R} = [] (Z’w‘ﬁj)- (29)
i=—00 © j=i
If the parentheses were formally removed, then there would appear uncountably many terms in this
expression. However, we require that only the first term be taken from each of the parentheses except for
finitely many of them.

"In any case, expression (29) makes sense as a formal series with respect to the basis (27). However, the
norm [|Z(R)||a may happen to be infinite.

Remark. Expression (28) has the form (29). Moreover, it can be represented in this form in many
ways. At the same time, expression (27), which has the form (29), cannot be represented in the form (28).

3.3. The space of skew-symmetric functions. Let us introduce the formal symbol oo. By a
pseudomonomial we mean an expression of the form

gt getar

where it is assumed that a; = —j for all sufficiently large j. A pseudopolynomial is defined as a (generally,
infinite) formal linear combination of pseudomonomials.

By a skew-symmetric formal series we mean a pseudopolynomial that is skew-symmetric with respect
to the group S of all finite permutations of the variables z;, z;,.... Denote by AS/y;m the space of
all skew-symmetric formal series.

Consider the skew-symmetric formal series

Senens = T (-1 agm e @)
€S

(where a; = —j for all large j). By a skew-symmetric polynomial we mean a finite linear combination of

the formal series Sqy,a,,...- Denote by ASymm the space of all skew-symmetric polynomials. The inner

product in ASymm is defined by the condition that the polynomials S, 4,,... form an orthonormal basis
in ASymm. .

Remark. Let us denote by ASymm,, the space of polynomials in n variables that are skew-symmetric
with respect to the permutations of the variables. Any of these polynomials has the form

9o, 1 Ta1) - [ (mi-35),

. 0<i<j<n-1
where g(Zo,...,Zn-1) is a symmetric polynomial. The canonical projection 7,41: ASymm, a1
ASymm,, is defined by the formula
(”n-}-lf)(z()v 1$ﬂ—l) = f(zO’ . vxn—lvo) : (301'1- zn—l)_l
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In this case, ASymm is the inverse limit of the spaces ASymm,, in the category of Z-graded spaces (we
assume that the degree of homogeneity of the series Sq, 4,,... is equal to }:j(a,- + 7)).

Remark. Let f(z) be a skew-symmetric formal series. Then
f(@) = @PzP 2272 )g(x),

where g(z) is an ordinary formal series in positive and negative powers of z; (i.e., an infinite linear

combination of monomials of the form zg"xf‘ ...7% | where B; € Z). Let Pijg(z) be the expression
obtained from g(z) by transposing z; and z; (where ¢ > j). Then

P,ig(z) = — 2 g(a).

Ij

Conversely, if g(z) satisfies this condition, then expression (31) is a skew-symmetric series.

3.4. The fermion-skew-symmetric correspondence. The natural isomorphism between the space
of skew-symmetric functions and the fermion Fock space is defined as follows: to a vector £,,€4, ... we
put into correspondence the skew-symmetric function S, q,,... defined by formula (30).

3.5. The supercomplete basis in the space of skew-symmetric functions. Consider the system
of functions

g(z) = alz¥,  j=0,1,2,...,
k>0
where ag Y =1 for all sufficiently large j, and the skew-symmetric function
qo(zo) 7 'go(z1) x;qu(zz)
- _ —-1_.00-2 zoqi(To) q@i(z1) x5 qu(z2)
Zlgo,q1,--- =(zx°zy " T - det 2
0,01, = (@FETT2TT )det G0 maa(e) ()
(in this determinant, we take products that differ from go(zo)g1(z1)... only in finitely many factors).
We can readily see that the skew-symmetric function E[g;, g2, ...] corresponds to the vector E{R} € A

given by formula (29) with r;; = ag-:';-ill).

3.6. The correspondence between skew-symmetric and symmetric functions. Denote by A
the skew-symmetric function

_ o co—1_00—2  _ -3 g
So0,-1,-2,... = Z (-1’20 %) Toz) = HI?O ’ H ( - —)

: T~
0€Se j20 a<p -

It is convenient to imagine or to assume, by definition (this is a kind of normalization for the symbol o),
that

A= H (zi — ;).
0<i<j<oo

Let f be a symmetric function. Then f- A is a skew-symmetric function and f +— f-A is a unitary
operator from the space Symm of symmetric functions (depending on Zo, Z1,...) that is endowed with
the classical inner product into the space ASymm of skew-symmetric functions.

Remark. The operator f + f-A is none other than the boson-fermion correspondence (see [8]).

3.7. Examples. (a) The functions S, q,... € ASymm correspond to the Schur functions (see [3}) in
Symm (see (8]).

(b) Supercomplete boson basis. Let q(t) = 14+3 4. art®. Consider the symmetric function H;io q(z;)-
We can readily see that the related skew-symmetric function is E[g, g, ...], and the related element of the
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fermion Fock space is Z(C(q)) (see (28)), where the entries c;;(g) of the matrix C(q) are found from the
relation

> el@dw=
i,j>0 zZ-u

(c) Images of fermion vectors in the boson space. Let c(§)€A. Then, by (5), the correspondmg element
g€EF is

g(zh 22y ) = <C(€), E[C(qz)])l\y

(%)

In particular, the function corresponding to the vector Z(A) is det(1 + AC(q;)).

(d) The Virasoro algebra. Let 6 be the same function as in Sec. 1.7. Then, in the notation of (32), we
have

where

a1 (#2222 - 6@ - o0ay) = 0,02, 0%,..)

>3 i>J
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