
~* = I-[ Ci + 4x ~ + ~lx ~" + 4x ~" + ...) = I~ [i - (i - 4) x ~"] 'Ct - x~"), 
u~g+ n~Z+ 

which p r o v e s  ( 2 ) .  

The a u t h o r  i s  g r a t e f u l  to  A. V. Z e l e v i n s k i i  and D. B. Fuks f o r  l i v e l y  i n t e r e s t  in  the  
p a p e r  and i n e s t i m a b l e  he lp  in  w r i t i n g  i t .  I t hank  L. A. K a l u z h i n a  i n  whose semina r  in  Kiev 
a t  KSU I f i r s t  r e p o r t e d  t h i s  work (Sep tember ,  1984) .  

I , 

2. 
3. 
4. 
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REPRESENTATIONS OF COMPLEMENTARY SERIES ENTERING DISCRETELY IN 

TENSOR PRODUCTS OF UNITARY REPRESENTATIONS 

Yu. A. Neretin UDC 519.46 

The problem of decomposing the tensor product of two representations of the complementary 
series of a simple Lie group into irreducible representations was solved only for the groups 
SL2(R) (L. Pukanszky, V. F. Molchanov) and SL2(C) (M. A. Naimark) [I]. (Concerning the ap- 
plication of these results to representations of infinite-dimensional groups see [2, 3]). 
Here we investigate the problem of decomposing tensor products for a number of complementary 
series of representations, induced from maximal parabolic subgroups. 

I. Notations. Let P be a parabolic subgroup of the semisimple Lie group G. We denote 
by Indp(p) the representation of G induced by the representation of P equal to representation 
p on the reductive part of P and to the trivial representation on the nilradical of P (induc- 
tion is considered in the ordinary nonunitary sense; see []]). Let Reg denote the set of 
representations of G that are weakly contained in the regular representation (see []I, 18]). 

2. Tensor Products of Representations of the Spherical Series of the Groups SO(p, 1), 
SU(p, I), Sp(p, I). For simplicity we consider the case G =SOo (n + I, I) [the cases SU(p, 
I) and Sp(p, ]) are treated similarly]. Let G act on S n by conformal transformations. We 
denote by k(g, x) the dilation coefficient of the transformation g at the point x. Let P be 
the stabilizer of the point x0. Then the reductive part of P is isomorphic to SO(n) × R. 
Let X~ denote the character of P, defined by X(G) = k(G, x0) n-~/2 . The spherical representa- 
tions D% = Indp(x%) of the groups SO0(n + ], I) are defined by the formula 

o~(~)l(x) =l(gx)~(~,x) n-~/~, (1) 

where I ~ C  ~(Sn) .  I f  % = ~ + i : , s ~ R ,  t h e n  the  o p e r a t o r s  ( ] )  a r e  u n i t a r y  in  the  m e t r i c  o f  L a ( s n ) .  
Such r e p r e s e n t a t i o n s  form the  s p h e r i c a l  b a s i c  s e r i e s ,  d e n o t e d  h e r e  by T s .  I f  0 < ~ < 2n,  
% ~ n,  t h e n  the  o p e r a t o r s  (1) a r e  u n i t a r y  in  t he  space  Hk w i t h  i n n e r  p r o d u c t  

<I,; I,> = I ~ II x, - ~, tl -~ I ,  (~,) I ,  (~,) d~, ~ , ,  
. . . . . . . .  

where x~,x~ ~ ~+~,lix~ll = ~,II = i (for % > n the integral is defined as the analytic continuation 
in %). These representations form the spherical complementary series D%. We recall that 
T~ ~ T_~, and O~ D~_~. 

. 

LEMMA 1. a) T~® Tt does n o t  depend on t ,  s ;  b) Ts ® TryReg.  

P r o o f .  a) The e q u i v a l e n c e  o f  T~ ® T~ and T~+= ~ T~+~ i s  e s t a b l i s h e d  w i t h  t he  h e l p  o f  the  
unitary intertwining operator Ai~ of multiplication by llx~-- x~ll i~. On the other hand, T~ ® T~ ~ 
Ts ® T_,; see also [], 9, 10]. 
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b) If B is an arbitrary representation of G, then X ~ Heg implies X®B~ Beg (see [~1], 
18.3.5 or 13.~1.3). 

Let ~k denote the representation of SO(n) with the highest weight Let 0 < ~, ~ < n. 
(k, 0, .... 0). 

THEOREM. 

D~. @ D~ = ( ~  Indp (0/,._~j ~ Z~+~+~)) @ (To ~ To), 

w h e r e  t h e  sum i s  t a k e n  o v e r  a l l  k ,  ] s u c h  t h a t  X + p + 2k < n ,  k --  2j  > 0 .  

P r o o f .  L e t  5 d e n o t e  t h e  d i a g o n a l  o f  S n x S n .  We l e t  ~ p  d e n o t e  t h e  s p a c e  o f  a l l  d e -  
r i v a t i v e s  o f  o r d e r  4p  o f  8 - f u n c t i o n s  s u p p o r t e d  a t  p o i n t s  o f  5 .  The s p a c e  ~ p  i s  c o n t a i n e d  i n  
H~ ® H¢ i f  and  o n l y  i f  p < 1 / 2 ( n  --  X --  ~ ) .  The n o r m a l  b u n d l e  t o  5 i s  i s o m o r p h i c  t o  t h e  t a n -  
g e n t  b u n d l e .  H e n c e ,  t h e  r e p r e s e n t a t i o n  o f  S 0 0 ( n  + 1, 1) i n  ~ q / ~ q _ l  i s  i s o m o r p h i c  tO ~ndp x 
(SV0~® X~.~u+~). But 8 q ( O ~  @ 0 . 

' o ~ q  q - ~ "  

Let % ~ ~, ~ = n -- ~. Consider the operator A~ of multiplication by the function ]Ix~ -- 
x211 ~. This is a closed (unbounded !) operator intertwining D~D~ and F~ ~D~,~. Its kernel 
consists of distributions supported on A. It remains to show that for every 0 < ~ < 2n we 
have ~ ® On_~ ~ D~+~ ® Dn_~ ~ D~_~ ® O~_~ ~ Fo ®~0. 

Remark (the dual model). Let ~, % > n. We denote by ~$ the subspace of H~® Hn, con- 

sisting of functions that have a zero of order >p on ~. Then the "discrete" part of D~®D~ 
is realized in the factors of the filtration ~ ~ . . .  (see also [5]). 

3. Tensor Products for the Groups G = SO0(p, ~), U(p, ~), Sp(p, ]). The arguments 
given in Sec. 2 are readily carried over to tensor products of representations of arbitrary 
complementary series of G. Let T~ = Indp(~), T2 = Indp(o2) be unitary representations of G 
belonging to the complementary series. Let ~ be the representation of the reductive part of 
P in the tangent space to G/P. Then the problem of decomposing the representation of G in 
~/~_~ into irreducible subrepresentations reduces to that of decomposing the finite dimen- 
sional representation ~®@=~ SPp. 

4. ~. Tensor Representations for the Groups SO(p, q), U(p, q), S(p, q), p < q. Let 
K = R, C, or H. We consider in KP *q the Grassmanian M of maximal isotropic subspaces. Let 
P be the stabilizer of a point of M; then the reductive part of P is GL(p, K) × U(p -- q, K). 
Let 0 be an irreducible representation of P whose restriction to SL(p, K) is trivial. Then 
statements analogous to those of Sec. 2 hold true for the complementary series of the form 
Indp(o) (except for Lemma ~, b). 

B. (the notations are those of Sec. 4. ~) There exist unitary representations of the 
form Indp(O), where 0 is a finite dimensional representation of P whose restriction to SL(p, 
K) is trivial. (These representations were discovered in the theory of representations of the 
groups ~(p, ~), U(p, ~), Sp(p, ~) as "prelimit" representations; see [4]. Some of them can 
be constructed as "discrete" components in Sec. 4. ~.) The arguments of Sec. 2 permit us to 
guess the discrete spectrum in this case. 

5. ~. For the Stein representation of SL(2n, R) and SL(2n, C) (see [~]), and also for 
the Molchanov representations of ~(p, q) (see [8]), we reach the conclusion that a tensor 
product of representations of the complementary series are equivalent to tensor product of 
representations of the fundamental series (here the complementary series lie "too close" to 
the fundamental one). 

B. Let G be the universal covering of SL2(R). Then the set of irreducible representa- 
tions T~, s of G which do not lie in Reg is parametrized by the points of the triangle -a ~ s ~ 
~, 0 ~ s < i (where (0, O) corresponds to the one-dimensional representations, s = ±~ to 
highest and lowest weight representations, and the remaining points to the complementary 
series (see [6]); ~ and S are connected with the parameters of [6] by: ~ = 2~ -- ~, q = s 2 + 
]/4, ~ = s; to SL2(R) correspond integral values of ~). Then for s + t < q we have t~, s ® 
~,~ = F=÷~.~+~(modNe~),~ while for s + t > ~, T=.~ ® ~.~ Ne~. 

¥. The arguments of Sec. 2 carry over to tensor products of representations of indefi- 
nite complementary series and products of representations of the fundamental series by repre- 
sentations of the indefinite complementary series. Here additional interesting effects oc- 
cur, similar to those discussed in [7]; see also [8]. 
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~. The arguments of Sec. 2 are applicable to problems concerning restriction to a sub- 
group (see also [8]). ~ 

e. The theorem of Sec. 2, in conjunction with results of the works [9, 10], gives the 
decomposition of tensor products in the case of arbitrary complementary Series of the de 
Sitter group S00(4, I), as well as in the case of the spherical series of SO0(p, I). 

As M. I. Graev informed the author, the imbedding of D%+~ in O~ ® O~ for the groups 
SO(p, I), SU(p, I) (see the theorem) was discovered by A. M. Vershik, M. I. Gel'fand, and 
M. I. Graev. 
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FREE BANACH SPACES AND REPRESENTATIONS OF TOPOLOGICAL GROUPS 

V. G. Pestov UDC 513.83+513.88 

We introduce below the notion of free Banach space B(X, *) over a metric space X with 
marked point *. We use it to show that every Hausdorff topological group G admits a complete 
system of representations in Banach spaces.. We denote by K the fields R, C, and H. 

Let X = (X, 0) be a metric space and * a point of X. We define a free Banach space over 
K of the metric space X with marked point , as a Banach space (X, *) together with a fixed 
isometric embedding of X in (B, *), which takes * into 0, such that: I) (B, *) is the closed 
linear span of X; 2) for every Banach space E and every nonexpanding map f:X ÷ E [i.e., such 
that ~llx--/yll~<p(x,~y)for all x,y~X ] taking * into0E, there is a linear operator ~:B(X, *)÷ E 
of norm not exceeding I, whose restriction to X is f. 

LEMMA. If A is a subset of a metric space (X, p), then the map x ÷ p(x, A) is nonex- 
panding. 

Proof. Suppose that for x, y~X we have p(y, A) --O(x, A) > 0(x, y). Pick a~A, such 
that p(x, a) < p(x, A) + ~, where g = O(y, A) -- O(x, A) -- p(x, y) > 0. Then O(Y, A) ~< O(y, 
a) ~< 0(x, y) + O(x, ~) < O(y, A); contradiction. 

THEOREM I. For every metric ~space (X, 0) with marked point * its free Banach space over 
K exists and is unique up to an isometric isomorphism. 

Proof. Let ~ denote the family of all nonexpanding maps of X into K that take * into 
O K . For /~ let ~ denote the linear extension of f to the linear space spX containing * 
as the zero element and X\{*} as a Hamel basis. For ~spX we put ll~ll=sup{l~(~)l:1~. 
The correctness of the definition follows from the fact that for arbitrary %~ ~ K and x~ ~X 

~ ~ 

we have IE~II< ~, i~isupl~(~i)l<oo, since 11(~)I~ <p(x~,,). Function ll'II is obviously a prenorm. 
~=I " = ~=I 

Let ~=~%;~ be a nonzero element of spX; we may assume that %1 = 0, xi ~ xj for i, j = I,..., 
~=I 

n, i ~ j. By the lemma, the map f~:x ÷ p(x, {x~,...,Xn, *}) belongs to ~ . Therefore, 
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