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A SPINOR REPRESENTATION OF AN INFINITE-DIMENSIONAL ORTHOGONAL SEMIGROUP
AND THE VIRASORO ALGEBRA

Yu. A. Neretin UDC 519.46

Most infinite-dimensional representations of Lie pgroups can be easily realized by
means of operators which are products of the change in variables and the multiplication by

a funection. In the case of infinite-diminsional groups, two very special classes of oper- o

ators, acting in the boson and fermion Fock space are almost as important; this means that
representations of infinite-dimensional groups have a habit of "passing through'" the Weyl
representation and the spinor representation (see, e.g., [3, &, 9, 14]).

A spinor representation of the automorphism group of the canonical anticommutation re-
lations (CAR) has been constructed by Berezin in [l1]. The aim of our paper is to extend
this representation onto as large a domain as possible; this domain is a semigroup (which
i=s not surprising, cf. [11]), containing some linear transformations of CAT, in general
unbounded (there are many more bounded transformation CAR than had been usually assumed,
see Sec. 2.3). Speaking of unbounded operators, it is natural to use the language of their
graphs, in other words, our semigroup consists of linear relations between CAR. Notice that
even in the finite-dimensional case our construction does not coincide with the standard
sources on spinor representations [4, 1, 15, 21.

The considered constructien (a part of it has been announced in [8]) implies a number
of corollaries for the theory of representations of infinite-dimensional groups. In Sec.

L

#

i

3, we show that any irreducible representation of the Virasoro algebra with the highest—ord;

er weight, no necessarily unitary, can be integrated to a projective representation of the
group Diff of diffeomorphisms of the circle which, in turn, extends onto the complex exten-
sion of the group Diff constructed in [10]. Further, we consider a problem arising in con-
formal gquantum field theory concerning the construction of an operator with respect to an

arbitrary Riemannian surface in such a way that the operators should multiply by each other

when the Riemannian surfaces are patched together (notice that recently there appeared a
number of articles in which the patching of Riemannian surfaces and the Virasoro algebra
are considered, cf. [5-7, 10, 16]). Some other applications of the construction (in which

only the group part of our subgroup has been used) have been considered in [8] and [9, Sec. 9]

The author is very grateful to ¢. I. 0l'shanskii for numerocus and very useful discus-'_

sions on the semigroup extensions in the theory of representations of infinite-dimensional
groups. The author is also grateful to M. L. Koltsevich, who has informed him about the
Shtan category (cf. Sec. 3) and a construction of the complex hull of group Diff, much
simpler than that in [10].
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% Berezin Operators

1.1. Fock Space. Let &, §3» «-v» E;r Eg. ... be a countable collection of pairwise
:L?icommnting variables:

Eé=—mn2ﬁ=—ﬁp5@=—ﬁhﬁﬁ=&H

; Let A, be the space of polynomials of the variables £, £;, ---- We will introduce
4n A, the left differentiation as

B =0 5 (G () = 1 ®)

g k
if £(£) does not depend on fk. We will define also a formal integral: SI] fEquuj}deE-
1

[ L. !_l_
|, the integral of the remaining terms is equal to 0. Let A be the completion of A, with
_respect to the scalar product

(B, g (B =11 (2)T(®) dbdk.

This formula, actually, is a formal notation of the fact that vectors of the form Ej .
(oes Eiys where i, < ... < i, form an orthonormal basis in 7. Notice that A is a Hilbert
rect sum of subspaces Ak, where Ay is the space of homogeneous forms of degree k, k 2 0.
feh, f= %, , where fy = Ay. Denote by A the set of all f € A, such that for any

| 0, there exists a number A = Alf, ¢), such that 1fyl < A exp(—Ck). We will introduce
in A a family of seminorms ifl. = sup (1fxt exp(Ck)). Then A becomes a Frechet space (a
eomplete countably normed space).

¥,

I:

Definition. The space & will be called the Hilbert fermion Fock space and the space
, the polynormed fermion Fock space.

o

; Example. The space A contains all the vectors of the form exp (Ya; Eifj), where
S | gy ; < = (this is a special case of Lemma 1.4). %

L Let now H be a Hilbert space of dimension n, wheren =0, 1, 2, -.., = We choose

in it a basis e,, €;, ..., With each basis vector ey we will associate the variable £j and
struct over the variables £j the space A which will be denoted by A(H). Obviously,

m;(H} = Ay is canonically isomorphic to the k-th outer power of the space H. Thus, the con-
‘struction of A(H) does not depend on the choice of a basis in H. Analogously, we define
space A(H).

. Im{mm=wm.uub“h._JEh-h.TMHmﬂmﬂMMMmeuuw
‘A{a, b) in A is defined by the formula

a
A_(ﬂ.b}ftﬂ=(Eﬂnﬁi+2bs-aﬂ‘]“ﬂ+ (1.1)
i3 Denote now by {P, Q} = PQ + QF the anticommutater of operaters. Then
{4 (a, b), 4 (a', b)) = 2 (asb] + ajby) E. (1.2)

1.2. Symbols. We will consider a polynormed Fock space fg of functions of the var-
dables Eiy Egs +- and the space A, of functicns of My Mgs +-+« @an operator E from Ay
into Ag can be conveniently written in the form

B (%) = JK (2 ) f (n) dndi,

where the symbol K(&, n) of the operator f is a formal series in £, 7.

It is easy to verify that the symbol of E(a, b)R equals

E(“iﬁi'l'hj%)ﬁlﬁ-ﬁ}. (1.3)
{LJ the symbol RA (e, b) is equal to
3 (b + i) K- (1.4)
C
|
197

D are
Let
ation

same

in
his
al-
S0NS,

D.
sm
orph-
a=




=%

aie |
~ydac

1.3. Berezin Operators. Let f;& = £i + (3/3£4). Let A, B, C be matrices, @5y byg,
cig be their matrix coefficients. Let £ denote the symbolic matrix row KEis Eus von ks ang
n be symbolic matrix row (n,, n;, ...)

Definition. An operator § from A. into Mg is called a Berezin operator if it satis-
fies one of the two equivalent conditions:

@) The symbol of § has the form:
]
b
5 P X A BJ E
(I 7y ) exp {5 (5 (&1l (1.5)
where fj has the form -?HI}EE+$?H¥]“ by ”Pijlz + |"f‘ij!2] <w, 4=t 0=t
bounded operator, and A and C are Hilbert-Schmidt operators, A = C.
B) Q=T%...TERTY. .13,
where R is an operator with the symbol

hexp {5 () [ % o) (E)} (1.7)

y B is a

(1.6)

and where A, B, C are the same as in o), and A e €.
Proposition 1.1. Conditions a and  are equivalent.

LEMMA 1.1. Let § have the symbol of the form (1.5). Then Te 85 iy T3, 5005 0
TJE” has the symbol of the form (1.5) too.

Proof. We will verify, for example, that the symbol of T,EQ has the form (1.5). With
the help of (1.3) we obtain that this symbol is equal to

!
af; . - =
?»[E,f;---h+Z{—T}’gﬁh---h-lfm---fe+f1---h%]axpf-‘-{§_ i
=1
12
where K(£, n) = 1/2(£R) ( ;; EJ (i)- If all (8f;/8€,) = 0, then our result is obvious.
- 1
Otherwise, the expression

N=Z{_1}i%'_h,,.;J._,,fm...f,

expands into a product of £ — 1 linear forms of the form 2 xify,and £3, i., £3 can be

divided by N, i.e., there exists a linear form g of the form Y 84f;, such that f,, .

may

fy = gN. Thus, the expressidn in (1.8) in square brackets is reduced to the form N(1 + gx
(€, + (3K/3g,)) = N exp (g(&, + (3K/3£,))). The lemma has been proved.

Froof of Propesition 1.1. From Lemma 1.1, it immediately follows that a Berezin oper-
dtor in the sense E) iz a Berezin operator in the sense of a). Let now the formal series
of the form (1.5) for the symbol of operator § contain the components E11' win iy Eikﬁjli
A ﬁji' Then, ' = Tilﬁ. A Tikgﬁleﬂ, - leﬂ by Lemma 1.1 is a Berezin operator
in the sense of a). But in the formal series for the symbol of Q' the free term is not

null and, therefore, in (1.5) we have &t = 0, i.e., the symbol §' has the form of (1.7);
consequently, @' and, that is also @, is a Berezin operator in the sense of g).

Remark. The representation of a Berezin operator in the form a) as well as in the
sense B) is not unique. We will discuss this nonuniqueness in detail.

@. Let Q be the symbol of a Berezin operator (, let Q = 3 @, where Q are homogen-
=l {

eous forms of the degree k in £, n. Let Q. be the first nonnull component of this sense.
Then Af,, ..., f3 = Q. Thus, although i, f15 ..., fy can be chosen in various manners,
their product is uniquely determined. Moreover, the quadratic form n(E, n), occurring in
(1.5) in braces, is determined uniquely up to the transformations ale, n) =+ e, 7) +

@f}{ﬂ e3365 + 2 Bijng).

B. It is clear from the proof of Lemma 1.1 that operator ( can be represented in the
form (1.6) with giveti 1,5 <oos Ik fis aeny Jp if and only if <£il. i Ejk. ﬁ“J;' say
“jl} * 0.
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1.4. THEOREM 1. a) All Berezin operators from A(H) into A(K) are bounded.

b) A proeduct of Berezin operators is a Berezin operator,

c Statement b) is a corollary to Theorem 3 (cf. Sec. 2); the proof of a) takes the rest
‘pf this section.

ﬁ LEMMA 1.2. Let r be an analytic Hilbert—Schmidt operator, such that <x, Ry> = —y,
., »; then there exists an orthonormal basis, with respect to which the form <x, Ry> reduces
o "‘kfxzk—ﬂ'zk = ¥ik-1%2k), A > 0.

The proof is completely standard.

LEMMA 1.3. Let A = ¥|a;{® < =. Let Frfﬁ} be an operator from Ag into Agy,, mapping
BT on r-:—r-{zﬂijgigj)rfu Then 1P.(s)4? < (1/:1) ar®  where a = Zmax (A, 1).

oy Proof. By Lemma 1.2 one can assume that Ly £ifj has the form ¥ AkEsk-183%. Let

_.. b=3 b ik .- B, EA,
: Then

F PP =Dt b, ibay e Dot B, [ (Ban s,
i =

§

. where among the indices 135 «2ep ig, 204, ..., 2a,., 20, = 1, <., 2ap — 1 there are no re-
_ petitions. Using the inequality

Fd oo talSn@d+ ...+,

§is

0 THE S

we obtain

'_ i , . Pt
E‘: I POBIF < Crapr( 3 1B, f 3 s, ) < (XlonB)(3a . a) <( X lbi, |’){lﬂ’}— ;
Hl'.. consequently,

..: ; i . 2

; < g (S

:

. follows from the desired estimation.

]

LEMMA 1.4. Operator L of multiplication by exp ' (Yay; EiE3), where Y |ai; P < = is
bounded in A.

Proof. Let £ = ' fi, Lf = 3 (Lf)y, where f) Mg, (LF)g € Ag. Let 141 < exp (—Cj).
Let P,_.fs]' and a be such as in Lemma 1.3. Then

=

k ’ o
b DI = DR B < B2 Pyl < F - avtercte-sh = pcngnn I

i
2= 2jen L= sign

i Hence, Iflg-1/21na < Iflc-const, and from this the lemma follows.

e LEMMA 1.5. Let B be a bounded operator from a Hilbert space H into a Hilbert space
i
1

K. Then the operator A[B]: A(H) > A(K), acting on Ag(H) as the k-th outer power of B, is
bounded.

i The proof is obvious.
1 LEMMA 1.6. Let 3jayl® < =. Then the operator N = “P(ZHH%%) is bounded in A.
i 1 J

| i Proof. Let us consider operator Q. {s+7r), acting from Ag4,, into Ag, as ':T(Ea” X

| . 7;‘; 5:j)r' It is easy to see that Q,(s+ir) = Prfs]}*. where P.(S) has been introduced in

1 Lemma 1.3. Let f = ¥f; , where fp = Ag. Let Nf = 3 (M) , where (NF)i € Ax. Then

i - 199
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DalE = 3 N0 sl < 31074 2] 1 =

r=0
= 2 I P,E") 121l Faser 12 < 2 _:_' a? +"e-c(n+2i) = g"/2g-Cn exp (ae—Cn)_
r=0 r=0
Hence INfllc-1/21n, <Iflg const, from which the boundedness of n follows.
Proof of Theorem la). We will apply the definition B of a Berezin operator. It is

enough to verify the boundedness of an operator with the symbol of the form (1.7). But
this operator is equal to

(1.8)

\ "R k
ex a0 M[B]oex ( Cijmmm —— |, .9)
14 P(Z iJgigal [B]oexp 2 IGE, TE; ) (1.9)
where p € C, and A[B] have been introduced in Lemma 1.5.
1.5. Berezin Operators in the Hilbert Space A.

THEOREM 2. Let Q be a Berezin operator from A(H) to A(K).

a) The necessary condition for the boundedness of Q is that the matrix B have the
form L(1 + S), where ILI < 1 and S is a Hilbert—Schmidt operator.

b) The sufficient condition for the boundedness of the operator § is the B have the
form L(1 + S), where LI < 1 and S is a nuclear operator.

c) If A and C are nuclear operators, then Q is bounded if and only if B is of the fcrm;
L(1 — S), where ILI < 1 and operator S is nuclear.

LEMMA 1.7. a) Let K be the operator of multiplication by exp (A£,£,) or the operator
exp (A(3/3£,)(3/8E,)) in A(C?). Then there exists a constant 6, such that

=Ll —onp <cknkoy <1+ Bl popp for fzi=1t.

b) Let L be an operator in A(C?) with the symbol exp (Eyn, + pE,n, + Xx£,E,), where
¥ is a constant number, 0 < y < 1. Then for [A| > 0, ILI = 1 + C(u)[A|2 + o(|A?|) holds.

Proof. It is an easy calculation.

Proof of the Theorem. Without loss of generality, we can assume that H and K are in-
finite-dimensional, H = K = £,, the operator ( has the symbol of the form (1.7), and that
the matrices A and C are represented as in Lemma 1.2. Finally, in the computations of
norms we should take into account that H + A(H) is a functional mapping direct sums into
tensor products.

plicity by exp ( Ya,; gigj) and the operator exp (Zcﬁ%%) are bounded together with
i i

their inverses. Therefore, one can assume that A = C = 0 [see (1.9)]. Further, for self-
adjoint B's the problem of boundedness is easy to solve (this is the problem of uniform
boundedness of outer powers of B) and, in the general case, we will take the polar decomp-
osition of B.

b) It is enough to show the result for the obvious case A = C = 0 and for operators
with symbols of the form

exp {Zadan-rar + (1 — &) D&}
exp {(1 - e)g Tl + anﬁzh‘—lnzk} ’
where € > 0, which can be easily done with the help of Lemma 1.7b.

LEMMA 1.8. Let M be a subset of N. Let H be a subspace in %,, spanned by e;, i € M. - -
Let Py be the projection in A = A(%,) onto A(H). Let f(g, n) be the symbol of the operator .
Q. then the symbol of operator PyQPy can be obtained if in £(E, n) we put €5 =0, Nj = 0 =
for all j ¢ M.

Proof. A direct verification.




. | very beginning we can assume that 2=FL=e50
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Proof. 1) Witheut loss of generality we can assume that B is self
we can take the polar decomposition of B), and that the operator B — 1
wise we can choose the corresponding spectral subspace),
spectral subspace of B, corresponding to [, =)

-adjoint (otherwise
is positive (other-
Suppose that for some € > 0 the
» is infinite-dimensional, Then from the

» Let us consider an arbitrary n-dimension-
al subspace H c £, and the operator PadPy (see Lemma 1.8). We will represent it in the

form (1.9). Then the norm of the middle factor is not less than (1 + €)M, the first factor
cannot diminish the length of a vector more than I a4+ [A1[/2 + 8]x{]|?) times, where Ay
i=1

are the eigenvalues of the matrix A (see Lemma 1.7a), and the third factor cannot shorten

the length of a vector more than [| (1 + [ugl/2 + 8[ui|?) times, where Mi are the eigen-
=

values of the matrix C. Letting n tend to infinity, we obtain that the number IPOPHI can
be arbitrarily great. A contradiction.

Thus, B - 1 is a positive compact operator. It remains to
bert—Schmidt type. For this end, we have to repeat only the jus
now H should be spanned by a eigenvectors of B — 1 with the grea

2. Spinor Representationm

show that it is of the Hil-
t-presented reasoning, but
test eigenvalues,

2.1. An Object of the Category Or is a co
(where n = 0, 1,...., =), in which:

mplex Hilbert space V of the dimension 2n

1. There are fixed vector subspaces Vi and V_, with V = Ve ®» V_.
2. There is given an antilinear invertible isometry L: V. = Vi
3. There is given a symmetric bilinear form
oy ), Gy w)} = <o, Loy + Cu,, Lo,
where <+, *> is a scalar product in Vo

Notice that V4 are maximal isotropic with respect to the form {5 *} subspaces in V.

et us fix an orthonormal basis e:V in V4, and an orthonormal basis fjv = LEJTllr and an ortho-
ormal bhasis fjv = LEjv in V.. Tﬂen {ay, fj} = Eij-

By Vg we will denote a real subspace in V = Vi ® V. consisting of all vectors of the
orm (Lv, v).

2.2, Orthogonal Relations. Let V, W be objects of the category Or. We will intro-
luce in V ® W an orthogonal form {(v,, w), (v,, wa)l' = {vy, va} = {wy, w;}. An orthogonal

elation P: V 3 W will be called the maximal isotropic with respect to the form (-, o
fubspace of V & W,

Example. Let V =W, and let A be an orthogonal operator from V into itself. Then the
set of pairs of the form (v, Av) is a maximal orthogonal relation V 3 V.

Let P: ¥V, 3V, and Q: V, 3 V, be orthogonal relatiens. Then their superposition QFP:
g+ * V5 is the set of all pairs (v,, v,) € V, e V,, for which there exists a v;, such that
] Vi ‘U‘z} € F, (Vgl ".1':} € Q.

2.3. Morphisms of the Category Or. Let V and W be cbjects of the category Or. We
¥ill say that an orthogonal relation T lies in set mor, (V, W), if T is a graph of an oper-

KL
or from V; ®» W. into V. e Wy, while the matrix of this operator fip = (—i’ M) satisfies

conditions:

L. 19p) < =.
2. K=Kt M =-Mt (it follows from the fact that the relation T is orthogonall.
3. K and M are Hilbert—Schmidt operaters.

We will say that matrix @iy is the Potapov—Ginzburg transformation of relation T.

We will define now the subset mor (V, W) of the set of all orthogonal relations from
into W. Namely, L = mor (V, W) if there exists a relation L' e mor (V, W), such that the
odimension of the subspace L N L' in L is finite. Finally, the set Mor (V, W) of all
lorphisms from V into W will be defined as the set mor (V, W), to which the formal "null"
ement nully y has been adjoined.
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2.4. Multiplication of Morphisms. Tt can be shown (it is far from obvious), that for
any p € Mor (V, W), Q « mor (W, Y) their product QF as the product of orthogonal relations
is in Mor (V, Y). The product of morphisms of the category Or could be defined Just in thig
way; however, the resulting multiplication, even in the case of finite-dimensional Spaces
V, W, and Y is not continuous. The following definition leads to the same theory of repre-

sentations of the category Or; however, from the technical point of view, it appears to be
much more useful.

Let P & mor (V, W), Q & mor (W, ¥). 1If there exists a nonnull vector w € W, such that
(0, w) eP, (w, 0) = Q, then QF = nully y; if, however, there is no vector like that, then
the product QF is defined as the product of orthogonal relations. Finally, the product of
the null morphism with any other eguals to the null morphism.

2.5. Semigroup TO(V). Let V be an object of the category Or. The orthogonal semi-
group FO(V) will be defined as Mor (V, V). The group O(V) of the invertible elements of
the semigroup N'O(V) consists of all invertible orthogonal operators in V whose matrix

(g g) d VeV Ve V. satisfies the condition: B and € are Hilbert—Schmidt operators

(a spinor representation of this group has been constructed in [81). Finally, the class-
ical automorphism group of the canincal anticommutation relations consists of operators
P & 0(V), preserving the subspace Vg.

2.6. Spinor Representation. Let P e Mor (V, W). Let A(Vy) and A(Wy) be polynormed
= = & L
Fock spaces. Let at first P e mor, (V, W), and let (_Lr MJ be the Potapov—Ginzburg trans-
formation of the relation P, Then the operator Spin(P): A(V4) + A(W4) will be defined as

an operator with the symbol
e & Ly (L
oxp {369 (g MJ(Q}'

Let now P « mor (V, W). Let S =P n (V_ ® Wy), and let P' = mor, (V, W) be such that
X L
PN P is the complementary subspace to the subspace & in P. Let E_L: MJ be the Potapov—

Ginzburg transformation of P'. Let S1s +-+» Sk be a basis in S, with sy = 2.;:::.1’+§-;m.t"-
i
Then the operator Spin (B): A(Vy) - A(We) has the symbol

i (o2t + 2 d)esn i@ (L 3) (3)}-

M=)

At last Spin[nullvlw} =0,

THEOREM 3. a) Spin(QP) = c(q, P) Spin (Q) Spin (P), where c{(Q, P) = C \0.

EF_EEE_f;, w) e P. Let v = (vy, v.) = Ve o V., w= (wy, w-) e Wy » W.. Then
A (w) Spin (£} = Spin (P) 4 ().

c) Any Berezin operator T from A(V4) into A(W.) has the form T = Spin (Q).

Proof. The statement c) is obvious; the statement b) can be verified by a direct
computation; the statement a) follows from b), except for the fact that c(Q, P) # 0. The
easiest way to verify the latter is to compute the vectors Spin (Q) Spin (P)h and Spin (QP)h,
where h runs over all simple spinors (see Sec. 2.8).

2.7. Another Form for SpinP. Let V be an object of the category Or. Let Djv be an
operator in V, defined by the equalities

‘ ¥ ¥ v Vo gV
Dief =fj, DIff =ef, Dief =el, Dl =it

for i # j. let P = mor (V, W) and let iy and jg be such that P, = Dil""'. . Dik?PI.'!jl: =
mor, (V, W). Then

Spin (P) = Ff,. .. 7} Spin (P) 7. .. T}

(for the definition of TE, see Sec. 1.3).
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1 2.8. Simple Spinors. Let N be a null-dimensional object of Or. Let P & mor (N, V).
- Then the image of the operator Spin(P) is a one-dimensional space in A(V).

The elements
of such one-dimensional subspaces, following [4], will be called

simple spinors.

3. Overlapping of Riemannian Surfaces and the Complexification of the Group of Diffeomorph-
isms of the Circle

A 3.0. Representations of Categories. Let K be a category, Ob(K) be its objects,

! 1 Hurgfﬁ. B) be the morphisms from A into B. We will say that there is given a represent -
ation (= projective representation) of K, if for any A = Ob(K) there is constructed a
linear space H(A), and for any q = Mory (A, B) an operator T(q): H(A) -+ H(B), so that
T(pq) = A(p, q)T(p)T(q), where A(p, q) =C\ 0.

3.1. Category TA. An object of the category is the direct sum of two copies of the
same Hilbert space V=V, & V,. A morphism from V into W is either the null morphism or
a linear subspace Q © V & W, for which there exists a subspace R & V @ W, such that:

-l s

! l. The codimensions of Q N R in q and R are finite (and they might not coincide).

. 2. R is the graph of the bounded operator (E g): Vi ®#W, +V, « W,, with A and D

Y % being Hilbert—Schmidt operators. We will define the product of morphisms, The product of
} the null morphism with any other morphism is the null morphism. Let P: V = W, Q: W+ Y

'1 be nonnull morphisms. Then P and Q are multiplied as linear relations with the excepticn

e ¥ W ™

of the following two cases, when their product is the null morphism: 1) the subspaces
PNWand QN WinW have a nonempty intersection; 2) the sum (no matter which, algebraic

or topological) of the projection P onto W parallel to V and the projection O onto W par-
. | allel to Y does not coincide with W.

3.2. Embedding of Category TA in Category Or. Let H' denote the space adjoint to H.

Sl Let V e Ob(TA), let V=V s V', We will introduce on V the structure of an object of cat-
(8 | egory Or, putting (see Sec. 2.1) V4 =V, V_ = y', {(xys £1)s Xyn £30) = £,(x;) * Fa(xy).

- Let V, W &€ Ob(I'A), Q © V ® W be a morphism of category l'A. Let Rc (Ve W) =V' e
|¥' be the annihilator of Q. Then Q # R c (V » V') » (WeW')=VeWis a morphism from
F V inte W in category Or.

_ Hence, we have embedded T'A into Or. Restricting the spinor representation of Or to
= |TA, we get a representation of A, which we will also call a spinor representation.

3.3. Category Shtan. An object of category Shtan is a nonnegative integer. A morph-
ism from m to n is the collection (R, rj+. rj'}, where

l. R is a compact complex Riemann surface with a boundary, such that the boundary con-
fsists of m + n enumerated components.

' 2. myte e mgty 1Ty wuis mgTe [0, 2v) + B are Fixed analytic parametrization of,
- respectively, 1, 2, ..., m + n components of the boundary, so directed that going along
f' ri*T 9 ) the surface remains on the left, and along r{ (%) on the right side of the contour.

Let (R, r1+. rj'}. {q, Q1+. q;”) be morphisms from m to n. We will consider them to
Jeoincide if there exists a biholomorphic mapping t: R = @, such that qﬂi = ter,t.

Let (R, r1+. r;”) be a morphism from m to n, and (P, p;it, pk~) a morphism from n to %.
en their product {s the collection (5, r;*, Pk~ ), where the Riemannian surface S h{f bean
[pbtained from a nonconnected union of R and P, and pasting of the points rj™(g) andp;*(e),
here j =1, ..., n; ¢ = [0, 27].

|

|

by 3.4. Embedding of Category Shtan into Category I'A. Let A be the space of forms of
i e weight A € Z on the circle 5': [z| = 1 with the scalar product
|

4 (2) (da), g (2) (d2)y = \ /(%) ETe%) dg.

203




We will introduce on A* the structure of an object of the category I'A putting A} =
AJA . AEA, where Ail consists of forms, holamurphicalli extendable into the interior of
i
3 .

the circle, .and A

s the orthogonal complement to Ay
copies of A,.

Let B, be the direct sup of n

Let (R, r;3t, ry") e Morghean (m, n). We will construct for it the subspace L = Ly =
(R, #4%, r4”) € By ® B,. Namely, (ha™s iy BgFe By"y vens Bao) € Ly If thoce exists a
holomorphic form F of the weight A on R, such that the boundary values of F on the curve
;¥ (@) is the direct image of the form bii under the mapping eis —+r(y) from $! into R,

THEOREM 4. L = Ly(R, r;t, rj7) € Morpy (B, By).

Now, restricting the spinor representation of TA to Shtan, we obtain a series of re-
presentations of Shtan depending on n. It turns ocut that the representation operators are

bounded not oenly in the sense of the polynormed Fock space A, but also in the sense of the
Hilbert space 7.

3.5. Complexification T of the Group Diff of Analvtic Diffeomorphisms of the Circle,
Freserving the Orientaticn (cf. [117). Semigroup I' consists of all elements of (R, T,
r7) e Morghtan (1.1), for which R is homeomorphic to a ring. The limit elements of T cor-

respond to the group Diff: one needs to take a ring degenerating to a circle, them (rt)-1
t” e Diff.

Remark. The group Diff dees not have any group complexification [because there are
no complexifications of n-fold enveloping groups of SL,(R ) contained in it]l. Let us ex-
Plain why I is an existing subsemigroup in a nonexisting group Diff.. It is natural to
take as a neighborhood of Diff in Diff. a local group, consisting of mappings p of the cir-
ele 8': |z| =1 into its small neighborhood. Let us consider in this local group a local
subsemigroup of all p, for which |pCe® )| < 1. Then R is & ring between the contours §!
and p(S'), and T4 () = &9, r_(g) = p (e'9).

3.6. Proof of Theorem 4. Any object of category Shtan can be "cut" into elementary
objects of the fellowing 4 types:

1, 2, 3. A domain on the plane bordered by one, two, or three circles with paramet-
rizations of the form ¢ —» a - Bexiv,

4. FElements of Diff,

The conditions of Sec. 3.1 can be easily verified for 1, 2, and 3, and they have been
verified for Diff in [9, Secs. 4.3, 9.4].

3.7. Representations of I.

THEOREM 5. Any irreducible (not necessarily unitary) representation of the Virasoro
algebra with older weight (cf. [10]) is integrable to a projective representation of T by
bounded operators in a Hilbert space.

Remark. It is interesting that extending this representation onto the "skeleton" Diff
of the semigroup T we obtain operators which are, generally speaking, unbounded in the
sense of Hilbert space.

Proof. Among the subfactors of representations of I', constructed in Sec. 3.8, are all
representations of the Virasoro algebra with highest-order weight.

3.8. Embeddings of I' into Morphisms of the Category TA. Let us consider enveloping
I over T, which is a set of quadruples of the form (R, 6, r', r), where

1. R is a domain, holomorphieally equivalent to a circle;
2. B is a hyperbolic automorphism of R;

3. ¥ gre analytic diffeomorphisms from R into R, such that r¥(x +.Zn] = 6(c¥(x)).
By approach along the curve r*(x) the domain should remain on the left side, and along
r'{x) on the right side.

Remark. It is convenient to assume that R is a strip, and 8 is a shift.

The product of (R, 6, t*, ™) by (Q, ¥, qt, q7) is, as before, carried out by pasting
together points r™(x) € R and q*(x) € Q.
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Let now A (A, a = C) be the space of forms on Rof the form f(x)}(dx)*

satisfvi
conditions f(x + 2n) = e?Tiaf (%) with the scalar product iefying the

b

I (=) (da), g (2) @2y = § (=) ETF da

We will introduce on Ax* the structure of category ra
which are holemorphically extendable into

plement to (A,%),. Two alements by, b.
Ly,a(Rs 8 e%, r°), 4F theve evists 4 ho
the conditions: 1) under the mapping &
values of | on the curves ri(x) are

» Assuming that (A A), are forms
the lower halfplane, (A,*), is the orthogonal com-
€ Ay" are connected by the linear relation [ =
lomorphic form p of the weight A on R, satisfying
the form p is multiplied by e?7™if. 29 the boundary
direct images of the forms by under the mappings rt,

It turns out that L e Morprp (Ag*, A )) and, consequently,

we e i i -
SRS Ao have a projective repre

Remark. On the

group Diff the construction from [9, Sec.
& [Jstructions of [9, Sec

- 3.1] can be extended on I' too,
3.9, Category G — Shtan. Let G be a e

E_”, 5! are denoted the following domains of

v lz| > 1, |z| = 1.

An object of the ¢ —

puadruple (R, F, r;*, r:-)

]
l. R is a compact Riemannian surface (without boundary);

2. F is a pPrinciple bundle over R:

5.1.3]; the remaining con-

omplex algebraic Lie group. by Dy, D., D.°,
the Riemann sphere: |z| < 1, |z| 2 1. lz| <

Shtan category is a positive integer.

A morphism m + n is the
» 1 €m, j s n, where

3. 1yt are morphisms of the principle G-bundles Dy x G = F,
fronding mappings of bases D+ + R are onefold
images do not intersect,

With this the corre-
and holomorphic up to the border and their

The morphisms (R, E, r1+. 1Y, (0, H, qi+. g;~): m -+ n are edﬁival&nt if there
§xists a morphism of priniciple ﬁ-hundles T: (R,'%} + (Q, H), such that qkt = Tirkt.

Lat (R, F, r;*, rj~) = Mor (m, n), (P, &, pj+, Pe”) = Mor(n, k}). Then their product
= the quadruple 3&. s r1+, pg”), where the bundle is obtained from the nonconnected un-

lﬂn of (R, F)\ f{ ry7(D." % G) and (P, H)\ pj+(ﬂ+" * G} by pasting together points
57 (x) with pj+{xl, where j = 1, ..., nand ¥ €'§! x G,

Example 1. If G consists of one unity, then G — Shtan coincides with Shtan.

In this
Realization it is evident that there exists on

Morghtan (m, n) a natural complex structure.
Example 2. let m=n = 1, let R be the Riemann sphere, where r+{D+° % G) does not in-

rsect with r (D." = G), and rH(Dy® » G) U - (D0 x G) = F. We will denote the set of

ch objects by IG. Formally IG does not enter the set of morphisms from 1 to 1, but it

n be considered as a part of the border of this set. The multiplication by I'G is intro-
ed in an obvious way, and we obtain a group which is isomorphic to the semidirect prod-

t of Diff and the group of analytic mappings of the cirele into the group G, that is one
the essential objects of the representation theory for infinite-dimensional groups (ef.
» Sec. 7, 8.1]). (The author gives thanks ta A. C. Reinman for discussion this point).

3.10. Embeddings of the Category SO(n)-Shtan into Catepory T'A. The considerations
3.4-3.8 can be carried over onto S0(n)—Shtan almost literally. One needs to take an n-
mensional vector bundle, associated with the prineciple bundle F and, instead of the word
orm," we will always use "form with values in the bundle." To obtain another represent-
ions of the category G-Shtan, it is enough to embed G into O(n),

3.11. ZigelKrilov Domain K (see [6]) will be defined as the set of triples (R, rt,
+ where R is holomorphically Eiuivalant to the circle, (R, rt) e Morghtan (1, 0), z  R.
e triples (R, r*, z) and (Q, q*, u) are equivalent if there exists a biholomorphic map-
ng t: R > Q, such that q = ter*, t(z) = u. The semigroup I' acts on K in an obvious
¥.

Any nondegenerate (Sec. [9]) representation of the Virasero algebra (= of semigroup

¥ with highest-order weight can be realized in cross sections of some holomorphic linear
dle over K,
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Proposition. Any nondegenerate
semigroup T) with highest-order weigh
linear bundle over K.

3.12. Krichever—Novikav Bases,
category Shtan, being realized as in 3.9. Let uy be a form of the ueightlh €% on R, which
has at the points £+f0} and r (=) nulls of the order 2] +8f2 =g + 1), vhere E ithhe
suit of R. Let e4= be the coimages of the form p; under the mappings ri; §! 5 g, Then
;ﬂ (and, analogously, Ej'} is a basis in the space Ay of forms of the degree 1 on §1,
en the relation LA{R. rF, r”) constructed in 3.4 maps ej+ to es7. We will take now for

e H i
every e an odd variable Eif. Then the Berezin operator, constructed through Ly(R, ¢t
r”) as an operator from AME™) to afe™), maps Ilz+ to Ilg; . )
ke [

In the counting system [7] this means the identi
ing to the contours r*( ¢% ) and r~ (e ),
Wwith each other in another way by the choi

the counting system Shtan means the choice
unit matrix.

Let us consider the morphism (R, £+, r=): 1 = 1 of

fication of the Fock Spaces correspond-
In our case, these spaces have been identified
ce of parametrization, and construction [7] in
of bases in which the Berezin operator has the

3:13. €lassification of Representations of Category Or. After having constructed a
spinor representation of category Or, we come across a natural question: Which represent-
ations, in general, have the category Or ? We will restrict ourselves to subcategories Or,
of the category Or, whose objects are finite-dimensional, and their merphisms are the same
as in Or (obviously, the representation theories for the category Or and Or; coincide; in
any case one can impose on the representations of Or continuity assumptions, so that this
statement would be a theorem). It turns out that all representations of Or_ can be real-
ized in contravariant tensors over the spinor representation.
we will formulate a classification theorem not for

For purely aesthetic reasons,
Ore, but for the following category D.

Its objects are the same as in Or.. An orthogonal relation P: V 3 W is a morphism
of the category D if the dimension of the space P Nl (V. = Wy) is even. The product of
morphisms and the null morphism are defined in the same way as in Or. Notiee that the
group of invertible morphisms of a Zn-dimensional object V., of the category D is isomorph-
ic to 50(2n), and with each representation of the category D there is connected a Tepre-
sentation of S0(2n) in the space H(V,n) (see Sec. 3.0).

Proposition. Irreducible holomorphic projective representations of the category D are
enumerated by diagrams of the form

a, e——ror:
= s o thy
e ]

B e—

where 4; are nonnegative integers, ameng which only a finite number differs from null. Let
2z be the right ulmest nonnull index. If n z a — 1, then the corresponding representation
of S0(Zn) is the irreducible representation of 50(2n) with the numerical indices a,, 8., g

--+y @y on the Dynkin diagram Dh. Ifn<a-—1, then the space H{Vzn} is null-dimensional.

Analogous results are valid for categories connected also with other classical groups.

After this work had been already submitted to the editor, there appeared a preprint
of Gr. Segal, in which independently from M. L. Kontsevich a definition of the Shtan cat-
egory has been given. Moreover, there appeared [17], where operators have been construect-
ed, the same as in our paper in Sec. 3.4 (the authors, however, are interested neither in
the existence problem for the operaters, nor in their multiplicative properties]).
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SKIYANIN ELLIPTIC ALGEBRAS

A. V. Odesskii and B. L. Feigin UDcC 517.9

In [2, 3] Sklyanin has constructed the family of the algebras A(g , 1), parametrized

by fhe set of pairs (g, t), where & is an elliptic curve and t is a point on it. This
famfily has the following properties:

ra

1. The algebra A(&, t) is graded, dimA(% , )i =0 for i < 0, and dimA( &, 1) =

Citti. The algebra A(% , 1) is generated by the four-dimensional space A(& , 1), and quad-

¢ relations: the six-dimensional space
Ker (4 (&, 7, ® 4 (&, 1), > 4 (8, 1),).

The algebra A(%, 0) is isomorphic to the algebra of polynomials in four variables.

2. Let the symbol I'nh denote the finite Heisenberg group, i.e., the group generated

by plements x, y, and € and the relations x0 = y? = €l = 1, xe = ex, ye = ey, Xy = eyx.

The
spa

us
sub
Clv
is

group I', acts by graduation-preserving automorphisms on the algebra A(& , t). The
te A (€, 1), is an irreducible representation T,.

3. Let C [V] be the ring of polynomials generated by the space V and @ € End V. Let
orm the semidirect product of ¢ [t] and C [V]. This is the algebra generated by its
lgebra C [V] and the element t and the relations tv = (g v)t, where v runs over V. ‘Let
a] denote the subalgebra of ¢ [y] Ix C[V] generated by the subspace C-1 @ tV; C(V, al ; it
alled the algebra of skew polynomials.

Let t be a point of fourth order on & Let us identify the group of points of fourth

ord¢r on & with the quotient of I', modulo the center. Let X(t) be a lifting of t in T,.

The

algebra A (&, 1) is isomorphic to the algebra C (4 (& , )., X(1)].
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