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ABSTRACT. The aim of the present paper is twofold. One of the objectives

is to present an elementary geometric description of the boundaries of sym-

metric spaces. These boundaries arise in mathematics independently and not

simultaneously in quite different connections: enumerative algebraic geometry,

harmonic analysis on symmetric spaces, the theory of automorphic forms. For

spaces of rank one, e.g., for the Lobachevsky space SO(n, 1)/580(n—1,1), the

structure of the boundary is very simple. For symmetric spaces of rank > 1,

there are many different boundaries and their structure is rather complicated.

The second objective of the paper is to present the author’s results announced

in [Ner4, Ner5, Ner7]. We do not discuss applications of the constructions |
under consideration (except in the very simple §0) and also do not survey ev- |
erything known about such objects. In Chapter I we describe in detail the

variety of complete collineations defined by Semple in 1951 and show in Chap-

ters II and III how to extract explicit constructions of other objects of the

same kind from this description. Moreover, we give elementary constructions

for the Satake-Furstenberg, Martin, and Karpelevich boundaries of symmetric

spaces and construct some “new” boundaries.
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§0. The problem of five conics and complete conics

We recall an old problem of enumerative algebraic geometry, which was widely
discussed in the second half of the nineteenth century (see remarks in §16). Now
this problem is mainly of historical interest, but still is not trivial.

On the complex projective plane CP2, let five conics Li,...,Ls in general
position be given. The question is: how many different conics are tangent to all
five conics Lq,...,L5?

0.1. The space of conics. A conic on the plane CP? is given by the equation

3
(0.1) Z a;;zx; =0,

1,j=1

where a;; € C, a;; = a;;, and some a;; are nonzero. Since the set of solutions of
(0.1) is preserved under multiplication of all a;; by a number, the space @ of all
conics is identified with the 5-dimensional projective space CP° (with coordinates
ayyiapz ;a3 ;a6 azz).
The group PG L3(C) acts on CP? by projective transformations; therefore, this
group acts also on the space Q = CP5.
As is known, the group PGL3(C) has the following three orbits in Q = CP>:
1° Nondegenerate conics. The stabilizer of the conic z? + z2 + 12 = 0 is the
complex orthogonal group O3(C). Therefore, the space of all nondegenerate
conics is the homogeneous (symmetric) space PGL3(C)/S03(C).
2° Pairs of intersecting lines.
3° Pairs of coinciding lines (double lines).
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FIGURE 0.1

0.2. An attempt to solve the problem. Consider two conics given by the
symmetric matrices A = (a;;) and P = (p;;).

The fact that the conics are tangent can be expressed by the following condition:
(%) the equation f(A) = det(A — AP) = 0 has a multiple root.
Therefore, the discriminant D(A, P) of this equation must be zero. Now the
problem of five conics can be restated in the following form: given five matrices
Ay, ..., As, find the number of solutions of the system of equations

(0.2) D(Ax,P)=0, k=1,...,5.

If the surfaces of sixth order D(Ag, P) = 0 were in general position, then (by
the Bézout theorem) the answer would be equal to 6°.

However, these surfaces are not in general position. The point is that each
conic is tangent (in the sense of condition (*)) to every double line (see Figure 0.1).
Therefore, the set of solutions to system (0.2) contains the two-dimensional surface
of double lines, and we cannot apply the Bézout theorem.

0.3. Complete conics. We were interested in the set of solutions of system
(0.2) in the space of nondegenerate quadrics PGL3(C)/SO3(C). In fact we have
set the problem in the completion Q = CP® of the space PGL3(C)/S05(C).

An unpleasant phenomenon, namely, the appearance of a two-dimensional com-
ponent in the space of solutions of system (0.2), occurred on the boundary of the
space PGL3(C)/SO3(C). It turns out that the situation will be modified if we take
another boundary of the  space PGL3(C)/SO3(C).

Consider the space CP? dual to cp2. Recall that, by definition, the points of
CP? are lines in (CP2 Moreover, if a € CP2 then the set L(a) of all lines in CP?
(i-e., points of (CPQ) passing through a is a line in CpP2.

To any nondegenerate conic Q@ C CP? we assign the dual conic @ that consists
of all lines tangent to Q. If Q is defined by the matrix A = (a;;) (see (0.1)), then
Q is defined by the matrix A~

Consider the embedding

(0.3) PGL3(C)/SO3(C) — CP5 x CP®

that assigns to each nondegenerate conic @ the pair of conics (Q, @) € CP* x CP°.
The variety C of “complete conics” is defined as the closure of the image of the
embedding (0.3). This closure consists of four orbits of the group PG L3(C):
1. All pairs of the form (Q, Q), where @ is a nondegenerate quadric.
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2. All pairs (R,T), where the quadric R C CP? is a pair of lines #; and ¢,
meeting at the point a and T is a double line L(a). L

3. All pairs (S, H), where S C CP? is a double line and H < CP? is a pair of
lines L(a) and L(b), where a,b € S.

4. All pairs (M, N), where M C CP? is a double line and N C CP? is a double
line of the form L(a), where a € M.

The dimensions of these orbits are 5, 4, 4, and 3, respectively.

THEOREM 0.1. C is a smooth algebraic variety.

This assertion is rather simple (for details, see [SR, DCP, GH| and Theorem
4.6 below).

0.4. Solution of the problem. Now let X be the set of all nondegenerate
quadrics tangent to the given nondegenerate quadric Q. Let X be the closure of
Xg in C. The following theorem is a pleasant exercise.

THEOREM 0.2. ”a)” The homology ring of C is generated by two cycles: the
cycle X that consists of all quadrics passing through a given point and the cycle u
that consists of all quadrics tangent to a given line.

b) The cycles A and p satisfy the relations

(0.4) MN=1 Mp=2 XNupl=4, MNpd=4 =2 uP=1.
c) Let v be the homology class of the cycle Xqg. Then we have v = 2(A 4 ).

REMARK 0.3. Equalities (0.4) have a clear geometric meaning. For example,
the relation A3u? = 4 means that there exist four quadrics that pass through three
points in general position and are tangent to two lines in general position.

Now it remains to compute
(0.5) v® =25\ + ) = 3264.

Moreover, we must verify that the trouble we wish to avoid is now really absent.
Namely, verify that there is no subvariety K C C such that K C Xg for all Q.
Clearly, if such a variety K exists, then K must be PGL3(C)-invariant; therefore,
it can only coincide with the orbit of the fourth type from the list in subsection 0.3.
It remains to show that the variety —Xz does not contain the orbit of the fourth

type.

Chapter I. Hinges and the canonical completion
of the group PGL,(C)

§1. Exterior algebras and the category GA

1.1. Linear relations. Let V and W be finite-dimensional linear spaces. By
a linear relation P: V =3 W we mean an arbitrary subspace PC V@ W.

Denote by Gr*(H) the Grassmannian of all k-dimensional subspaces of the
space H. The set of all linear relations V' = W is the union of Grassmann varieties:

dim V+dim W
U oGfvew).
k=0
This set can be naturally endowed with the topology of disjoint union.
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EXAMPLE 1.1. Let A: V — W be a linear operator. Consider its graph
graph(A), that is, the set of pairs (v, Av) € V @ W. Then graph(A) is a linear
relation V' = W. Similarly, the graph of an operator B: W — V is also a linear
relation V =3 W. Below we do not distinguish between linear operators and their
graphs.

Let P:V 3 W and Q: W 3 Y be linear relations. Then their product
QP:V 3Y is defined by the condition

(v, ) €EQP <> JweW : (v,w) € P, (w,y) €Q.

Further, for every linear relation P: V 3 W we introduce the following objects:
a) by its kernel we mean Ker P = PNV,

b) by its image Im P we mean the projection of P to W;

c) by its domain Dom P we mean the projection of P to V;

d) by its indefiniteness Indef P we mean the intersection of P with W.

REMARK 1.2. A linear relation P is the graph of an operator A: V — W if and
only if we have Dom P = V and Indef P = {0}. In this case we have Ker P = Ker A
and Im P = Im A.

For any linear relation P: V =3 W we introduce its rank

rk P = dim Dom P — dim Ker P = dim Im P — dim Indef P
= dim P — dim Ker P — dimIndef P.

Further, for P: V =2 W we define the pseudoinverse linear relation P2: W =
V; namely, we consider the same linear subspace P C V @ W as a subspace of
WeV.

Let P: V =3 W be a linear relation and R C V a subspace. Define the subspace
PR C W as the set of all w € W for which there exists a v € R such that (v, w) € P.

Finally, let us define the multiplication of a linear relation by a number A # 0.
Suppose P: V =3 W is a linear relation. Then the linear relation AP consists of
vectors of the form (v, Aw), where (v,w) € P.

1.2. Category GA. The objects of the category GA are finite-dimensional
complex linear spaces. The set Mor(V, W) = Morg4(V, W) of morphisms V — W
consists of

a) all linear relations V' =2 W defined up to a scalar multiplier,

b) a formal morphism null = nully y that is not identified with any linear

relation.

Let P € Mor(V,W) and Q € Mor(W,Y). Then the product QP € Mor (V,Y)
is defined by the following rule:

a) if at least one of the factors is null, then the product is null as well;

b) if P and Q are linear relations and the following two conditions hold:

(1.1) ImP +Dom@ =W,
(1.2) Ker Q@ NIndef P = 0,
then the product QP can be calculated as the product of linear relations.

For the case in which at least one of conditions (1.1} or (1.2) fails, the
product is null.
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We endow the set Morga(V, W) with a non-Hausdorff topology. We assume
that a set R is closed if and only if the following two conditions hold:

a) null € R;

b) R\ null is closed in the topology of the Grassmannian.

In particular, null is the only closed point, and the closure of any other singleton
defined by the point P # null contains the point null.

THEOREM 1.3 (see [Ner6]). a) The multiplication of morphisms of the category
G A is associative.

b) If P € Mor(V, W), Q € Mor (W,Y), and if P, Q, and QP differ from null,
then

(1.3) dim QP = dim @ + dim P — dim W.
¢) The multiplication is continuous.

PROOF. We restrict ourselves to the proof of b) (the same arguments prove c)).
Thus, let assumptions (1.1) and (1.2) hold. Denote by Z the space VOW dW @Y,
and denote by X its subspace that consists of vectors of the form (v, w, w,y). Denote
by T the subspace of X that consists of vectors of the form (0, w,w,0). Then QP
is the image of the subspace (@9 P)N X under the projection X — X/T =V @Y;
by condition (1.1), we have (Q & P) + X = Z, and therefore

dim(@&e P)NX =dim(Q & P) +dimX —dimZ = dim @ + dim P — dim W.

By condition (1.2) we have TN ((Q & P)N X) = 0; hence, the projection X — X/T
is injective on T', and the assertion is proved. ]

REMARK 1.4. This theorem is one of the reasons (possibly not the most im-
portant) to introduce the element null; otherwise, assertions b) and c) of Theorem
1.4 would fail for the category of linear relations.

1.3. Exterjor algebras. Let us introduce some standard notation. Let V be
a complex linear space of dimension n with basis €;,...,e,. Denote by A*V the
kth exterior power of the space V, i.e., the set of all vectors of the form

Z Qi€ N Ney,
i <<k
Denote by A(V) = @;_, A*V the exterior algebra over V.
Let A: V — W be a linear operator. Denote by A*A: A*V — A*W the kth
exterior power of A and denote by AA the operator

AA =P A A AV — AW
k=0

Let v € V. Denote by a(v) the operator of exterior multiplication (creation
operator) a(v)h = v A h in AV. This operator maps A*V into A*+1V.

Let V' be the dual space of V. Let f € V'. Denote by a™*(f) the operator of
interior multiplication (annihilation operator) in AXV. This operator is defined by
the relation

a(f)’vl/\"'AU;CZZ(~1)j+1f(’U]‘)U1/\--'/\Uj_lf\l)_H_l/\“'/\’Uk.
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The operators a(v) and a*(f) satisfy the following identities (canonical anti-
commutation relations):

(1.4) a(v)a(w) +a(w)a(v) =0,  a*(f)a*(g) +a"(9)a*(f) =0,

(1.5) a*(f)a(v) +a(v)at(f) = f(v) - E.
1.4. Pliicker embeddings. Let S C V be a subspace of dimension k. In S
we introduce a basis sy, ..., s and consider the vector s; A--- A s € AFV.

Let t; = 3~ ¢q;;s; be another basis in S. Let @ be the matrix with entries Qij-
Then we have
ti A Aty =det(@Q)sy A A sk
Thus, the subspace S defines a vector in A*V which is determined up to a nonzero
scalar factor.
Therefore, we have obtained the so-called Plicker embedding

Gr* (V) — P(A*V)
(we denote by PW the projectivized space W).

1.5. Fundamental representation of the category GA. To any com-
plex linear space V' we assign the space AV. To any P € Morga(V,W) we as-
sign an operator A\(P): AV — AW, which is defined up to a constant factor, so
that for any V, W, Y and any P € Mor(V,W) and Q € Mor(W,Y) we have
AQP) = s(Q, P)X(Q) A(P), where s(Q, P) € C. In other words, ) is a projective
representation of the category GA.

First we define the operator A(-) for some special morphisms of the category
GA.

1. We set A(null) = 0 (this is another reason to introduce the morphism
null).

2%. Let X be a subspace of V. Let T: V =3 X be the graph of the embedding

X — V. Let fi,..., fa be a basis in the space of linear functionals that annihilate
the subspace X. Then the operator A(T): AV — AX is defined by the formula
(1.6) MT) =a*(f1) -a¥(fa).

3. Let Q: X = Y be the graph of an operator A: X — Y. Then we set
AQ)=AA= @j N A.

4%. Let Y be the quotient space Y = W/L. Let R: Y = W be the graph of
the projection W — Y. Choose a basis €;, ..., e5 in L. Then

(1.7) A(R) =aler)alez) - -alez).

It is important to note that the operator A(R) does not depend on the choice
of a basis. Indeed, A\(R)h = (e; A---Aeg) Ah, and, as we have seen in the previous
subsection the product e; A--- A ey is defined by the subspace L uniquely up to a
scalar factor. The same arguments show that the operator (1.6) is defined by the
subspace X uniquely up to a scalar factor (and does not depend on the choice of
the basis fi, ..., fo). Indeed, by identities (1.4), operator (1.6) is defined by the
element fi A--- A f, € AV°, where V° is the space dual to V.

Now let us take an arbitrary linear relation P: V = W. We set X = Dom P
and ¥ = W/Indef P. Then P can be decomposed into the product P = RQT,
where T: V' =3 X has the form described in 2%, R: W/ Indef P = W has the form
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4%, and Q is the graph of the operator Dom P — W/ Indef P, which is defined in
an obvious way. Now we set A(P) = A(R) A(Q) A(T).

THEOREM 1.5. The functor \(-) is a projective representation of the category
GA, ie., forany V, W, and Y and any P € Mor(V, W) and Q € Mor (W,Y) we
have A(QP) = s(Q, P)\(Q) AM(P), where s(Q, P) € C\ {0}.

REMARK 1.6. Let dimV = n, dimW = m, and dim P = q. Then it is clear
that the operator A(P): AV — AW maps A’V into A*9~"W. In particular, if
V =W and n = m = g, then the operator \(P) leaves all exterior powers AJV
invariant.

1.6. Proof of Theorem 1.5. Let V and W be linear spaces and let V° and
W be their dual spaces. Let P: V =3 W be a linear relation. We define the dual
linear relation P°: V° =3 W° as the set of all pairs (f,g) € V° & W° such that for
any (v,w) € P we have f(v) = g(w).

We can readily verify that (PQ)° = P°Q°.

REMARK 1.7. Let P: V =3 V be the graph of an invertible operator A. Then

P~ is the graph of the operator (A*)~!, where the operator At: V° — V° is adjoint
to A.

THEOREM 1.8. Let P: V = W be a linear relation.

a) The operator A\(P): AV — AW satisfies the relation a(w)A(P) = A(P)a(v)
for all pairs (v,w) € P,

b) The operator A(P) satisfies the relation a*(g)A(P) = A(P)a*(f) for all

(f.9) € P°.
¢) If a nonzero operator A: A(V) — A(W) satisfies the relations

(1.8) a(w) A = Aa(v),
(1.9) a’(g) A = Aa*(f)
for all (v,w) € P and (f, g) € P°, then A coincides with \(P) up to a scalar factor.

PRroOOF. Choose bases e1, ..., en; fi, ..., fm such that the subspace P C
V & W is a linear span of the vectors of the form

(elvfl)y"'v(eaafa)7 (ea+1a0)’~-'7(6570)’ (vacx+l)v"'7(07f“/)'

Then all assertions become more or less evident.

Now let us pass directly to the proof of Theorem 1.5. Let (v,w) € P and
{w,y) € Q. Then

a(y) MQ)A(P) = M(Q) a(w) A(P) = A(Q) A(P) a(v),

ie., M(Q)A(P) satisfies the same relations (1.8)-(1.9) as A(PQ). Therefore, by
assertion c) of Theorem 1.8, A(QP) and A(Q)A(P) coincide up to a scalar factor.

1.7. Categories of linear relations. The categories B, C, and GD defined
below will be used in §8 only (for details, see [Ner2, Ner6]).

The objects of the category B are odd-dimensional complex linear spaces en-
dowed with a nondegenerate symmetric bilinear form. Let V and W be objects of
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B and let My and My, be the corresponding bilinear forms. In V&W we introduce
the symmetric bilinear form

Myow ((v,w), (v, w')) = M(v,v') — M(w,w').

The set Morg(V, W) of morphisms V — W consists of elements of two types:
a) linear relations P: V =3 W such that P C V @ W is a maximal isotropic
(with respect to the form Mygw ) subspace of V & W;
b) the element null = nully,w.
The morphisms are multiplied in accordance with the rules of the category GA
(note that conditions (1.1) and (1.2) are equivalent in this case).

REMARK 1.9. Recall that a subspace H C Y is said to be 1sotropic with respect
to the form M on Y if M(h,h') = 0 for all h,h’ € H. Note that in our case we
have

dim P = %(dimVGBdimW).

REMARK 1.10. Let V = W and let A be an operator that preserves the form

Mv, i.e.,

M(Av, Av') — M(v,v") = 0.
This is exactly equivalent to the condition that the graph P of the operator is
isotropic in V @ V/, that is, P € Morg(V, V). We can readily show that the auto-
morphism group of the object V is the orthogonal group of the space V.

The categories C and GD are defined in the same way; however, the objects
of the category C are complex linear spaces endowed with a nondegenerate skew-
symmetric bilinear form, and the objects of the category CD are complex even-
dimensional spaces endowed with a nondegenerate symmetric bilinear form.

1.8. Category GA*. Now we describe the category GA*, which can be nat-
urally regarded as a central extension of the category GA (we will first meet this
category in §6).

The objects of the category GA* are complex linear spaces. The morphisms
from V to W are the operators A(V) — A(W) of the form s - A(P), where P €
Morga(V,W) and s € C.

The projection of GA* onto GA is sufficiently evident (to the operator s- A(P)
we assign P € Morga(V, W) for s # 0 and null for s = 0).

It would be of interest to obtain convenient explicit formulas for the product
of operators (s - A(P))(s" - A(P’)). Clearly, this product has the form s” - A(PP),
but the problem (possibly not very complicated) is to calculate s explicitly.

§2. Construction of a Hausdorff quotient space

2.1. Let M be a compact metric space and M = Uae 4 M, a partition of M
into pairwise disjoint sets. Then the quotient set A is endowed with the quotient
topology; namely, a subset B C A is open if and only if the set Use g Mo is open
in M.

Let a;,a € A. Then a = lim;_.« a; if and only if there exist P € M, and let
P;j € My, be such that p; — pin M.

In many interesting cases, the quotient topology on A is not Hausdorff (for
instance, for the partition of R into positive numbers, negative numbers, and 0).

The following example is of main interest below.
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2.2. Example: the Grassmannian. Let M = Gr3,, be the Grassmannian of
all n-dimensional linear subspaces of C" @ C". Let the multiplicative group of the
field of complex numbers C* = C\ 0 act on M = Grj,, by multiplication of linear
relations by numbers. Consider the partition of the space M = Grj, into the orbits
of the group C*.

If a linear relation L C C*&@C™ has the form L = P& @, where P C C*"&0 and
Q C 0 C", then the point L is fixed with respect to C*. All other orbits, regarded
as homogeneous spaces, are isomorphic to C*. Their closures in the Grassmannian
(regarded as complex varieties) are isomorphic to the Riemann sphere C = CUoco =
C*U0U .

The one-point orbits correspond to the closed points of the quotient space
M = Gr},, /C* (i-e., one-point set is closed). If § € Gry, is not a fixed point, then
the closure of the corresponding one-point set in M contains two points:

Dom S @ Indef S ¢ C"* & C", KerS&ImS cCtaC™.

2.3. Hausdorff metric: preliminaries. Let M be a compact metric space
with metric p(+, - ). Let [M] be the set of all nonempty closed subsets of M. Recall
the definition of the Hausdorff metric in M.

Let m € M and N € [M]. Define the distance between m and N in the usual
way by setting p(m, N) = min,en p(m,n). Denote by N, the set of all points
m € M at a distance < ¢ from N, by B.(m) the ball {z : p(z,m) < ¢}, and by Q
the closure of the set Q. '

Let N, L € [M]. Then the Hausdorff distance h(N, L) is defined as the infimum
of all ¢ > O such that N C L, and L C N..

Recall some simple facts about the Hausdorff metric.

LEMMA 2.1. Let N € [M]. Let z1,...,z, € M be a collection of points such
that p(xj, N) < ¢ and the balls B.(x;) cover N. Then the distance from N to the
set {z1,...,xp} is at most €.

PROOF. The proof is obvious.

COROLLARY 2.2. The space [M] is compact.

PROOF. Let xy,...,xs be an e-net in M. Then the subsets of the set x1,...,zx
form an e-net in [M].

Now let us give a constructive description of the convergence in [M].

LEMMA 2.3. Let N;,N € [M]. Then N; — N provided the following two
conditions hold:
1° for any n € N and any € > 0, the set B.(n) N N; is not empty, starting
from some index j;
2° for any m ¢ N there exists € > 0 such that the intersection B.(m) N N; is
empty, starting from some indez j.

Furthermore, let N; € [M] be a sequence. Let X be the set of all its limit
points. (The elements of the set ¥ are closed subsets of M.) Let

Y=)K z=|J K

Kex KeZ
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LEMMA 2.4. a) We have y € Y if for any e > 0, starting from some index j,
the set B.(y) N N; is not empty.

b) We have z € Z if for any ¢ > 0 there exist arbitrarily large indices j such
that the set B.(z) N N, is not empty.

The proof is obvious.
Lemma 2.4 can also be rewritten in the following form.

LEMMA 2.5. a) Y = ﬂ U Nj, where A ranges over all infinite subsets of
ACNjeA
N!
b) Z=JMN-
i€Nj>i

2.4. Construction of a Hausdorff quotient space. As above, let M be a
compact metric space and M = | J M, (a € A) a partition. Denote by S the set of
all subsets of M that are the unions of elements of the partition. Let the partition
satisfy the following property: if N € S, then its closure NV also satisfies N € S.
This property certainly holds if we consider the partition of the space M into the
orbits of some group G.

Furthermore, let M C M be an open dense subset and M € S. Consider the
set A C Aof all @ € A such that M, € M. Consider the subset 4 [M] that
consists of all sets of the form M,, o € A. Denote by A the closure of A in [M].
By construction, A is a compact metric space that contains A as a dense subset.
We call the space A the Hausdorff quotient space of the space M.

Certainly, the set A depends not only on the metric space M, but also on the
subset M.

EXAMPLE 2.6. Let the multiplicative group R* of positive numbers act on
C=CuUoo by multiplication of vectors by numbers. The orbits of R* are the open
rays starting from the origin 0 and the points 0 and oc. If M = C\ {0,000}, then
the corresponding space A is homeomorphic to the circle. The same assertion holds
if M is obtained from C \ {0,00} by deleting a finite number of rays. However, if
M = C, then the Hausdorff quotient is the disjoint union of two points and a circle.

Informally, we are interested in the situation where M is the union of the
“generic” sets M,.

2.5. Description of the Hausdorff quotient A in terms of the non-
Hausdorff quotient A. Let a; € A (we emphasize that a; belongs not just to
A, but to a certain subset of A). We say that the sequence «; is rigidly convergent
if all its limit points are limits. (Recall that a limit point of a sequence is a limit
of a subsequence.)

We say that a subset T C A is a limit set if there exists a rigidly convergent
sequence a; € A such that T is the set of limits of the sequence ;.

EXAMPLE 2.7 (see subsection 2.2). Let Gr3 be the set of all two-dimensional
subspaces of C2& C?. Let Grj /C* be the space of orbits of the group C* (that acts
by multiplication of a linear relation by numbers).

Consider the sequence V; in Gr?1 whose elements are the subspaces that consist
of points of the form (z,y; z, jy) € C* ® C2. In other words, V; is the graph of the
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C*Vj

FIGURE 2.1

operator 1o, By abuse of language, we can say that the graphs V; are points of
0 J

the space Gr3 /C*. Consider the following five sequences in Gr3:

3 4
SV =WV P =0V, SO =iV, S0 =v, 8P =jv.
Note that all Sj(k) (where k € {1,2,3,4,5}) are representatives of the C*-orbit of
the element V.

The limits of the sequences SJ(-I), .. .,SJ(S) in the Grassmannian Gri are the
subspaces W,. .., W5, respectively, consisting of vectors of the form

Wl : (zvy; 01 0)1 W2 : (z,y;O,y)» W3 : ((L‘,O; Ovy)7 W4 : (I,O;fﬂ,y), W5 : (O;O;Q:,y)'

Thus, the points W7,..., Ws, regarded as elements of Gri /C*, are limits of the
sequence V; € Grj /C*.
In Gri /C*, there are no other limit points of the sequence V;. Therefore, {Wj,
., W5} is a limit set.

PROPOSITION 2.8. Let N C M be a closed set. The following conditions are
equivalent:

a) N is an element of the Hausdorff quotient A,

b) there is a limit set T C A such that N = g Mp.

Proor. Let M,; converge to N in the Hausdorfl metric. Then by Lemma 2.5
we have N € §, i.e., N is composed of sets M. We can readily see that here the
index 0 ranges over a limit set.

EXAMPLE 2.9. Let us return to the previous example. The sets C* - V; V; are
complex curves isomorphic to the Riemann sphere C = CP!. This sequence of
curves converges, in the Hausdorff metric, to the union of two complex curves
with a common point. In Figure 2.1 we show the arrangement of C*-orbits that
correspond to the points V; and W;, Wy, W3, Wy, and Ws.

2.6. Example. Let C = C U co be the Riemann sphere. Let M = (C)™. Let
the group C* act on M by the formula (z4,...,z,) — (Az1,...,Az,). The quotient
C /(C* is not a Hausdorff space. We shall construct the Hausdorff quotient.

For M C M we take the set (C*)™. Let A be the set of orbits of C* in (C*)".

ExaMpPLE 2.10. Consider the following sequence of orbits in (C*)4/C* (we
indicate representatives of the orbits in (C*)4/C*):

Zj = (17j7 2]7]2) € (C*)‘l'
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FIGURE 2.2

Then z; is rigidly convergent, and the set of its limits (a limit set) is

h1 =(0,0,0,0), hy=(0,0,0,1), h3=(0,0,0,00), hy= (0,1,2,00),
hs = (0,00,00,00), hg = (1,00, 00,00), h7 = (00, 00,00, 0).
The points hy, k3, hs, and h; are stable under the action of C*. The orbits of the

points hy, hy, and ke are isomorphic to C*. Figure 2.2 illustrates the contiguity of
the orbits.

THEOREM 2.11. a) Every sequence
29 = (29 D) e (€

(we write down representatives of C* -orbits) that is rigidly convergent in (C*r/Cc*
must have the following form. There exists a SJamily of subsets

@=LoCLiC---CLg={1,...,n}
of the n-tuple {1,...,n} such that L;,, # L; and
1* for each p and any o € Ly, B¢ L, we have lim;_, , zg]) z},]) = 00.
2% for any a,8 € Ly \ L,y there exists a limit lim;_, 2§ zéj) € C*.
b) Under the conditions above, the limit set for the sequence 29 consists of

elements of two types, u®,...,u* and v?, ... vk
(P
1° wP = (uf, ..., uP), where

uP={0’ a¢ L,
« 00, @€ L,

2° Choose y € L\ Ly_1. Then v? = (vf,...,vB), where

oo, ac Lp—h
’Ug = hmj—.oc th])/z'(y])y a e Lp \ Lp—17
0, a ¢ L.

REMARK 2.12. For the case considered in Example 2.10 we have a chain of
subsets

@ C {4} C {2,3,4} C {1,2,3,4},
and the corresponding limit set is

UO = h], ul = h3, u2 = h5, u3 = h7, Ul = h2, ’U2 = h4, ’U3 = hs.
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PROOF OF THEOREM 2.11. Since the Hausdorff quotient space is compact,
any sequence z(7) ¢ (C*)*/C* contains a rigidly convergent subsequence. Now we
shall perform the promised construction, and the rigidly convergent sequence will
have the form described in assertion a) of the theorem.

If our sequence is initially not of the form described in assertion a), then our
procedure will make it possible to choose two different rigidly convergent subse-
quences with different limit sets.

Let us proceed with the description of the extracting procedure.

A point 2U) = (z? ) )) can be regarded as a point of the projective space
CP™~ 1. From the sequence 2() we extract a subsequence u() = (4 . ,u’) that
Is convergent in CP"~!, and let 7 = (r1,...,7,) be its limit. Let Ly c{1,...,n} be
the set of indices « such that r, # 0. For convenience of notation, assume that L; =
{1,...,8}. Furthermore, consider the sequence of vectors v/) = (ufaj}rv - ,u§f>),
which we regard as a sequence in CP*~%-! with homogeneous coordinates Uz41 !
UGy 1 Up. . .

Choose a convergent subsequence w(/) = (wé’ll, oo wd)) of v). Let q=
(g3+15--,45) be its limit. Let K be the set of indices o such that g, # 0 and let
Ly=L,UK.

Now we can continue the arguments with the remaining coordinates, and so
on. This completes the proof. O

Now we consider an arbitrary filtration
'@ CA C-- C A= {1,...,n}.
To any such filtration we assign the set Ry whose elements are the A-tuples
{PW....,P®)} satisfying the following condition: each P ¢ (C)"/C* has the
form C* - ({*,. .., i), where

z&“) =0 for a ¢ Ay,
zf}“) =00 for a € Ap_,,

zﬁ{‘) #0,00 for o€ Ay \ Ay, .

The set Ry is a complex variety isomorphic to (C*)n—k,
Theorem 2.11 implies the following assertion.

THEOREM 2.13. The Hausdorff quotient space coincides with the union of the
sets Ro over all filtrations A of the set {L,...,n}.

Denote by Tn~1 the space thus obtained. By construction, T# ! is a compact
metric space. It turns out that, in fact, T is a smooth complex algebraic variety.

Now we shall construct a complex analytic atlas on T"=1. The charts of this
atlas are indexed by the maximal filtrations (or the linear orderings, equivalently)
of the set {1,...,n}:

GCA CAC---CA=1{1,...,n},

where A; consists of [ elements. Let us describe the chart corresponding to the
filtration

(2.1) h:oc{i}c{2c---c{1,....,n}
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(the other charts can be obtained from this one by using the action of the symmetric
group). Define the mapping A: C*~! — T7~1 as follows. Let z = (z1,...y2n-1) €
C"~! have the form

z = (zly v 7za1~1707 Rag+1ls- .- 7Za2~170720<2+17 i ')1

where all 2, are nonzero, except for za,, 2a,, - ... Then A(z) belongs to the set Ry
that corresponds to the filtration

Wiac{l,...,mq}C{l,...,a2}C---,

and we have A(2) = (P, P,,...), where P, € (C)" has the form

z = (OO,--.,OO,17Za5_1+172as_1+12as_1+2,---, H zam,(),O....).
N——

. as_1<m<a,
ag_1 times s—1 s

Now we consider the chart that corresponds to a maximal filtration
(2.2) b:oCBiCBC--CB,={1,...,n}.

Denote by i < j the ordering on the set {1,...,n} given by the filtration (2.2),
namely, we set ¢ < j if there exists B, such that i € B, and j ¢ B,.
Let

(2.3) gc{l,...,qyc{l,....@}C-,

be the intersection of the filtrations (2.1) and (2.2).

As above, let zq,...,2z,_; be the coordinates in the chart corresponding to the
filtration (2.1) and uy,...,u,—1 the coordinates in the chart corresponding to the
filtration (2.2). The overlap functions

zi=z21(Ury - Un1)y oy Znon = Zpo (W Un_y)

are defined on the entire space C" "1, except for the hyperplanes u; = 0, where j
ranges over the entire set {1,...,n — 1} except for the points q|, gz, ... (see (2.3)).
These functions can readily be calculated:

(2.4) z; = Hua/ II -

a<j a<j~1

Note that the variables u,, never occur in the denominator of formulas (2.4) (note
that z,, = u,,); therefore, the overlap functions are indeed holomorphic on the
domain under consideration.

2.7 Remark: Universalization of separated quotient. In subsection 2.4
for each M € S we constructed separated quotient A = A(M) of the space M.
It is possible to construct separated quotient which does not depend on choice of
subset M. For this aim consider the space

Auniv = rmJMESz(M) ’

where intersection is given by all open dense sets M € S. All separated quotients

which we consider in this paper coincide with A ;.
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§3. Hinges
3.1. Definition. A hinge in C" is a sequence
P:(Pl,...,Pk)

of n-dimensional linear relations C™ =3 C™ (links of the hinge) defined up to mul-
tiplication by scalar factors (which are different for different P;) and satisfying the
following conditions.

(3.1) 1*  Ker P; = Dom Pjy,,
(32) ImP] = IndeijH,
(3.3) 2% P; # Ker P; @ Indef P},
(3.4) 3%t Indef P, =0,

(3.5) Ker P, = 0.

Denote by Hinge,, the set of all hinges in C™.

REMARK 3.1. Certainly, here the main condition is stated in 1*. Condition 3%
is condition 1* interpreted for j = 0 and j = k. Condition 2% is not very essential
and can be replaced by other conditions which are not worse by any means. For
the sake of being definite, we chose one of the possibilities (which are formally
nonequivalent but are essentially the same) in the statement; see Theorem 3.6 and
the discussion in subsection 5.2. We would also like to note the following.

REMARK 3.2. By 2% we have the strict inclusions

Ker P; D Ker P; 4, Dom P; D Dom P}, 1,
Im P; C Im P44, Indef P; C Indef Pj,.

This means that the number k of links of the hinge is at most n.

ExAMPLE 3.3. The graph of an invertible operator is a hinge. The graph of a
noninvertible operator does not satisfy condition 3%.

EXAMPLE 3.4. Consider a two-link hinge P = (P, P,). By condition 3+, P,
is the graph of an operator A: C* — C”, and P, is the graph of an operator from
the second copy of C" into the first one. By condition 1*, we have AB = 0 and
BA=0.

ExAMPLE 3.5. The subspaces W, and W, from Example 2.7 form a hinge.

3.2. Space of hinges as a Hausdorff quotient of the Grassmannian.
Consider the action of the group C* on Grj, described in subsection 2.2. For the
set M C Grj,, we take the group GL,(C); to be more exact, consider the set of
graphs of the invertible operators C* — C".

THEOREM 3.6. For the subset M = GL,(C), the limit sets in Gry, /C*, are
precisely the sets of the following form:

(36) QO,Pth’P?a---’kaka
where P = (Py,..., P) 1s a hinge and
Q; =Ker P; ® Im P; = Dom P, @ Indef P;;; C C" @ C™.
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COROLLARY 3.7. The metric space Hinge, is compact. The group PGL, (©)
is a dense open subset of Hinge,, .

Below we shall return to the proof of the theorem and the corollary; now we
continue discussing the definition of hinge.

3.3. Another interpretation of hinges. Let P = (P,.. ., P,) be a hinge in
C". For the summands in the sum C" & C", we introduce the following notation:

V=C"g0, W:=0aC".
Furthermore, define subspaces Y, and Zs for s € {0,...,k} as follows:
Y}=Keer:Doij+1, j=1,...,k—-1,
o=V, Y, =0,

Zj=ImP;=Indef Pjy,, j=1,...,k—1,
Zy=0, Z,=W.

We obtained two flags:

(3.7) V=Y2Y> - DY =0,

(3.8) O=ZyCcZicCc--cZ,=V.

The linear relation P; defines an invertible linear operator
Aj: Dom P;/Ker P; — Im P;/ Indef P; .

In particular,

(3.9) dimY;_,/Y; =dim Z;/Z;_, .

Thus, every hinge defines the two flags (3.7) and (3.8) satisfying condition (3.9),
and the collection of invertible operators

(3.10) A Y /Y5> Z;/Z;

defined up to a factor.

Conversely, let the flags (3.7) and (3.8) and a collection of invertible operators
(3.10) defined up to a factor be given. Let us choose subspaces R; C Y;_; and
Qj C Z; such that

Yia=Y;®R;, Z,=2,_,8Q,.

Then the operator A; defines an operator Aj: Rj — Q;. Furthermore, consider a
linear relation P;: V = W defined as the sum of the three subspaces:

Y;CV, Zi.1CW, graph(A;-) CR;®Q,CVaW

We can readily see that the collection (Pr,...,P.) is a hinge.

Thus, we have obtained a canonical one-to-one correspondence between the
space of hinges and the space of collections (3.7), (3.8), and (3.10). These collections
are said to be framed pairs of flags.
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3.4. Orbits of the group PGL,(C) x PGL,(C). As usual, denote by
PGL,(C) the quotient group of the group GL,(C) by its center C*.
The group G, = PGL,(C) x PGL,(C) acts on Hinge,, in an obvious way:

(91,92): P g7 'Pga = (97 ' Piga, ..., g7 Prga) -

PROPOSITION 3.8. The hinges P = (Py,...,P:) and R = (Ry, ... , Ri) belong
to the same orbit of the group PGL,(C) x PGL,(C) if and only if the sets of
numbers

(3.11) dimKer Py, ..., dimKer P, _;

and
dimKer Ry, ..., dimKer Ry_;

coincide. The dimension of the orbit that contains the hinge P = (Pry...,Pg) is
equal to n® — k.

Let us give an equivalent formulation of this statement in terms given in sub-
section 3.3.

PROPOSITION 3.9. The only PGL,(C) x PGL,(C)-invariant of a framed pair
of flags is the set of numbers

(3.12) dimY;, ..., dimY_;.

The dimension of the corresponding orbit is equal to n? — k.

ProOOF. Clearly, the set of invariants given in (3.11) (or in (3.12), which is the
same) completely determines the orbit. Let us choose a canonical representative
on any orbit. Namely, for 0 = jo < ji < --- < jr =n we define a canonical hinge
R{j1, -+, Jk~1) = (Ry, ..., Ri), where R, C C" @ C™ consists of all vectors of the
form (x1,...,Zn;Y1,...,Yn) such that

(313) Zo =0, a>js+l; Ys 207 ﬂgjs; Ty = Yy, js <7<js+l-
The stabilizer of this hinge consists of the pairs of block matrices of order
Ar -+ X)) X A+ + N,

where A; = j; — 7s_1, of the form

Al o+ ok L. ttATY 0 0
0 A x ... * AN 0 L.
0 0 A; ... |> * x  t3A7Y |

where t; € C*. The dimension of the stabilizer is equal to n2 + &, and thus the
assertion on the dimension of the orbit is proved.
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3.5. Proof of Theorem 3.6. First we show that any set of the form (3.6) is a
limit set in the sense of subsection 2.5. To this end, it suffices to restrict ourselves
to the case of hinges of the form R(ji, ... »Jk—1) (see the proof of Proposition 3.9).

Let a1 > --- > a;. Consider the sequence

ealtEv)\1
t
St — €a2 E,\2

where t = 1,2,3,... and ), = Js — Js-1 (we denote by E, the identity matrix of
size A X A). Our further arguments proceed as in Example 2.7. By considering
the sequence of matrices e~%'S; we obtain, as the limit, the linear relation (3.13).
Furthermore, choose b, so that a,_; < by < ay. By considering the sequence of
matrices e~%!S, we obtain, as the limit, a linear relation R, that consists of vectors
of the form (zy,...,z,;y1,.. .+ Yn) such that

{xazo, a > Aq,
Ya =0, a<l,.

The set of linear relations (Ry, Qq, Ry, . .. s Ri_1,Qk, R;.) has the desired form.
Conversely, consider a sequence A; € GL,(C) regarded as a sequence in the
(non-Hausdorff) quotient space Gry,, /C*. 1t suffices to show that A; contains a
rigidly convergent subsequence such that the set of its limits has the form (3.6).
Represent A; in the form A; = B;A;C;, where Bj; and C; are unitary matrices
and A; is a diagonal matrix:

50
1
A, = 85 ;e > 50,

Without loss of generality we may assume that the sequences B; and C; converge
in the unitary group (otherwise we can pass to a subsequence).

Now the convergence is completely determined by the middle factor, and we
shall watch this factor only. To the vector §() = {6? P 12N 0} (composed
of the eigenvalues of the matrix Aj) we can apply the procedure described in the
proof of Theorem 2.11.

Namely, from the sequence §0) = (59 ;... 6)) € RP"! we extract a subse-
quence 70 = (r' . 790} that converges in RP™™!. Let (py,...,p,,0,...,0) be
its limit. Furthermore, from the sequence (7}&21 R Y )) € RP"~ %=1 we extract

a subsequence that is convergent in RP"~*~! and so on.
Finally, from the sequence A; we extract a subsequence Z(*) of the form

agu)Diu)

{1

() - a(Q#)Déll)

where:
1. the matrices D are diagonal; for chosen m and p — oc, the sequence D/
has a limit, and this limit is an invertible matrix;

2. we have a%) > 0, and lim,_ as,‘f)/afﬁll = oo for any m.
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The set of limits of the sequence =) = A; clearly has the form (3.6) (see
Example 2.7), and this completes the proof of the theorem.

3.6. Contiguity of the orbits. Thus, the metric space Hinge,, is compact.
As was shown in subsection 3.4, this space is the union of 27~ orbits of the group
PGL,(C) x PGL,(C). Recall that the orbits are indexed by the collections of
numbers
%(P) = (dimKer Py, ...,dimKer P;,_,).

THEOREM 3.10. The orbit of a hinge R is contained in the closure of the orbit
of a hinge R’ if and only if L(R') C E(R).

COROLLARY 3.11. The group PGL,(C) is an open dense set in Hinge,,.

PROOF. The proof repeats the arguments of subsection 3.5. We only need to
perform the selection procedure not for matrices but for points of a given orbit.
By means of unitary matrices, the flags (3.7) and (3.8) can be transformed into
canonical position, and then the problem is essentially reduced to the extraction of
operators (3.10).

§4. Projective embedding

4.1. Semigroup GL%. Let V = C". Consider the semigroup GL}, formed by
all linear relations in C* of dimension n together with null.

Note that GL}, is a semigroup indeed (see relation (1.3)). We also note that the
product of linear relations of dimension n itself can be not of dimension n. However,
if the product has a “wrong” dimension, then this product in the category GA is
equal to null.

Furthermore, we note that for P ¢ GL;, the operator A(P) (see §1) preserves
the subspaces A7C™ C AC™. Denote by A;j(P) the restriction of the operator A(P)
to A7C™ (certainly, if P is the graph of an operator A4, then \;(P) = AJ(A)).

LEMMA 4.1. Let P € GL?, be a linear relation.
a) The operator A;(P) is nonzero if and only if j satisfies the condition

(4.1) dimIndef P < j < dimIm P.

b) If j satisfies the condition dimIndef P < J < dimIm P, then the operator
Aj(P) uniquely determines a linear relation P up to a factor.

The assertion is quite clear from the explicit construction of the operators
A;(P).

’ We are mainly interested in the case of J = dimIndef P and j = dimIm P.

Case A): j = dimIndef P.

Let e1,...,¢e; be a basis in Indef P and let Sf1,..., f; be a basis in the space of
linear functionals that annihilate Dom P (note that the condition dim P = n implies
dim Dom P = n—dimIndef P). Then, as can be readily verified, the operator A (P)
coincides with the restriction of the operator

(4.2) afer) - -a(e;)a*(f1) - a*(f;)

to the subspace A7V C AV.
We stress that in our case the operator A;(P) is completely determined by the
subspaces Indef P and Dom P. We also stress that the rank of the operator (4.2)
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is equal to one. The image of this operator is the line spanned by the multivector
erA---Ae; € MV, and the kernel (of codimension one) coincides with the kernel
of the linear functional f; A--- A f; € AVV° = (ATV)e.

Case B): j = dimIm P.

Let e1,...,e; be a basis in Im P and let Ji,..., f; be a basis in the space of
linear functionals that annihilate Ker P. Then the operator A;(P) coincides with
the restriction of the operator

(4.3) aler) - -ale;)a*(f1) - -a¥(f;)

to the subspace A7V,
We stress that the operators (4.2) and (4.3) coincide.
Case C): Q=Ker Q @ Indef Q.
Consider a linear relation Q of the form

Q=KerQ&IndefQ c C" o C".

Let dim Indef Q = j, let €1,...,€; be a basis in Indef Q and let fi,....f; bea
basis in the space of linear functionals annihilating Ker Q. Then we have

(44) Ai(@Q) =aler)---ale;)a*(f)---a¥(f;),  Aa(@Q) =0, a#j.

Consider the Dynkin diagram of the group A, _; = GL,(C) shown in Figure
4.1. Here the circles mark the fundamental representations A; of the group GL,,(C).
Le., the representations in A7V. It is convenient to add two black circles, from the
left and from the right, that correspond to Ag and A,,.

Let P € GL;, be a linear relation. By the domain of action of P we mean the
set of all j that satisfy (4.1). We shall depict the domain of action in Figure 4.2,
where a = dim Indef P and 4 = dimIm P. Outside of the domain of action of P,
the operators A;(P) are equal to 0 and on the boundary (i.e., for j = o and for
J = ), the operators \;(P) have rank 1.

4.2. The operators X;(P). Let P = (P, ..., Py) be a hinge. Choose some
J€{1,...,n—1}. Consider the sequence of operators

(4.5) (P, (B
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THEOREM 4.2. There are ezactly two possibilities concerning (4.5).
1+ Ezactly one term of the sequence (4.5) differs from 0.
2+ There is a unique a such that A\;(Py) # 0 and X\j(Pat1) # 0. In this case

dimDom(P,) = j = dim Indef (Puy1),

the operators A;(P,) and X;(Pa1) have rank 1 and coincide, up to a scalar factor.

PROOF. Indeed, by the definition of a hinge (Im P, = Dom P,+1), the domains
of action of the linear relations P, ... , Ps (see (4.1)) border on each other as shown
in Figure 4.3.

Consider the linear relations P, and P,.+1. By the definition of hinge, we have
Im P, = Indef P, 41 and Ker P, = Dom P, ;1. Let o = dim P,. By the remarks in
subsection 4.1 (see (4.2) and (4.3)) we have Ao(Py) = s~ Aa(Put1), s € €, and
this proves the theorem.

We define the operator \;(P): AJC™ — AJC" (which can be determined up to
a scalar factor) as the nonzero element of the set

Aj (P, - A (Pr)-

REMARK 4.3. Let us supplement the hinge P = (Py,.. ., Px) to obtain the set
(Qo, P1,Q1, - ., Pr,Qx); see Theorem 3.6. Choose some . Denote the number

dimIm P, = dimIm @, = dim Indef @, = dim Indef P, 11
by a. Then, by the remarks in subsection 4.1, we have
AQ(PM):S-/\Q(Q”):t-)\a(PH+1), s,te(C*.

The domains of action of the linear relations Qq, P1, @1, ... are arranged as shown
in Figure 4.4.

Qo QI Q2

FIGURE 4.4
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4.3. Projective embedding. Let W be a linear subspace and let Op(W) be
the set of linear operators on W. Denote by P(Op(W)) the set of nonzero operators
defined up to a factor. Consider the mapping

n—1 |

Hinge, — [] P(Op(A’CT))

j=1
given by the formula

P=(P,....;P) = a(P) = (M(P),..., \ur(P)).

THEOREM 4.4. The mapping o is continuous.

PROOF. Let us prove that ¢ maps convergent sequences into convergent se-
quences. Let P, € Hinge, converge to P. Without loss of generality we may
assume that P is a canonical hinge of the form R{j1,--.,Jx) (see subsection 3.4).
Furthermore, without loss of generality we may assume that all points Pa belong to
the same orbit of the group GL,, x GL,, (otherwise we can pass to a subsequence).
Let R(h1,...,hs) be the canonical representative of this orbit. We stress that the
set hi,..., hs is a subset of the collection J1s- -, jx. Furthermore, let the collection
‘ h, be empty (the general case differs from this one by complication of notation
only), i.e., let the sequence P consist of invertible operators, which will be denoted
by Aa..

The sequence A, is representable in the form Ao = BoALC,, where B, and
Co are sequences of unitary matrices that tend to the identity matrix and A, has
the form

aga)Dgo()
Aa = a(QQ)D§O)

where
1°. DS,?) is a diagonal matrix of the size (Jm—=Jm—1), and for any m, the sequence
D' tends to the identity matrix as o — oo.
2°. as,?) > 0, and for any m we have lim, .o ag,?)/a(,:}r] = <.
The convergence A7(A,) — A (R(j1:J2, .- .)) is more or less obvious.

We illustrate the assertion by the following example.

ExaMPLE 4.5. Consider the sequence of operators

A= A B )
1

In Hinge,, . this sequence is convergent to a (three-link) hinge R(1,3). The sequence
JT?A; is convergent to the operator in C* with the matrix

1
R =
0



188 YURII A. NERETIN

The sequence ;~3A%A; is convergent to the operator S in A2C* that has the form
S(e1Nex) =e; Aey, S(e1 ANes) = e Aes, and S(ea Aeg) = 0 for all other pairs e,,
es- The sequence j~#A%A; is convergent to the operator T given by the formula
T(e1 Nea Aez) =e; Aeg A e3, and T'(eq Aeg A e,) = 0 for all other triples e,, eg,
e,.

We can readily see that the collection of operators R, S, and T really corre-
sponds to the hinge R(1,3).

4.4. Smoothness. It follows from our constructions that Hinge,, is a projec-
tive algebraic variety.

THEOREM 4.6. The variety Hinge,, is smooth.
Before passing to the proof of the theorem, we consider the following example.

EXAMPLE 4.7 (diagonal hinges). We return to the situation described in sub-
section 2.6. Construct the natural embedding (C)” — Gr2_. Let us express a point
of the jth copy of C as the ratio a;/b;, where a;,b; € C and at least one of these
numbers is nonzero. Then to the point a1 /by,...,a,/b, we assign the subspace of
C"®C" that consists of the vectors of the form (byz1, byzs, . . ., buy; 121, 0020, . . .,
anZ,). The constructed embedding commutes with the action of the group C*, and
therefore it induces a mapping of the Hausdorff quotients

T»~! — Hinge,, .

Furthermore, we note that the (smooth) variety Tr—1 is exactly the closure of the
group of diagonal matrices in the space Hinge,,.

PROOF OF THEOREM 4.6. It suffices to introduce smooth coordinates in a
neighborhood of an arbitrary point R(j,,.. ., Js)- Let 3¢, = jo — ja_;. Consider a
subgroup G of GL, x GL,,, where G consists of pairs of block matrices that have
the size (se1 4300+ ) x (31 + 3t + - -+ ) and are of the form

E Bl *
x F B,

x x FE .| Bs

This subgroup is supplementary to the stabilizer of the point R(j1,...,4,). Let us
present a smooth transverse section to the orbits of this subgroup. To this end we
consider the set D of operators of the form

xlEJq
CEQE,Q

We can readily see that the closure D of the set D in the space of hinges is isomor-
phic to the variety T5 from subsection 2.6. This is the desired section.
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FIGURE 5.1

§5. Semigroup of hinges

5.1. Weak hinges. By a weak hinge in C* we mean a family P = (P, ..., B)
of linear relations of dimension < 7 that are determined up to a factor and satisfy
the relations

Ker P, D Dom Pjy; and ImP; C Indef Py

EXAMPLE 5.1. A HINGE IS A WEAK HINGE. Sometimes we shall speak of an
ezact hinge instead of the term “hinge”.

EXAMPLE 5.2. The empty set is a weak hinge.

EXAMPLE 5.3. Let P = (P,,..., P:) be a hinge. Then for any set of indices
0<i; < - <iy <k, the set (B,,...,P,) is a weak hinge.

We have the following chains of inclusions:

Dom P, D> Ker P, > Dom P, O KerP, O ...,
Indef P, CImP; CIndef P, CIm Py C --- .

Therefore, the domains of action of linear relations are roughly arranged as shown
in Figure 5.1.

We stress that our definition (in contrast to those in subsection 3.1) does not
forbid the case P, = Ker P, @ Indef P,.

5.2. Equivalence of weak hinges. Now we give a (technical and not very
important) definition of the equivalence of weak hinges. Two weak hinges are
equivalent if one of them can be obtained from the other by applying (possibly
many times) the two operations, of addition and deletion of a linear relation, that
are described below.

First operation. If the domains of action are arranged as shown in Figure 5.2
(for P;_;, the domain of action is a singleton), then the linear relation P;_; can be
deleted (ie., (..., Pj_2,Pj_1, Pj,...) ~ (... »Pj_2,P;,...)). Note that in this case
we have

P;_; =Ker P;_, @ Indef P;_4, KerPj_ = Dom P;,
ImP;_, =Indef P;_; = Indef P; .

B,

5

FIGURE 5.2
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FIGURE 5.3

b1 B P
FIGURE 5.4

P R
FiGure 5.5

P T R
FIGURE 5.6

Conversely, if Q is a term of a weak hinge, then we can place the term R = Dom Q&
Indef @ before Q. Similarly, the pictures shown in Figure 5.3 are equivalent.

Second operation. Let the domain of action of P; consist of two points and
the domains of action of P;_, and Pjy; tightly border on the domain of action
of P; (see Figure 5.4). Then the link P; can be deleted from the weak hinge.
Conversely, let P and R be neighboring terms of a weak hinge and suppose that
dimKer P —dimDom R = 1, i.e., the domains of the action are arranged as shown
in Figure 5.5. Then dimDom R + dimIm P = n — 1 and the linear relation T, of
dimension n, such that Indef T' = Im P and Ker T = Dom R is defined uniquely up
to a factor. Now we can add T to the weak hinge (see Figure 5.6).

5.3. Multiplication of hinges. Denote by P/Iag/en the set of all weak hinges
in C" defined up to equivalence. Let

P=(P,...,R),R=(Ri,...,R) € Hinge, .

Consider the set of all possible products Ay; = P;R; different from null.

THEOREM 5.4. The set A;; (being appropriately ordered) is a weak hinge.
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PI Py ” P - Py
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FIGURE 5.7
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FIGURE 5.8
P
Prhx x x x o
P; o . . x .
Py o ° ° x x

FIGURE 5.9

EXAMPLE 5.5. In C'"! consider two hinges P = (Pi,...,P;) and R = (R,.
-+, R5) with the domains of action of the links shown in Figure 5.7. If these hinges
are in general position, then the product has the form shown in Figure 5.8. If these
hinges are not in general position, then any of the links can be skipped.
In Figure 5.9 the crosses denote the pairs {i, j} for which (in the case of general
position) we have P,R; # null.

Let us pass to the proof of the theorem.

LEMMA 5.6. If P,R; # null, then the domains of action of P; and R; have a
nonzero intersection.

PROOF. Let the domains of action be disjoint, and, for the sake of being defi-
nite, let the domains of action be arranged as shown in Figure 5.10.

FIGURE 5.10
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B P,
FIGURE 5.11

Then we have
Ker P, > Dom R;;, Im P; C Indef R},
both these inclusions being strict, and

dim Ker P, + dim Indef R; > dimKer P, + dim ImP, =n.

Therefore, Ker P, and Indef R; have nonzero intersection, i.e., PR; = null.
Lemma 5.6 implies the following assertion.

LEMMA 5.7. Let FBR; # null and PoRg # null. Then at least one of the
Jollowing three possibilities holds.
a) i<o,j<B.
b) i>a,j> 8.
¢} The domains of action of P;, P,, R;, and Ry are arranged as shown in
Figure 5.11.

Note that the last case is of no interest because in this case S — PR; = P,Rg
is § = Ker S @ Indef S. Moreover, since we have BR; # null and P.Rg # null,
the linear relation S can be deleted by the first rule of subsection 5.2.

Thus, let i < @ and j < 3. Assume that T = PR; # null and S = P, Rs #
null. We must show that either T = $ or

KerT > Dom S, ImT C Indef S.

It suffices to consider three cases:

a) i<a,j<p.

b) i=q,j<g.

c)i<a,j=p.

In the first case we have

KerT > Ker R; > Dom Rs > Dom S,

5.1
(51) ImT C Im P; C Indef P, C Indef S.

In the second case we have the same chain (5.1) together with
ImT = P(ImR;) C P;(Indef R,) C Indef S .

The third case is similar to the second one, This completes the proof of the theorem.

Thus, we see that the set Hinge,, is a semigroup.
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FIGURE 5.12

——

5.4. Fundamental representations of the semigroup Hinge,,. Let

JEA{L,...,n—1}.

—

Define the representation A;j(-) of the semigroup Hinge,, in the space AJC™.
Let P=(P,...,P) e Hinge,,. Consider the set of operators

(5.2) Ai(PL)y .o A (Pr).
The following assertion is obvious.

PROPOSITION 5.8. For any P, one of the following three properties holds.

a) All operators (5.2) are equal to 0.

b) There ezists an a such that Aj(Po) #0, and this a is unique.

¢} There erist indices & a+1,...,8 such that A\;(P,) = 0 for o < a and for
o > f3, and the operators Ai(Pa)y ..., Aj(Ps) are of rank one and coincide
up to a factor.

We illustrate cases a), b), and c) in Figure 5.12.

The last pictures show why many (> 2) links P, such that A (Ps) # 0 can occur.
The reason for this occurrence is obvious: for any linear relation P entering the
hinge, we can always add an arbitrary number of identica] terms Q@ =Ker P®Im P.

Now we assume that A;(P) is an operator defined up to a factor and satisfying
the following conditions.

1) If case a) of the theorem holds, then Ai(P)=0.

2) If we have case b) or ¢), then A ;(P) is a nonzero term of the sequence A;(P,).

We can readily see that P — A;(P) is a projective representation of the semi-

e

group Hinge,,.

5.5. Topology on I/{;fg/en. Let V be a linear space. Denote by P°V = PV U0
the set of vectors v € V defined up to a factor, i.e., P°V is the projective space PV
to which we add 0.

The topology on P°V is defined by the following condition: a set § ¢ P°V is
closed if and only if 0 € § and S NPV is closed in PV.



R EE————————————.

194 YURII A. NERETIN

REMARK 5.9. This is not a Hausdorff topology. The closure of any point
h € PV is the two-point set that consists of A and 0.

We have a mapping }/I-i;g/en — H;:ll P°(AIC™) given by the formula
(53) P Ou(P), ... A (P)).
PROPOSITION 5.10. The mapping (5.3) is an embedding.

PROOF. In subsection 5.2, the equivalence of weak hinges was defined in such
a way that (5.3) is an embedding.

Thus, ﬁ;lgen is embedded into []7_ P°(A’C"), and this embedding induces a

j=
topology on Hinge,,. We can readily verify that it is not a Hausdorff topology.

EXAMPLE 5.11. Let us describe the closure of a point
(5.4) P =(Pi,...,P,) € Hinge,.
Let us supplement the collection P to an equivalent hinge
(5.5) P=(5,P,T1,85, P,T,...),

where §; = Dom P; ¢ Indef Pjand T; = Ker P; @ Im P;. Then the closure of the
point P consists of all possible weak hinges obtained from P by deleting some set
of links. In particular, the closure of any point contains an empty hinge.

5.6. Generators.

PROPOSITION 5.12. The semigroup Hinge, is generated by the group PGL,
and by the canonical hinges R(1),...,R(n~1).

We omit the (more or less clear) proof. We only note that for 1 <o < g we
have R(ll) T R(Zk) = R(il, ey Zk)

o

5.7. Central extension of the semigroup Hinge,. An object with a non-
Hausdorff topology can create the impression of something pathological. In fact,

the semigroup Hinge,, has something like a Hausdorff central extension, which we
will now describe.
Let Op(H) be the semigroup of operators in a linear space H. We introduce

the semigroup Hinge, as the subsemigroup of H;:ll Op(AIC™) that consists of the
following collections of operators:
(56) (31 'AI(P)7-'>7871-‘1 ’/\n—l(P))a

where P € I/I;ig/en and s; € C*.
The projection

(5.7) Hinge,, — Hinge,
is defined in an obvious way, namely, to the collection (5.6) we assign the weak
hinge P. The preimages of different points P € Hinge, in }@n have differ-

ent dimensions (namely, the fiber over P is (C*)™, where m is the number of
nonzero operators Ai(P),...,A,_1(P)), and this is the reason why the quotient

space Hinge, = I’I’irEen /(€C*)*~1is a non-Hausdorff space.
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It would be of interest to obtain explicit formulas for the product of collections
of the form (5.6). This question can clearly be reduced to the problem of explicitly
describing the category G A* (see subsection 1.8).

§6. Representations

6.1. Representations of the group SL,. Consider an irreducible represen-
tation of the group SL, (C) with numerical labels @1,...,a,-1 (see Figure 6.1).

4 @ 1
o o o— .. —¢

FiGURE 6.1

We recall the construction of this representation. Consider the space

n—1

(6.1) W = ®(AJ(Cn))®aj

j=1

The group SL, acts on this space by the formula g — (A7g)3%, Let h; =e A
- Aej € AJ(CM), and let

—

n—

v=1v, = R)(h;)% € W.
1

J

Consider the cyclic span V(a) = V(ay,...,an_y) of the vector v (i-e., the min-
imal SL,-invariant subspace containing v). Then the irreducible representation
Pa = Pa,,...a, , With numerical labels ¢ = (a1,...,an_1) is the restriction of the
representation (6.1) to the subspace V(ay, ... y@n_1). The vector v, is called the
highest weight vector-

6.2. Projective embedding of Hinge,. Now we construct a mapping
wany - Hinge, = P(Op(V(ay,...,an_1))).
Let P = (Py,...,P,) € Hinge,. Consider the operator

n—1

(6.2) I mP)Ew

j=1
in W.
LEMMA 6.1. The subspace V (a) is invariant with respect to the operator (6.2).

PROOF. V(a) is invariant under SL,, and SL, is dense in Hinge,, .

Denote by m,(P) the restriction of the operator (6.2) to V(a).
LEMMA 6.2. 7, (P)# 0 for all P € Hinge,, .

Proor. It suffices to verify that T, (R(iy,. .., k) # 0 for all canonical hinges
R(i1,...,ix). However, we can readily see that R(7y,...,ix)v, = s - Vg, s € C*,
which completes the proof.
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EXAMPLE 6.3. The operator m,(R(1,...,n — 1)) is the projection onto the
highest weight vector v,.

Denote by p,(SL,) the set of all operators of the form p,{g), where g € SL,,.

THEOREM 6.4. The closure of the set p,(SLy,) in POp(V(a)) coincides with
the image of the mapping

(6.3) 7qa: Hinge, — POp(V (a)).

PRrROOF. By Lemma 6.2, we have m,(Hinge,,) C POp(V(a)). The mapping 7,
is clearly continuous and the set Hinge,, is compact.

PROPOSITION 6.5. If all a1,...,an—1 are nonzero, then the mapping (6.3) is
an embedding.
We shall prove this assertion later.

REMARK 6.6. If there are zeros among the numbers aq,...,a,-1, then the
mapping 7, is not an embedding. Namely, in this case the mapping 7, = ocor,i.e.,

n—1
Hinge,, = H P(Op(A’C™)) = P(Op(V(a)))

can be factored through

(6.4) [T Popa’cH).

jia; #0

In fact, in this case, the image of the mapping 7, is homeomorphic (and also
equivalent as a variety) to the image of Hinge,, in (6.4).

6.3. Representation 7, of the semigroup Hinge,. Let P € Hinge,,. Con-
sider (see (6.1)) the operator ®;‘:—11 A;(P)*% in W. Denote by 7, (P) the restriction
of this operator to the subspace V(a). Clearly, P ~ 7,(P) is a projective repre-
sentation of the semigroup Hinge,,.

Let P°H be the space of vectors from H defined up to a scalar factor.

THEOREM 6.7. The closure of the wmage p,(SL,) in P°Op(V(a)) coincides

with 7, (Hinge,)).

This assertion repeats Theorem 6.4.

REMARK 6.8. Let all a; # 0. Let P be a weak hinge that is not equivalent
to any exact hinge. Then 7,(P) = 0. In other words, the closure of p,(SL,) in
P°Op(V(a)) is as follows. This is the semigroup that consists of exact hinges and
0. If P and R are exact hinges, then 7,(R)7,(P) is equal to 0 if and only if RP is
a weak hinge that is not equivalent to any exact hinge.

REMARK 6.9. Let there be zeros among the numbers ay,...,a,-1. Assume
that P = (Py,...,P,) is a hinge. Then 7,(P) # 0 if and only if the union of the
domains of action of the relations P; contains all « such that a, # 0.
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6.4. Proof of Proposition 6.5. Let @ be the orbit of the canonical hinge
R(1,...,n — 1) under the action of the group PGL, x PGL,. Clearly, for any
P € Hinge,, and any S € Q either we have PS € Q or PS is not an exact hinge
(and for the generic points we have the first case).

Furthermore, if P,P’ € Hinge, and for any S € Q we have PS = P'S, then
P = P’. In other words, a hinge P is completely defined by its products with the
elements of the orbit @ (and it also suffices to consider the generic elements of Q).

Let us show that the mapping 7,: Hinge, — POp(V(a)) defines an isomor-
phic embedding of the orbit @ in POp(V(a)). The group PGL, x PGL, acts on
Op(V(a)) by multiplication by the operators p,(g) from the left and from the right.
The operator m,(R(1,...,n — 1)) is the projection onto the highest weight vector
vq. Therefore, the stabilizer of the operator 7, (R(1,...,n — 1)) in PGL,, x PGL,
is the product of two Borel subgroups B x B’ ¢ PGL, x PGL,, where B is the
upper triangular subgroup and B’ is the lower triangular subgroup. This stabilizer
coincides with that of R(1,...,n—1) in PGL, x PGL,, (see subsection 3.4). Thus,
we have proved that the mapping 7, on Q is injective. ‘

Now let 7,(P) = mo(P’). Then n,(PS) = m,(P’S) for all hinges S and, in
particular, for S € Q. However, this implies P = P’.

6.5. Representations 7, of the semigroup Iﬂlg\en. Let the family of op-
erators

n—1
b= (Bi,...,B, 1) € [] Op(A’C")
j=1
belong to I-ﬁlg\en. Define the operator ®;l;11 Bf“” in the space W. Denote by 7, (b)
the restriction of this operator to V(a). Clearly, b — 7,(b) is a linear representation
of the semigroup Hinge,,.
Now let v be an arbitrary (in general, reducible) representation of the group
SL, in a linear space H. Let us decompose v into irreducible representations. In
any irreducible component, we have the action of the semigroup Hinge,,, and hence

Hinge,, acts on H.

o

REMARK 6.10. For the semigroup Hinge,,, this construction is impossible. be-
cause in the category of projective representations we have no direct sum operation.

Chapter II. Supplementary remarks

§7. Action of the semigroup Irfn\gzn on the flag space

7.1. Space F,. Denote by F,, the space of all flags

(7.1) ocvicwvc---cV,cc®
(it is assumed that all inclusions are strict). Let 0 < i; < - - < ix < n. Denote by
Fn(i1, ..., i) the space of flags (7.1) such that dimV, = i;. dimV, = is, ... . The
spaces F,(i1,...,1x) are smooth varieties.
Let a number set iy,i2,... contain a number set jj, js,.... Then a projection
wR L Folin.. i) = Fuldre . i)
is well defined; namely, from the flag £ € F,(i1,....i) we delete all subspaces

except for the subspaces of the dimensions ji, jo,. ...
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Let us define a non-Hausdorff topology on the space

Fn = U Fn(i1a~~-,ik)~

k,0<i < <ig<n

Let £ € Flay,...,ar) and L; € F3,. .., ﬁfnj). Then the relation £ = lim;_, . £;
means that the following two conditions are satisfied.

1. Starting from some number j, the collections (4,..., 3}, ) contain the col-
lection (e, ..., ax).

2. The projections of £; to F(ay,...,ax) converge to L in the topology of
]:(al,...,ak).

ExaMPLE 7.1. Consider a flag £: 0 C V; C --- C Vi, C C™. Then the closure
of the point £ consists of all points (flags) Vi, € --- C V;_ obtained from £ by
deleting some subspaces.

e

7.2. Action of the semigroup Hinge, on the space F,. Let
P =(Py,...,P) € Hinge,,

and let £: V; C Vo, C --- C V, be an element of F. Consider the set ¥ of all pairs
(3, 7) such that
(7.2) KerP,NV; =0,
(7.3) Dom P, +V; =C™.

THEOREM 7.2. The collection of subspaces P;V;, where the pair (4,7) ranges
over I, form a flag.

We omit the simple proof of this theorem, which is similar to the proof of
Theorem 5.4.

Denote this flag by PL. We can readily see that P: L — PL is an action of
the semigroup Hinge, on F,.

7.3. Hausdorff bundle over F,,. Denote by .7-'\,1 the set of collections
n—1 .
(7.4) (hi,... . hny) € [ MC
i=1

such that h; have the form
hy=t-v1, ha=ta-viAva, ..., hoo1=th -1 A Avpoa,

where t; € C and vy,...,v,—1 are linearly independent vectors in C". We allow
the possibility ¢; = 0, i.e., some vectors h; can be zero.

Let us define a projection ﬁ — F..

Let h;,,...,h;, be all nonzero vectors among {h;}. Let V;, be a subspace
spanned by the vectors vy, ...,v;,. Then to the element (7.4) there corresponds the
flag

(7.5) ocVv,,c---CcV, cC
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Note that the fiber over the point is of dimension k. As in subsection 5.7, the
fibers over different points have different dimensions, and therefore the quotient
Fn =Fn/(C*)"" 1 is a non-Hausdorff space.

7.4. Action of the semigroup I-El-g\en on .7:; Let b = (By,...,Bn_1) €
H;le Op(A7C™) be an element of Hinge,, and let h = (hy,... hy_1) € H;:ll AV
be an element of j—"; Then the element bh is defined by the formula bh =
(Bhi,...,Bh,).

§8. Complete symmetric varieties

Let G be a semisimple Lie group. Let o be an involution on g (that is, o
is an automorphism and o? = id). Let H be the set of fixed points of &. The
homogeneous spaces G/H, where G and H are groups of the type described above,
are called symmetric spaces.

In this section we are interested in the case of complex groups G and H. The
completions of G/H constructed below are called complexr symmetric varieties.

8.1. Quasi-inverse hinge. Recall that we denote by PU the linear relation
quasi-inverse to P (see subsection 1.1). Let P = (P, ..., P;) be a weak hinge. The
quasi-inverse hinge PS is defined by

P =(PZ,...,PP).
We can readily see that for any P,R € H/i‘n\ggn we have
(8.1) (PR)E = rEPY

8.2. Transposed hinge. Let V ~ C" be a linear space endowed with nonde-
generate symmetric bilinear form

(8.2) (z,y) = Z ZiY; -
Introduce a skew-symmetric bilinear form on V @ V:
(8.3) {(z,u), (y,0)} =Y xv; = > ujy;.

Let P: V =3 V be a linear relation. Denote by P! the orthogonal complement
to P.

ExXAMPLE 8.1. Let P be the graph of a linear operator A. Then P! is the
graph of the transposed linear operator A’. Indeed. A and A? are related by the
identity (x, A'y) — (Az,y) = 0, which exactly means that the vectors (z, Ar) € P
and (y, A'y) € P* are orthogonal with respect to the form (8.3).

REMARK 8.2. For any linear relations P and @, we have (PQ)! = Q' Pt.

Furthermore, let P = (P,...,P;) € Iﬂl\g_/en be a weak hinge. Then the trans-
posed hinge P’ is defined by the formula P* = (P{,..., P!). We can readily see
that

(8.4) (PR)! = R'P!

for all P, R € Hinge,,.
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8.3. Completion of the group O,(C). Denote by O, the space of exact
hinges P € Hinge,, satisfying the condition PH = Pt. Denote by O, the space of
weak hinges satisfying the same condition.

It follows from (8.1) and (8.4) that the set O, is closed with respect to the
multiplication of hinges, that is, évn is a semigroup.

The group PO,(C) (that is, the quotient group of the group O,(C) by its
center) can be embedded in 5,/1 in an obvious way. Namely, O,(C) consists of
one-link hinges (Q), where @) ranges over the graphs of orthogonal operators. It is
obvious that the group O,(C) is dense in 0,, and in 5;

PROPOSITION 8.3. The space O,, is a smooth algebraic variety.

Proor. Consider the mapping o: Hinge, — Hinge, given by the formula
o(P) = (PY)!. Then o? = id, and O, is the set of fixed points of g. Therefore, O,
is a smooth variety.

REMARK 8.4. Let us discuss in detail the conditions that must be satisfied by
a hinge

(8.5) P=(P,....,P) €0,.

For all j we have

(86) Pi— P,

Thus, the hinge P is completely determined by its terms:

(8.7) (Py,...,Ps),

where s = k/2 for k even and s = (k+1)/2 for k odd. Let us discuss the conditions
satisfied by the linear relations (P, ..., Ps). There are two cases.

a) Let k be odd and s = (k + 1)/2 (i.e., P, is the middle term of the hinge
(8.5)). In this case, relation (8.6) means that P! = PE. The last relation is
equivalent to the condition that P; is a morphism of the category GD (see
subsection 1.7).

b) Consider any other P; with j < s. Then P; and (PjD)t occur in the same
hinge, and hence

Ker P; > Dom((P)") and ImP; C Indef((PjD)t)'

These conditions are equivalent to the following three conditions:
1*. Ker P; is co-isotropic, i.e., Ker P; D (Ker Pj)L, where the symbol L stands
for the orthogonal complement with respect to (8.2);
2%, Im P; is isotropic, i.e., Im P; C (Im P;)*;
3*. Ker P; D Im P;.
Conversely, if we have a weak hinge (8.7) satisfying conditions a) and b), then

it is an element (8.5) of the semigroup O,,.
8.4. Complete quadrics. Now we construct a completion of the space

PGL,(C)/PO,(C).

Denote by PG/L\J O, (PGL,/O,, respectively) the space of weak hinges (exact
hinges, respectively) P = (Py,..., Py) such that P = P' (where the transposition is
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the same as in subsection 8.2). This condition can be written in the form P]‘ =P
for all j.

REMARK 8.5. The condition P = P! is equivalent to the assumption that P
is a maximal isomorphic subspace (Lagrangian subspace) of the space C* & C"
endowed with skew-symmetric form (8.3).

—

The semigroup évn acts on PGL,/0O, by the formula P — RPR!, where

P e PGL,/O, and R € O,,.
The Study-Semple space of complete quadrics is PGL,,/O,,.

8.5. Complete quadrics as a Hausdorff quotient. Consider the La-
grangian Grassmannian £ in the space C* & C". The group C* acts on L by
multiplication of a linear relation by a number (under this operation, a Lagrangian
linear relation maps into a Lagrangian one).

The graphs of invertible operators A: C* — C" form an open dense set £° in
L; here the condition graph(A) € L is equivalent to the condition A = A?.

Note that the quadrics in CP*~! are in a one-to-one correspondence with sym-
metric matrices A defined up to a scalar factor; i.e., £L°/C* can be regarded as the
space of all quadrics.

Applying the construction of Hausdorff quotient space to £ and its open set
L°, we obtain exactly the space PGL,/O,,.

8.6. Another description of complete quadrics. Let P = (P,..., P.),
P; = P]?, be an exact hinge. Then the following flag is defined:

C*">KerP,D>---DKerP, DO0.

Furthermore, note that the form (8.3) defines a nondegenerate pairing between
the two summands in C" & C". We can readily see that Im P; C {0} & C" is the
annihilator of Ker P; C C" @ {0}, and therefore the spaces Ker P;/Ker P;.; and
Im P, 1/ Im P; are dual to each other. A linear relation P;,; induces a nondegen-
erate linear operator Ker P;/Ker Pj,) = Dom P,/ Ker P, ;1 —» Im P, /Im P, =
Im P;, 1/ Indef P; 1, and therefore we obtain a nondegenerate quadratic form on
the space Ker P;/ Ker P, ;.

Thus, the following collection of data can be regarded as a point of the space
of complete quadrics:

1*. aflag0=VycViC---C Vi, CViyy =C%;
2*. forany j € {0,1,...,k}, a nondegenerate quadratic form Q; on the quotient
space V;1/V, defined up to a scalar factor.

8.7. Completion of the group Sp,,(C). Consider the space V = C?” with
nondegenerate skew-symmetric bilinear form

n 2n
{9} = Tyiin— D Zy5-n
i=1

Jj=n+1

In the space C?" & C*" we introduce a symmetric bilinear form M((z.y), (u,v)) =
ey - {pu).

Let P: C?" = C?" be a linear relation. Denote by P*® the orthogonal comple-
ment to P with respect to the form Al.
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Now let P = (Py,...,P) € Hinge,. Then the hinge P* is defined by P* =
(Pg,....P%). L

Furthermore, the semigroup Spa, (the variety Spa,) is defined as the set of
weak hinges (exact hinges, respectively) that satisfies the condition P* = PU.

Remark 8.4 (about the collections P & 6:1) remains valid for P € :S’;) The
only difference is that, in our case, the question is in the category C and not in the
categories B and GD.

8.8. Space PGL,/Spz,. We can naturally regard PGL,(C)/Sp2,(C) as the
space of nondegenerate skew-symmetric forms on C?” defined up to a scalar factor.

The space PGmpgn (PGL,,/Span, respectively) is defined as the space of weak
hinges (exact hinges, respectively) such that P = P°.
All remarks of 8.4-8.6 on complete quadrics hold for PGL,,/Spa, as well.

8.9. Completion of GL,.,(C)/GL,(C) x GL,(C). We can naturally regard
the space X, , = GLp44(C)/GL,(C) x GL4(C) as the space of operators A on CP*¢
such that A2 = E and ¢ eigenvalues of A are equal to 1 and the other p are equal
to (-1).

Let V. and V_ be the eigen subspaces of the operator A that correspond to
the eigenvalues £1. Clearly, A is completely determined by the subspaces V. and
V_, and thus X, , can be regarded as the set of pairs of subspaces L, M C CP*¢
such that dimL = ¢, dim M =p, and LN M = 0.

Denote by X, 4 = GLp+q/GLy % GLg the closure of X, ; C GL,,, in Hinge.
Assume for simplicity that ¢ # p and, for the sake of being definite, that ¢ > p.
Then X, ¢ \ Xpq consists of the hinges

(8.8) P=(P1,..., P, .., Paxy1)

such that

1. P]D = Pak+1-5;

2. the natural operator A: Dom P/ Ker P, — Im P,/ Indef P satisfies the

condition A% = FE; moreover, dimKer (4 — E) — dimKer (4 + E) = ¢ - p.

8.10. The completions of the symmetric spaces Spa(nyi)(C)/Sp2n(C) x Spar(C)
and On4+k(C)/0,(C) x Ox(C) can be constructed in just the same way as in the
previous subsection; however, the hinge P must belong to Spy(nyry and Oy g,
respectively.

8.11. Space PO,,,/GL,. Let us describe the symmetric space
(8.9) O2,(C)/GL,(C).

Consider a 2n-dimensional complex space V endowed with a nondegenerate bilinear
form. It is natural to regard all possible decompositions of the space

(8.10) V=V,eV.

into the direct sum of maximal isotropic subspaces as points of the space in (8.9).
Indeed, the stabilizer of the pair {Vi,V_} is the group of matrices of the form

(g (g1 ), g € GL,(C), and the group O(2n,C) transitively acts on the set of

decompositions (8.10).
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Furthermore, consider an operator A € O(2n,C) that is equal to iF on V. and
to (—iE) on V_. Then we have A> = —F, and the set of these operators is in a
one-to-one correspondence with the set of decompositions (8.10).

Let us take the closure of this set in O;,. We obtain the set of hinges P =
(P1,..., P) such that P* = P (this is a condition on P € Oy,) and P° = —P.
In other words, P satisfies the conditions P]? = —P; and P]D = —P._;.

8.12.  The completion of the space Spz,(C)/GL,(C) is constructed in the same
way.

8.13. Smoothness. The smoothness of all the above varieties is proved by
the same arguments as in the proof of Proposition 8.3.

§9. Real forms of complete symmetric varieties.
The Satake—Furstenberg boundary

9.1. Real hinges. Until now we discussed complex hinges only. However, we
can also consider hinges over reals or over quaternions. For example, arguments
just like those used in the complex case show that the set of all hinges in R” is
a smooth real analytic variety. Now we shall present a more involved example of
a real form of a complex symmetric variety; namely, we consider a real form of
complex quadrics.

9.2. Boundaries of the spaces SL(n,R)/SO(p,n — p). In R" we take the
bilinear form (z,y) = 3" z;y;. In the space R?" we consider the skew-symmetric
bilinear form {(z,y), (u,v)} = 3 z;v;, — ¥ yju,.

Let £ be a Lagrangian Grassmannian in R® & R". Let the multiplication group
R™ of reals act on £ by multiplication by scalars.

Consider an open dense subset £° in £ that consists of the graphs of the
invertible operators A: R" — R"; note that these operators satisfy the relation

A = At
Furthermore, apply the construction of Hausdorff quotient space to the £ and
to the open subset £°. We obtain the set (), of exact real hinges P = (P;. ..., Py)

that satisfy the condition P; = P} (where P was defined in subsection 8.2).
The set £° consists of the one-link hinges.
The group GL,,(R) acts on £° by the transformations

(9.1) A gt Ag,

and on the space C,, by the transformations P — g!Pg.
An arbitrary real symmetric matrix A can be reduced, by transformations (9.1).
to the form
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and the stabilizer of J, is the group O(s,n — s). The matrix A, in our case, is
defined up to a factor, and thus the canonical forms Js and J,_; are equivalent.
Thus, the space £° is the disjoint union of open orbits (symmetric spaces)

(9.2) PGL(n,R)/SO(s,n — s),

where s € {0,1,...,[(n+ 1)/2]}.
The closure of the orbit

(9.3) PGL(n,R)/PO(n)

is called the Furstenberg-Satake compactification of the Riemannian symmetric
space (9.3), and the closures of the orbits (9.2) are compactifications of pseudo-
Riemannian symmetric spaces PG L(n,R)/SO(s,n — s).

9.3. The Satake—Furstenberg compactification. Now we shall give a more
detailed description of the boundary of the Riemannian symmetric space G/K =
SL(n,R)/SO(n).

Consider a linear relation R =3 R™ such that P = P*. Then Im(P) is the
orthogonal complement of Ker(P), and Indef (P) is the orthogonal complement
to Dom(P) (with respect to the standard inner product in R™). Hence, a linear
relation P defines a nondegenerate pairing

(9.4) Dom (P)/ Ker(P) x Im(P)/ Indef (P) — R.
Moreover, a linear relation P defines an operator
(9.5) Dom(P)/Ker(P) — Im(P)/ Indef (P).

Hence, a symmetric linear relation P defines a nondegenerate symmetric bilinear
form qp on the space Dom (P)/Ker (P).
We say that a symmetric linear relation P is nonnegative definite if the form

[(’U, w); (’Ul, w/)] = (v, wl> + <’U/, w)

is nonnegative definite on the subspace P. This condition holds if and only if the
quadratic form defined by the bilinear form qp is positive.

REMARK 9.1. Let a linear relation P be the graph of an operator A. Then P
is nonnegative definite if and only if A is nonnegative definite.

By our definition, a point of the Satake—Furstenberg compactification of the
space SL(n,R)/SO(n) is determined by the following data:
1* an integer s € {1,...,n — 1};
2" a hinge P = (Py,..., P,;) such that all linear relations P; are nonnegative
definite and satisfy the condition P; = P} for all j.
Consider a point of the Satake-Furstenberg compactification (i-e., let the data
of the form 1*-2* be given). Introduce the subspaces V; = Ker (P;) = Dom (P;4,).
Then the form related to [ -, -] defines a positive definite form on the quotient space
Dom (P;)/ Ker (P;). We see that a point of the Satake-Furstenberg boundary can
be defined by the following data:
I* an integer s € {1,...,n - 1};
2" aflag0 C V) C --- C V; C R", where all subspaces 0,Vi,...,V,, R", are
distinct, and
3* for any j € {1,...,s}, a positive definite quadratic form (); on the quotient
space Dom (P;)/ Ker (P;).
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§10. Category of hinges

10.1. Spaces Pﬂn\g;n (p,q)- By a weak n-dimensional hinge P: CP = C? we
mean the collection P = (P, ..., P,) of n-dimensional linear relations P;: Cr 3
such that Ker P; O Dom P;1; and Im P; C Indef P; .. Denote by Hlnge (p,q) the
space of all n-dimensional weak hinges C» = C7 and denote by Hinge(p, q) the

space
p+q

Hinge (p, q) = | J Hinge,(p,q)
n=0

10.2. Multiplication. The multiplication

Hinge (p, ¢) x Hinge (g, ) — Hinge (p, r)
is defined in Just the same way as the rnult1phcat10n of weak hinges. Let P =
(Pr,..., P € Hlnge (p,g) and R=(Ry,...,R)) € nge (g,7). Consider the set of
all products Qi = R;P; that differ from null Then, after an appropriate ordering,

the set Q);; becomes a weak hinge C? =3 C7.
Let us define the category HINGE. Its objects are linear spaces CP, and the set

of morphisms of C? into C? is Hinge(p, q).

10.3. Action on the exterior powers. Let P = (P,...,P) € Iﬁl\g;n(p, q).
Let us define the operator A;(P): AJCP — AI*"~PC4. To this end we consider the
sequence of operators

(10.1) Aj(Pr),. . A (Pe): APCP — ATTPC,

where A;(P;) is the restriction of the operator A(P;) (see §1) to A7CP. By definition,
we take for A;(P) the nonzero term of the sequence (10.1) if this nonzero term exists,
and set A;(P) = 0 otherwise.

If P € Hinge,(p,q) and R € Hinge,,(q,7), then A;(RP) =t- A4, ,(R) A;(P),
where t € C*.

10.4. Action on flags. Let 0 C V1 C --- C Vi C CP be a flag in the space
CP Le., an element of the space F,, in the notation of §7. Let P = (P, .. L P e

Hlnge (p,q). Furthermore, consider the set ¥ of all pairs (7, j) such that Dom P; +
V; = CP and Ker P, N V; = 0. Then the set of subspaces P;V;, where (i, ) ranges
over X, forms a flag in (Cq; that is, a hinge P defines a mapping F, — Fq.

Chapter III. Other boundaries

§11. Velocity compactifications of symmetric spaces

In this section we consider the symmetric spaces SL(n,R)/SO(n) only.
We recall that a point of the space SL(n,R)/SO(n) can be identified with a
positive definite real matrix that is defined up to a scalar factor.

11.1. The simplest velocity compactification. Consider a positive definite
matrix A € @ = SL(n,R)/SO(n). Let a; > --- > a, be the eigenvalues of A. Let
A; =Ina;. Denote by A{A) the set

(11.1) AA) = A), A A
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The matrix A is defined up to a factor, and hence A(A) is defined up to an additive
constant:

(11.2) AL, dn) ~ (M +0,..., A+ o).

We denote by 3, the space of all sets A(A) (see (11.2)). We can readily see that
A(A) is an (n — 1)-dimensional simplicial cone. We can assume that A, = 0, and
hence the cone ¥, can be regarded as the space of sets {A\; > -+ > \,_1 > 0}. We
denote by A, = 9%, the (n—2)-dimensional simplex 1 > ps > 3 > -+ > pn—1 20
and set yy = 1 and p, = 0. Then A, is called the velocity simplex. Consider the
natural projection 7: (£, \ 0) — A,, defined by the rule

7T()\1, . ~)\n‘1,0) = ()\2//\1,)\3//\1,. . .,/\n_l//\l) .

Now we define the compactification £, = £, UA,, of ¥,, as follows. We say that
a sequence L; = (,\§j>,...,A$3)) € X, converges to an element M € A, if the
following two conditions hold:

1) AP =AY - o0 as j — oo, and

2) the sequence 7(L;) € A,, converges to M.

Moreover, we introduce the welocity compactification of the symmetric space
SL(n,R)/SO(n) by the relation @' = (SL(n,R)/SO(n)) U A,, where a sequence
Aj in Q is convergent to M € A, whenever A(A;) converges to M with respect to
the topology of T,,.

11.2. The polyhedron of Karpelevich velocities. Now we describe a more
delicate compactification of the simplicial cone ¥, (namely, the compactification
by Karpelevich velocities). Consider a sequence A\U) = {)\gj) 22 /\Sf)} € X,.
Let this sequence have the limit 1 > o > ... > pu,—; > 0 in A,,. It may happen
that some of the numbers u; are equal, i.e., g = pry+1 = -+ = y;. In this case we
can separate velocities that correspond to the subset {/\2] Y>> /\I(J Ve Tk
by the same rule as above.

Definition of the polyhedron. Denote by I, g the set {c,a+1,...,3} CN.

Consider an interval I, 3 = {@,a+1,..., 3} and denote by ¥(I, 3) the simpli-
cial cone Ay > Aa41 2 - -+ > A3, where the elements of the cone £(I, 3) are defined
up to an additive constant (see (11.2})). Moreover, introduce the simplex A(I, 3)
defined by the inequalities 1 = j1o > pa+1 = -+ > pg_y > ps = 0 and consider the
compactification X(1, 3) = (Ia.5) UA(Ia ).

REMARK 11.1. For the case a = 3, the set £(I.o) = %(I,.4) is a singleton (a
real defined up to an additive constant).

For £ < a < B < I we define the mapping wﬁ:g: S(Ixi) — E(las) by the
formula 77(";"{3(/\;\., oA = (Aa, -, Ag). We introduce two polyhedra:

k)= JI  =s),  EkD= [ E(as).

a3 k<a8<i a.3: kLags83gl
We clearly have Z(k,1) C Z(k,1). Consider the (diagonal) embedding i : S{iy) —
Z(k, ) (which is the product of the mappings ’/Tiii;).
We define the polyhedron of Karpelevich velocities K(k,1) as the closure of the
subset i(X(1),)) in =(k,1).
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A CRITERION FOR THE CONVERGENCE OF A SEQUENCE OF INTERIOR POINTS

TO A BOUNDARY POINT. Consider a sequence AW = {A), A7) .. A} Then
the sequence AY) is convergent in K(k, !) if and only if all sequences of the form
Zl (AU)) = (/\(] ,...,/\(3])) are convergent in %(I, 3).

The polyhedron of Karpelevich velocities is thus defined. Now we give an
explicit (but cumbersome) description of its combinatorial structure.

11.3. Combinatorial description of the polyhedron of Karpelevich
velocities.

TREE-PARTITIONS. Consider the set I := {k,k + 1,...,1}. By a partition of
I, we mean a representation of Iy ; in the form I ,,, U Imivtma U - Ul 1y
where s > 1. A system a formed by subsets of I, ; is called a tree partition if the
following conditions hold:
a) Iy € a
b) any element J € a has the form I, 5 = {a,a +1,...,8};
¢) If J1,Jo € a, then we have either J; M Jo = @ or one of the conditions
Jy D Jyand Jy C Jy;
d) for any J = I, 3 € a we have one of the following two possibilities:
(1) 1* there is no K € a such that K C J (in this case, I, ; is said to be

irreducible);
(2) 2* J =1, 3 is the
(11.3) Ios=1Iar ULy 415, U Lypi143 U UL 413,
where I+, Iy 41,45, 1+, ,+1.3 € a and there is no K € a such that

Ing D K DI, 14, K#Iy3,1,_, . Inthis case, J is said to be
reducible and (11.3) is called the canonical decomposition of J.

REMARK 11.2. Let I, 3 € a. Let b be the set of all J ¢ I, 35 such that J € a.
Then b is a tree partition of I, 3.

REMARK 11.3. In other words, a tree partition can be defined by the following
data: a partition of the segment I; C N into subsegments, partitions of some
subsegments, etc.

We denote by T'P(k,{) the set of all tree partitions of I;;. Introduce the
canonical partial ordering on TP(k,l). Let a,b € TP(k,l). We say that a > b
whenever J € a implies J € b (i.e., b D a).

The partially ordered set T P(k.l) contains a unique maximal element ag. This
is the tree partition that consists of a single element I} ;.

An element b € TP(k,!) is minimal if the following two conditions hold:

a) any irreducible element of b is a singleton;

b) if J € b is reducible, then the canonical decomposition of J contains exactly

two elements (s = 2 in (11.3)).

Consider a partition t of I, 3:

(114) Ia..? = IO-M U I‘:H"l-“r'z U 1‘52+1~‘w U---u I‘:s—1+1-3 .
Denote by A(Ia_g |t) the open simplex

L= pro ==+ = py; > fo, 41

11.5
( ) :lt",l-lu‘z:...:ll'y‘z>...>/‘l'v‘\~v1*:‘1:..':llj:O
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and by A(I, g|t) the compact simplex

= Ha = 000 = ey 2“71+1

(11.6)
THypt2 =Sy 2 2 1= =pg =0

In A(I,5|t) and ZS(Ia,[; [t) we introduce the natural coordinates
T2 = Py 41 = 0 T gy ey Tse] 1S Hyg_o+l = "0 = Moy -

REMARK 11.4. If s=2, then A(J|t) = A(J|t) is a singleton {1 >0}.

REMARK 11.5. We have A(I,3) = U, Z(Iaﬁ |t), where the union is taken over
all partitions of I, s.

Let us choose a tree partition a € TP(k,!). For any element J € a we consider
its canonical decomposition t and denote the simplex A(J|t) by A(a,J). For any
a € TP(k,l) we define the face F(a) as follows:

(11.7) F(a) = ( II z(Ia,g)) I A

J=I, g€a is irreducible J€a is redicible

REMARK 11.6. For the trivial tree partition ag, we have F(ap) = ©(I,,). If b
is a minimal tree partition, then F'(b) is a singleton.

Now we can represent the polyhedron of Karpelevich velocities K(k,1) as the
union K(k,1) = Uuerpey F(a). Let us define a certain topology of a compact
metric space on K(k,l). The face F(ag) = ¥(Ix;) will be an open dense subset of
Kk, D).

REMARK 11.7. Let | = k. Then K(k,k) is a singleton. Let I = k + 1. Then
there are two tree partitions of the set {k,k + 1}: the trivial tree partition ag and
the minimal tree partition a, with the elements (k,k + 1), (k), and (k + 1). The
face F(ap) is the closed semi-axis A\; > 0. The face F(a,) is a singleton. Hence,
K{k, k + 1) is the segment [0, oo].

THE CONVERGENCE OF INTERIOR POINTS TO A BOUNDARY POINT. For the
definition of convergence we proceed by induction. We assume that the convergence
is defined for all Karpelevich polyhedra K ( ,3) such that 8 —a < I — k. We define
the convergence of a sequence

e = (20 > > 29} € £(Uk) = F(ao)

in two stages.

Step 1. The convergence of z(7) in ¥(I; ;) is necessary for the convergence of
this sequence in K(k,{). Let y be the limit of ) in Z(Iy,).

If y € ¥(k,1), then the sequence is said to be convergent in K(k,!), and y is
called the limit of /) in K(k, ).

Step 2. Let y ¢ £(I;). Then y belongs to an open simplex Z&(Ik,[ |t), that is,
y is of the form

{I:yk:...:y_h >y‘h+1=...:y72>...>y}y\q¥1+1:...:ryl=0}_
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In this case, we say that the sequence ) is convergent in K(k,1) if and only if all
sequences zfﬁ = (zgjzﬂ, .. ‘,:rg{.)H) € %(I,,41.,,,) converge in the correspond-
ing polyhedra of Karpelevich velocities (7, + 1, Yy+1) (their convergence being
defined by the induction assumption).

This concludes the definition.
EXAMPLE 11.8. Let k =1 and [ = 8. Consider a sequence 7 = (z{, .. .,zg),
where
o) =2% @ =7 W =pajv2 2P =244,
wé]) :j2 +]7 mé]) — 2.]7 1(7]) :j7 xé]) =90.
Then the associated tree partition has the form
(12345678
H(2) 345678
345)(6 78

(6) (7) (8)

and the limit of () in (I g) is the set

(11.8) (1>1/2>0=0=0=0=0=0} € A(lg).

The sequence /) defines the sequence y) = (xgj), .. ,xéj)) € 5(I33). The limit
of y¥) in (I3) is the set

(11.9) (1212120030} € A(lsg).

Moreover, we have the sequences zU) = (xéj),mij),xéj)) € %(I35) and ul¥) =

(x”, 27, 2) € T(Ios). We have =) = (24 j + 2,72 + 5+ 1,52 4+ 5) = (2,1,0)
{recall that the collection z!/) is defined up to an additive constant), and lim z{7) is
the set

(11.10) {2>1>0} € Z(Ly5).
Finally, /) = (24, ,0), and the limit of «%) in Y (Ig ) is the point
(11.11) {1>1/2>0} € Allgs).

The limit of the sequence 2\ is the family of sets (11.8)—(11.11).

THE TOPOLOGY ON THE BOUNDARY OF I ;. This topology must satisfy the
following property: the closure of F'(a) consists of all faces F(b) such that b < a.

We assume that the topology is defined for all polyhedra K(«, 3) such that
B-—a<l-k

Let us define the convergence of a sequence Z/) € F(a) in two stages.

Step 1. Let h®) = {1 = ) > hf\,’ll > - > hY) = 0} be the component of
Z'9) related to the factor A(a, I ;) in the product (11.7). Then the convergence of
R in A(a, It,;) is necessary for the convergence of this sequence in K(k.l). Let u
be the limit of A%/) in A(a, I;;).
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Step 2. Consider the partition of I ; related to a, that is, Jx; = Iy, UL, 11,4, U
--+UJI, _, 411 Then the set u has the form

u:{l:uk:...:uw Zu,yﬁ_l:...:uw 2}
Introduce the indices 71, 72,... such that
{1=Uk=-~-=uﬁ >uﬁ+1:...:u7_2 >}

Then {11, 72,...} is a subset of {71,72,...}), and hence any segment of the form
I, +1,7a+1 is the union of segments I, 11.,..,.

On any set of the form {7, +1,70+2,...,7a+1}, We introduce the tree partition
b, induced by the tree partition a. The sequence Z) induces a sequence Z{(i ]) on
any face F'(b,) C K(7a + 1,7a41)-

The sequence Z() is said to be convergent if and only if any sequence Z[(i ]) in

the Karpelevich polyhedron X(7, + 1,7.1) is convergent.

114. The compactification of the symmetric space by the Karpe-
levich velocities. Consider the boundary 9K(1,n) := K(1,n) \ (I;.,) of the
polyhedron K(1,n) and define the compactification (SL(n,R)/SO(n)) U (8K(1,n))
of the symmetric space SL(n,R)/SO(n). Let 29) be a sequence in SL(n,R)/SO(n)
and let y € dK(I; ). Then we have z\9) — y if and only if the following conditions
hold:

1) the distance d(z'7),0) satisfies the relation d(z(),0) — oo, and

2) we have A(z)) — y in the topology of K(I;,) (where A(-) is defined by

formula (11.1)).

§12. Tits building on the matrix sky

In this section we consider the symmetric spaces SL(n,R)/SO(n) only. Recall
that the points of the space SL(n,R)/SO(n) can be identified with real positive
definite matrices defined up to a scalar factor.

We recall that any geodesic curve in the space SL(n,R)/SO(n) has the form

exp (A1s)
121) Al =4 orths) A
. exp(A,s)
where
(12.2) A € SL(n,R), ALz 2.

In this section, by a geodesic we mean an oriented geodesic, without specifying any
parametrization.

12.1. The matrix sky (the visibility boundary). Consider a noncompact
Riemannian symmetric space G/K. Choose a point zy € G/K (for the case under
consideration, G/K = SL(n,R)/SO(n), it is natural to take zo = E). Let T, be
the tangent space at the point xy (in our case, the tangent space is the space of
symmetric matrices defined up to a scalar summand, that is, Q ~ Q + AE). Let S
be the space of rays in Ty, that start from the origin (that is, § = (T, \ 0)/R%,
where R is the multiplicative group of positive reals). Let v € S and let ¥ € T}, be
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a tangent vector on the ray v. Let v, = 7, (t) be the geodesic such that v, (0) = xq
and 7, (0) = v. We are not interested in the parametrization of the geodesic v, but
its direction is essential for us.

Let Sk be another copy of the sphere S. The points of the sphere Sk are
regarded as points at infinity of G/K. The sphere Sk is called the matriz sky or
the visibility boundary. Let us describe the topology on the space

(G/K)"* .= G/K U Sk.

We equip the spaces G/K and Sk with the standard topology. Let y; be a
sequence in G/K. Let v € Sk. Let 7\9) be a geodesic joining the points zp and y;.
Consider the vectors v; € S such that 44) = 7Yv,;- The sequence y; € G/K is said
to be convergent to a point v € Sk whenever the following conditions hold:

1) p(.’L'(), yj) — 0Q, and

2) v; — v in the natural topology of the sphere Sk.

12.2. The projection of the matrix sky to the velocity simplex. Let
G/K = SL(n,R)/SO(n). Consider a geodesic v that starts from zo = E. Then ~
has the form

exp (A1)
exp(A2s)
(12.3) v(s)=A y At s €R,
exp (Ans)

where A € SO(n) and A\; > --- > X\, = 0. Let A = A, be the simplex 1 > py >
“++ 2 pn—1 2 0 (see subsection 11.1). To any geodesic v we assign the point

Az A3 An—1
=222
D(v) SN W
of the simplex A. We obtain a map D from Sk to velocity simplex A.
It is clear that D(v) is the limit of the geodesic v in the simplest velocity
compactification of SL{n,R)/SO(n). We say that D(v) € A is the velocity of the
geodesic y.

20

12.3. The projection of the matrix sky to the space of flags. Let F be
the space of all flags
0=WcCcWc---CcV,=R"
in R™ (s = 0,1,...,n), see §7. Denote by F.omplete the space of complete flags in
R"™ (i.e.,, s = n).
Let a geodesic y be given by the expression (12.3). Assume that the collection
A1y - -+, An has the form

(124) /\1=/\2='~-=/\sl >/\51+1:A81+2:”':’\Sz>"'~

Let T;, be the subspace in R" formed by the vectors (z,...,z,,,0,0,...). Let
Va = AT, (see (12.3)). By F(v) denote the flag
(12.5) icv,cVac---.

We obtain the mapping F': Sk — F. We can readily see that the geodesic v is
defined by the pair
(D7) F(v)) e A x F.




212 YURII A. NERETIN

A pair (velocity (12.4), flag (12.5)) is not arbitrary and must satisfy the condition
dim V; = Sj.

12.4. Limits of geodesics on the matrix sky. Consider an arbitrary geo-
desic v given by (12.1)—(12.2) (generally speaking, E ¢ 7). Introduce a geodesic &
joining the points o = E and ~(s), where s is a parameter on 7. Let us calculate
the limit lim,_. . s(s).

To this end we represent the matrix A € GL(n,R) in the form A = UB, where
U € O(n) and B is an upper triangular matrix. It is easy to prove that the limit
of the family of geodesics =, is the geodesic o(t) given by the formula

exp(Ait)
a(t)=U Ut
exp (Ant)

This remark has several simple consequences.

A. The construction of the matriz sky does not depend on the point xg.

Indeed, consider two points zo and z; and denote the corresponding matrix
skies by Sk(zo) and Sk(z;). Consider a geodesic v starting at ;. Then 7 has
a limit on Sk(xg). This defines the canonical mapping v¥10: Sk(z1) — Sk(zo).
We also have the canonical mapping vo1: Sk(zg) — Sk(z1). We can easily show
that 1 o 910 = id and 410 © Y01 = id, and we obtain the canonical bijection
Sk{zo) — Sk(z1).

B. In particular, for any point x € G/K and any point y € Sk, there exists a
unique geodesic joining x and y.

C. The group G/K naturally acts on the space (G/K)V's.

Indeed, the group G acts on the space of geodesics. O

Note that for any g € G and any v € Sk we have
D(g-v)=D(), Flg-7)=g F(v).

12.5. A simplicial structure on the matrix sky. Consider a complete flag
L € Feomplete of the form L: 0 C Wy C --- ¢ W, _; C R", where dim W; =j.

Now for each L € Fompiete we will construct a canonical embedding o7 : A —
Sk. Consider an orthonormal basis e;,...,e, € R" such that e; € W; and e; is
orthogonal to W;_;. Let M ={1=p1 2 po > -+ 2 ptn_1 = un = 0} be a point of
A. Consider a family of operators R(s) defined by

R(s)ex = exp(uxs)ex

Then R(s) is a geodesic and we define o (M) as the limit of this geodesic.

The map o : A — Sk satisfies the conditions:

1) Dooy is the identity mapping A — A; and

2) the image of the mapping F oo, : A — F consists of the subflags of the flag

L.

We obtain the tiling of the sphere Sk by the simplexes o7 (A). These simplexes
are indexed by the points L of the space of complete flags. We can readily show
that this tiling satisfies the following conditions.

a) Let g € SL(n,R). Then o4r(A) =g-or(A).

b) If L # L', then the interiors of the simplexes o7 (A) and o1/(A) are disjoint.
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o LetL:VicVoc---CVoyandL:V/CV/C-C V. _, be complete
flags. If V; # V] for all j, then 07(A) N6y (A) = @. Otherwise the
intersection A = o7, (A) N o/ (A) is a common face of the simplexes o (A)
and or/(A). Now let us describe the face A. Let a1, ..., be the indices
J such that V; =V (e, Vo, = V) and V; # V/ for all j # ;). Consider
the face

=X ==X 2 X411 =dayp2="=2A

az 2 P
of the simplex A. Then A = X/ (N) = X,/ (N).
Now the sphere Sk is endowed with the structure of a Tits building (see [Tit]).

12.6. The Tits metric on the matrix sky. Let y;,y, € or(A). We intro-
duce the distance d(yi,y2) between y; and y, as the angle between the geodesics
Zoy: and zoy2. Let z,u € Sk. Consider a chain z = z;, 22, ..., 23 =u (z; € Sk)
such that for any j, the points z;, z;11 belong to the same element of our tiling.

Let us define the Tits metric D(-, -) on Sk by the formula

D(Z, u) = inf (Z d(Zj, Zj-H)) N
J
where the infimum is taken over all chains 2y, ..., z3.

REMARK 12.1. The topology on the sphere Sk introduced by the Tits metric
is not equivalent to the standard topology of the sphere.

EXAMPLE 12.2. Let n = 3 and G/K = SL(3,R)/SO(3). Then Sk is a 4-
dimensional sphere S* and dim A = 1, and thus the simplexes o1 (A) are segments.
Let us describe the simplicial structure on Sk = S§4. Let P be the space of all
1-dimensional linear subspaces of R® and Q the space of 2-dimensional subspaces
of R3 (certainly, P ~ ( are projective planes). We intend to construct a graph,
say, I'. The set of vertices of I' is P U Q. Assume that p € P, ¢ € Q. and pCq.
Then p and g are joined by an edge, and all edges have this form. Assume that the
length of any edge is 7/3. Then the graph I' is isometric to the sphere Sk = §*
endowed with the Tits metric.

12.7. Abel subspaces. Let A be an orthogonal matrix. Consider the subva-
riety R[A] C SL(n,R)/SO(n) that consists of all matrices of the form

exp(s1)
exp (s2)
Ya(s1,..,8n-1) = A AL
exp(sn—1)
1
where s1,...,8,-1 € R.
The mapping (s1,...,8n-1) = ¥(s1,...,8,_1) is an isometric embedding

R™™! = SL(n,R)/SO(n)

(with respect to the standard metrics in R*~! and in SL(n,R)/SO(n)).

Consider the trace S[A] of the space R[A] on the surface Sk. It is obvious that
S[A] is the union of (n — 1)! simplexes o (A). These simplexes are separated by
the hyperplanes s; = s;.




214 YURII A. NERETIN

§13. Hybridization: The Dynkin—Olshanetsky
and Karpelevich boundaries

13.1. Hybridization. Let i;: G/K — X and iy: G/K — Y be embeddings
of a symmetric space G/K into compact metric spaces X and Y. Let the images
of these embeddings in X and Y be dense.

Consider the embedding i; X iy: G /K — X x Y defined by the formula h
(i1(h),i2(h)), where h € G/K. Let Z be the closure of the image of G/K in X x Y.
Then Z is a new compactification of G/K. We say that Z is the hAybrid of X and
Y.

Now we apply this construction for the case in which X is a velocity compact-
ification and Y is the Satake-Furstenberg compactification.

13.2. The Dynkin—Olshanetsky boundary. Consider the hybrid Z of the
simplest velocity compactification (see subsection 11.1) and the Satake—Furstenberg
compactification for some noncompact Riemannian symmetric space. We again
restrict ourselves to the case G/K = SL(n,R)/O(n).

A point of the space Z is given by the following data:

0" se{l,...,n—1}

1* a hinge P = (P, ..., P,;) such that P, = PJ" and P; are nonnegative definite

for all j € {1,...,s} (see §9); and

2* a point of the simplex A, of the form 1 Z ez 21 20.

Let 2 € SL(n,R)/O(n) be an unbounded sequence and a(lj) > > d¥
the set of eigenvalues of (). Let A\Y) = Ina¥’. Then the point A(z()) =
()\gj),)\gj ), ...) is a point of the simplicial cone ¥, (see subsection 12.1), and the
sequence (/) € SL(n,R)/O(n) converges in Z if and only if z(9) converges in the
Furstenberg—Satake compactification and A(zU )) converges in the velocity simplex
¥, =X, UA.

Now let us calculate the data 0*—2* corresponding to the limit limz(). Let
P = (Py,...,P,) be the limit of z¥) in the Satake-Furstenberg compactification.
Let v; = dimIm(F;). Let (7z,...,7,-1) be the limit of A(z()) in the simplex A.
Then the set 72 > 73 > ... has the form

(131) 1:7‘1:---:7',7127’71_'_1_—_...:7—7224'1..._
We assume that

(132) “] = T’YJ—1+1 == T7J
and obtain data of the form 0*-2*.

13.3. The projection of the Dynkin-Olshanetsky boundary to the
matrix sky. Let the data 0*-2* be given. Consider the new data:
1* the flag Ker(P;) D Ker(P,) D Ker(Ps) D ---; and
2* the set of numbers 7, ..., 7,_; defined by formula (13.2).
These data define a point of the matrix sky (see subsections 12.2-12.3).

13.4. Limits of geodesics. Let us consider a geodesic given by

exp(Ars)

2(s) = A o) A,

1
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where A € SL(n,R)and A\; 2 --- 2 \,, = 0. Let P = (Py,...,Ps) be the limit
of v in the space of hinges, and let the limit of v in the velocity simplex A,, be
T2y ey Tn—1, where T; = )‘j/’\l-

Let vy = dimIm(P,). We introduce the numbers Pa = Ty 141 =+ =1,
Now we obtain data of the form 13.2 0*—2*.

REMARK 13.1. Some points of the Dynkin-Olshanetsky boundary are not lim-
its of geodesics. For example, the point defined by the data 13.2 0*-2* is the limit
of a geodesic if and only if 1 > M2 > > ppy > 0.

13.5. The Karpelevich compactification. The Karpelevich compactifica-
tion is the hybrid of the compactification by the Karpelevich velocities and of the
Satake-Furstenberg compactification. Namely, a boundary point of the Karpelevich
compactification is given by following data:

0 se{2,...,n—1}

1* a hinge P = (Py,...,P;) such that P; = P} are positive definite for all

J€{1,...,s} (see §10); and
2* a point of the boundary of the polyhedron K(1, s) of Karpelevich velocities
(see subsection 11.2).

"The topology on the Karpelevich compactification can be defined in an obvi-
ous way. The natural projection 9K(1,s) — A(I, ;) defines a projection of the
Karpelevich boundary to the Dynkin-Olshanetsky boundary.

§14. The space of geodesics and sea urchins

14.1. The space of geodesics. Consider the noncompact Riemannian sym-
metric space G/K = SL(n,R)/SO(n). Denote by & the space of all oriented
geodesics in G/K.

Here the definition of the topology on the space ® is rather delicate. We shall
describe the topology that seems to be the most natural. Consider a collection of
integers A = (ay,...,0,) such that 1 =y < oy <--- < oy = n. Denote by A(A)
the open simplex

1:/\1:"'=Aa1>)‘01+1:"':/\a2>"'>/\a.,‘1+1:"'=/\n=0~

For different A, the simplexes A(A) are disjoint, and the union U AA(A) coincides
with the simplex A,. Consider a geodesic v € &. The velocity of this geodesic
belongs to some simplex A(A). The space of all geodesics with given velocity
A € A(A) is an SL(n,R)-homogeneous space. The stabilizer G(A) of the geodesic
7 (considered up to conjugacy) depends only on the set A (and depends neither on
A nor on the geodesic itself): G(A) =R} x []O(a;41 — a;). Denote by &(A) the
space of all geodesics whose velocities are elements of A(A). Then

B(A) ~ A(A4) x SL(n,R)/G(A).
We endow this space with the standard direct product topology and the space

&= J6(4) ~ | JA(A) x SL(n,R)/G(A)
A A

with the topology of disjoint union.
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REMARK 14.1. Thus, the space of geodesics is disconnected. This is natural.
Indeed, let Ay = {0,1,...,n}. Consider the set of limits of the geodesic v € G(Ay)
on the matrix sky. Then this set is open and dense. The set of limits of v € G(A)
on the Satake-Furstenberg boundary is compact. Namely, it is the minimal compact
SL(n,R™)-orbit on the boundary.

14.2. The space of geodesics as a boundary of the symmetric space.
Let us define a natural topology on the space & = G /K U®. We equip the space
G/K with the standard topology. The space & is equipped with the above topology,
and thus the space & is closed in 2. Choose a point by € G/K. Let z; € G/K be
an unbounded sequence. The sequence x; converges in R if and only if it satisfies
the following conditions:

1) the sequence of geodesics box; converges, and we denote by y the limit of

this sequence on the matrix sky; and

2) there exists a limit z of the sequence of geodesics x;y.

By the limit of the sequence z; we mean the geodesic 2.

REMARK 14.2. In our case, the dimension dim & of the boundary is given by
the formula dim & = 2dim G/K — 2, which is greater than dim G/K (even in the
case G/K = SL(2,R)/SO(2), i.e., the Lobachevsky plane).

REMARK 14.3. The space R is not compact (since & is not compact)

14.3. Sea urchins. Recall that for any geodesic v € & we can define a velocity
{42, p3, ...}, which is a point of the simplex A (see subsection 11.1). We denote
by &™" the space of geodesics with rational velocities (i.e., the numbers j4; are
rational). Consider the so-called sea urchin, i.e., the set $Ra¢ .= G/K U™ c R
We are not interested in the topology on the sea urchin (it seems natural to endow
the set of velocities with the discrete topology, consider the ordinary topology
on the space of geodesics with a given velocity, and introduce the natural (see
subsection 14.2) convergence of sequences in G/K to geodesics).

14.4. Projective universality. Let p; be a finite family of linear irreducible
representations of the group G in the spaces V;. We assume that for any j there
exists a nonzero K-fixed vector v; € V;. Consider the direct sum p=@p; of
representations p; and take the vector w = @uv; € @V;. Let O ~ G/K be the
G-orbit of the vector w € P(O) and O the closure of @ in the projective space
P(V;). The G-spaces O are called the projective compactifications of G /K.

Now we construct a mapping 7: R = G/K U® — O. The mapping G/K — O
is natural. Let us consider a geodesic p(s) € &. We can readily prove that the limit
lim,_.c 7(7¥(s)) in P(V;) exists. By definition, 7(v) is this limit.

PROPOSITION 14.4. a) The mapping m: R — O is surjective.
b) Moreover, the m-image of the sea urchin R is the entire space O.
§15. The boundary of a Bruhat-Tits building

An analog of a Riemannian symmetric space in the p-adic case is the so-called
Bruhat-Tits building. We discuss an example.

15.1. An analog of the Satake-Furstenberg boundary. Let Q, be p-adic

field, Z, be the ring of p-adic integers, and let Q; = Qp \ 0 be the multiplicative
group of Q.
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By a lattice in the linear space Q” we mean an open compact Z,-submodule
of Q) (any lattice has the form Z pU1 & -+ @ Zpvy, where vy,...,v, are linearly
1ndependent vectors). The group Q; acts by dilations on the set Lat of all lattices
in Qp. The Bruhat-Tits building Ensn is the quotient space Ens,, = Lat, /Q;.

The space Ens, possesses a beautiful geometric structure, which is not essentlal
for our purposes. We only note that the group PGL, (Qp) acts on Ens, in an
obvious way and the stabilizer of the lattice (Z p)" C Qp is the group PGL,(Z,),
that is, Ens, = PGL,(Q,)/PGL,(Z,).

We shall describe the analog of the Satake boundary for Ens,,.

To this end we embed Lat, into the space Sub, of all Z,-submodules in Q-
Introduce some natural metric on Sub,. For example, any submodule under con-
51derat10n can be regarded as a closed subset of PQ}, and thus the Hausdorff metric

on [PQ}] induces a metric on Sub,.

Furthermore we apply the construction of the Hausdorff quotient space to the
compact space Sub,, its open subset Lat,, and the orbits of the group Q* Then
the limit sets in Sub,/Q} are as follows: they are the collections

O=LyCM, CLiC---CLyyCM,CL,=

where for each j, the L; is a linear subspace and M;/L;_, is a lattice in L;/L;.
(defined up to a scalar factor) We call these collections filtered flags.

15.2. Velocity compactification. A pair of lattices R, T C @" can be writ-
ten in the form of the direct sums

R=Zyny ®Zyvo®--- B ZLypv,, T = pk‘val {apk‘zvaz SRERN pk” Zpvy,

where ky > --- > k. The set D(R,T) = (ki,...,k,) is called the complez distance
between R and T. The complex distance is an invariant of a pair of lattices with
respect to the action of the group GL(n,Q,) on the space of lattices, that is,
D(g-R,g-T) = D(R,T) for R,T C Qp and g € GL(n,Q,). The vertices of the
buildings are lattices defined up to a factor, and hence for a Bruhat-Tits building,
the complex distance is defined up to an additive constant. Now we can repeat
both constructions of §11.

15.3. Hybrids. We can repeat both constructions of §13 as well. A point of
the analog of the Dynkin-Olshanetsky boundary of a building Ens,, is given by the
following data:

0 sef{l,...,n—1}

1* aﬁlteredﬂag0~L0C1\11CL1CMZC CL C]\[ CLH,l—Qn
where L; are subspaces and M are Z, submodules (defined up to a factor)
such that M;/L; are lattices in LJ+1/L4] and

2* a point of the simplex A, (see subsection 11.1).

A point of the analog of the Karpelevich boundary is given by similar data.
namely, by data of the form 0* and 1* together with data of the form

2** a point of the polyhedron K(1, s) of Karpelevich velocities.

15.4. The lattice sky. A point of the lattice sky is given by the following
data:

0f se{l,...,n—1}

1" aflagb=LyC Ly C---C Loy, =Qy: and

2t a point of the simplex A,.
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There exist a natural tiling of the lattice sky into simplexes. The simplexes A are
enumerated by the complete flags

L: O=L0CL1C---CLn=QZ.

Let A(L) be the set of all nontrivial subflags of the flag £. Then the simplex A,
consists of all elements of the lattice sky such that the data 11 are elements of A(L)
(the faces of the simplex A; are enumerated by the subflags of the flag £).

§16. Remarks

16.0. Remarks on §0. «) The five conics problem was formulated and (in-
correctly) solved by Steiner in 1848; in 0.2 we followed this solution. The correct
answer and a correct solution were obtained by Chasles in 1864 [Chas]. A similar
problem on the number of quadrics in CP3 that are tangent to nine generic quadrics
was solved by Schubert [Schul; this number is equal to

(16.1) 666841088 .

For the history of the problem, see [Kle].

B) The variety of “complete conics” was introduced by Study [Stu]. For the
discussion on this variety, see [Sev]. A similar completion of PGL,(C)/PO,(CT)
(ie., of the space of quadrics in CP™!) was constructed by Semple [Sem1, Sem3).
This variety is called that of “complete quadrics”, see our §8.

For a discussion of the five conics problem from another point of view, see [GH,
VL.

For the calculation of the number (16.1) and for other problems of the same
type, see [SR, Chapter XI| and also [DCP1).

16.1. Remarks on §1. The category GA and its fundamental representation
are defined in [Nerl]; see also [Ner2, Ner3|. For the categories B, C, and GD
and for the theory of representations for the categories GA, B, C, and GD, see
[Ner2, Ner3, Ner6].

16.2. Remarks on §2. o) This section contains an exposition of the preprint
[Ner5].

B) The Hausdorff metric was introduced in ([Pom, Hau].

7¥) The standard compactifications of R are those by means of the points +oo
and —oo and by means of the singleton oo (or +00). Some other compactifications
of R can be obtained as follows: we can embed R into a compact metric space and
take the closure of the image (for instance, we can take a winding of a torus or the
curve r = (m/2 + arctant), = t on R?).

An example of a nontrivial and interesting compactification of R” is given by
the closure of the set of diagonal matrices in the model of 8§13 for the Karpelevich
compactification.

6) To 2.6. Certainly, the space (C*)* has many nontrivial compactifications.
By a toric variety we mean a complex algebraic variety L, possibly singular, on
which the group (C*)* (the “complex torus”) acts in such a way that one of the
orbits of (C*)* on L is open.

Let the torus (C*)* act by linear transformations on the space CV. Then the
closures of orbits of (C*)* in CPN=1 are toric varieties, and all toric varieties have
this form.
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Our space T"—! is an example of such toric variety. For details on toric varieties,
see the review [Dan)].

Certainly, in the construction of 2.6, we can replace the group C* by R* = R\O
(in this case we obtain a smooth analytic real variety) or by the multiplicative group
of positive reals.

€) Instead of the words “the closure in the Hausdorff metric”, it is customary to
speak of “the closure in the Hilbert scheme or Chow scheme”. The latter operation
is more refined but harder to visualize [BiS, Kap); see [Kap] for the construction
of a separated quotient of the Grassmannian in C" by the action of the torus C*n.

16.3. Remarks on §3. a) The author believes that the language of 3.3 was
first used in [Alg]. Hinges (under the title “resolving sequences”) were introduced
in [Ner4].

3) The description of the closure of a conjugacy class in PGL,(C) in the variety
Hinge,, seems to be of interest.

16.4. Remarks on §4. o) The smooth algebraic variety Hinge, was first
constructed by Semple [Sem2] in 1951 as a natural generalization of “complete
quadrics”. The Semple construction is as follows.

To any operator A € PGL,{C) one assigns the collection of operators

(16.2) A=A'A A4, A" 14,

that are defined up to a factor, in the exterior powers A7C™ of the space C™. This
collection can be regarded as a point of the product of projective spaces

n-—-1

(16.3) [[rP@v)= Hccn»c“l

Jj=1

Semple defined the variety S,, of “complete collineations” as the closure of the
image of the group PGL,(C) in (16.3). Points of this closure are called Semple
complezes. In our language, Semple complexes are collections of operators of the
form (A1(P),..., \n_1(P)), where P is a hinge. In this connection, the varieties S,
and Hinge,, coincide. For the variety S,, see also [Tyr, Lak, DCP 1].

B) The papers of Semple [Sem1, Sem2, Sem3] are among the first applications
of the construction of the closure of an equivariant embedding. Let a group G act on
a (noncompact) space M and on a compact space N. Let an embedding r: M — N
be given such that 7(g-m) = g-(rm) (such embeddings are said to be equivariant).
Furthermore, consider the closure 7(M) of the image of the mapping 7 in N. It
turns out that a number of meaningful and nontrivial objects can be obtained in
this way.

In the case of “complete collineations,” the group G is PGL,(C) x PGL,(C),
the space M is the group PGL,(C) (the group G = PGL,(C) x PGL,(C) actually
acts on PGL,(C) by left and right multiplications), and N is given by (16.3). The
equivariant embedding is defined by formula (16.2).

Let us present some examples of this construction that differ from the examples
above and from the examples below.

1*. Bohr compacta (see [Dix, Rup]). Consider the product N of a continual set
of circles S' = {z : |z| = 1} endowed with the Tychonoff topology. It is natural to
regard the elements of this space as functions f: R — S! (without any conditions
of continuity and measurability on the functions f). Clearly, N is a group with
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respect to the pointwise multiplication. Furthermore, the group R is embedded
into N by the rule s — F,(t) = ¢'st, € R. The Bohr compactum is the closure of
the image of the group R in N. It seems that this object can hardly be described
in reasonable language, and it is pathological in this sense. On the other hand,
sometimes it plays an auxiliary role in very useful and reasonable discussions; see
[Rup].

2". Thurston boundary (see [Thu, MS]). Let Ty be the fundamental group
of a sphere C, with g handles. Let A, be the set of homomorphisms from Iy
into PSLy(R) whose images are lattices in PSL>(R) (defined up to conjugation
in PSLy(R)) (this set is called the Teichmiiller space). Let G be the group of
automorphisms of the group I'y. Let N be the space of real functions on I'y defined
up to a factor. We endow this space with the topology of pointwise convergence.
Further, to any homomorphism IT: L'y — PSL,(R) we assign the function a,(y) =
logtr7(v), v € I'y, regarded as an element of N.

The Thurston compactification of the Teichmiiller space is the closure of the
image of A, under this mapping in the projective space N.

3", Olshanski mantles [Ols, Ner3, Ner6]. Let M = G be an infinite-
dimensional group. Let N = B(H) be the set of linear operators in a Hilbert space
H with norm < 1. The set B(H) is compact with respect to the weak operator
topology.

Let p be a unitary representation of the group G in the space H. Then p can
be regarded as a mapping of G into B(H). Let I'(G, p) (a mantle of the group
G) be the closure of the image of this mapping. We can readily see that I'(G, p)
is a semigroup. It turns out that in many cases this semigroup can be described
explicitly, and the answei_i\s_gften nontrivial.

7) The semigroup Hinge, is defined in [Ner4]. Apparently, the semigroup
Hinge,, coincides with that constructed in [Vin]; see also [Pop].

16.5. Remarks on §5. None.

16.6. Remarks on §6. o) The construction of 6.2 is a special case of that
introduced by de Concini-Procesi [DCP1]; see 16.8. It is an example of the closure
of an equivariant embedding. Namely, the PGL, x PGL,-homogeneous space
PGL, can be embedded in the projectivized space of operators in V(a), and we
take the closure of the image.

The construction of 6.3 was obtained in [Ner4].

B) Putcha and Renner (see [Put, Ren]) studied the following problem. Let G
be a complex semisimple Lie group and let p be its finite-dimensional holomorphic
representation in a space V' (in general, reducible). Consider the set C - p(G) of
operators of the form A - p(g), where g € G and A\ € C. Let I(p) be the closure
of the set C - p(G) in the space of all operators on the space V. Clearly, T'(p) is a
semigroup. It turns out that the semigroups I'(p) can be nonisomorphic for different
p- To be more precise, I'(p) =~ T'(p’) if the convex hull Conv(p) of the weights of
the representation p can be obtained by a dilation from the convex hull Conv(p’)
of the weights of the representation p’.

—

For the case G = GL,, the semigroup Hinge,, is a universal object for almost the
same problem. Namely, for all irreducible representations p, the quotient semigroup

I'(p)/C* is a homomorphic image of the semigroup Hinge, .
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On the other hand, it seems probable (I do not know the proof) that for any
representation p (not necessarily irreducible), the semigroup I'(p) coincides with
the image of the semigroup Hilg\en (in all events, a semigroup I' O GL,, with this
property is constructed in [Vin]).

16.7. Remarks on §7. We follow [Ner4]. The described construction is ap-
parently a special case of some general construction that holds for all homogeneous
spaces; see [Vin, Pop].

16.8. Remarks on §8. a) De Concini—Procesi construction. Complete sym-
metric varieties were introduced by de Concini and Procesi [DCP1] in 1983. Their
construction (which is the same for all complex symmetric spaces) is as follows.

Let G/H be a symmetric space, where G and H are complex groups. Let =«
be a spherical representation of G, that is, an irreducible representation of G that
has a nonzero H-stable vector, say, v. The description of all these representations
is given by the well-known Helgason theorem ([Hell]; see also [Hel2, V.4.1).

Let P. be the projectivized representation space of 7. Let (G/H), be the
closure of the G-orbit of the vector v in P,. Then P, is a compactification of the
symmetric space G/H.

This construction a priori depends on m. We say that 7 is nondegenerate if
all numerical labels of 7 on the Dynkin diagram that can be nonzero (for spherical
representations) are nonzero. It turns out that for all nondegenerate irreducible
representations w, the varieties (G/H), are isomorphic. Moreover, for all G JH
these are smooth complex varieties.

The complete collineations (i.e., elements of the completion of the space PGL,
X PGL,/PGL,) fit within the framework of the construction above as follows. Let
p be a holomorphic representation of GL, and let p’ be the dual representation.
Consider the representation p ® o’ of the group GL, x GL,. This is just the
representation of GL,, x GL, in the space of linear operators in the representation
space of p (see §6).

For the properties of complete symmetric varieties, see  DCP1, DCP2, DCS].

B) Hinge constructions react rather painfully to modifications of G/H that
seem to be unessential from any other point of view. For example, the completion
of the group SO, [Ner4] can be described in the language of hinges in a much
more cumbersome way than the completion O,, described in §8.

7) Projective compactifications. Let py,. .., pi be irreducible H-spherical rep-
resentations of the group G in some spaces Vi,...,V, and let v; € V; be their
spherical vectors. Let p = @p;, V = @V}, and v = @Puv; € V. Consider the
G-orbit of the vector v in the projective space PV. Denote by P, the closure of the
orbit Gv in PV.

It turns out that for different representations p, the varieties P, are, in general,
different; as a rule, they are not smooth.

Such objects were studied quite intensively, for example, see [Vus, CX, Kus3|.
We also note that the constructions of this type are possible for any (in general,
not symmetric) subgroup H, see [LV].

d) Closure in the Grassmannian in the adjoint representation. Consider an irre-
ducible representation p of a simple complex linear group in a space V. For the sake
of simplicity we assume that on the space V, a nondegenerate _symmetric bilinear
form B(-, -) is given. Consider the symmetric bilinear form B((v, w); (v/,w')) =
B(v,v") — B(w,w'), v,v",w,w’ € V,on V& V. Denote by Gr = Gr(V 3 V) the




222 YURII A. NERETIN

Grassmannian of maximal isotropic subspaces of V @ V. To any element g€ G we
assign the graph of the operator p(g). Thus, we obtain an embedding of G in Gr.
The problem of describing the closure of G in Gr naturally arises.

Now we show that this problem can be reduced to that of item 7. By [Ner6,
Chap. 2], the spinor representation Spin of the group O(V) can be extended to
a continuous embedding of Gr(V @ V) into the projectivized space of operators.
Therefore, our problem is reduced to the problem of describing the closure of the
group G in the representation Spin op.

Now we consider the case where p is the adjoint representation Ad of the group
G. According to [Kosl, Kos2], for any simple Lie group G, the representation
Spin o Ad is the sum of equal representations of the group G whose highest weight is
the half-sum of the positive roots. Therefore, the closure of G in the representation
Spin o Ad and in the Grassmannian Gr (8®g) coincides with the De Concini-Procesi
compactification (with the complete symmetric variety) of the group G.

16.9. Remarks on §9. o) The Satake construction [Sat] for the compactifi-
cation of a Riemannian symmetric space G/K (where G is a simple Lie group and
K is a compact subgroup) given in 1960 is precisely the real version of the construc-
tion of complete symmetric varieties. We consider a finite-dimensional K. -spherical
irreducible representation p of the group G, and then take the closure of the orbit
of a spherical vector in the projective space. Let p be nondegenerate in the same
sense as in 16.8, a). It turns out that, in this case, the obtained compactification
does not depend on p.

If p can be degenerate, then in this way we can obtain 28(G/K) _ 1 different
compactifications, which are also called Satake compactifications (as in our Re-
mark 6.6). The ordinary compactifications, for example, the matrix ball [Pya,
Chapter II; Ner2| belong to the family of Satake compactifications.

For pseudo-Riemannian symmetric spaces (see the list in [Ber]), we can repeat
the Satake construction.

Oshima and Sekiguchi [Osh, OS, Schl] also studied the gluing of compactifi-
cations of this type into smooth analytic varieties. In [Osh] (see also [Schl)) for a
Riemannian symmetric space G/K, 2'x(G/K) counterparts of Satake compactifica-
tions are glued together. In [OS] different real forms G /Kq of the same symmetric
space are glued together. The construction [OS] is much more involved than that
of §9, and the relationship between these constructions remains unclear.

B) The same compactifications of Riemannian symmetric spaces, by a substan-
tially different method, were obtained by Furstenberg [Furl, Fur2].

16.10. Remarks on §10. A more general “hinge superstructure” over the
category GA was discussed in [Ner4]. Similar “hinge superstructures” exist for the
categories B, C, and GD from 1.7.

16.11. Remarks on §11. a) I have not seen these constructions in the lit-
erature. For the discussion of the closures of Weyl chambers, see [Tay|. There
exist many other compactifications of the simplicial cone %,,, and hence there exist
many other velocity compactifications of symmetric spaces. Some examples are
given below in 3) and 7). An analog of the set (Inay,...,Ina,) for an arbitrary
noncompact Riemannian symmetric space is the complex distance (for example,
see [Ner6, 6.3]).

B) Satake velocities. Here we will discuss the closure of a Weyl chamber in the
Satake compactification (see also §2). Consider a partition t of I 1,n, Where I , =
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10, Ulo, +1,6,U - -Ula,_, , and assign to t the face G(t) = [In 2o, +1.00m0, )- We
define the polyhedron of Satake velocities by the relation S (n) = U(G(t). Consider
a sequence b/ = {h{¥ > ... > pl¥) = 0} € X(I1,). The sequence h'7) is convergent
to a point

u=(u1,. s %) € [[Ban+1,0m0:) = G(t)

if there exist sequences pgj ), pg] ) ,-.. such that
1) for all o we have Iimj_,oc(p,(,]) —pf,’ll) = 400, and
2) for all o, the sequences
) = (hG) o =29, hD ~pD) € Bl 141,00 00)
are convergent, with the limit u, € (I, ,1+1,0041).
The polyhedron §(n) is a compactification of X,,.

The projection of the polyhedron of Karpelevich velocities to the polyhedron of
Satake velocities. For any tree partition we can delete all its reducible elements,
and thus obtain an ordinary partition. Then in the product (11.7) we can omit the
second factor.

%) Toric velocities. Consider the space L formed by the sets (t1,...,tm) €ER?
that are defined up to an additive constant. Let Q C L be a convex polyhedron with
rational vertices contained in the hyperplane t; + --- +t,, = 0. Let Q be invariant
with respect to the action of the symmetric group S, on L. Starting from this
polyhedron, we shall construct a compactification of ¥,,. Let M; =(ml,...,ml),
J=1,..., N, be the vertices of Q. For any vertex we introduce the expression

n
X1, tn) = exp (Zm‘}ctk).
k=1

Consider the embedding of L in the projective space RPV given by the formula

. (tl,...,tn) - (Xl(tl,...,tn),...,XN(tl,...,tn)).

Let m(L) be the closure of 7(L) in RPY. The structure of these closures is well
known [Dan], and they have a nice and simple description in terms of the geometry
of the polyhedron Q. The quotient space w(L)/S, is a compactification of ,,.

REMARK. The polyhedron of Satake velocities has the form above. Apparently,
this is not the case for the polyhedron of Karpelevich velocities.

REMARK. Apparently, projective compactifications (see 14.4) are hybrids of
Satake compactifications and toric velocity compactifications.

16.12. Remarks on §12. The heroes of our paper are mainly very exotic
objects from the point of view of “ordinary” differential geometry. The construction
of 12.1 is an exception. The corresponding object of differential geometry is more
or less standard, see [EO, BGS, VEL|. The Tits metrics on the boundary can
also be defined for a general Cartan-Hadamard manifold, see (BGS] ([BGS] also
contains the reference [ImH]). Nevertheless, it seems that now it is known only for
a few interesting examples.
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16.13. Remarks on §13. o) The Dynkin-Olshanetsky boundary [Dyn,
Olsel, Olse2] is the Martin boundary for the ordinary diffusion on a symmet-
ric space (see 16.16,43).

B) The Karpelevich boundary was constructed in [Kar].

16.14. Remarks on §14. ) I have not seen this construction in the liter-
ature. Kushner [Kusl, Kus2| constructed a compactification for a noncompact
Riemannian symmetric space that is universal in the sense of 14.3. Our space R is
not compact.

B) Ezamples of sea-urchin-type constructions

EXAMPLE (blowing up of cusps). Consider the subgroup PSL(2,Z) C
PSL(2,R) and its action on the Lobachevsky plane £ = PSL(2,R)/SO(n) as an
upper half-plane. Denote by R the space of oriented geodesics on £ whose limits are
rational points on R = RUoo (it is essential for our purposes that any rational point
of the absolute of the Lobachevsky plane is a fixed point for some cusp element of
PSL(2,Z)). The group PSL(2,Z) has a natural discrete action on the spaces £ and
R, and hence we can construct the quotient space (LU R)/PSL(2,Z). This space
is a compactification of the space £/ PSL(2,Z). For more general constructions of
this type, see [BS1].

EXAMPLE (universal toric variety). Consider the torus (C*)™. For any
L=(l,....l,)eZ"

we consider the one-parameter subgroup v; C C™ that consists of the elements
(zh1,...,2") € (C*)" (where z € (C*)™). A point of the boundary £ of (C*)" can
be defined by the following data:

1* an element L = (13,...,1,) € Z", and

2* an element ¢ of the quotient group (CH™ /vp.

A sequence ul) = (ugj),...,ugj)) € (C*)" converges to an element (L, g) € 0
whenever it satisfies the following conditions:
(i) there exists a real sequence b/) — +o0o such that for any m = 1,...,n,

there exists a finite limit lim,_, - !u%)/(b(j))lm};
(ii) let u() be the image of u¥) in the quotient group (C*)*/~r. Then u®
converges to g € (C*)*/v,.

EXAMPLE (the complex sea urchin). Consider the space PSL(n,C)/SO(n,C).
Choose s € {2,3,...,n}. Choose a set of positive integers K = (k1,...,k;) such
that 3" &, = n. Choose a set of integers L : {l; > --- > I,} that is defined up to an
additive constant. Let B(K) be the group of (k; + ks + .. )% (k1 + kg +...) block
upper triangular matrices B. Consider the complex curve y[K, L] given by

th Eln
YK, L|(t) = )
tls Eks
where t € C* and E, is the 1 x ¢ identity matrix. The curves Cv{K, L|(t)Ct, where

C € GL(n,C), are called geodesic curves. Choose an element A € PSL(n,C).
Define the family (a pencil) P(K,L|A) of all curves C* — PSL,/SO,, that can
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be represented in the form A'B'y[K, L] BA, where B € B(K). We can readily see
that the curves of a pencil either coincide or are disjoint. The set

S(K,A)= |J A'B'4[K,L|BA
BeB(K)

is open and dense in PSL(n,C)/SO(n,C).
Now we consider the space

PSL(n,C)/SO(n,C)u | J ( U P(K,L[A)>

K.L MAeGL(n,0)/B(K)

endowed with the topology for which a sequence x; € PSL(n,C)/SO(n,C) con-
verges to A € P(K, L| A) whenever it satisfies the following conditions.
1. z; € S(K, A) for large j.
2. Lety; € P(K, L| A) be a geodesic curve that contains z j- Then «; converges
to 7 in the natural topology of the pencil P(K, L|A).
3. Let B; € B(K) be a sequence such that B; — E and B;~, = v. Then the
sequence Bjz; € v converges to +00 in 7.
This topology is natural on sets of the form UAecL(n.C)/B(K) P(K,L|A) and
coincides with the topology of disjoint union on the set

U < U P(K,L]A)).

K.L N A€GL(n.C)/B(K)

16.15. Remarks on §15. For the boundaries of the Bruhat—Tits buildings,
see [BS2, Gerl, Ger2]. Consider the space of lattices in R™ defined up to
dilatations. This space can be compactified by the same way as in subsection
15.1 (see also [How]).

16.16. Some general constructions. Here we briefly discuss several general
constructions of compactifications for metric (and topological) spaces.

a) Mazimal ideals. Let X be a noncompact space. Let A be an algebra of
(continuous, holomorphic, algebraic, almost periodic, etc.) functions on X. Let A
satisfy the following conditions:

a) A contains the constants; and

b) A separates the points of X (for any z;,z; € X, there exists f € Asuch
that f(z1) # f(x2)).

Denote by Spec(A) the spectrum (the space of maximal ideals) of A. There
is a natural embedding A: X — Spec(A). If z € X, then the set of functions
f € A that vanish at the point z is a maximal ideal of A. As a rule, Spec(A) is a
compact space and X is dense in < Spec(.A4). Let A C A’ be two algebras satisfying
conditions a) and b). Then there is a natural mapping Spec(A4’) — Spec(A) given
by the formula J — J N A.

EXAMPLE: STONE-CECH COMPACTIFICATION. For a topological space X we
introduce the algebra C(X) of all continuous functions and the algebra B(X) of
all bounded continuous functions. The space Spec(B(X)) is the universal com-
pactification of X in the following sense. For any dense embedding i of X into a
compact topological space K, there exists a mapping =: Spec(B(X)) — K such
that 7 = 7 o A. Indeed, C(K) C B(X), and this embedding induces the mapping
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7: Spec(B(X)) —» K = Spec(C(K)). This construction seems to be pathological
because no point of Spec(B(X ))\ X can be described explicitly.

B) Martin boundary [Mar, Doo, Shu, KSK, Kai] Consider a domain  c R"
and a certain boundary problem for the Laplace operator A. Let G(z,y) be its
Green function; assume that this function is positive. Consider a family of functions
9:(y) = G(z,y), z,y € Q, defined up to a positive factor. We thus obtain an
embedding of Q) to the projectivized space of functions on Y. By the Martin
compactification of ) we mean the pointwise closure of the image of 0 in the
projective space. This definition is not constructive, and to describe the Martin
boundary, it is necessary to find the asymptotic behavior of Green’s function. The
Dynkin-Olshanetsky boundary is the Martin boundary for the equation Ay = uu
on a symrmetric space [Dyn, Olsel, Olse2]. The Martin boundary for the Laplace
equation is only a particular case of the very general construction known under the
name of Martin boundary. For simplicity, we consider a discrete countable space
Q and a Markov transition function p(z,y) on Q x Q. Recall that for all = we have
Zyeﬂ p(z,y) = 1. A function f: 2 — R is said to be A-harmonic if

’\f(z) = an(l‘, y)f(y)

yeN

Now introduce the functions p; (z,9) = p(z,y), p2(z,y), ps (z,y), ... such that
Pr(z,y) = > p(2,2)pa_i(z,y)

yeN

(i.e., consider the powers of the Markov transition matrix) and define the A\-Green
function G, (z,y) = Yo AT (L y). If Gx(z,y) is finite, then we can repeat the
arguments above.

) Distance functions [Gro, BGS]. Consider a noncompact metric space X
with distance function d(z,y). Let C (X) be the space of continuous functions on
X. For any x € X we introduce the function a;(y) = d(z,y), y € X. The relation
T/ agz, T € X, defines an embedding X — C(X). Consider the quotient space
C(X)/R, i.e., the space of continuous functions on X defined up to an additive
constant. Now we take the closure of the image of X with respect to the uniform-
on-compacta topology. For symmetric spaces, this construction yields the visibility
boundary.

16.17. Formal geometric constructions. a) Gluing of the quotient space.
Consider a noncompact metric space X and a compact set K C X. Let Y be a
compact space and o: X\ K — Y a surjective map. Introduce the space X UY
endowed with a topology that satisfies the following condition: let z; € X be a
sequence that has no limit points in X; then lim Zj =y € Y whenever the sequence
o(z;) converges to y € Y.

EXAMPLE. In 11.1, X = SL(n, R)/SO(n), K is the point E, and Y is A. The
mapping o is the composition of the mappings X\E — £\0 — A.

EXAMPLE. In 12.1, X is a symmetric space, K is the point zg, and Y = Sk.
EXAMPLE. See the construction of the universal toric variety in 16.14.

B) Gluing of the boundary of the quotient space (velocity compactifications).
Consider a noncompact metric space X and a compact set K C X. Let Z be a
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compact space and let Y C Z be a compact subset. Let a mapping 7: X \K — Z\Y
be given. Define a topology on X UY by the following condition: a sequence z; € X
without limit points in X converges to y € ¥ whenever T(x;) converges to ¥ with
respect to the topology of Z.

EXAMPLE. Let X; and X, be two metric spaces. We construct another com-
pactification of X, x X,. Choose points a; € X; and ay € Xy Let A =
[0,00) x [0,00). Consider the mapping X; x X, — A given by the rule (z1,z3)
(d(z1,a1),d(z2,a2)). Take a certain boundary of A. For instance, let us consider
the mapping A — [0, o] given by the formula (d;, d,) — d; /d2. Now we can glue
the quotient space [0, 00] to A, and then we can glue [0, 00] to X; x X.

v) The projective limit of hypersurfaces. Let us consider a noncompact metric
space X and a compact set K C X. Assume that we have a family S,, ¢t > 0, of
closed subsets of X such that

1) SsUS, =@ fort#r,

2) X \ K= Ut>()St, and

3) for any ¢t > 7, there exists a continuous mapping 7;,: S; — S, such that for

t > 71 > 0 we have my, = 7,7,
Let S be the projective limit of the family S; and let 7 ; be the natural projection
of S onto S;. We shall define a topology on X U S,. by the following condition:
for a sequence z; € X we define ¢t = t(z;) € (0,00) by the condition T; € Sya,),
and assume that, as t(z;) — oo, z; converges to y € S,. whenever for any o > 0,
the sequence 7;(; ), (T;) € S; converges to 7., (y) with respect to the topology of
S,

EXAMPLE (visibility boundary). Let a € X. We assume that for any r € X,
there exists a unique shortest curve -y, joining a and z. Let [ = I(z) be the length
of ;. Let s > 0. Consider the set S; given by the equation I(z) = ¢. Let t > 7
and z € S;. Define the point m,(z) € S; as S; N~v,. Now we can apply our
construction.

EXAMPLE. Tits-type metrics. In the situation of the preceding example we
denote by p the metric on X. Let p,q € S... Then

d(p,q) = lmsup * p(moct (), ()

t—ox t

is a metric on S..
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