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HOLOMORPHIC EXTENSIONS OF REPRESENTATIONS

OF THE GROUP OF DIFFEOMORPHISMS OF THE CIRCLE
UDC 517.9

YU. A. NERETIN

ABSTRACT. This paper gives the construction of a semigroup I' which could be thought
of as the complexification of the group Diff of analytic diffeomorphisms of the circle,
and it is shown that any unitary projective representation of Diff with highest weight
has a holomorphic extension to I'. For this, I' is embedded in the semigroup of
“endomorphisms of canonical commutation relations” (this is a certain part of the
Lagrange Grassmannian in complex symplectic Hilbert space).

Bibliography: 25 titles.

In this paper we study the semigroup I', constructed in [13], which from a geo-
metric point of view is an “infinite-dimensional complex domain”, and which has the
group Diff of diffeomorphisms of the circle as “skeleton” (the “Shilov boundary”).
It is proved that representations of Diff with highest weight (they are usually called
“representations of the Virasoro algebra”) have holomorphic extensions to I'. The
existence of holomorphic extensions of representations of a Lie group G to some
open subsemigroup in the complexification G of G is a general feature of represen-
tations with highest weight (see [15]). However, there is no group Diff. (see §1.10),
and therefore even the existence of a complex semigroup containing Diff seemed for
a long time to be a rather doubtful conjecture (put forward by Ol'shanskii). It turns
out that representations of the semigroup I" are given by fairly simple explicit formu-
las, while the existing earlier formula for representations of Diff (see [14]) contained
rather inexplicit operations such as the calculation of Fredholm determinants and
finding the operator inverse to an integral.

We should like to remark on the connection between the theory of representations
of the semigroup I'" and such an isolated domain of mathematics as the geometric
theory of functions, and also its connection with a whole series of recent papers on
the Virasoro algebra and Riemann surfaces [4]-[7], [23].

The author thanks G. 1. Ol'shanskii and M. L. Kontsevich for suggesting (see §1.3)
a construction of I' that is considerably more transparent than that in [13]; D. V.
Yur'ev for informing the author of the explicit formula for the equivariant embedding
of the domain Q, , in the matrix ball .Z"; and also A. A. Kirillov, M. L. Nazarov,
M. Yu. Lyubich and A. Z. Grinshpan for discussing topics that cropped up.

In §1 of the paper we consider the simplest algebraic and geometric properties of
the semigroup I'; §§2 and 3 contain a summary of the necessary information about
—_——

1980 Mathematics Subject Classification (1985 Revision). Primary 22E65, 17B65.

© 1990 American Mathematical Society
0025-5734/90 $1.00 + $.25 per page

75




76 YU. A. NERETIN

operators in Fock space and about representations of the Virasoro algebra. In §4 we
prove the theorem about the holomorphic extension of representations of I', and at
the end of that section there are the explicit formulae for the representations of T,
the cocycles on I' and the characters of I that arise from this proof.

§1. The semigroup I

1.0. Notation. We let S’ denote the circle [z| =1 in the complex plane C; D .
the circle |z| < 1; D_ the domain |z| > 1 in the extended complex plane C; and
D(l and D_ the interiors of these domains. We let Diff be the group of analytic

orientation-preserving diffeomorphisms of S', Vect the Lie algebra of analytic vec-
tor fields on S , and Vect. its complexification. It is natural to consider Vect to
be the Lie algebra of the group Diff. The words “the function f is holomorphic
(single-valued) in the closed domain B up to the boundary” means that f extends
holomorphically (single-valuedly) to some neighborhood of B.

1.1. The local semigroup LI". Let LDiff. be the set of all analytic maps p : S .

C\ 0 such that the Jordon curve p(e'’) surrounds O and proceeds anticlockwise
and, further, p'(e’’) # 0. The set LDiff,. is a local group in the following sense.
If p, u € LDiff. and p extends analytically to a domain containing the contour
u(e'?), then the composition p o u makes sense.

Let LI" be the local subsemigroup in LDiff. consisting of the maps p satisfying
the additional condition [p(e'’)| < 1. At first glance it seems obvious that LI" cannot
be extended to a global semigroup. In fact this is not so.

1.2. First construction of the semigroup I". An element y of the semigroup I
is a triple (K, p, q), where K is a complex Riemann surface with boundary bi-
holomorphically equivalent to an annulus, where p, g: €'Y — K are fixed analytic
parametrizations of the components of the boundary of K, and where on going
round the contour p(e'?) the surface K remains on the right and on going round
g(e'?) it remains on the left. Elements n =(K,.p,q) and 7, = (K,, p,, q,)
of the semigroup are considered to be the same if there exists a conformal map
R: K| — K, such that p, = Rop, and g, = Rogq,. Now let = (K., p,,q)
and y, = (K,, p,, q,); then their product y,7y, is the triple (K5, Py, q;) where the
Riemann surface K; is obtained from the disjoint union K, U K, by identifying
points of the form g¢,(e'’) with p,(e”’), where ¢ = [0, 2¢] and p, = p,, 4 =4q,.

The local isomorphism A4: LI — I' is constructed in the following way. Let
p€LTl';then A(p)=(K, p, q), where K is the annular domain in C bounded by
the contours p(e'”) and S', while g(e'’) = ¢ and p(e’) = p(e™).

The elements of Diff should be considered as “infinitesimally narrow bands” in
I'; in other words, we have a closed curve with two parametrizations p and ¢, and
moreover only their “relation” p’I o g € Diff is essential. R

1.3. Second realization of I'. An element of the semigroup I is the triple y =
(S? » P, 4,), where Sy is a Riemann surface conformally equivalent to the sphere

C, where p, (q, respectively) isa map D_ — S, (D, - S,) that is holomorphic
and single-valued up to the boundary; and where the domains py(D(i) and q./(Dg)

do not intersect. Elements 7y = (Sy, b, q.,) and § = (S;, p;, q;) are considered
to coincide if there exists a conformal map R: S,/ — §; such that p; = Ro p, and
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qs = Roqy. Now let y = (Sy,py, qy), u= (S”,pu, qﬂ) € T'. Then their product
v = yu is the triple (S,,p,,4q,), where S, 1s obtained from the disjoint union of
S? \ qy(Dg) and Sﬂ \pﬂ(D(i) by identifying points of the form q”(e”’) € Sy with
p#(e"") €S, , where ¢ €[0, 27], and p, =p,.4,=4,.

We consider the subsemigroup I' of T consisting of the elements y = (S? s D5 q)
that satisfy the additional condition: p(D_) does not intersect g(D ). Clearly this
semigroup is isomorphic to the semigroup introduced in the previous subsection (the
annulus Ky is 87 \ (p(DO_) Ug(D,))). It is obvious that the semigroup I' has a
complex structure in the new realization. R

Later on we consider the subsemigroup A in I' consisting of all y = (S7 , D, q)
such that p(D_)ugq(D L) = S;' . Then the map r, = p‘l og 1is an analytic diffeomor-
phism of S' » and in addition the map y — r, Is an isomorphism between A and
Diff (to construct the inverse map r — y(r) it is sufﬁciem to “glue” the domains
D, and D_ together by identifying the points '’ and r(e"?)). Then we obtain the
Riemann sphere S with fixed maps D_—Sand D, —S.

__ Later on it will be convenient for us to consider as the basic object neither I' nor

', but the semigroup T =TT'uDiffc T,
1.4. Third realization of I". An element of the semigroup I is the formal product

p-At)-q, (L.1)

where p,q € Diff, p(1) =1, ¢t > 0, and A(t) is a map of C into itself of the
form z — e 'z . In order to multiply two elements of the form (1.1) it is sufficient
to know how to reduce formal triple products of the form A(s)-p- A1) to the form
(1.1).

A. Let ¢ = ¢ be sufficiently small for the diffeomorphism p to extend holomor-
phically to the annulus ¢ < |z] < 1. Then the product p = A(s)pA(e) makes
sense as a product of maps, and it belongs to LI'. Let K be the annular domain

contained between S' and p(S'). Let Q be the canonical conformal map of K
onto an annulus of the form e™' < |z| <1 such that Q(1) = 1; see [3], V.1. Then
p=p'-A(t)-q’, where p’ is the restriction of Q' to §' and ¢’ is found from the
condition .
A(s)pA(e) =p A(t)q .
B. Let ¢ be arbitrary. Then there exists & = t/n so small that the product
A(s)-p- A(t) = (((A(s) - p- Ae)) - A(e))---) - A(e)
can be computed (that is, reduced to the form (1.1)) by a sequence of applications of
the procedure described in step A. The following lemma shows that this is possible.

LEMMA 1.1. Let t,u > 0 and a € Diff be extended single-valuedly over the
annulus e™" < |z| < € with image in the interior of the annulus e~' < Iz| < €.
Let 0 <v <y, let p= A(t)aA(e), and let 9 A(f' )y be a representation of p in
the form (1.1). Then y extends single-valuedly over the annulus e *" < |z] < e

. . . . ~ ‘'
with image in the interior of the annulus e~ < |z| < e .

PROOF. It is easy to see that p takes the annulus 0 < |z| < ¢ into the disc
lz] < 1; therefore ¢_' is well-defined on the image of this annulus. Consequently,
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w = A(—)p~'p takes the domain 0 < |z| < "™ to the interior of the annulus

’

0<|z| < ¢' . If we apply the Riemann-Schwarz principle, we get an extension of y
over the annulus e #7¥ < |z] < """

It remains to verify that multiplication does not depend on choice and is associa-
tive. The following lemma enables one to reduce this to checking it in the simple
case when the values of the parameters ¢ are sufficiently small.

LEMMA 1.2 (on domains depending analytically on a parameter). Let A be a

domain in R". Let I(p, 1) and m(p, t) be analytic maps from S' x A into C,
where, for fixed T, the contours I(p,t) and m(p.t) bound an annular domain

Q.. Let k(p): A — S' be an analytic function. Let f.(z) denote the canonical

biholomorphic map of the domain Q_ onto a domain of the form e < lz] €1
such that f,(k(¢)) =1. Then the function F(z, 1) = f.(z) is analytic.

PrOOF. We just give the proof of the theorem about reducing the annular domain
to a canonical form in which the analytic dependence on the parameter can be clearly
followed; the missing details of the arguments can be found in [4], V.1 and V1.4, and
[10], 21.1.

Let u(z) be a solution of the Dirichlet problem for the equation Au = 0 with
boundary conditions u|, = 0 and u|, =1 (it is given as the potential of the dual
fiber). Let v(z) be the harmonic function dual to u(z). Then g(z) = u(z)+iv(z) is
a multivalued holomorphic function mapping the annular domain Q onto the strip
0<Rez<1.Let g_l(O) = g_l(ic) . Then f =exp(2rng/c) is the required map of
Q onto the annulus e~ * < |z| < 1.

We now show that the new definition of I is equivalent to the two preceding ones.
For this we make the formal product y = r-A(t)-h correspond to the triple (K, p, q),
where K is the annulus e’ < |z <1, g(e'?) = h(e'?), and p(e?) = e 're).

1.5. The endomorphisms of Vect.. If g isa semisimple Lie algebra, then its Lie
group can be realized as the group of automorphisms of g. We try to apply this
scheme to Vect,. .

Let GI' be the set of triples of the form (K, p, q), where K is a Riemann
surface with boundary consisting of two circles, where p, g : S ! K are analytic
parametrizations of components of the boundary, and where on going round the
contour p(e'?) the surface remains on the left and on going round q(e'?) it is on
the right. The equivalence of the triples and their product is determined in the
same way as in §1.2. The semigroup GT clearly consists of a countable number of
connected components, and the connected component of the identity is I".

Let y= (K, p,q). Let D be a holomorphic vector field on K, let a(D) (B(D)
respectively) be the preimage of D under the map €'’ — p(e'?) (¢" — g(e"’)). The
set of all fields of the form a(D) (B(D)) forms a dense subalgebra in Vect., which
we denote by A (by B). The map L?: a(D) — B(D) is thus an isomorphism of
the subalgebra A onto the subalgebra B . So, for each y € GI' we have constructed
an unbounded densely-defined operator in Vect. that preserves the commutativity
operation; that is, an unbounded endomorphism of Vect..

Here it is convenient to translate this into another language and as usual, to con-
sider the graphs of unbounded operators instead of the unbounded operators them-
selves. An arbitrary linear subspace in V @ V' will be called a linear relation in
the space V. As usual the product PQ of relations P and Q is the subspace
Rc V@&V consisting of all pairs (w,, w,) € V&V such that there exists v € V
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satisfying (w,,v) € R and (v, wz) € P. We say that a linear relation R in a
Lie algebra preserves the commutativity operation if (v),v,), (w,, w,) € R implies
(v, w], [vy, w,]) € R.
Now let y = (K, p, g) € GT'. Then the set of pairs of the form
(a(D), B(D)) € Vect,. @ Vect.

forms a linear relation L in Vect. . It is easy to see that L b7y = L L . Thus we
have realized the semlgroup GT" as a semigroup of linear relanons 1n VectC which
preserve the commutative operation.

1.6. Generalized Borel subalgebras in Vect. and generalized ﬂag spaces. A point of
the flag space Q . isacollection (R, ¢, ..., q), where R isa Riemann surface
of genus g with a distinguished, unordered collectron of points ¢, ..., ¢,, and

g: D_ — R is a function single-valued up to the boundary, and where c1 yoersCy &
q(D, ) Two collections (R, ¢, ..., ¢,,q) and (R, ¢}, ..., c:,, q') are considered
to be equwalent if there exists a blholomorphlc map H R — R suchthat ¢ = H og
and c = (c]) for some ordering of the collection cj

Let us define the action of the semigroup I on Q ¢.n- Let T be realized as in

§1.3,let y = (S,,p, 1) =T, and let x = (R,c,...,c,,q) €Q, . Then yx is

the collection (Q, d,..., d,,t), where Q is the Riemann surface obtained from

the disjoint union of R\ q(Dg) and 87 \ p(DO_) by identifying pairs of points of the

form g(e'’) and p(e'?).

The space Q _n can be realized as a space of generalized Borel subalgebras in
Vect... Let x = (R Crsonns Cps q)=Q ¢.»- Then the vector field v belongs to the
subalgebra B, in VectC if the image of v under the map ¢ extends to a holomorphic

vector field ¥ on R\ g(D° +), where V' is O at the points ¢, ..., c,. The classic
Borel subalgebras in Vect,. correspond to the points of Q,

1.7. The Siegel-Kirillov domain K = Q, ,.Let S be the space of functions
that are univalent in D_ up to the boundary and have a Taylor series of the form

z+clz +---. Let f€.S. Then the triple X, = (C, oo, f) is the element K = Q
It is not dlﬂicult to check that the functron f—- X, is a one-to-one map § — K,
and in addition the action of Diff on K, considered in [4] and [5], is translated by
this map into an action of Dif c T on XK. Obviously K is a Diff-homogeneous
space, and moreover the stabilizer of a point is isomorphic to the groups of rotations
of the circle.

REMARK. The space Qo,o is also Diff-homogeneous, and QO o = Diff/ PSL,(R)
(see also [4] and [5]). The other spaces .. n are no longer Diff-homogeneous, and

the Diff-orbits are not even invariant under r.

1.8. The universal covering ~I" over I' and the central extension of I'. We define
an element of the semigroup I' to be a quadruple (R, 6, p, q), where R is a Rie-
mann surface which is a biholomorphically equivalent to the disc, 6 is a hyperbolic
automorphism of R (it is convenient to consider the stationary points of 8 as “punc-
tures” in the boundary of R), and p and ¢ are maps of R into the boundary of R
with p(x + 27) = Op(x) and gq(x +2z) = fq(x), and where the surface remains on
the left when going round the curve p(x) and on the right when going round ¢(x).

REMARK. It is convenient to consider R to be the strip ¢ < Im(z) < 0, the curves
p(x) and g(x) to be the straight lines Im(z) = ¢ and Im(z) = 0, and 6 to be
translation by 27x.
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Quadruples (R, 8,p,4) and (R, 6, p', q') are equivalent if there exists a bi-
holomorphic map L: R — R such that 8’ oL = Lo 6,p' = Lop, and q =
Logq. We define the product of two quadruples y, = (R, 0,,p,, q,) and y, =
(Ry, 0,5, p,, q,) to be the quadruple 7,7, = (R;, 05, py, q,) , where R, is the Rie-
mann surface obtained from the disjoint union of R, and R, by identifying the
pairs of points ¢,(x) € R, and g,(x) € R, for all x € R, and the automorphism
6, coincides with 6, on R, and with 6, on R,, and p;=p,, 43 =4,-

Let us define the covering map 7: I’ — I'. Suppose that (R,0,p,q) €l;thenit
determines the triple (K, m, k) € I’ (" is realized as in §1.2), where K = R/6 and
the diffeomorphisms 7 and x are covered by the diffeomorphisms p and ¢.

Finally, the theorem proved in §4 implies that the semigroup I' has a nontrivial
central extension; in other words, there exists a “holomorphic” (see §1.11) function
¢:T'x T — C such that

(7,5 U)(7y> Uy) = (275 Uy FUy + (7 7))

is an associative multiplication in I' + C. There are explicit formulas (see §§4.9 and
4.10).

1.9. Involution. Let y = p- A(t) - g € ' (see §1.4). Then we define y* as q_l .
A(t)-p~". If the definition of §1.3 is used, then

(S, p(z), q(z))" = (S, a(z""), p(z).

It is easy to see that y — ¥ is an antiholomorphic involution: (7,72) =171 -

1.10. Does the group Diff. exist? No satisfactory definition of an infinite-
dimensional Lie group is known (at least, it seems that none of the groups men-
tioned in this paper satisfies any of the existing definitions). Therefore the question
of whether the group Diff.—a complex envelope of the group Diff—exists is heuris-
tic. There are arguments, given below, “against” its existence which seem convincing
to the author.

Let G, C Diff be a group of all transformations of S I of the form

Jaz"+b
z = {|=——>
bz" +a

where |a|2—|b2| = 1. Obviously G, isan n-sheeted covering of the group PSL,(R);
when n > 2 this three-dimensional group has no complexification. Hence, Diff > G,
does not have one either. This inference is still not completely convincing, since G,
may be embedded in the group U of unitary operators on Hilbert space and the group
GL of all invertible bounded operators may be considered as the complexification of
U by “stretching a point”. The “point to be stretched” consists of the following: if
elements of the Lie algebra of a Lie group are considered as generators of the one-
parameter subgroups, then the “Lie algebra” u of the real group U consists of all
skew-Hermitian (generally speaking, unbounded) operators, and the Lie algebra gl
of the complex group GL consists of only the bounded operators; that is, gl # U .
Nevertheless the existence of an embedding of the group G, into Diff implies that
the following facts:

1. Diff. does not contain I'.

2. Diff. does not contain LDiff...

3. For any n > 2 at least one of the vector fields Z"'9/8z and z7"9/0z is
not a generator of a one-parameter subgroup in Diff..
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This list of requirements appears to be rather pathological.

1.11. Diffeology. A precise meaning can be given to the words “I" is an infinite-
dimensional Lie semigroup” in the following way. We shall say that a family y(«) of
elements of I depends holomorphically on u € Q, where Q is a domain in C" if in
a small neighborhood of any point u;, € Q the family y(u) has the form (C, P, 4q,),
where p, and g, are functions which depend holomorphically on u.

ProPOSITION. If 7, (1) and y,(u) are families which depend holomorphically on
u, then y (u)y,(u) depends holomorphically on u.

This obvious assertion means, according to Souriau [22], that a holomorphic dif-
feology is introduced on I'. We know which of the functions from C" into T
are holomorphic, and consequently we know which of the functions from I' into
C™ are holomorphic. Namely, a function f:I" — C™ is holomorphic if, for any
holomorphic family y(u)f(y(u)) is holomorphic.

Diffeology, in the case of the semigroup I', turns out to be an extremely flexible
tool. We do not use it below, but we note that, if one does use it, Theorem 2 of §4.1
can be proved by the following method: we prove that a representation of Diff can
be extended to LI', where, by holomorphicity arguments, we can show that (4.1)
does in fact give the representation. Technically this is, however, considerably more
complicated than the proof we give in §4.

1.12. Tangent spaces. The definition of the tangent space T,/ to I' at the point y
is completely obvious. As for Lie groups, the map y — uy induces a linear operator
A: Ty — Tuy . However, in contrast to Lie groups, the operator A4 is not bijective (it
is injective but not surjective).

1.13. The tangent cone and causal paths. We define the tangent cone Cc (C,
respectively) to the semigroup T at the identity to be the set of all vector fields on
S' of the form a(p)d/0¢ , where Ima(p) > 0 (> 0 respectively). In other words
C consists of the fields directed “into the disc”. We note that every element of the
cone C generates a one-parameter real semigroup in I'.

We say an analytic path y(¢) € T is causal if for every t > s there exists an
element u(z, s) € I' such that y(¢) = u(t, s)y(s) . For any causal path the derivative
is defined as an element of the cone C, namely y'(s) = du(s + ¢, €)/de. We note
that by §1.12 the concept of the derivative as an element of Vect. does not exist for
arbitrary pathsin I". Conversely, let a(f) be an analytic trajectoryin C, 1 € [¢y, 1],
and let y, € I'. Then there exists a unique causal path y(z) such that y(¢,)) = 7, and
| 7' (1) = a(1) ; see [15] for tangent cones.

1.14. Borel semigroups in I'. Let b C Vect. be the algebra of vector fields on S'
that can be extended into D, . The intersection of b with the tangent cone C is
nonempty, so there exists a subsemigroup B in I' corresponding to b.

We shall say that y = (S, p, g) € T is an element of B if the map po ",

defined on the contour g(e'?), extends to a single-valued map n from S7 \ q(Dg)

into p(D ,)- Asa semigroup, B is isomorphic to the semigroup of biholomorphic
maps of the circle D_ into itself.

Similarly we define a semigroup B, connected with the subalgebra b, C b, to0
consist of those fields that are O at the point 0 € D, . It is then necessary to impose
on 7 the additional condition m(p(0)) = p(0). The semigroup B, is isomorphic to
the semigroup of biholomorphic maps of D, into itself that preserve the point 0.
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1.15. The category Shtan. An object of the category is a nonnegative integer. A
morphism from m into n is a collection (R, rl.+, rj") ,1<i<m,1<j<n,where
R is a compact closed (maybe disconnected) Riemann surface, r:' , D, = R and

:D_ — R are holomorphlc functions which are single-valued up to the boundary,
and the domains r, (D ) do not intersect pairwise. Two morphisms (R, ", ) )
and (P, pi , D; 7) are considered to be the same if there exists a biholomorphic map
n: R— P suchthat mor] =p/ and mor; =p; .

Now let (P p:’,p]_) € Mor(m, n) and (Q, qf, g, ) € Mor(n, k). Then their
product (R, r, , T, ) € Mor(m, k) is defined in the following way The surface R is
obtained from the disjoint union of P\Up; D ) and Q\UJ q ) by identifying
the points p; (e ) and qf(ei”), where j=1,...,n and ¢ € [0, 27]. Further

= p and r, =¢q, .

The author thanks M. L. Kontsevich for discussing this category.

1.16. The category Shtan™ . The objects of the category are the same as for
Shtan. The morphism from m into n is the collection (P, p, ,p; , ), where

(P, p, . D; ~) is a morphism of Shtan and = is a max1mal 1sotroplc lattice in the

first integral homology of the Riemann surface P\ UJp, ( ) (recall that there
is a skew-symmetric bilinear form on the first integral homology of a Riemann
surface—the intersection index). The product of (P, p,.+ , pj_ , T) € Mor(m, n) and
(Q,4q; .4, ,x) € Mor(n, k) is defined as the quadruple (R, r7,r,,p), where
(R, r/,r;) isthe product of (P, p;,p;) and (Q, g’,q_) in the sense of Shtan,
and the lattice p is the sum of the lattices m and «.

REMARK. In the paper by Krichever and Novikov {7], which may be interpreted

in terms of the semigroup GI" , the maximal isotropy lattice in the first homology
occurs implicitly as a one-parameter family of contours on the Riemann surface.

§2. The symplectic semigroup

This section contains a summary of the results of Ol'shanskii, Nazarov, and the
author about a class of operators in the Fock boson space that are indispensable later
on. A large part of the assertions may be checked by direct, although cumbersome
calculations. The exception is the conditions for the operators to be bounded; they
are useful in understanding what follows but they are not used formally (see also [2]
and [15]).

2.1. Motivation (see [15]). The Weyl representation of the group Sp(2n, R) may
be extended by holomorphicity to the representation of a certain open semigroup
GcC Sp(2n C). The domain G is biholomorphically equivalent to a domain of the
form G \ A, where G is a classical complex symmemc domain of the third type,
and A is a complex submanifold of codimension 1 in G . It turns out that, like the
multiplication in G, the WeyLrepresentatlon of the semigroup G extends by conti-
nuity onto the whole domain G . Moreover the points of the manifold 4 correspond
not to operators from C*" into C*" but to points of the Lagrange Grassmannian in
C¥ @ C™; that is (see §1.5), to linear relations. We are interested in the infinite-
dimensional analogue of this situation (we note that in the finite-dimensional case
the elements of the Lagrange Grassmannian are, as a rule, graphs of operators, but
in the infinite-dimensional case this is not so).
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2.2. The Ol'shanskii symplectic semigroup I"Sp. Let Vg be a complex Hilbert
space with inner product (-, -}, which we shall consider as a real Hilbert space with

a complex structure operator /: P=-1.Let V= Ve ® iV be the complexification
of the space V. If we extend the form Re(-, ) to V by sesquilinearity, we get
a Hilbert space structure on V. If we extend the form Im(:, -) by bilinearity to a
form {-, -} on V', we get the structure of a symplectic space on V. Finally, if we
extend the form Im(-, ) to ¥V by sesquilinearity, we get an indefinite Hermitian
form A(-,:) on V. Further, let V = Ker(i+I). Then V, are maximal subspaces
in V which are isotropic (Lagrange) with respect to the form {-, -}, and where
V =V, ®V_. In addition, the operation of taking conjugates is defined on V' in
the same way as on the complexification of V. Obviously V, = V _. Finally we

note that the concept of the transpose of an operator A'v = A°7 is defined on V.
If veV, wedefine v’ so that (v, w) =A(', w) forany we V.

Let W be a Hilbert space canonically identified with V. We introduce on VoW
the symplectic form

{(v,,w)), (v, W)} = {v,, v,} = {w,, wy}. (2.1)
We shall say that a Lagrange subspace P in V @ W is correct if it is the graph of
an operator Q, : V.eV_ —-V.eW, where the matrix

K L
QP:(L' M)

has the following properties:
1°. K=K'and M =M".
2. 90 < 1.
3°. |K|| <1 and |M]| < 1.
4°. K and M are Hilbert-Schmidt operators.
We shall say that the matrix Q, is associated with the relation P.
REMARK 1. Condition 1° is equivalent to the fact that the subspace P is La-

grange. Condition 2° means that the form
!

A((v,, w)), (v, w,y)) = A(v, v,) - AMw,, w,),
is defined on the space ¥ @ W and is nonnegative on P. Finally, condition 3°
means that the form A is positive definite on PNV and PNW.

REMARK 2. If the matrix L is invertible, then P is the graph of a symplectic
operator R, : V — W, where A(Rpv, Ryw) < A(v, w). Let ({7) be the matrix
of the operator R, :V, @ V_ - W, _& W_. Then

—1 —1
Q, = (C;;‘_I _AA_,B) .
This is a fairly standard way to writing such an operator, and it is sometimes called
the Potapov-Ginsburg transformation (see [1]).
We now note that subspaces in ¥ @ V' may be multiplied as linear relations. It
turns out that the set I'Sp of all correct linear relations forms a semigroup. On the
level of the associated matrix the product is given by

(& ) (e %)

_<K+LP(1—MP)“L' L1 -PM)™'Q ) 2.2)
B Q'(l-MP)'L' R+Q(1-MP'MQ/" :
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2.3. The groups Sp and SpH. We define a group Sp as a group of real-linear
operators in ¥, that can be represented as U(1+7), where U is a unitary complex-
linear operator and T is a Hilbert-Schmidt operator. The group SpH consists of
the affine transformations of ¥, with linear part in Sp.

The following conditions on an element P € I'Sp are equivalent:

1. P is the graph of an operator in Sp.

2. The subspace P is isotropic with respect to the form A(-, ).

3. The matrix Q, is unitary.

Thus the group Sp forms something like the “skeleton™ or the “Shilov boundary”
of the domain I'Sp.

2.4. The semigroup I'SpH. We let I'SpH denote the set of all linear manifolds in
V ®W represented in the form Q = h+P,where h€e VoW and P € I'Sp. Clearly
one may suppose h € V_ & W_. Then we shall say that the relation Q is associated

with the matrix A, = [Q ,,|h'] . A product in TSpH is defined as the composition of
relations, and on the level of the associated matrices it is given by

kK LK), [P QF
L' Ml Q' R«
___[(Kt L)*(Pt Q) A+L(1—PM)"'(n+ Pp) (2.3)
L M Q' R) x+Q'(1-MPY 'Mr+u)]" :
The group SpH is obvious embedded in I'SpH.
2.5. The Segal-Bargmann-Berezin model of the Fock boson space. Let V be the

same as in §2.5. Let F " be the space of polynomials on V., (that is, polynomials in
the linear forms on V,) with the inner product

(f(2), g(2))y = / / f(2)8@ exp(~{z, 2)) dz d7.

The Fock boson space F(V,) is the completion of F' with respect to the norm
defined by this inner product. It consists of holomorphic functions on V,_. The
function f(z) =1 is called the vacuum vector (for details of the definition see [2]).

Let ¢; be an orthonormal basis in V_, and let

v=2v;ej+Zv;?jeV=V+@V_.

Then the creation-annihilation operator /T(U) is given in F(V_) by

Aw)f(z) = (Zvjzj +Zv;5%—) f(z).
j

We note that the definition of /f('u) does not depend on the choice of basis in V.

2.6. The vectors b[M|l']. Let M be a symmetric (M = M*) Hilbert-Schmidt
operator from V, into V_. Let V. be realized as the space [, whose elements are
considered to be row-matrices of dimension oo x 1. We define the vector

bM|I') = exp{izMz' +zI'} € F(V,).

REMARK. If it is not convenient for us to suppose that ¥, =/, , then the notation
zMz' should be taken to mean {z, Mz}, where z€ V.



THE GROUP OF DIFFEOMORPHISMS OF THE CIRCLE 85

The set of all vectors of the form b[M]|/'] is denoted by FZ . We let F, denote
the (finite) linear space spanned by all products of the type gb, where g € F " and
beFZ.

2.7. The operators B[Qm']. Againlet V, =1,. Let T € 'SpH, and let A, be
the associated matrix. The operators B(T) = B[A] are defined by

t

Bl K LW r= // exp{L(zKz' + 2zL7 +TMT) + 23’ + up'}
L' Mju

x exp(—(u, ) f(u)dudu.

It can be shown that for any T € I'SpH the operator B(T) takes the subspace
F, C F(H) into itself and extends to a closed, generally speaking unbounded, oper-
atorin F(V).

2.8. The Weyl representation of the semigroup I'SpH.

THEOREM 1. a) The map T — B(T) is a projective representation of the semigroup
I'SpH.

b) Let A, (QT|1 If QI < 1, then B(T) is bounded.

OIf T lS the graph of a transformation in SpH, then B(T) is unitary (up to
multiplication by a constant).

d) The operators B(T) translate the cone C - FZ into themselves.

We need some explicit formulas:

B[f AL4 ]b[P|n]

—¢(M, P, p, m)b[K +LP(1 = MP)"'L'13" + L(1 - PM)™'(n' + Pu)],
K LI '
5|} Mu'}B[Q’ Rx’}
B K L
_C(M’P’.u’n)B[(LI Mﬂl) (Q R

)} (2.4)
where in both cases the constant ¢(M, P, u, nt) is equal to

_1 ‘
o(M, P, u,n)=det(l - MP)_l/z]exp{%(nu) (‘IP _iw) (Z,)} .

REMARK. Theorem | is a generalization of the classical Friedrichs-Segal-Shail-
A. Weil-Berezin theorem about automorphisms of canonical commutation relations
(see [2], §4). In fact, let v,, v, €V be connected by the linear relation T € I'Sp. It
is not difficult to check that

A(v)B(T) = B(T)A(v,)
(in the case T € I'SpH a similar equation holds, only a term of the form ¢B(T) is
added to the right-hand side).

2.9. The bounded symmetric domain 2 consists of all the symmetric Hilbert-
Schmidt operators ¥, — V_ with norm less than 1. The map M — b[M|0] gives
an embedding of Z in F(V,). The action of the semigroup I'Sp on C- FZ (see
Theorem 1d) and (2.3)) thus extends the action of I'Sp to Z°:

(K, L):Z—»K+LZ(1—MZ) 'L,

1

L M
where z € 7.
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Now let f € F(V,). We make it correspond to a holomorphic function Z(f) on
7 constructed according to the formula

Z(f)=(f, bIM|0) -

Then, obviously, the operator Z(f) links the Weil representation of the semi-
group I'Sp with the representation 7 — R(T) in the space of holomorphic functions
on Z ,where R(T) is given by

R [f, ]ﬁ] g(Z) = g(M+L'Z(1-KZ)"'L)det[(1 - kz) 4.

We note that the function .Z(f) is not arbitrary but must satisfy
90k — aikajl)g(f) =0,

where 0,; = 18/0z,; and 9;; = 8/8z,.j when i #j (the z; denote elements of the
matrix of Z).

2.10. The domain Z H consists of the pairs (M, ['), where M € Z" and l'ev,.
The map (M, [) — b[M |I'} gives an embedding of Z H into the cone C-FZ . The
construction, repeated word for word from 2.9, shows that the Weil representation of

I'SpH may be realized as holomorphic functions on Z H . It is easy to write explicit
formulas with the help of (2.3) and (2.4).

§3. The Virasoro algebra

This section contains a summary of the results about representations of the Vi-
rasoro algebra that are indispensable below. For more details see, for example, [14]
and [20].

3.1. The Virasoro algebra. The Virasoro algebra % is a Lie algebra with basis 1
and L,, neZ, and with the commutation relations

3
[Ln,Lm]z(m—n)LmH%-ﬁ(n - n)o,_ 1> [L,,n1=0,
where J, ;= 0 when k#/,and J; , = 1. Obviously the map

on+ Y p L — (S pe)olide

gives a homomorphism from Z into Vect., and its kernel is Cn. It is convenient
to say, allowing a little imprecision, that .2’ is a central extension of Vect.

3.2. The modules M (h, c) and L(h, c). A vector v in the .#-module V iscalled
a singular vector of weight (h,c) if L,v =0 when n < 0 and Lyv = hv, nu =cv.

Let &, . be the set of all .#-modules having a nonzero cyclic singular vector
of weight (h, c). It is easy to see that there exists a universal (repelling) Verma
module M(h, ¢) such that any module Veo,. isa quotient module of M(h,¢).
There also exists a universal attracting module L(h, ¢) which is a quotient module
of any module V € (?h’c. It is easy to see that L(h,c) is the quotient module
of M(h,c) modulo the unique maximal submodule. If (A, c) is a generic point,
then M(h, ¢) = L(h, ¢) (we shall call such modules nondegenerate). For details of
the definition and the Kats-Feigin-Fuks reducibility condition for M(k, ¢) see, for
example, [14].

We note that, for any n > 0, the dimension of the weighted L-space with eigen-
value n + h is equal to p(n), where p(n) is the number of partitionings of n into
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a sum of positive integers. Below we shall meet two other families of .%°-modules,
N(a, f) and K(h, c¢) having this property.

3.3. Condition for the modules L(/, ¢) to be unitarizable. We say that the module
V over & is unitarizable if there exists a positive definite Hermitian form (-, -) on
V such that (L v, w)= (v, L_,w) forany v,weV.

The module L(A, c) is unitarizable if and only if one of the following conditions
is satisfied:

I. h>0and c>1.

2. c=1-6/p(p+1) and h =[(ap— Bp+1))>—1]/4p(p + 1), where p, a, B €
Z,p>2,1<a<p,and 1<f<p-1.

Necessity was proved independently in [11] and [18], while sufficiency was proved
in [17] (see also [14], §§5 and 7).

Any representation of L(A, ¢) can be integrated to give a projective representation
of the group Diff [12], and any unitarizable representation L(%, ¢) integrates to give
a unitary projective representation of Diff [19] (a weaker result was obtained in [10];
see also [14], §§5 and 9).

3.4. The embedding of Diff in Sp. Let H be a space of smooth real functions
on the circle S': z = ¢'® , with nonnegative quadratic form

1 2n 2r 0-vy ,
(f,8)= —2/ p.v. / cot (——) fp)g(v)dedy.
- Jo 0 2
We factor out H by the subspace of constants and we take the completion with

respect to this inner product. We introduce a complex structure in the space V; thus
obtained with the help of the operator I; this is the Hilbert transform

If(9) = %/{)Z"cm = “’) fw)dy.

It is easy to see that [ 2 — _1. The inner product in V; is defined by

(f,e) =, 8)+ilf,1g8).

Further, we apply to V; the procedure described in §2.2. Then V consists of
functions on S' determined up to the addition of a constant. Furthermore, the
orthogonal subspaces ¥, and V_ consist of functions which extend holomorphically
into the interior and the exterior of the disc D, : |z| < 1 respectively. The inner
product in V, is defined by:

2n
(f(9). 80) =Fo= [ S@)gw) dodv,
0
where f, g € V, . The symplectic form in V is equal to
1
(02). 82 = g [ F2)dgla),

Let ¢ € Diff. Then the operator T(q): f(¢) — f(q(9)) belongs to the group Sp
(see also [21], [9], and [14]).

3.5. The representations N(a, 8). Let a, f € R. We consider the affine trans-
formation T, 5(q) in V:

T, 4@ (p)=f(a(9) +alg(e) - 9) + Blng (¢), (3.1)
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where ¢ € Diff. It is not hard to verify that
Ta,ﬁ(q op)= Ta’ﬂ(q)Ta’ﬂ(p).

Thus we have realized Diff as a subgroup in SpH. If we restrict the Weyl rep-
resentation of SpH to Diff we get a two-parameter family of unitary projective
representations N(a, 8) of the group Diff.

Let us describe the representations thus constructed at the level of the Lie algebra
% . We introduce into the space of Fock functions in the variables z,, z,, ... the
operators

a.f=Vkz,f, a_kf=\/E5‘?Z-;f,

where k > 0. Then the generators of .¥° act according to the formulas

1 .
Ln=5:Zan+ja_j:+(a+zﬂn)an, n#0,
J

| ) 2 2
L0=Zaja_j+§(a +B89), n=1+128 (3.2)
j>0
(the colon denotes the “normal order”; that is, the annihilation operators a_, are

satisfied before the creation operators a,).
The vacuum vector, consequently, will be a singular vector of weight

h=1>+p"), c=1+128" (3.3)

For real values of (a, f) the parameters (%, c) run over the domain {c > 1,
h < 1+24}. If c=1 and h = K* /4, these modules are isomorphic to
69120 L((k+2j )2 /4, 1). Otherwise they are irreducible and coincide with L(k, ¢) =
M(h,c).

Of course the formulas (3.2) make sense also for complex (a, #). As before, (3.1)
gives an embedding of Diff into the group of invertible elements of the semigroup
I'SpH, and, also as before, we get a projective representation of Diff in F(V).
However, the operators giving the representation will here be unbounded. At generic
points the representations N(a, ) are isomorphic to the corresponding M (h,c)
(see (3.3)). If the module M(h, c) is reducible, then M(h, c) and N(a, B) have
similar Jordan-Holder series.

§4. Holomorphic representations of the semigroup I’

4.1. THEOREM 2. Any unitary representation of the group Diff with highest weight
extends to a representation of T .

We shall prove this theorem in the following form.

THEOREM 2’ . Let p be a unitary projective representation of Diff which is the
sum of representations with highest weight. Let y = p - A(t)-q (see §1.4). Then the
following formula gives a projective representation of the semigroup I:

p(p - A(t) - q) = p(p) exp(—tLy)p(q), (4.1

where the generator of the Virasoro algebra L, is defined in §3.1.

4.2. TueoreM 2" . Theorem 2’ is true for p = N(0,0).
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We shall prove Theorem 2" in §§4.3 and 4.4 by giving the explicit construction of
the operators of p. Meanwhile we suppose that it is true and we shall prove Theorem
2’ with the help of a slightly modified Goodman-Wallach triple [19].

PROOF OF THEOREM 2’ . The following lemmas are obvious:

LEMMA 4.1. If Theorem 2' is true for the unitary representations p, and p,, then
it is also true for p, ® p, .

LEMMA 4.2. Let p, and p, be unitary representations of Diff with highest weight.
If Theorem 2’ is true for P, ® p,, then it is also true for p, and p,.

We now note that N(0, 0) contains the subrepresentation L(1,1),and L(1, I)®

L(1, 1) contains the Verma module L(2, 2) as a submodule. We note further that
if M(h,,c,) and M(h,, c,) are unitarizable Verma modules, then

M(h,,c,)®M(hy, c,) =@ p(m)M(h +hy+n, ¢ +¢)). (4.2)
n>0

This immediately implies that Theorem 2’ is true for the modules
A, =@PL@n+j,4n).
j20
All that is left is to note that for any unitarizable L(h,, c,) and L(h,, c,) we have

L(h,,c,)®L(hy, ;) = A L(hy +hy+k,c +¢))
k>0
and to apply Lemma 4.2 and the conditions in §3.3 for a module to be unitarizable.
4.3. The embedding of T in I'Sp. Let y = (S,,p,4q) € T (see §1.3). We say
that the two functions f, g € V are connected by the relation L (y) if there
exists a function F(z) which is holomorphic up to the boundary on the annulus
S,\ (p(D?)Uq(D})) and such that

F(p(e®) = f(®),  F(ae"”)) = g(e”).
Let L(y) be the closure of Ly(y) in the space V@V .

THEOREM 3. The map y — L(y) is a homomorphism from T into TSp.

PROOF. a) We prove that L(y) € I'Sp. Let y = ¢-A(t)-y (see §1.4). Then, by §3.4,
the linear relations L(p) and L(y) lie in Sp C I'Sp. The assertion L(A(t)) € I'Sp
is verified by an easy computation.

b) We prove that L(y,,) = L(7,)L(y,) . We have

L(y)L(y;) D L(3,7,) D Lo(7,75) = Lo(7 ) Lo(73) -

We now note that the subspace L(y,)L(y,) lies in I'Sp and consequently is a closed
Lagrange subspace. But the closure of Ly(y,7,) that it contains is the Lagrange
subspace L(y,7,). Assertion b) is proved. B
4.4. The semigroup extension of the representation N (0,0). If we e_rpbed I' in
I'Sp (see §4.3) and take the restriction of the Weyl reprfsentation to I', we get a
projective representation y — B(L(y)) of the semigroup I' in the Fock space F(V,)

which is unitary, up to multiplication by a constant, on Diffc T.
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THEOREM 4. The operators B(L(y)) are bounded if y € T. If y € T', these
operators are trace class.

PROOF. Let y = ¢ - A(t) - w (see §1.4). If we take into account the fact that the
operators B(L(p)) and B(L(y)) are unitary, up to multiplication by a constant, it
is sufficient to verify our assertion for B(L(A(?))) = exp(—tL,) (see 3.2). But L, is
a selfadjoint operator with discrete spectrum 0, 1, 2, ..., where the eigenvalue n
occurs with multiplicity p(n).

4.5. Logarithmic forms. We shall say that a logarithmic form F of type 4 is given
on the Riemann surface R if, for any chart D C R, an expression f(z) + Alndz
is given, where f is a function from D into the group C/2niAZ (where C is the
additive group of complex numbers) such that if we make the substitution z = p(u)
the expression f(z) + Alndz becomes f(p(u))+ Alnp'(u) + Alndu. Clearly for
any nonzero l1-form G the logarithmic form InG can be defined; namely, if G is
g(2)dz in the chart D, then InG has the form Ing(z) +Indz. The definition of
the preimage of a logarithmic form under a map is defined in an obvious way.

4.6. The embedding of T in I'SpH and the semigroup extensions of the represen-
tations N(a, B8). Let o, f€C andlet y = (Sy,p, q) €T (see §1.3). We shall say

that the functions f, g € V' are connected by a linear relation Ll (y) if there exists
o, B

a logarithmic form In H of type f on 57 \ (p(D(i) U q(Di)) which is holomorphic
up to the boundary, but may be multi-valued, such that '

1) the preimage of InH under the map €'’ — p(e'?) is f(e'’) + ap + BIndy,
and . _ A

2) the preimage of In H under the map e — g(e') is g(e'’) +ay + BIndy.

Welet L, 4(7) denote the closure of Lg,ﬁ(y) inVelVl.

THEOREM 3'. The map y — L, 4(7) is a homomorphism from T into T'SpH.

THEOREM 4 . a) The map y — B(L, ﬂ(y)) gives a projective representation of T
in F(V).

b) If y € Diff, then the operator B(L, 4(7)) is trace class.

¢) Suppose y € Dif = T\T. If (a, ) € R?, then the operator B(L, 4(7)) is
unitary, to within multiplication by a constant.

The proofs of these assertions are repeats of the proofs of Theorems 3 and 4, so
we omit them.

REMARK. If 7 € Diff and (o, B) ¢ R’, then the operators B(L, 4(v)) are, as a
rule, not bounded.

4.7. Explicit formulas for the representations N(a, #). In order to obtain explicit
formulas for the operators B(L, 4(7)) it is sufficient to write L, 4,(7) in the form
of §2.4. )

Solet y = (C, p,q) €T, where C is the Riemann sphere and p : D_ — C and
q:D, — C are single-valued maps. Without loss of generality we may suppose that
p(oo) =00 and ¢(0) = 0. Then

K(p) L(p,q)| ol(p)+ pm(p) 4.3)
L'p.g) M) | ay(q@)+Bmy@)]’ '
where the matrix functions K, L, and M and the vector-valued functions /|, I;,
m, and m; are defined below.

B(L, 4(7) =B
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Let f € V,_. Then the function fo p_1 , defined on the contour p(ei“’), can be
represented in the form (fo p_l ), +(fo p_l)_ , where the first term is holomorphic
in the domain p(D_) and the second in C \ p(Dg) . Then

Kf=(fop ),op, Lf=(fop ')_ogq; (4.4)
where the first function is holomorphic in D_ and the second in D .
Let g € VV_. Then the function go q'1 , defined on the contour q(e"’) , can be
represented in the form (go q_1 ), +(go q_l)_ , where the first term is holomorphic
in ¢(D,) and the second in C\ p(D?). Then

+
Mg=(foq '),oq, L'g=(gq ') _op; (4.5)

the first function is holomorphic in D_ and the second in D_ . Finally

I(p)=In(p(z)/z),  l(q) =1In(q(z)/z),
mi(p)=In(p'(z)),  my(q)=In(q'(2)). (4.6)

REMARK 1. The right-hand sides of (4.4)-(4.6) are only defined up to the addition
of a constant. However, in view of the definition of the space V (see §3.4) this is
not crucial for us.

REMARK 2. Let f be an analytic function on a closed contour K in C. Let
f=f_+f_, where f, isholomorphic inside K and f_ outside K. Then, as is
well known,

_ 4 flu)du

Kk u-—-v

fi(v)

4.8. The Grunsky matrix. As Yur'ev showed, the operator K(p) (§4.7)

z) - plu
Ke) (2= [ D=2 ) ay
fz|=1 Z—U
is none other than the Grunsky matrix—a classical object of the geometric theory of
functions (see, for example, [16]). This matrix is determined for any function p(z)
of the form

p(z)=z+ chz_k

that is single-valued in the domain |z| > 1.

If p(z) is single-valued up to the boundary, then by condition 3° in §2.2 we have
IK(p)|| < 1. For arbitrary p(z), by arguments about weak convergence, we get that
|K(p)|| < 1. This assertion is called the Grunsky inequality (see [16] or [3], Chapter
IV, §2). It is also known that ||K(p)|| =1 if and only if the area of C\q(Dg) is 0,
and in this case the matrix K(p) is unitary (see [16]). _

4.9. The canonical cocycles. Let 7(y) be a projective representation of I' with
highest weight (4, c), and let v be the highest weight vector. It is obvious from
(4.3) that (T(y)v, v) is nowhere 0 on I'. Since the operators 7(y) are defined
only up to multiplication by a constant, we can choose this constant so that

(T(y),v,v)=1. (4.7)
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The operators T(y) are defined uniquely by this equation. A canonical cocycle is
a function x, (7,7, :I'xI'— C* given by

T(yl)T(Y2) = Kh,c(yl s VZ)T('}’l]/z) .

Obviously,
Kh1+hz,c.+cz(yl H Vz) = Kh| ,cl(yl s y2)xhz,c2(yl ’ yz) . (4-8)
Since x;, . is holomorphic in # and c, the function K, . has the form
Ky (75 ;) = EXP(RA(Y, 7) + Ci(P1> 72))- (4.9)

4.10. Computing the canonical cocycles. Let 7, = (C, p,,4,) and y, = (€, Py, ay)-
We note that the operators B(L ﬂ(y)) have the property (4.7) if the vacuum vector

is taken as v. Therefore in view of (2.4) and (2.5) it is sufficient for us to find the
constant

¢, 54y, 4) = detl(1 = MK) 7]

1 —K 1 \ ' [al+Bm
X exXp {f(al‘ + Bm,, al, + Bm,) ( 1 —M) (ali N ﬂmi) , (4.10)
where, in the notation of §4.7, M = M(q,), K =K(py, I, = 4(py), L, = L{q,),
m, =m(D,), and m, = m,(q,) - If we take (4.9), (4.10), and (3.3) into account, we
get two corollaries:

1. The coefficient of af in the curly brackets in (4.10)is O.

2. When o’ = 1/12 and B2 = —1/12 (thatis, h = ¢ = 0; see (3.3)) the
expression (4.10) is equal to 1. This enables us to express the Fredholm determinant
det[(l - MK )—1/ 2] in terms of the second factor.

The computation for the coefficients of o’ and ﬁ2 in (4.10) is carried out simi-

larly. We only give the arguments for a”.
First we note that

(—K 1 )" B (M(l kM)t (1-MK)™! )
1 -M) “\ ga-km~' K1-MK)')’
so we have to compute the expression
LIM(1 - KM)"'l + (1 - MK)™'I)]
+L{(1 - KM +K(1-MK) 'L}, (4.11)
We now use the fact that the function y, — (/,{p), l,(g)) is not arbitrary but is

in its own way a “cocycle” on the semigroup T'. None of our expressions depend
on p, and g,; therefore we can choose p, and ¢, soO that y,,7, € Diff. Let

T=97,= (C, p;» 4;)- Then it is obvious from (2.2) that the expression in curly
brackets in (4.11) is none other than

-1
L (171 ’ ql)(ll(p:;) - ll(pl)),
and the expression in the square brackets is

-1

L' (. 4,)(15(a5) — 1,(4))) -
Furthermore, it is obvious from the formula for the Potapov-Ginzburg transforma-
tion (see §2.2) that L 'f= P _(fo7), where P, is the projection of the space V'
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onto V,_. Finally, if we take into account the fact that for a function g that is
holomorphic outside the disc

/|z;=n gd(P,f) = /m:] gdf,

we get an expression for the coefficient of o’ in (4.10):

L py2) . pir(2)) 1 4,(7,(2)) ;. 45(2)
v(q,, p,) = Zni/m l1n . dlnpl(h(Z)) + 5.7 /m l1 7o (2) dlnql(z)

and an expression for the coefficient of f°:

_ _1_ ' p3()/'l(Z))

’](ql ’ p2) - 2mi </|z[=l lnPZ(Z)dln p;(}’l(Z))
1 , q'(z)
+5;z7/ oy M2 I T

Finally in the formula (4.9) for the canonical cocycle we have

Ay s 7y) =Alg;, pz) =2v(q,, p,), (4.12)

w(ry, v,) = 14, py) = (g, , py) —v(4,, py).
It is worth noting that our computatlons imply the following beautiful identity for
Grunsky matrices:

det[(1 - M(¢,)K(p,))”""*1 = exp{u(q,, p,)}-

4.11. The equivariant embeddings Qo,o in Z and K in ZH. We consider the
representation N(0, 0). Let v be the vacuum vector. Then it is easy to see that the
following sets in F(V,) coincide:

1. the set of vectors of the form B(L(y))v, where yeT;

2. the set of vectors of the form B(L(y))v, where y € Diff; and

3. the set of vectors of the form b[K(p)|0], where p(z) is single-valued up to the
boundary.

Hence it is not hard to see that the map p — K(p) is an equivariant embedding of

QO o in Z (the explicit formula for this embedding was first discovered by Yur'ev).

Similarly, it can be shown that the map p — (K(p lal' p)+ ,Bmi (p)) is an equi-
variant embedding of K (see §1.7) into Z H (see §3.10).

If we apply the construction of §§2.9 and 2.10, we quickly get that any irreducible
representation M(h, ¢) of the semigroup I may be realized in the space of holo-
morphic functions on K by operators such as shift operators and multiplication by
a function. In addition, any irreducible representation of the form M(0, ¢)/M(1, c)
may be realized in the space of holomorphic functions on € ,.

The construction itself is completely obvious. It is remarkable, however, that it
may be reduced to explicit formulas. All the computations necessary for this have
already been done in §4.10, and in the following subsection we give the conclusive
answer. _ _ _

4.12. The representation K(h,c). Let x € (C,0,p)e K, y=(C,r,q)eT.
Then the representations K(#, ¢) of the semigroup I in the space of holomorphic
functions on K are given by

T, .(NSf(x) = f(yx)exp(hA(p, 1) +cu(p. 1)),
where the functions 4 and u are determined by (4.12).
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Now let the points of the space K be given as functions of the form f(z) =
z+¢ 2% 4+ ... which are single-valued in D . Then the action of the vector fields
B =e"%8/idp on K, according to [5], is determined by (p > 0)

9 P P
B =2 ke -2 B =S ke—,
- acp+:4:3( + )Ckack+p 0 kZZI “%ac,
1 25 ) f(h) dhdz
B =Sk _ .
p= 2kt pt Dy (27ti)2/tz|=1—s/lh|=6<l/4 ) — F@) )

k>1

Then the action of the generators of the Virasoro algebra on the module K(h, c) is
given by L_p =B_, and L, + B, + Q, , where p > 0,n>0,and

© L [ret, e (e )
Zsz =z {h__f(z)z +24 ( 7 f’(z)2 }

Jj=0

4.13. Characters. By Theorem 4' the concept of the character makes sense for
the representations N(a, B):

Xa p(?) = trB(L, 5(7))-

We also let the function x, , be denoted by x"¢ if

h= 3"+ 8%, c=1+128".

The trace of the operator B(T) may be computed by the usual procedure of
integrating the kernel over the diagonal (see [2], §2.8). For the operator (4.3) we get

rB(L, 4(7) = det(iR) exp{}(al + fm)R(al’ + BmH}Y, (4.13)

where [ =(l,, 1), m=(m, m,), and

K 1-L\'
R=(1—L’ —M) :
By (4.2) we have

@) = Spmr T T G).
n>0

Comparing this with (4.13), we get, first, /[Rm' = 0, and, second, an identity for
the Fredholm determinant which appears interesting in itself:

det(iR) = exp{L[/RI' - mRm']}P(exp{[RI'}),

where

Py =Y pm)" =T - M7

n>0 n>0

Finally, we get

Xa.ﬂ(y) = exp{(a2 + jlz)lRll + (ﬂz - ﬁ)mRm'} . P(exp{lR['}),
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4.14. The area theorem. Let p = (P, pi+, n) be a morphism from k into O in the
category Shtan™ (see §1.15). The space V introduced in §3.4 is, by §2.2, furnished
with, in addition to the structures listed there, an indefinite Hermitian form:

A8 = [ fdz.

|z|=1
We let p*u denote the preimage of the 1-form 4 under the map p.

AREA THEOREM. Let u be a holomorphic 1-form on P\ |J pf(Di), where the
integrals of u over all the cycles in the lattice = are 0. Then

DA 1, (0])' 1) > 0.

This theorem was obtained by Milin and Lebedev (1951) in the case when P is a
Riemann sphere and k = 1, and was generalized by Lebedev to the case of arbitrary
k . We omit the proof, since it is almost the same as the classical proof (see [24], 1.1
and II1.1).

4.15. The embedding of the category Shtan™ in the symplectic category. In the con-
struction in §2.2 we supposed that the spaces V' and W are the same. In fact nothing
stops us from supposing them to be different. For each correct linear relation 7 we
can construct in exactly the same way a linear operator B(T): F( V.)— F(W,),and,
in exactly the same way, the product of the operators B(T)B(S) = ¢(T, S)B(TS),
¢ € C, will correspond to the product of the relations 7 and S.

Let p= (P, pi+ , pj_, 7) : m — n be a morphism in Shtan™ . Let V' be the same
as in §3.4. We construct with respect to p the linear relation T'(p) in V" + V".
Namely, (", ..., £, /i »-.., f, ) € T(p) if there exists a holomorphic 1-form F
on P\|J pf(D ) such that (pai)'F =df; *  Then the area theorem provides precisely

the condition that the Hermitian form A'(-, -) (see §2.2) be nonnegative; that is,
condition 2° for “correctness” of the linear relation. The remaining conditions are
obvious, and we get that the relation T'(p) is correct.

We now make the Fock space F ((V+)'") correspond to the object m of the cate-
gory Shtan™ and make the operator A(p) = B(T(p)): F((V+)'") - F((V+)") corre-
spond to the morphism p: m — n. Then

A(p)A(q) = c(p, 9)A(pq),

where ¢ € C, and thus we have obtained a representation of the category Shtan™ .
4.16. The formula for the representation of Shtan™ . In order to write down the
explicit formula for the representation of the category Shtan™ that we have just
constructed (it is written in terms of Cauchy projections) it is sufficient to write
down the matrix Q associated with T(p):
n

Q:(V)"e() - ()" e(V)".
We describe what the block Q, ; of the matrix Q looks like:
a)Let i<m,let feV ,andlet g = ((pf)_')'df. We represent the 1-form g,
defined on the contour pf(e"”) ,asasum g =g, +4q_, where g_ is holomorphic in
p,-(Dﬁ) and ¢ is holomorphic in P\ pi(DS), and where the integrals of ¢_ over
all cycles in n are 0. Then when j #i, j <m,and kK > m we have

Q. f=0)a.9Q,/=0)a. Q=) 9.



ﬁ

96 YU. A. NERETIN

b) Let i > m. The construction is analogous; it is only necessary to interchange
the indices + and — and to suppose that k<m, j>m,and j#1.

The area theorem implies that the decomposition ¢ =4, +4_ is unique, and also
implies the following assertion:

THEOREM (“Basic AREA THEOREM”). [Q|| <1.

In the case when P is a sphere and k = m+n = 1, this is just the Grun-
sky inequality (1939); for arbitrary k it is the Lebedev theorem (1961) (see [24],
I11.1). Our generalization of the old theorem has perhaps some interest of its own.
It is remarkable, however, that the Grunsky-Lebedev area theorem which is used for
a solution of extremal problems finds an unexpected application in the theory of
representations (and, in addition, itself becomes a theorem in the theory of repre-
sentations). It is also interesting that the matrix-valued function Q on the spaces
Mor(m, n) has nontrivial algebraic properties (namely, the *-multiplication of (2.2)
is defined on the matrices Q). Finally it is worth noting that in the case when k = 1
and the surface P is arbitrary, the matrix A has appeared in the theory of integrable
systems (see [25]).
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