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AN ESTIMATE OF THE NUMBER OF PARAMETERS
DEFINING AN n-DIMENSIONAL ALGEBRA
UDC 519.4

YU. A. NERETIN

ABSTRACT. Consider an arbitrary family of nonisomorphic n-dimensional complex
Lie algebras (respectively, associative algebras, commutative algebras) that depends
continuously on a certain set of parameters t1,...,ty € C. The asymptotics is
obtained for the largest number N of parameters possible when n is fixed:

2 , 4 2

“ +0 8/3 - 3+O 8/3 ;= 3 I0) 8/3

27n (n®/%) 27n (n®7°) 27n + O(n®?)

respectively. A decomposition into irreducible components is also studied for the

algebraic variety Lie, of all possible Lie algebra structures on the linear space C".
Bibliography: 19 titles.

We consider an n-dimensional complex Lie algebra with a basis ej,. .., e, and defining
relations [e;, e;] = Zcfjek. The structure constants cfj must satisfy the following two
conditions: cf]- = —cfj (anticommutativity) and

Z(c%czk + c;’-‘kcgi + cg,.cﬁ].) =0
a
(Jacobi identity). These equations determine an algebraic subvariety in n3-dimensional
space with coordinates cf] This variety is usually called the variety of structure constants
of Lie algebras; we denote it by Lie,. In a similar manner we define the variety Assoc,,
of structure constants of n-dimensional associative algebras with unity and the variety
Commy,, of structure constants of n-dimensional commutative-and-associative algebras
with unity. In this paper we prove that the dimensions of these varieties do not exceed

2 3 8/3y 4 3 8/3y 2 3 8/3
T + O(n®/%), 571 + O(n®%), T + 0O(n®/7)
respectively. Simple examples (metabelian algebras, see {17], as well as §1.6.F and §3.2)
show that the leading terms of the above asymptotics are precise (the genuine order of
the remainder seems to be equal to O(n?)). Consider, in particular, an arbitrary family
of nonisomorphic Lie algebras analytically depending on a certain set of parameters.
Then the number of parameters is at most (Z)n® + O(n®®), and it can reach a value

of order (%)n3 + O(n?) (in fact, any change of coordinates can reduce the number of
parameters by at most dim(GL(n)) = n?).
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After the paper had been submitted for publication, I. R. Shafarevich informed the
author about the paper [28], where it had been proved that the number of noniso-
morphic n-dimensional associative algebras over a field of ¢ elements does not exceed
q*"°/27+0(*®)  Even earlier Sims [16] had proved that the number of groups of order
p™ is at most p2n’/27+0(n**) " The proofs of these results follow essentially the same
pattern.

In §1 we discuss various properties of the variety Lie,: possible ways of separating
components, classification of the components for small n, and structure of Lie, in the
neighborhood of a given point (in other words, deformations of Lie algebras). In §2 we
prove the estimates for the number of parameters in the case of Lie,. In §3 we discuss
Assoc,, and Comm,,.

The author thanks A. A. Kirillov and S. L. Tregub for discussions of the above theme,
I. R. Shafarevich for telling us about [18] and for a number of critical comments, and A.
I. Kostrikin for telling us about [16].

§1. The varieties Lie,

1.0. Notation. Let g be a Lie algebra, t(g) its radical, p(g) its maximal semisimple
subalgebra, n(g) its nilpotent radical, and Z(g) its center. Let < designate the semidirect
product (g = p(g) < t(g))-

We will use the words “semisimple” and “nilpotent” only in the case where the corre-
sponding element z belongs to an algebraic Lie algebra g (if the one-parameter subgroup
determined by z consists of semisimple or unipotent elements respectively). A subalge-
bra in an algebraic algebra g is called toroidal if its associated subgroup in the algebraic
group is a maximal torus. We recall that all toroidal sublagebras are conjugate. The
dimension of a toroidal subalgebra is called the rank rk(g) of an algebraic algebra g.

Given a Lie algebra g, let der(g), int(g), and D(g) = der(g)/int(g) denote the al-
gebras of all derivations of g, of inner derivations, and of outer derivations, respec-
tively, and Aut(g) the automorphism group of g. For a nilpotent algebra n we set
drk(n) = rk(D(n)) = rk(der(n)) < dimn.

We recall that by a theorem of Morozov [2] there exist only finitely many nilpotent Lie
algebras of dimension less than or equal to 6. We introduce notation for some of these:
CF for an abelian algebra, I'y for an indecomposable four-dimensional nilpotent algebra
([x1,z2] = z3, [21,23] = 24), and Haq 41 for an algebra with basis z,...,24,91,...,Ya, 2
and relations [z;,y;] = z (Heisenberg algebra). Let Aff(n) denote the algebra of affine
transformations of an n-dimensional space, and V, the irreducible sl(2)-module of di-
mension a (for instance, Aff(2) = (sl(2) ® C) < V2).

The words “dense”, “open”, and “closed” can be understood both in the usual sense
and in the sense of the Zariski topology. The abbreviation IAF (irreducible algebraic
family) will stand for an arbitrary irreducible algebraic subset in Lie, which is not nec-
essary closed. Now let (2 be an IAF. We say that an A is a set of generic points in Q if
there exists an open dense subset B C (1 such that B C A.

1.1. Changes of bases define the action of GL(n) on Lie,. The classification of its
orbits is equivalent to the classification of Lie algebras up to isomorphism.

1.2. Let g(¢) be a family of Lie algebras analytically depending on a small parameter
g, 9(0) = g. Then all the g(¢) are called deformations of g. Often two approaches
are distinguished in studying deformations: the “global” one based on the study of
the structure of Lie, in the nieghborhood of g, (see [10], [8], [14], and [3]) and the
“cohomological” one based on the decomposition of the commutator in g(e) into a series
in € (see [5], [10], and [17]). Let [z, y](¢) be the commutator in g(e),

(z,y](€) = [z,4](0) + eqr(z,y) + €% q2(z, 9) + . . .,
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where ¢;(z,y) = —g;(y,z). Then the Jacobi identity imposes a linear condition on
q1(z,y) which is equivalent to q; € Z2%(g,g). (In what follows we use standard notation
for Lie algebra cohomology: H?(g, M) = Z9(g,M)/B4(g, M). See [5] and [19].) BZ%(g,g)
consists of trivial deformations resulting from changes of bases in g. Thus the essentially
different infinitesimal deformations of g are parametrized by H?(g,g).

However, at singular points of Lie, the group H?(g,g) is enormous and, moreover,
Lie,, has multiple components (see §1.6.E, and also [14], [8], and [5]).

We say that an algebra a is a degeneration of g if its GL(n)-orbit is contained in the
GL(n)-orbit of g.

1.3. Definition. An algebra g is called rigid if it has no nontrivial deformations.

In orther words, the GL(n)-orbit of g is an open dense subset in a certain component
A(g) of Lie,. Clearly dim A(g) = n? — dim Aut(g). It is also obvious that the condition
H?(g,g) = 0 implies rigidity whereas the converse is not true (see §1.6.E, and also [14],
(8], and [5]).

PROPOSITION 1. Any semisimple Lie algebra g is rigid, and dim A(g) = n? — n.

This proposition being both simple and important, we give three proofs as follows: 1.
H?(g,g) = 0 for g semisimple (see [5] and [19]). 2. Killing form being nondegenerate is
an open condition. 3. Absence of abelian ideals is an open condition.

1.4. Let g be an insoluble Lie algebra, and let II(g) denote the pair (p(g), M), M being
the adjoint representation of p(g) on g. Suppose A is a component of Lie, containing at
least one insoluble algebra. Then, at almost all points g € A, II(g) is a constant function;
for these points we set II(g) = (po, Mo)-

PROPOSITION 2. When g runs through A, I1(g) runs through the set of all pairs of
the form (p;, M;), where p; C po s a semisimple subalgebra and M is the restriction of
My to p;.

PROOF. Existence. Let p; C py be a semisimple subalgebra, z1,...,z, its basis,
and yi,...,ys a basis of a p;-invariant complement for p; in po; let ygy1,...,y, be
a basis for the radical. Let cf]-(e) denote the structure constants of g with respect to
Z1,...,Ta,€Y1,---,EYy. Then cfj (0) are the structure constants of an algebra a such
that I1(a) = (p;, Mo|p,) and a is a degeneration of g.

The remaining part of the proposition is implied by the following.

LEMMA. Let g(e) be an analytic family of Lie algebras with g(0) insoluble and let p be
a mazimal semisimple subalgebra of g(0). Then any deformation of g(€) may be reduced
by an analytic change of basis to the form g'(g) such that [z,a](€) = [z,a](0) for any
TE€pand any a € g.

REMARK. Modulo O(¢?) our lemma is equivalent to the equality HZ%(a,a) =
H?(t(a),a)® (see [19], Theorem 13).
We proceed by induction. Choose z; € p and a; in the radical, and write

[z, 2k) (€) = [z, zk) + €™ q(z5, zk) + O(™HY),
(5, ai)(e) = [z5, @] + €™p(z;, @) + O(e™H?).

Using the Jacobi identity for z;,z;, and zx, we get ¢ € Z2(p,g). But H%(p,g) = 0 (see
[5]); hence by a transformation of the form z — z 4+ €™u(z) we can arrive at ¢ = 0.
But then the Jacobi identity for z;,z,, and ax implies p € Z*(p, Hom(x(g),g). However
H'(p,Hom(x(g),g)) = 0 and therefore by a transformation of the form a — a + ¢™v(a)
we can attain p = 0. Repeating the procedure, we derive the existence of the required
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transformation in the class of formal series. But this transformation satisfies a finite set
of analytic equations; hence, by a lemma of M. Artin [7], the required transformation
exists in the class of convergent series.

1.5. Root systems. Let I C g be an ideal of codimension 1. A linear deformation
of g associated with I is any Lie algebra in which I is an ideal of codimension 1. It is

obvious that the set of linear deformations is indexed by the elements of the linear space
der([).

PROPOSITION 3. Let QQ be a component of Lie,,. Then the spectrum of the operator
Adz on Q (z €9, g€ Q) runs (up to a permutation) through the set of all collections of
numbers satisfying a certain system of linear equations with integer coefficients.

PROOF. a) Suppose the generic algebra g of @ does not contain any ideal of codi-
mension 1. Then the spectrum of the generic Ad z, = € g, has the same structure as the
spectrum of the generic element of p(g) in the adjoint representation of p(g) on g, proving
our claim. For in this case we have t(g) = [g,t(g)]. But for any g one has [g,t(g)] C n(g)
since g/n(g) is reductive. Therefore r(g) is nilpotent, and hence the spectrum of Adz,
T € g, is completely determined by the projection of z to p(g) = g/t(g).

b) Let the generic algebra g of the component  contain an ideal of codimension 1.
Denote by K one of these ideals. Let .7 (g, K) denote the set of all linear deformations
of g associated with K. Then, obviously, for almost all g € Q one has & (g, K) C Q.

The set of all spectra of Adz|x with z € a, a € & (g, K), coincides with that for all
operators y € der(K) acting on K. But der(K) is an algebraic algebra (see [1]) and hence
the spectrum of y runs through the set of all solutions of a system of linear equations
with integer coefficients (see [1], 7.7.3 and 7.7.9). We denote this system by Z(g, K).
Now let g be fixed and let g be a system of linear equations with integer coefficients.
Then the set of all I C g for which Eq is a consequence of Z(g, I) is the union of a finite
number of IAF. Hence there exists a system Z(g) such that Z(g) is equivalent to Z(g, I)
for the I running through a set of full measure. Arguing similarly, we prove the existence
of a system Z(Q) such that, on a set of full measure in Q, Z(g) is equivalent to Z(Q).
The proof is complete.

REMARK 1. It is easy to see the existence of the unique component in Lie, with
the spectrum of Ad running through the set of all collections of numbers of the form
(0,A1,...,An—1), where the \; are arbitrary (see 1.6.B). Apparently there also exists a
component with the spectrum of Ad of the form (0,...,0); that is, with all algebras in
the component nilpotent.

REMARK 2. Let z € g be a generic element, and g = € g, the decomposition of g
into the direct sum of root spaces with respect to Adz. Then, obviously,

[9/\1911] C Or+tpu- (1)

For simplicity, let g) and g, be one-dimensional and [gy,g,] # 0; also let g(¢) be a
small perturbation of g, and A(e) and u(e) two eigenvalues of Ad z in g(e), with A(0) = A
and p(0) = u. Then the spectrum of Adz in g(e) contains the eigenvalue A(e) + u(e).

1.6. The evaluation of deformations for particular g’s is usually greatly facilitated by
the use of root systems and Proposition 2. It is also useful to involve various semicon-
tinuous characteristics: dimensions of the center, of the nilradical, of the largest abelian
ideal, and of the terms of various central series. (It should be noted that the property of
being decomposable into the direct sum is neither open nor closed.) From time to time
it is necessary to use some finer invariants such as the Jordan form for the generic Adz
or the dimension of the subspace spanned by [z1, (21, 22]] and [z2, [z1, z2]] with z; and
Zo generic.
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A.a. All algebras of the form sl(2) < (Vaq, @ - -®Va2q,) are rigid. Indeed, the summands
in the decomposition of Vax ® Vo; have the form Vg with all # odd; hence the deformation
of the radical cannot be endowed with a nontrivial multiplication. On the other hand
the multiplicity of 0 in the spectrum of generic Ad z is equal to 1, and so the semisimple
part cannot get larger in the process of deformation (see [3] and [9]).

B. Let c(n) be the number of the components in Lie,; then ¢(2) = 1, ¢(3) = 2,
c(4) = 4, ¢(5) = 17, ¢(6) = 17, and ¢(7) = 49 (see [9] and [3]); it follows from Bézout’s
theorem that c(n) < 2" (see [3]). A certain complication of the argument in A.a shows
that the direct sums of algebras in A.« are rigid. Let ¢(n) denote the number of algebras
arising in this way and, as usual, let p(n) be the partition number. Then

Zq(n)tn — H (1 _ t2k+3)—p(k)‘

k>0

PROPOSITION. c¢(n) increases more rapidly than any function of the form exp(n®)
with a < 1.

PROOF. A theorem of Meinardus ([6], 6.1) gives a lower bound (apparently a rough
one) for q(n).

~. Any algebra of the form sl(2) < Vaq 41 is rigid except for 2a+ 1 = 3,5,7,11. An
algebra of such a form can be obtained by degeneration only from a semisimple algebra,
of rank 2, since the multiplicity of zero in the spectrum of the generic Adz is equal
to 2. For exceptional 2o + 1 this possibility occurs (it suffices to choose the principal
sl(2)-triple in sl(2) @ sl(2), sl(3), o(5), and g, respectively; see [14]).

6. sl(2) x (Va@ V1) can be obtained by degeneration from two rigid algebras: sl(2) < H3
and Aff(2).

B. EXAMPLE. Algebras with bases of the form zy,...,zk,y1,...,4, k < [, and
relations [z}, yx] = A\jkyx form a set of generic points on a component of Lieg;.

PROOF. The argument of Remark 2 in 1.5 shows that the spectrum of perturbed
Adz has the form (0,...,0,u1,...,m), where the u; satisfy no relations of the form
Mo = Hg + Wy O i = —ug. But then the Ad z-invariant subspace I corresponding to
the eigenvalues p1, ...,y by (1) is an abelian ideal. The subspace V in g(¢) corresponding
to the zeros of the spectrum is a subalgebra (by (1)), and its adjoint representation on I is
faithful and semisimple (since k¥ < ). Thus V' is an abelian subalgebra, proving the claim.
We remark that for k = [ the generic point of the component is Aff(1) & - - - & Aff(1).

C. An algebra of the form Hz & C*~2 belongs to the closure of any GL(k)-orbit on
Liek (the proof follows by a sequence of degenerations using linear deformations and the
construction of Proposition 2).

D. Aff(2) and sl(2) < V; are rigid and indecomposable algebras. Their direct sum is
not rigid.

E. A standard way of constructing rigid soluble algebras is by “truncating” infinite-
dimensional algebras. In particular, under minimal conditions of nondegeneracy algebras
of the form [z;,z;] = aijZi4+5, 0 < 7,7 < n, have a habit of turning out to be rigid for
suffciently large n (see [5] and [8]).

EXAMPLE. “Truncated’ Virasoro algebra Vy: [zi,z;] = (j — ¢)ziq;, with0 <7 <75 <
n, n > 13. It is known that H?(V,,V,) = C (see [5] and [8]). An argument similar to
that used in 1.6.B shows that the direct sum of algebras of the form V,, is rigid.

COROLLARY. The dimension of H%(g,g) with g rigid can be arbitrarily high.

F. We consider the family , of Lie algebras with basis z;,...,Z24,%1,...,Ya and
relations [z;,z;] = Zcijk, where cfj = —cfi. Then ), is an IAF of dimension
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202 4+ O(a?). Hence Lie, has a component of dimension at least Zn®+O0(n?) (see [17]).
Applying linear deformations to (1,, we obtain an IAF A, D (1, whose points are Lie
algebras which can be reduced to the form [z, z;| = z;, (2, yk] = 2uk, [zi, 25] = Zcijk
with0<i<j<2a-1,0<k <0

PROPOSITION. A, is a component of Liesy for sufficiently large c.

The proof is based on estimating the dimension of the set Q C A, of algebras admitting
deformations which take them out from A,. The author knows of no particular examples
of algebras from A,\Q.

G. We know very little about the variety N, of n-dimensional nilpotent algebras (see
[17] and [3]). There is an essential misprint in [3]: the generic algebra of Ng is an algebra
with basis z;, j = 1,2,3,4,7, and relations [z;,z;] = z;4;, where ¢ < o (No. 21 from
Morozov’s list).

1.7. Sets of commuting matrices. Let Mg(n) denote the variety of k-tuples of
commuting operators in C™. The k-tuples of simultaneously diagonalizable matrices,
obviously, form the set of generic points in a certain components of My(n). A problem
of the components of My(n) arose in [11]. We will also encounter the varieties M/(g)
of k-tuples of commuting elements in a Lie algebra g and, in the case of algebraic alge-
bras, the varieties MP(g) C M (g) whose elements are k-tuples with no nilpotent linear
combinations of components. All these varieties naturally arise in the following setting.
We consider the space C"t* with basis z;,...,Zk,y1,-.-,Yn, and we assume that the
subspace spanned by yi,...,yn is endowed with the structure of a nilpotent Lie algebra
n. We denote by ®R(k,n) the variety of those Lie algebra structures g in Cntk for which
there exists an exact sequence 0 — n — g — CF — 0.

Let ®R°(k,n) C ®R(k,n) be the variety of Lie algebras determined by the additional
condition n = n(g). With each z; one can associate an element a; € der(n) and, hence,
an element a; € D(n) = det(n)/int(n). The following assertions are obvious.

LEMMA 1. a) If g€ ®R(k,n) then (a1,...,ak) € Mi(D(n)).

b) If g € ®RO(k,n) then (ay,...,ax) € MP(D(n)).

c) ®R(1,n) coincides with det(n).

d) ®R(2,n) (respectively ®R°(2,n)) is a fiber bundle over My(D(n)) (respectively, over
M (D(n)) with fiber int(n) X int(n) x Z(n).

e) If drk(n) < k, then MQ(D(n)) (hence ®RY(k,n)) is empty.

PROPOSITION 4. a) Mz(n) is irreducible [11].
b) Mk(2) and My (3) are irreducible.

¢) Mig(n) with k > 4 and n > 4 are reducible.
d) MJ(4) is irreducible.

PROOF. a) Let (A, B) € M3(n). We need to show that A and B can be simultaneously
brought to diagonal form after a suitable small deformation. Let W) , = Ker(A—AE)"N
Ker(B—pE)™ be joint root spaces for A and B. It is clear that C™ is the direct sum of all
nonzero spaces of the form W) , and that it suffices to construct the desired deformation
in each W) , separately. Now without any loss of generality we may assume A and B
nilpotent. Then there exist p and q such that R = pA + ¢B is decomposable. Let C be
a semisimple operator commuting with R, C # vE. We consider a small deformation of
the form (A, B) — (A — eqC, B + epC) € My(k). Now A — eqC has at least two distinct
eigenvalues and it suffices to construct the desired deformation in the joint root spaces
for A — eqC and B + epC, whose dimension is strictly less than k.

b) and c). See [3].
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d) We choose (A4,B,C) € M2(4). Then (A, B,C) has at least 3 nonzero joint root
subspaces and the problem reduces to M3(2).

PROPOSITION 5. a) My(p), with p semisimple, is irreducible [15].
b) My (Aff(k)) is irreducible.

The proof is exactly the same as in the case of M2(n). In part b) it is sufficient to
observe that Aff(k) is the annihilator of a vector in gl(k + 1) and that the deformation
in the proof of Proposition 4a) can be chosen in the class of operators annihilating the
same vector. (This can be derived from the following elementary assertion. Let A be
a nilpotent operator in a finite-dimensional space W, dimKer A > 1, and v € Ker A.
Then there exist nonzero invariant subspaces W; and W5 such that W = W; @ W, and
v E Wl )

Let n be a nilpotent algebra.

LEMMA 2. a) Ifdimn < 5, then there exists a derivation of n all of whose eigenvalues
are distinct and nonzero.

b) Let dimn < 5, and let T C Aut(n) be a mazimal torus. Then n is rigid in the class
of nilpotent algebras where T acts by automorphisms.

¢) If dimn = 6, then there ezists a derivation of n with all eigenvalues different from
zero.

The proof is a trivial case-by-case analysis (see also [3]).

LEMMA 3. a) Ifdimn <5, then MJ(D(n)) is either irreducible or empty.

b) If dimn < 4, then MJ(D(n)) is either irreducible or empty.

The generic point of these varieties is the set of elements belonging to a single toroidal
subalgebra.

PROOF. First we remark that the cases n = CP and n = Hs immediately follow
from Propositions 4 and 5 (D(Hs) = sp(4)). Let (zV),...,z()) € MP(D(n)). Let
V) = :cgj ) + zs,j ) be the Jordan decomposition, xgj ) being semisimple and zg,j ) being
nilpotent. Then the set of zgj ) generates a k-dimensional subalgebra X, in a toroidal
subalgebra A C D(n), 1) lying in the centralizer of X,. It turns out that in almost
all cases one has drk(n) < k or drk(n) = k. Referring to Lemma le) or Lemma 2a)
respectively completes the proof.

The only cases remaining are those of k =2 and n=H3 ® C, H3 ® C2, T4+ C and
gs5.2 ([z1,22] = z3, [z1,24] = z5). We fix a toroidal subalgebra A. It turns out that
every centralizer C(X,) of a two-dimensional subalgebra X, C A is equal to the direct
sum of some copies of sl(2), C, Aff(1), and Aff(2). For each of these latter algebras M,
is an irreducible variety. Transforming (z;,z2) € M2(C(Xs)) into general position, we
complete the proof.

1.8. Classification of the components of Lie, for n < 7. In 1.6.A we have
actually classified the components with at least one insoluble algebra. Now let R, be
the variety of structure constants of all n-dimensional soluble Lie algebras. Let n be
nilpotent and drk(n) > k > 1. We denote by RO(k,n) the set of all Lie algebras g such
that n = n(g) and g/n = C* (note that automatically k¥ < dimn).

THEOREM 1. The set of closures of R°(n — dimn,n) coincides with the set of all
irreducible components of R, forn < 7.

REMARK. When n < 7 all the components of R,, are also the components of Lie,,.
This theorem was discovered independently by Roger Carles (1979) and the author
(1981); for n < 5 it was proved by S. E. Belkin even earlier (1976). Since no complete
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proof has bee published so far, we give it in what follows. For detailed tables see [8] and
(3].

A. The main difficulty is proving the irreducibility of R%(k,n). Let dimn = t (then
k+t = n). Obviously R°(k,n) is the fiber bundle over GL(n)/ Aut(n) with fiber ®R®(k, n)
(see 1.7). The base of the bundle is always irreducible. If £ = 1 or 2, then the irreducibil-
ity of ®R%(k,n) follows from Lemmas 1c), 1d), and 3a). If k = 3, then the canonical
fibering v : ®R%(3,n) — MP(D(n)) may have fibers of different dimension, and this
might give an “extra” component. This difficulty arises only if n = 7 and n = C* or
n = H3 @ C. But all the algebras in ®R°(3, H3 ® C) are pairwise isomorphic; hence
®RO(3, H3 ® C) is irreducible. If n = C*, then the dimension of a fiber can “jump”
only on that algebra g for which v(g) consists of triples of operators with common kernel
(consequently since v(g) € MJ(4), these operators can be simultaneously brought to the
diagonal form). Any such g can be brought to the form (see 1.6.B)

[xj’yj] =Y5, [zivzj] = CijYa, i7j =1,2,3.

But by applying to g deformations of the form [z;,y4] = €;y4 we can bring v(g) into
general position (co3€1 + ¢31€2 + c1263 = 0).

B. Suppose RO(k;,n;) D R%(kq,ny). At the generic point of R°(k,n) we have [g,g] = n
(Lemma 2c)). Since the dimension of n(g) under small deformations can only get smaller
while that of [g,g] can only get larger, we see that k1 = ko, say k1 = ks = k. Now the
dimension of R(1,n) is easy to compute, and it always equals n? — n [3]; hence k = 1 is
impossible. As for k = 2 and k = 3, these are in contradiction with Lemma 2b).

C. R, = URO(k,n). Indeed, every algebra outside | J R°(k,n) is nilpotent. Now let
I be an ideal of codimension 1 in a nilpotent algebra g. Then g € R°(1,1) follows by
Lemma 2c).

§2. Estimating the number of parameters
In 2.1 we establish the lower bound for the dimension of components in Lie,, the
upper bound being established in 2.2-2.6.

2.1. THEOREM 2. The dimension of any component of Lie,, s at least %n2+%n— %.

If n is odd then this value s achieved on the component containing the rigid algebra
T =sl(2) < W, where W is the direct sum of (n — 3)/2 copies of V5.

The rigidity of I' has been proved in 1.4.a. On the other hand,
dim Aut(T") = %n2 + O(n);
since with every module automorphism of W one can associate an automorphism of I'.

LEMMA. If g contains an tdeal I of codimension 1, then g belongs to an IAF of
dimension greater or equal to (n — 1)2.

The proof follows by applying changes of bases in I and linear deformations associated
with I.

Now the theorem is a consequence of the following.

LEMMA. The mazimum value of dim Aut(g) for g without ideals of codimension 1 is
attained on T.

PROOF. To start, we remark that g is insoluble, t(g) is nilpotent, and t(g)/[t(g), t(g]
has no p(g)-invariants.

We consider all algebras with fixed semisimple part p, g = p < t, where v = t(g). It
follows from the Levi-Mal’tsev theorem that, as a linear space, g is the direct sum of two
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subalgebras: 1. Inner derivations. 2. Derivations annihilated on p. The latter subalgebra
corresponds to a subgroup NV in Aut(g) leaving every element of p invariant. In particular,
the elements of N are the automorphisms of r as a p-module. Let t = @), n;0; be the
isotypic decomposition of t in which each o; is an irreducible p-module and og is a
one-dimensional p-module. Let V be a p-invariant complement for [r,t] in t. Then any
p € N is uniquely determined by its values on V (see 2.4) and p preserves the isotypic
components. Hence dim N < }~,_,n?. Now the claim becomes obvious.

2.2. We have seen in 1.4 F that there exists a component of Lie,, whose dimension is
of the form Zn® + O(n?).

THEOREM 3. The dimension of any component of Lie, is at most -227n3 +0(n8/3).

COROLLARY. Suppose we are given a family of nonisomorphic Lie algebras analyti-
cally depending on a certain set of parameters. Then the numbers of parameters does not
exceed Zn> + O(n/3).

Now let A be an IAF. Our aim is to determine A by as few parameters as possible. We
will be parametrizing an open dense subset A’ in A whose points enjoy all properties of
generic points which are needed in what follows (formally speaking we will be constructing
an injection from A’ into CV). Since dim GL(n) = O(n?), we will usually be assuming
that all algebras in A have the same flag of ideals (for instance, that the subspaces [g, g]
and [g, [g, g]] for all g € A are the same).

2.3. Reductions.

LEMMA 1. Let A be an IAF whose points are insoluble. Then there ezists an IAF of
soluble algebras B C A such that dim B = dim A — O(n?).

For the proof it suffices to consider the family of radicals in algebras of A.

LEMMA 2. Let g be an algebraic Lie algebra. Then the variety of nilpotent elements
of g s irreducible and its codimension s equal to rk(g).

PROOF. g is the semidirect product of its reductive part by its nilradical ([1], 10.6).
But for semisimple algebras our lemma is well known ([1], 11.3).

Let (2 be an IAF of soluble algebras with basis z1, ..., z,, the nilradical of every g € (2
being the linear span of z,41,...,z,. We extend 2 to a maximal IAF (¥ with the same
property. Then ¥’ contains all linear deformations of generic algebras g € ()’ associated
with the ideal I = {z;,...,Zy—1,Zs+1,---,Zn}. These deformations are indexed by
the space der(I) and, by Lemma 2, (' contains an IAF )" of codimension O(n) with
nilradical spanned by z,,...,z,. Repeating this procedure, we arrive at the following.

LEMMA 3. If there exists an IAF of soluble algebras whose dimension is N, then
there exists an IAF of nilpotent algebras whose dimension is N — O(n?).

2.4. In what follows n stands for a nilpotent algebra, n(?) = [n,n], and nU+1) =
[n(j),n]. We recall that any minimal generating set of n is a basis of a complement for
n(? in n.

DEFINITION. Let z4,...,2x be a generating set for n. We say that the generators

Tsy1,...,Tn are superfluous if any element of [n,n] can be expressed in terms of “essen-
tial” generators zp,...,2;.
LEMMA 4 (on superfluous generators). Generators Ts41,...,In are superfluous in n

if and only if they are superfluous in n/n(3),

PROOF. Let S be a commutator of length £k > 1 in z;,...,2,. Any occurrence
of [zi,z,] in S can be replaced (modulo n(®)) by a linear combination of commutators
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in z1,...,2s. Using the Jacobi identity, we conclude that (modulo n**+1)) S can be
expressed in terms of zy,...,%s.

Let V and W be linear spaces, dimV = k, and dimW = 1. Then any linear map
A%V — W gives V @W the structure of a metabelian algebra (see 1.6.F). We will always
assume that [V,V] =W. Let z,,..., 2 be a generic basis in V, V; the span of zy,..., 74,
and W; = [V;,V;]. It is obvious that W; C W;;; let s be the first index such that
W,=W.

LEMMA 5. dimW; is strictly increasing when 1 < j <'s.

PROOF. Let (aj,...,ax) denote the linear span of all commutators [a;,a;], 7,5 < k,
a; € V. Suppose that (zy,...,24) = (21,...,Zut+1) = Wy. Since z1,...,zx is a generic
basis, we have
Wy = (21, Tut1) = (T1y- -, Tu, Tut2)
= (172, . ,.’L‘u+2> = (.’131, e ,Iu+2),
and hence W, =Wy 1 =Wyyo=---.

It is obvious that for generic metabelian algebras one has s ~ v/2l. A p-group analog
of the next lemma was proved in [16].

SIM’S LEMMA. Let L, be the variety of structures of metabelian algebras of the form
mentioned above ([V,V] = W) with exactly s essential generators. Then the dimension
of any component of L, is at most 1k%(1 — s) + O((k + 1)8/3).

PROOF. Let V = @V, be the direct sum decomposition with k!/% +O(1) summands
of dimension k2/3 + O(1) in general position. By Lemma 5 one has

dim([V, & V3, Ve ® V5] < 1 — s+ 2k%° +0(1).

For each pair «a, 3 we choose a subspace [V, ®Vg, Va®Vp] = Wy g. Any of these subspaces
can be given by k2/30(I?) parameters. If z; and z; are basic elements of V, then the
choice of [z;,z;] € W, 3 is determined by [ — s + O(k?/3) parameters. But the total
number of these commutators is k(k — 1)/2. Thus the proof is complete.

2.5. The procedure of choosing parameters. Let (1 be an IAF of nilpotent
algebras. Let all the algebras of this IAF have the same flag of ideals including all the
terms of the lower central series n*). Fix g € Q with dimg = n, dimg/g®? = m,
and dimg(?) /g(3 = k. We also fix a generating set z,..., 2, such that z1,...,z, is a
minimal set of essential generators.

. We choose commutators [z;, z;] € g(®) modulo g(®. By Sims’s Lemma this requires
at most 3m?(k — s) + O(n®3) parameters.

8. Since [z;,z;] are known modulo 93), to define them completely we need another
portion of 1m?(n—m~—k) parameters (we need to specify a linear map A%(g/g®) — g®).

~. LEMMA 6. Suppose [z;,z;| are known. To recover the Lie algebra structure on g
it is sufficient to give the operators Adz,,...,Adz, on g(?.

This is implied by the following.

LEMMA 7. If Adz,,...,Adz, are known, then Ad x4 13 uniquely defined on the
subalgebra V,, C g generated by z4,...,Z,.
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PROOF. If w € V,,, then (Adz,+1)w can be represented in the form
Z ¢ H(Ad Toy; )Tu+tl, ai; < u,
g i

proving our lemma.

Since Ad z; is triangular on g(® and (Adz;)g® C g(®, it can be determined by at
most 1 ((n — m)? — k?) parameters. By Lemma 4 the commutators [z;,;], 7,7 < u, as
elements of g(?) /g(3) generate a subspace of dimension at least u — 1. Thus if we know
Adz4,...,Adz,, then we already know Ad z,4; on u — 1 vectors, so that to determine
it completely we need at most ((n—m)? —k?) — (u—1)(n —m — k) parameters. Finally,
all of Adzy,...,Ad z, are determined by at most

(5/2)((n —m)® = k*) = (5*/2)(n = m —k) + O(n?)

parameters.
2.6. Let z =m/n, y = k/n, and p = s/n. We need to estimate the maximal value of
the cubic form
z2 2

R=2(1-z-p+2((1-22-y)+ 5012z~

on the simplex 0 < p < z,y, z+y < 1 (s < m follows from Lemma 4). By rather
cumbersome calculations we determine that R < 2/27 and that the maximal value is
achieved on the line z = 2/3, p = 0 (OR/dy < 0; hence y = p, and then we determine
the maximum varying p with z fixed).

REMARK 1. Apparently, the following is true: if 2 is an IAF of dimension %nﬁ‘ +
o(n3), then for almost all g € (2 one has dimn(g) = n — o(n), dimn(g)® = 2n + o(n),
and dimn(g)® = o(n).

REMARK 2. We say that a generating set zi,...,z, of an algebra g is regular if
T3,...,ZTq € t(g) and 71,72 € p(g) (if p(g) is nonempty). The dimension of the variety of
structure constants of Lie algebras with « regular generators does not exceed (a+1)n?/2.

§3. The varieties Assoc, and Comm,,

3.1. Let A be an associative algebra with unity. Then by the Wedderburn-Mal’tsev
theorem A = M < N, where M is a semisimple algebra (hence M = € Mat(k), where
Mat(k) is the full matrix algebra in C¥) and N the nilpotent radical. Clearly, each N
is the direct sum of irreducible bimodules (each of them being, in fact, the set of all
matrices of order r x I) on which Mat(r) acts by multiplications on the left and Mat(l)
on the right.

Let I1(A) denote the pair (M,Q), where Q = A as an M-bimodule. Suppose at a
generic point of a component (2 one has II(A) = (Mo, No).

PROPOSITION 2'. The set of all values of II(A) with A € € is equal to the set of all
pairs (M;,Q;) such that M; is a semisimple subalgebra of My and Q; = No|u;-

REMARK. The role of the root system here is played by the joint spectrum of the
operators L(z) and R(z) of respectively left and right multiplication by the generic
element z € A. However (in contrast to Lie,) this joint spectrum is completely recovered
from the bimodule structure on V.

3.2. Theorem 3'. The dimension of any component of Assoc,, never exceeds 24—7n3 +
O(n8/3).

THEOREM 3. The dimension of any component of Comm, never exceeds %n3 +
O(n8/3).
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The proof is along the lines of Theorem 3, with no use of Lemmas 2 and 3.

3.3. Let A be an algebra with basis e, f, z1,...,2,—2, where e and f are orthogonal
idempotents. Also let

ex; =z;f = zj, zje= fz; =0.

It is obvious then that A is rigid and that the dimension of the corresponding component
has the form 4n + O(1).

3.4. The classification of components in Assoc, is known up to n = 5 [12]. The
structure of Comm,, is virtually unknown; see [13]. (Similar questions were considered
in [4].) Proposition 2’ in this case is still true, but trivial.
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