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ALMOST INVARIANT STRUCTURES
AND CONSTRUCTIONS OF UNITARY REPRESENTATIONS
OF THE GROUP OF DIFFEOMORPHISMS OF THE CIRCLE
UDC 513.88

YU. A. NERETIN

In this note we give constructions of a number of series of unitary (projective) repre-
sentations of the group Diff of orientation-preserving diffeomorphisms of the circle S!.
For exceptional values of the parameters we will obtain highest weight representations.
The remaining values of the parameters give unknown representations (some special cases
were studied previously in [5]-[7]).

For each unitary (perhaps in an indefinite metric) representation p of the group SL2(R)
(or its universal covering SL3’ (R)) we construct an embedding of the group Diff (or its
universal covering Diff ™) into some (G, K)-pair (see §1). The choice of (G, K)-pair
depends on whether p is of real, complex or quaternionic type (see [12]). We shall also
use the constructions of representations of (G, K)-pairs from [2].

1. (G, K)-pairs. Let GL(00), U(o0), and O(oo) respectively denote the general linear
group, the (full) unitary group, and the (full) orthogonal group of Hilbert space, and let
Sp(co) denote the (full) unitary group of quaternionic Hilbert space, etc.

DEFINITION. Let G(00) D K(0o) be groups of this form. Then (G(o00), K(00)) is the
subgroup of G(oo) consisting of all operat.cs of the form A(1 + T), where A € K(oo)
and T is a Hilbert-Schmidt operator.

The classical examples are

(0(200),U(0)), (Sp(200,R),U(00)), and (GL(o0,R),0(c0));

see (1], and also [5]-[11]. In [2] a large collection of representations was constructed
for a number of other “natural” (G, K)-pairs (approximately the same result in another
language we obtained by Vershik and Kerov in [11}).

2. Example: almost invariant quaternionic structure. Let Diff(®) be the dou-
ble covering of Diff, realized as the group of diffeomorphisms of S ! = R/2nZ that satisfy
the conditions g(p + 7) = q() + 7. Let L be the subspace of Ly(S') consisting of the
odd functions (f(p +7) = -/ (p)). Assume that Diff® acts in L; by the formula

(1) T(q)f(p) = f(a())d (p)* %72,
where s € R. It is not complicated to check that the operator

_ 8B((is +2)/2,s/2) /’” sgn(sin(p — )) () dy
K= i PV Jo T Tsmle— @)
gives a quaternionic structure (K? = —1, 1K = —K1) in L;.

THEOREM. Formula (1) gives an embedding of Diff(?) into the group (U(200), Sp(00)).

The next step: imbed (U(200),Sp(00)) in (O(400), U(200)) and restrict the spinor
representation of (O(400), U(200)) (see [1], §5) to Diff®. For this we need to “cancel”
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inary units (they are parametrized by the sphere S3, but in fact oxily one —par'ameter
is essential). It is less obvious that there exists a one-parameter series of imbeddings
of (U(200),Sp(c0)) into (Sp(200,R), U(co))—see [2] (and then we can apply the Weyl
representation; see [1], §4).

3. Notations. A. We realize Diff™~ as the group of diffeomorphisms of R satisfying
the condition g(p + 27) = q(p) + 27. Assume that —1 < < 1. Then H, is the space.
of C%-functions on R satisfying the condition f(p + 27) = exp(iar)f (p). In Hy we
introduce a basis of functions vy, = exp(i(k + @/2)p). Let the group Diff™~ act in H,
by the formula

(2) Y Tas()f(0) = fla(e))d () H+9)72,
where s € C. VYe introduce an operator Aq s: Ha' — H,: '

_ " exp(2nil(ip — ) /2n])£ () dy
(3) Aa,sf(p) = C(a, ) A [sin((p — ¥)/2)1=°

where C(a, s) is determined from the condition Ay v = v,. Then

_2*~*mexp(an/2)C(a, s)
sBlk+(s+a—1)/2,~k+(s—a+1)/2)
From this we see that A, , is a well-defined operator-valued function meromorphic
with respect to (o, s) with poles lying on the lines Haxs+1)€Z, and Ap.q = A;f_ o
On H, we introduce a family of Hermitian forms (¢ €R):

27
(f:9)0 = | f9de ([,9)=(4asf,0)- N e

(4) Aa,s ’Uk =

e o v

B. Motivation for these formulas. Let the group PSLy(R) = SL3(R)/Z, act on S? as
on the projective line, and let & be the inverse image of PSL;(R) under the homomor-
phism Diff™ — Diff. It is obvious that & = SLy'(R).

The restriction P, , of the representation Ta,s to the subgroup @ is a representation
of SL2'(R) of the principal (nonunitary) series. If s € R, then P, , is unitary in the
metric (-,-)o (the principal unitary series of SLy (R)). If s € R, then P, s is unitary in
the metric (generally indefinite) (,-),. If, in addition, —1 < s + & < 1, then we obtain
the complementary unitary series of SL3'(R). The poles of formula (3) correspond to
highest (lowest) weight representations. In all the remaining cases Aa,s I8 an operator
which intertwines T, , and Tq,_, (see [3] and [4]).

C. The space Hy is realized in a natural way as C*(S!), and H, as the space of odd
functions in C*°(S'). Let H§t and HF be the spaces of real functions from Hp. and H,.

We also introduce the space _IT(? of real functions from Hy with zero mean ([ fdp = 0)
and the space 1?5‘ which is the quotient of HE by the subspace of constants. In all these
spaces we introduce the Hilbert transform

)= 2 [ eot (252) s dw

The operator / introduces a complex structure in the spaces HR, Hy, and AR: 12 = -1
(in fact, I exp(inp) = isgn(n) exp(inyp)). ’ A '

4. Almost invariant structures. Below, for each pair (o, s), where s € R or
ts € R, we construct an imbedding of Diff™ into some (G, K)-pair. In each case we

indicate the (G, K)-pair, the values of the parameters (a, s), the representation space ¥,
the action D of Diff™~ on ¥, and the inner product (- -} in which ¥ should be completed.

wirtgsie
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ST e seespes vurslo. aSu o € AU @UU LULIUUUCE TOE Inner product (-,-) = (-,-)o in the
space H,. N

Al (U(o0) x U(o0), U(c0)) = (G, K). The subgroup K = U(oo) is embedded in G as
the diagonal, ¥ = Hy ® Ha, D =Ty s ® Ty, _,, and the two copies of H, are identified
via the (“almost intertwining”) operator Aas.

A2. (U(200),8p(c0)), =1, ¥ = Hy,and D = Ty ,s. The structure of a quaternionic
Hilbert space in H; is introduced using the operator K, f(®) = A1,,f(p). The group
U(200) is the usual unitary group of the space H;. :

A3. (U(e0),0(00)), @ =0, ¥ = Hp, and D = Tp,. The operator Lf(p) = Ao,sf(p)
is antilinear and satisfies the condition L2 = E. Consequently, V1 = Ker(L + E) are
real orthogonal subspaces of Hy. The U(oo) is the usual unitary group, and O(oo) is the
subgroup of U(oo) consisting of the operators that leave V4 invariant.

A4. (0(200),U(00)), @ =1, =0, ¥ = HR®, and D = Ty 5. The complex structure
is introduced via the operator I (it is also A o).

B. Complementary series. Let s €R, s #0, ~-1 < s+a < L,.(, =" "_
D= Ta,a- ‘

Bl. (GL(00,C),U(c0)) and ¥ = H,; - -

B2. (GL(00,R),0(c0)), @ =0, and ¥ = HE,

B3. (Sp(200,R),U(0)), a=0,s=1, and ¥ = _IT(?; the form (-, -); is regularized as

. 2n  pom -
(o= [ [ imlsin (2522) 1100 00 dos dis

The complex structure is introduced by the operator I, the invariant symplectic form is
{f,9}=(If,gh. 0 g
B3'. (Sp(200,R),U(c0)), @ =0, 8 = —1, ¥ = AF, and (f,g)_; = (f,I¢')o. The rest
is analogous; see [9]. :
C. Indefinite series. Let s € R, let (for simplicity) s > 0 and %(s ta+1)¢Z, and
let (,-) = (-,)s and D =Ty 4. :
- CL. (GL(00,C),U(p,0)), -1 < st a—-2p< 1, and ¥ = Hy;
C2. (GL(200,C),U(o0, 00)), remaining (a, s), and ¥ = Hy; P MLa
C3. (GL(o0,R),0(p,)), a =0, ¥ = HF,and -1<s—2p<1l. .. - AR
C4. (GL(200,R),0(00,0)), @ =1, and ¥ = HE, : ' & ~
D. One more series. Let is € R, and D =Ty, (%) = (+ -Jo. _
D1. (U(200), U(00) xU(0o0)) and ¥ = H,; let Hy, = HY @ H , where H (respectively
H;') is spanned by the vy o with k > 0 (respectively, with k < 0). The group U(o0) x
U(co) is the group of unitary operators that preserve the decomposition H, = HieH,.
D2. (O(200),U(00)), & =1, and s = 0. See A4. - ' o
D3. (O(200 +1),U(00)), @ = 0, s = 0, and ¥. = HF. The complex structure on
the subspace Hy C HJ is introduced via the operator 1. The group U(oo) consists of

the operators orthogonal in HGt that preserve the subspace ng and are unitary on Hf
(communicated to the author by R. S. Ismagilov).

5. Construction of the unitary representations of Diff~. In the case of series
A, B, and D it is sufficient to restrict to the Ol'shanskil representations of (G, K)-pairs to
Diff™. In case D3 we first need to imbed (O(200+ 1), U(00)) into (O(200+2), U(co+1)).
In the case of series C we obtdin (G, K)-pairs that are not natural in the sense of [2].
For C1 and C3 it should be noted that

(GL(00, C), U(p, )) = (GL(00, C), U(00)),
(GL(00, R), O(p, 20)) = (GL(00, R), O(00))

’
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(GL(200, C), U(o0) x U(cc)) and  (GL(200, R), O(o0) x ‘O(oor)).
Then we apply [2]. ‘

6. Restrictions of the representations of §6 to & = SLy'(R). In the case of
series A and B it has the form T = R @ Q, where R is an infinite-fold direct integral
over the principal and discrete series, and Q is a finite direct sum which can contain a
one-dimensional representation, representations of the principal or complementary series
(and sometimes representations of the analytic continuation of the “discrete” series). In
the case of embeddings of types A and B the subgroup 8 C Diff™ is imbedded in the
subgroup K C (G, K). Then the problem is reduced to the problem of the decomposition
of tensors over unitary representations of SLy' (R).

7. Proof of almost invariance. For series A it suffices to verify that the integral
operator Ty,s(9)Aq,s — Aa,sTa,—s(q) has a bounded kernel. In the case of series D it
is necessary to check the same thing for the operators To,s(q) P+ — PLT, 5(q), where
Py are the projection operators onto H;b. In the case of series B, we calculate the
form (K f,9) = (T3 o(¢)Ta,s(q) — E)f,g)s. Further, using (4) we estimate the Fourier
coefficients of K and show that it is a Hilbert-Schmidt operator in the metric (-,-),. For
the series C the proof is obtained by combining the arguments for B and D.

8. A. For some values of (e, s) different constructions of the list of §4 can be used.
For example, for @ = 1 and s = 0 the group Diff™ can be imbedded in each of the groups

(U(200) x U(200), U(200)) > (U(200),8p(c0)) > (O(200), (00)).

On the level of the representations of §5 reduction of the pair (G, K) leads to the ex-
traction of the tensor square root of the representation (in the sense of p = 4 ® u or
p=p® p*, see also (2], 6], and [13)).

B. The highest weight representations of Diff™ can be obtained from the imbeddings
A4, B3, B, and D1-D3. These are discussed in [7]; see also [9] and [10]; a p-adic version
of the present paper is contained in (8], and some nonunitary analogues can be found in
(15].

The author expresses his thanks to G. I. Ol'shanskii, R. S. Ismagilov, A. A. Kirillov,
and A. V. Karabegov for discussions on this topic.
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