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ON COMBINATORIAL ANALOGS OF THE GROUP
OF DIFFEOMORPHISMS OF THE CIRCLE
UDC 519.46

YU. A. NERETIN

ABSTRACT. The goal of this article is to construct and study groups which, from the
point of view of the theory of representations, should resemble the group of diffeo-
morphisms of the circle. The first type of such groups are the diffeomorphism groups
of p-adic projective lines. The second type are groups consisting of diffeomorphisms
(satisfying certain conditions) of the absolutes of Bruhat-Tits trees; they can be re-
garded as precisely the diffeomorphism groups of Cantor perfect sets. Several series
of unitary representations of these groups are constructed, including the analogs of
highest-weight representations.

From the point of view of the theory of representations, the group Diff of dif-
feomorphisms of the circle is an object that is very important and very unusual.
Moreover, Diff is an object that is highly complex. (For example, at present it re-
mains practically the only large (=infinite-dimensional) group for which mantles and
trains [18] still have not been constructed.) The desire to generalize it is completely
natural (if only to obtain an additional way of looking at the group itself), and this
desire is evidently shared by the majority of people who have dealt with large groups.
However, although the group itself (or its Lie algebra) is included in various series,
the theory of representations of Diff turns out to be unique in its own way. This
statement is not exactly precise: there are several series of groups with a similar
theory of representations, but these groups are more likely different manifestations
of Diff than different essences. This was first studied a lot (see [17], [21], and [13])
in semidirect products of Diff and loop groups, as well as the combinatorial analog
of Diff discussed here and the group of almost periodic diffecomorphisms of the line
recently investigated by Ismagilov [5].

The combinatorial analogs Diff(4,) of the group of diffeomorphisms of the circle
were constructed by the author in 1983 (see [10]). In the same place it was shown
that the constructions of the representations of Diff connected with almost invariant
structures (see [8], [9], [12], [13], and [19]) can be partially carried over to Diff(4,).

Evidently, our groups are somehow connected with “non-Archimedean field the-
ory” (references can be found in [24]).

I thank G. I. Ol'shanskii for discussing this subject.

§1. CLASSICAL GROUPS

This section contains a summary of the necessary results on infinite-dimensional
classical groups. For more details on representations of (G, K)-pairs see [15] and
[20], and on the spinor representation of (O(2c0, C), GL(cc, C)) see [12].

1.1. (G, K)-pairs. We denote by U(oo) the full unitary group of Hilbert space, by
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O(o0)) , we obtain a series of unitary representations of (U(oo), O(o0)) that depends
on s.

There also exists a series of imbeddings of (U(o0), O(00)) into (O(4o0), U(200))
(see [20]), but its construction is somewhat more complicated.

1.5 Thegroups (U(200), U(oo)x U(o0)) and (GL(200, C), GL(c0, C) x GL(00, C)).
Let H be a Hilbert space. The group

GL, = (GL(2x, C), GL(00, C) x GL(c0, C))
consists of bounded invertible operators in H @ H representable in the form

(g g)((l 1)+T), where 4, B € GL(, C)

(i.e., 4 and B are bounded operators in H), and T is a Hilbert-Schmidt operator.
Its subgroup (U(200), U(oc) x U(oo)) consists of unitary operators that belong to
GL .

We construct an imbedding of GL,, into (O(4c0, C), GL(200, C)) by the for-

mula
V[(A B)}__ 0 1 (CD) 01
C D)|™ 10 (A B)_l 10
1 ¢D |

Restricting the spinor representation of (O(4o0, C), GL(200, C)) to GL,,, we
obtain a holomorphic representation of GL., (it splits into a countable sum of
irreducible ones).

The same formula (1.1) defines an imbedding of (U(200), U(oo) x U(cc) into
(O(400), U(200)). Restricting the spinor representation of (O(4c0), U(200)) to
(U(200), U(o0) x U(o0)), we obtain a unitary representation of (U(200, U(co) x
U(o0)).

§2. THE p-ADIC ANALOG OF THE GROUP
OF DIFFEOMORPHISMS OF THE CIRCLE

Let Q, be the p-adic number field, Q; its multiplicative group, Z, the ring of
p-adic integers, and F, the field of p elements. We endow Q, with the canonical
Haar metric du(z) so that the measure of Z, is equal to 1. We denote by Q,P!
the p-adic projective line and by An, the group of analytic diffeomorphisms of Q.

2.1. Complementary series of unitary representations of SL,(Q,). Let 0 <s < 1.
Let H; be the space of real functions on Q, with scalar product

(f,g)=/(;/Q|zl—zZIS“f(zl)g(zz)dzldzz.

The unitary representations 7 of the group SL,(Q,) of the complementary series
are realized in the space H; by the formula (see [4])

a B _ az+ B o
@.1) 7.((5 §))r@=r (L) e v o,
2.2. Imbeddings of An, in (GL(co, R), O(cc)). We extend the representation

(2.1) of the group SL,(Q,) to the group An,. Let g € An,. Then
Ti(q)f(z) = f(q(2))|q'(z)|"+9/2,

The operators 7;(g) no longer need to be orthogonal. However, the following
theorem is valid:
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imbedded into the affine symplectic group, and we obtain the possibility of restricting
the Weyl representation to An, . This affine action is defined by the formula

f(z) = fla(2))g' () +4(l4'(2)] - 1).

2.4. The even fundamental series of representations of SL,(Q,). Let x be a unitary
character of the group SLy(Q,) (i.e., a homomorphism of Q} into the group of
complex numbers equal to 1 in absolute value). The representations T, of the even
fundamental series are realized in the space L,(Q,) by the formula

1 (3 §) 5@ =r (S5 wz+ oz ol

yz+4
The representation 7, is equivalent to T,-: . The operator that intertwines 7, and
T,-: is defined by

_ f(z)dz def . f(z)dz
Ay f(2) —/ = 2%/

o 17— ulx*(z = u) o [z — U=tz —w)

But the representation 7, is complex-conjugate to T, ; thatis, T, is equivalent
to its conjugate. Hence, T, has either real or quaternionic type ([6], §7). Consider
the real-linear operator [, that intertwines 7, with itself:

1L f(2) = 4, f(2).
A direct calculation shows that I, 2 — AE, where A > 0. (For the calculation it is
useful to carry out a Fourier transform all the necessary calculations are contained
in [4], 11.3.3.) It follows that T, has real type (if A < 0, then we would have
quaternionic type). Thus, L?(Q,, C) contains two real SL,(Q,)-invariant spaces
V, and V_:
Vi = {v e L Ly =+Viv}.
Multiplication by i interchanges these subspaces.
In particular, L? is the complexification of ¥, , and so we can define the subgroup
(U(o0), O(o0)) in U(oo) (see §1.4).
Suppose that the group An, acts in L2(Qp) by unitary operators accordmg to the
formula
Ty(9)f(2) = fla(z))x(q'(2))lg'(2)|'/2.
Theorem 2.2. T,(q) € (U(c0), O(oc0)).
The theorem is a consequence of the following lemma.

Lemma 2.2. The operator Ay(q) = I;Ty(q) — T,-:(q)I, has finite rank.

Proof. We have

Ay(a)f () = f@@)lg' ) 2xw'(2)dz [ f(2)dz- x~' (o' (w)lp' (w)]'/?
|z —ulx*(z - u) lz—pW)x*(z—pw)

Making the change of variable z = p(w) in the second integral, we obtain

Ay(@)f(u) = / To@)p' (w)lx(p'(w))
§ [ 1 1P @) R @)l P 0 ) W)
lw — u|x—2(w — u) Ip(w) — p(w)|x—2(p(w) — p(u)) ’

The expression is square brackets is locally constant and equal to 0 in a neighborhood
of the diagonal. This proves the lemma.
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(c) Each sphere B can be canonically represented as a union of pairwise disjoint
spheres By, ..., B, (we shall say that the B; are a canonical partition of B).

(d) If B; D B, D --- is a sequence of imbedded spheres (Bj; # Bj), then ) B;
consists of exactly one point.

We call a homeomorphism g of a sphere B into a sphere C proper if q carries
subspheres into subspheres and canonical partitions into canonical partitions.

We call a homeomorphism r of a spheroid M into a spheroid N a spheromor-
phism if there exists a partition of N into subspheres N =|JR; such that r(R;) is
a sphere for all R; and r is a proper sphere homeomorphism R; — r(R;).

Remark [3). Let M be a spheroid and M = P,U---UPy a covering of M by pairwise
disjoint spheres. Let d be the remainder of the division of N by n—1. Then d
does not depend on the partition and is the (unique) invariant of the spheroid under
spheromorphisms.

Example. The Cantor set is endowed with a spheroid structure in the obvious way.

Another example of a spheroid is the absolute A4, of the Bruhat-Tits tree J,
(spheres are what were called cells above). This example is universal; to wit, any
spheroid can be spheromorphically imbedded into 4, .

Proposition 3.1. Any analytic transformation q € An, is a spheromorphism A, ~
Q,F.

Proof. The assertion is local and, by virtue of the action of SL,(Q,), without loss of
generality we can restrict ourselves to a mapping of a sphere of the form |z —a| < p¥
into a sphere of the form |z — b| < p". Thus, suppose that in a neighborhood of the
point a the mapping has the form

gz)=c+ci(z—a)+c(z-a)l+---.

We take a neighborhood B = {z: |z —a| < 1/p¥} so small that the series converges
in it and |¢'(z) — ¢;] < ¢;. Then g is a proper homeomorphism of the sphere B
onto the sphere {z: |z — ¢y| <|c;|/p"} . This proves the assertion.

3.5. The group Diff(4,). We define the group Diff(4,) as the spheromorphism
group of the absolute A4, of the tree J,. Let us define this group without using the
word “spheromorphism”.

We take some edge of the tree J,, and cut it in the middle. Then the tree splits into
two sets, which we shall call branches. To each branch L there naturally corresponds
a subset A; of the absolute, namely, those points to which one can go by moving
along paths that lie in this branch (more accurately: A4; consists of equivalence
classes of the paths that lie in this branch). We call a set of branches L,, ..., L;
such that the L; are pairwise disjoint and the sets A L, cover the entire absolute a
broom.

Let Ly,..., L, and Li, ..., L; betwo broomsin J,. Let ¢ be a permutation
of the set {1,...,k}. We map each branch L; isomorphically onto the branch
L;( - This set of mappings induces a homeomorphism of the absolute. The group
Diff(A4,) consists of all of the homeomorphisms absolute that can be obtained in this
way.

3.6. Canonical measure on the absolute. We fix some point oo of the absolute
A, . In the set of vertices of the tree J, we introduce a function A with values in
Z that satisfies the following condition: if a,, a;, ... is a path that leads to oo,
then A(ajy1) = h(a;) + 1. Naturally, this function is unique up to the addition of a
constant.
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4.1. The p-adic Hilbert transform. Let z € Q}, z = axp* + a1 p**! + -, where
a, # 0. We set

sgn(z) = (ax/p).
We define the Hilbert transform in L2(Q,) by
sgn(z — u)f(u)du
1) = /

|z — u|

If f is a finite function that takes only a finite number of values, then this integral
is well defined in the sense of principal value:

p.v. / 9(z)dz % lim f(2)dz.

Q N=oo Jiz|>1/p¥

In addition, a direct calculation shows that (If, Ig) = (f, g) for any compactly
supported functions f and g taking only a finite number of values. Hence, I can
be uniquely extended to a unitary operator in L?(Q,).

It is not complicated to check that /2 = —1. This can be checked directly, but it
is more elegant to carry out a Fourier transform % in L%(Q,):

(FL1F ") f(u) = isgn(u) f(u).

In particular, we see that the operator I has two proper subspaces V, and V_,
where V. consists of functions whose Fourier transform has support in the set

Q; ={zQj: sgnz = +1}.

4.2. The group An* This group consists of analytic transformations of Q,P!
such that sgng’(x) =1 for all x. If desired, we can interpret An as the group of

orientation-preserving dlﬂ'eomorphxsms
We note that PSL,(Q,) C An

4.3. Imbeddings of An, in GL, and in (U(200), U(o0) x U(c0)). Let x be a
homeomorphism of Qj into C*. We define the representation 7,(g) of the group
An} in LY(Q,):
Ty (@)f (x) = flg(x))x(q'(x))lg'(x)].
In L?(Q,) we distinguished the two subspaces V, and V_. The group GLo =
(GL(200, C), GL(00, C) x GL(cc, C)) consists of operators that “almost preserve
V.7 (see §1.5).

Theorem 4.1. (a) Ty(q) € GL .

() If |x| = 1, then Ty(q) € (U(200), U(o0) x U(o0)).
Proof. Assertion (b) follows from (a), and (a) is a consequence of the following
lemma.
Lemma 4.1. [T,(q), I] has finite rank.
Proof. We have
S@(2)g'(2)|'*x(q'(2))dz

|z — u|sgn(z — u)

[ S@lg W) (W) dz

Q |z —aq(u)|sgn(z —q(u)) -

(ITy(q) = Ty(D) f(u) =

P
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We require that this mapping lie in the group PSL,(F,) (to emphasize the point,
it must lie in PSLy(F,), not just in PGL;(F,)(!)).

4.6. The combinatorial Hilbert transform. We fix the point co on the absolute
A, of the tree J,. Let v be a vertex of the tree. Then among the p + 1 edges
that go to v the edge /., is selected, namely, the one that is directed toward the
side of the point oo € 4,. Let Iy, ..., /,_; be the remaining edges that go to v.
The elements of the set ly, /i, ..., [,_;, I are in bijective correspondence with the
points of the projective line F,P'. Without loss of generality we can assume that
[; corresponds to a point j € F,. Then the remaining edges ly, ..., /[,_; are in
bijective correspondence with the points of the affine projective line F}, . Without
loss of generality we can assume that /; corresponds to a point j € F,. Let i # j.
We set
sgn(li, 1j) = ((i = j)/p)

Remark. It is important to emphasize that the right-hand side of the equality is
invariant with respect to the subgroup B C SL,(F,)—the stabilizer of the point oo
in F,P'. Indeed, the group B consists of transformations of the projective line of
the form j — a?j+c.

Let h(v), n(z1, z2),and p(z,, z;) be the same as in §3.6. For two distinct points
z) and z; (z; # oo) of the absolute we also define the quantity sgn(z,, z;) = +1.
To do so, we join z; and z; by apath ...,a_{, a, a;, ... leading from z, to
z. Let a; be the vertex at which the maximum of the function A(a;) is attained.
Let /; be the edge [a;, a;_;] and /, the edge [a;, a;;1]. Then

sgn(zy, z2): =sgn(l;, b).
We define the Hilbert transform in L2(4,) by the formula
sgn(z, u)
I1f(z) = l/ ——— f(u)du,
f2) =2 [ ST
where A is chosen from the condition 72 = —1.

Remark. Here we need to use all of the words that we used in §4.1. The integral in
the sense of principal value is understood as

55 /A flw)du = lim Faidn,

k—o0 J4,\B,

where By is a sequence of spheres, containing ug, such that By = ug.
If we identify A, with Q,P', then our Hilbert transform coincides with the
Hilbert transform in §4.1.

4.7. Imbeddings of Diff*(J,) in GLo, andin (U(200, U(c0)x U(co)). Let a€C.
We define the action of Diff"(J,) in L2(4,) by

To(9)f(2) = f(q(2))ld'(2)|'/*+ .
Theorem 4.2. (a) 7,(q) € GL.
(b) If a €R, then T,(g) € (U(2x0), U(oo) x U(0)).

The proof coincides with that of Theorem 4.1.
Naturally, having such imbeddings, we have representations of the group Diff* (Jp)
as well.
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