N. Dimitrova, S. Markov:
Über die Intervallarithmetische Berechnung des Wertebereichs einer Funktion mit Anwendungen

Li-Qun Qi:
An Interval Test Using the New Krawczyk Operator

J. Rokne:
Optimal Computation of the Bernstein Algorithm for the Bound of an Interval Polynomial

G. Schröder:
Zur Bedeutung der additiven Kürzungsregel in der Intervallrechnung und in quasilinearen Räumen

Herausgeber: Karl Nickel
Institut für Angewandte Mathematik
Universität Freiburg i. Br.
Hermann-Herder-Straße 10
D-7800 Freiburg i. Br.
West Germany
Telefon (0761) 203 3062
Zusammenfassung - Abstract

In der vorliegenden Arbeit wird ein Satz zur intervallarithmetischen Berechnung des Wertebereichs

\[\{ f(x_1, x_2, \ldots, x_n) : x_1 \in X_1, x_2 \in X_2, \ldots, x_n \in X_n \} \]

einer monotonen Funktion auf \(X_1 \times X_2 \times \ldots \times X_n \) formuliert und nachgewiesen, wobei \(X_1, X_2, \ldots, X_n \) reelle kompakte Intervalle sind. Es wird eine Anwendung dieses Satzes auf die Bestimmung der Nullstellens von quadratischen Gleichungen mit ungenauen Koeffizienten gemacht.

A theorem allowing for the interval arithmetic computation of sets of the form

\[\{ f(x_1, x_2, \ldots, x_n) : x_1 \in X_1, x_2 \in X_2, \ldots, x_n \in X_n \} \]

where \(X_1, X_2, \ldots, X_n \) are closed intervals, and \(f \) is monoton.

* Herrn Professor Dr. R. Krawczyk zu seinem 60. Geburtstag gewidmet.
in $X_1 \times X_2 \times \ldots \times X_n$ is formulated and proved in this paper. The
application of this theorem is illustrated on the determination of the set of zeros of a quadratic equation with uncertain
coefficients.

1. Einleitung

Die Berechnung des Wertebereiches einer Funktion f von n
Veränderlichen

$$F(X_1, X_2, \ldots, X_n) = \{ f(x_1, x_2, \ldots, x_n) : x_1 \in X_1, x_2 \in X_2, \ldots, x_n \in X_n \}$$

wobei X_1, X_2, \ldots, X_n reelle Intervalle sind, ist von großer
Bedeutung für die Entwicklung numerischer Algorithmen, die un-
genau Daten verarbeiten und Rundungsfehler beachten. Eines
der großen Verdienste der Intervallrechnung besteht darin, daß
sie Abschätzungen für F liefert und manchmal auch genaue Dar-
stellungen von F ermöglicht (vgl. [1], [3], [5]). Leider ist die
genaue intervallarithmetische Berechnung von F nur in sehr be-
schränkten Fällen möglich, z.B. wenn f eine rationale Funktion
ist und jede Variable im Funktionsausdruck nur einmal und in
der ersten Potenz auftritt (vgl. [5]).

Im allgemeinen gestatten die bis jetzt bekannten intervil-
lararithmetischen Methoden die Bestimmung nur äußerer (vgl. [1], [6])
oder innerer Einschließungen zu $F^s(a, [2])$.

Die in dieser Arbeit vorgeschlagene Intervallarithmetik
ermöglicht die genaue Darstellung und Berechnung von F^s für
eine breite Funktionenklasse - die Klasse der monotonen Funk-
tionen von n Veränderlichen, die von Nickel in [6] untersucht
sind. Der in dieser Arbeit formulierter Intervallweiterungs-
satz ist eine Verallgemeinerung der eindimensionalen Sätze
in [3]. Die Autoren hoffen, daß dieser Satz vielfache Anwendung
auf die Entwicklung von intervallarithmetischen Algorith-
men finden wird.

2. Intervallarithmetik

Es sei R der Körper der reellen Zahlen. Die Menge der ab-
geschlossenen reellen Intervalle der Gestalt $A = [a_1, a_2]$, $a_1 \leq a_2$
wird mit $I(R)$ bezeichnet. Wir führen die folgenden Mengen ein:

$$I^r(R) = \{ [a_1, a_2] : a_1 \cdot a_2 > 0 \};$$

$$I^o(R) = \{ [a_1, a_2] : a_1 \cdot a_2 = 0 \};$$

$$I_s(R) = \{ [a_1, a_2] : a_1 = -a_2 \};$$

$$I_d(R) = I_s(R) \cup I^o(R).$$

Für ein Intervall $A = [a_1, a_2] \in I(R)$ heißt $w(A) = a_2 - a_1$ die
Länge von A und $\varphi(A) = (a_1 + a_2)/2$ - der Mittelpunkt von A.

Mit $[a, b]$ bezeichnen wir ein Intervall mit Schranken
$a, b \in R$, wobei nicht notwendig $a \leq b$ ist. Für die Schranken
eines Intervales $A \in I(R) \cap I_s(R)$ führen wir noch die Bezeich-
nungen a_μ und a_ν ein. Dabei kennzeichnet a_μ jene Ecke von A,
die näher bei 0 liegt und a_ν die andere, also

$$[a_\mu, a_\nu] \text{ falls } \varphi(A) > 0;$$

$$[a_\nu, a_\mu] \text{ falls } \varphi(A) < 0.$$

oder $[a_1, a_2] = [a_\mu, a_\nu]$.

Die Zahl

$$\sigma(A) = \begin{cases} 1 & \text{falls } \varphi(A) > 0, \\ -1 & \text{falls } \varphi(A) < 0 \end{cases}$$

hat folgende Bedeutung:

- $\sigma(A) = 1$ bedeutet, daß die Schranken von A der gleichen Seite von 0 liegen und A in $I^o(R)$ liegt.
- $\sigma(A) = -1$ bedeutet, daß die Schranken von A der verschiedenen Seiten von 0 liegen und A in $I_s(R)$ liegt.

Diese Definition ist für $\varphi(A) = 0$ nicht eindeutig, da es u. a. auch $[0, 0]$ gibt.
wird das Vorzeichen von \(A \in \mathbb{I}(R) \setminus \mathbb{I}_{g}(R) \) genannt.

Es seien \(A, B \in \mathbb{I}(R), A = [(a_1, a_2)], B = [(b_1, b_2)] \). In dieser Arbeit benutzen wir die folgenden Intervallverknüpfungen (vgl. etwa [3]):

\[
\begin{align*}
A \times B &= [(a_1 + b_1, a_2 + b_2)], \\
A - B &= [(a_1 - b_2, a_2 - b_2)], \\
AB &= \left([(a_1 b_2) \vee (a_2 b_1)] \text{ fällt } A, B \in \mathbb{I}(R) \setminus \mathbb{I}_{g}(R), \right. \\
&\quad (a_1 b_1, a_2 b_2) \text{ fällt } A, B \in \mathbb{I}_g(R); \\
A / B &= \left([(a_2 / b_1, a_2 / b_2)] \text{ fällt } A \in \mathbb{I}(R) \setminus \mathbb{I}_{g}(R), \right. \\
&\quad (b_2 / a_1, b_2 / a_2) \text{ fällt } B \in \mathbb{I}_g(R). \\
\end{align*}
\]

Im Spezialfall \(A = [a, a] \), \(a \in R \) erhält man

\[
\begin{align*}
dB &= \left([(a b_2) \vee (a b_2)] \text{ fällt } B \in \mathbb{I}(R) \setminus \mathbb{I}_{g}(R), \right. \\
&\quad [(a b_1) \vee (a b_2)] \text{ fällt } B \in \mathbb{I}_g(R); \right.
\end{align*}
\]

\[
\begin{align*}
dB &= \left([(a / b_1) \vee (a / b_2)] \text{ fällt } B \in \mathbb{I}(R) \setminus \mathbb{I}_{g}(R), \right. \\
&\quad [(b_2 / a_1, b_2 / a_2) \text{ fällt } B \in \mathbb{I}_g(R). \\
\right.
\end{align*}
\]

Zur Abkürzung führen wir die folgenden Bezeichnungen ein:

\[
\begin{align*}
-B &= (-1)B, \\
A \odot B &= A \cdot (-B), \\
A \odot B &= A - (-B); \\
A \odot B &= A / (1/B).
\end{align*}
\]

Aus [4] entnehmen wir die folgenden Relationen, die im folgenden oft benutzt werden:

Lemmas.

Es seien \(\alpha, \beta, \varphi, \psi \in R \). Dann gelten die Beziehungen:

\[
\begin{align*}
a) \left[(\alpha + \beta) \vee (\varphi + \psi) \right] &= \begin{cases} \\
[\alpha \vee \varphi] + [\beta \vee \psi] & \text{fällt } (\alpha - \varphi)(\beta - \psi) \geq 0, \\
[\alpha \vee \varphi] \odot [\beta \vee \psi] & \text{andernfalls}; \end{cases}
\end{align*}
\]

b) \(\left[(\alpha \cdot \beta) \vee (\varphi \cdot \psi) \right] = \begin{cases} \\
[\alpha \vee \varphi] \cdot [\beta \vee \psi] & \text{fällt } (\alpha - \varphi)(\beta - \psi) \geq 0, \\
[\alpha \vee \varphi] \odot [\beta \vee \psi] & \text{andernfalls}. \end{cases} \)

Analoges gilt für die Multiplikation und Division:

Lemmas 2. Für \(\alpha, \beta, \varphi, \psi \in R \) gelten die Relationen:

\[
\begin{align*}
a) \left[(\alpha \cdot \beta) \vee (\varphi \cdot \psi) \right] &= \begin{cases} \\
[\alpha \vee \varphi] \cdot [\beta \vee \psi] & \text{fällt } (\alpha - \varphi)(\beta - \psi) \geq 0, \\
[\alpha \vee \varphi] \odot [\beta \vee \psi] & \text{andernfalls}; \end{cases}
\end{align*}
\]

\[
\begin{align*}
b) \left[(\alpha / \beta) \vee (\varphi / \psi) \right] &= \begin{cases} \\
[\alpha \vee \varphi] / [\beta \vee \psi] & \text{fällt } (\alpha - \varphi)(\beta - \psi) \geq 0, \\
[\alpha \vee \varphi] \odot [\beta \vee \psi] & \text{andernfalls}. \end{cases}
\end{align*}
\]

3. Der Hauptsatz

Man betrachte \(R^n \) mit der üblichen (komponentenweisen) Ordnungsrelation \(\leq \). Es sei \(D \subset R^n \). Mit \(I(D) \) bezeichne man die Menge aller Intervalle auf \(D \), d.h.

\[
X \in I(D) \iff X = [x, x] = \{ [x_1, x_1] \}_{i=1}^n.
\]

Es sei weiter \(f : D \longrightarrow R \) eine Funktion aus \(D \in R \).

Definition 1. Die Funktion \(f : D \longrightarrow R \) wird unbedingt partiell isoton (antiton) auf \(D \) genannt, wenn \(f \) stets isoton (antiton) bezüglich \(x_i \) für alle Punkte \(x = (x_1, x_2, \ldots, x_n) \in D \) ist.

In den beiden Fällen wird \(f \) unbedingt partiell monoton genannt.

Definition 2. Die Funktion \(f : D \longrightarrow R \) wird unbedingt monoton auf \(D \) genannt, wenn \(f \) unbedingt partiell monoton bezüglich \(x_i \) für alle \(x = (x_1, x_2, \ldots, x_n) \in D \) ist.
Es sei \(\mathcal{M}_0 = \mathcal{M}_0(D) \) die Menge der auf \(D \) unbedingt monotonen Funktionen. Zu jeder Funktion \(f \in \mathcal{M}_0 \) gibt es zwei zugehörige Indexmengen \(I, J = \{ 1, 2, \ldots, n \} \cup \emptyset \) mit \(I \cap J = \emptyset \) und \(I \cup J = \{ 1, 2, \ldots, n \} \). Derart, daß \(f \) unbedingt partiell isoton ist bezüglich der Variablen \(x_i \) mit \(i \in I \) und \(f \) unbedingt partiell antitton ist bezüglich der Variablen \(x_i \) mit \(i \in J \).

Es sei \(X = [x, \bar{x}] \in \mathcal{I}(D) \). Man definiere die reellen Vektoren \(u(f;x) = (u_1, u_2, \ldots, u_n) \) und \(v(f;x) = (v_1, v_2, \ldots, v_n) \) mit

\[
\begin{align*}
 u_i &= \begin{cases}
 x_i & \text{für } i \in I, \\
 \bar{x}_i & \text{für } i \in J;
 \end{cases} \\
 v_i &= \begin{cases}
 x_i & \text{für } i \in J, \\
 \bar{x}_i & \text{für } i \in I.
 \end{cases}
\end{align*}
\]

(1)

Dann heißt die Funktion \(F : \mathcal{I}(D) \to \mathcal{I}(R) \) mit

\[
F(X) = \left[f(u(f;x)), f(v(f;x)) \right]
\]

(2)
die natürliche Intervallweiterung zu \(f \) auf \(D \) (s. [6]).

Sei \(f \in \mathcal{M}_0 \) noch statisch, dann gilt

\[
\left\{ f(x) : x \in X \right\} = \left[\min f(x), \max f(x) \right] = F(X)
\]

(3)
zu jedem Intervall \(X \in \mathcal{I}(D) \).

Es wird nun die Frage gestellt, zu zwei Funktionen \(f \) und \(g \), deren natürlichen Intervallweiterungen bekannt sind, die natürliche Intervallweiterung ihrer Summe \(f + g \), ihrer Differenz \(f - g \), ihres Produktes \(f \cdot g \) und ihres Quotienten \(f/g \) zu bestimmen. Das Problem wird für \(f, g \in \mathcal{M}_0 \) untersucht.

Es seien \(f, g \in \mathcal{M}_0 \) und \(h = f + g \) gehöre auch zu \(\mathcal{M}_0 \). Zu \(h \) definiere man die zugehörigen Indexmengen \(I \) und \(J \), wie auch die

zu jedem Intervall \(X \in \mathcal{I}(D) \) zugeordneten reellen Vektoren \(u(h;x) \) und \(v(h;x) \). Weiter bezeichne man mit \(C \) die konvexe Hülle von \(u(h;x) \) und \(v(h;x) \), d.h.

\[
C = \text{co} \left\{ u(h;x), v(h;x) \right\}
\]

(4)

Offensichtlich gilt \(C \subseteq X \) zu jedem \(X \in \mathcal{I}(D) \).

Wir betrachten die Funktionen \(f \) und \(g \) auf \(C \) und mit \(F(C) \) bzw. \(G(C) \) bezeichnen wir die natürliche Intervallweiterung zu \(f \) bzw. \(g \) auf \(C \). Man sieht gleich, daß

\[
\begin{align*}
 F(C) &= \left[f(u(h;x)) \vee f(v(h;x)) \right], \\
 G(C) &= \left[g(u(h;x)) \vee g(v(h;x)) \right]
\end{align*}
\]

(5)

ist. Es werden weiter die folgenden Größen eingeführt:

\[
\begin{align*}
 d(F(C)) &= f(u(h;x)) - f(v(h;x)), \\
 r(F(C)) &= |f(u(h;x))| - |f(v(h;x))|
\end{align*}
\]

Satz 1. a) Es seien \(f, g, h = f + g \in \mathcal{M}_0 \). Dann gilt für die natürliche Intervallweiterung \(H \) zu \(h \):

\[
H(X) = \begin{cases}
 F(C) + G(C) \text{ fällt } d(F(C)) \cdot d(G(C)) \geq 0, \\
 F(C) \boxplus G(C) \text{ andernfalls},
\end{cases}
\]

wobei \(X \in \mathcal{I}(D) \) und \(C \) nach (4) definiert ist.

b) Es seien \(f, g, h = f - g \in \mathcal{M}_0 \). Dann gilt für die natürliche Intervallweiterung \(H \) zu \(h \):

\[
H(X) = \begin{cases}
 F(C) - G(C) \text{ fällt } d(F(C)) \cdot d(G(C)) \geq 0, \\
 F(C) \boxplus G(C) \text{ andernfalls},
\end{cases}
\]

wobei \(X \in \mathcal{I}(D) \) und \(C = \text{co} \left\{ u(h;x), v(h;x) \right\} \).
c) Seien $|f|, |g|, h = f \cdot g \in \mathscr{M}_o$, so gilt für die natürliche Intervallverweiterung H zu h:

$$H(x) = \begin{cases} F(C)G(C) & \text{falls } r(F(C)) \cdot r(G(C)) \geq 0, \\ F(C) \odot G(C) & \text{anderfalls}, \end{cases}$$

wobei $x \in I(D)$ und $C = \{u(h;x), v(h;x)\}$ ist.

Dann gilt für die natürliche Intervallverweiterung H zu h:

$$H(x) = \begin{cases} F(C) \setminus G(C) & \text{falls } r(F(C)) \cdot r(G(C)) \geq 0, \\ F(C) \setminus G(C) & \text{anderfalls}, \end{cases}$$

wobei $x \in I(D)$ und $C = \{u(h;x), v(h;x)\}$ ist.

Beweis.

Zu a). Aus (2), (5) und Lemma 1a erhält man

$$H(x) = [h(u(h;x)), h(v(h;x))]$$

$$= [f(u(h;x)) + g(u(h;x)), f(v(h;x)) + g(v(h;x))]$$

$$= \left[f(u(h;x)) \cdot g(v(h;x)) \right] + \left[g(u(h;x)) \cdot g(v(h;x)) \right]$$

$$\text{falls } (f(u(h;x)) - f(v(h;x)))(g(u(h;x)) - g(v(h;x))) \geq 0$$

$$= \left[f(u(h;x)) \cdot g(v(h;x)) \right] \odot \left[g(u(h;x)) \cdot g(v(h;x)) \right]$$

$$\text{anderfalls; }$$

$$\{F(C) \setminus G(C) \text{ falls } d(F(C)) \cdot d(G(C)) \geq 0, \\ F(C) \setminus G(C) \text{ andernfalls}.\}$$

Zu b). Der Beweis ergibt sich aus Lemma 1b.

Zu c). Mit Hilfe von Lemma 2a erhält man die Gleichungskette

$$H(x) = [h(u(h;x)), h(v(h;x))]$$

$$= [f(u(h;x)) + g(u(h;x)), f(v(h;x)) + g(v(h;x))]$$

$$= \left[f(u(h;x)) \cdot g(v(h;x)) \right] + \left[g(u(h;x)) \cdot g(v(h;x)) \right]$$

$$\text{falls } (f(u(h;x)) - f(v(h;x)))(g(u(h;x)) - g(v(h;x))) \geq 0$$

$$= \left[f(u(h;x)) \cdot g(v(h;x)) \right] \odot \left[g(u(h;x)) \cdot g(v(h;x)) \right]$$

$$\text{anderfalls; }$$

$$\{F(C) \setminus G(C) \text{ falls } r(F(C)) \cdot r(G(C)) \geq 0, \\ F(C) \setminus G(C) \text{ andernfalls}.\}$$

Zu d). Der Beweis folgt aus Lemma 2b.

Der Satz ist nachgewiesen.

Bemerkungen.

1. Selbstverständlich kann man eine kompakte Formulierung von Satz 1 angeben, in dem man mit "-" eine der vier arithmetischen Operationen \{+, -, \cdot, \div\} bezeichnet. Die vorgeschlagene Formulierung wurde der bequemeren Anwendung halber vorgezogen.

2. Wir nehmen an, $f, g \in \mathscr{M}_o$ seien noch stetig. Dann gelten für $F(C)$ und $G(C)$ mit $C = \{u(h;x), v(h;x)\}$ =

$$\{tu(h;x) + (1-t)v(h;x) : t \in [0, 1] \}$$

$$h = f \cdot g, t \in \{+,-,\cdot,\div\}$$

die Formeln:

$$F(C) = \{f(tu(h;x) + (1-t)v(h;x)) : t \in [0, 1] \}$$

$$G(C) = \{g(tu(h;x) + (1-t)v(h;x)) : t \in [0, 1] \}.$$

Die Größen $d(F(C))$ und $r(F(C))$ werden in diesem Fall in folgender Weise definiert:

$$d(F(C)) = \left\{ f(tu(h;X) + (1-t)v(h;X)) : t = 1 \right\} = \left\{ f(tu(h;X) + (1-t)v(h;X)) : t = 0 \right\};$$

$$r(F(C)) = \left\{ |f(tu(h;X) + (1-t)v(h;X))| : t = 1 \right\} - \left\{ |f(tu(h;X) + (1-t)v(h;X))| : t = 0 \right\}.$$

3. In manchen Fällen staut die natürliche Intervallweiterung $F(C)$ zu f auf C mit der natürlichen Intervallweiterung F zu f auf D überein. Dies ist nämlich der Fall, wenn $u(f;X) = v(h;X)$ oder $u(f;X) = v(h;X)$.

4. Bestimmung der Lösungsmenge reeller quadratischen Gleichungen mit ungenauen Koeffizienten

In diesem Abschnitt wird eine Anwendung von Satz 1 auf die Berechnung der Nullstellen von quadratischen Gleichungen mit ungenauen Koeffizienten gemacht.

Vorgelegt sei die reelle quadratische Gleichung

$$x^2 + px + q = 0,$$

wir nehmen an, die Koeffizienten p und q seien nicht genau, sondern nur innerhalb gewisser Schranken bekannt, d.h. $p \in P$, $q \in Q$, wobei P, Q aus $I(R)$ seien. Gesucht wird die Menge der reellen Nullstellen der Gleichung $x^2 + px + q = 0$, d.h. die Menge

$$\left\{ x : x^2 + px + q = 0 \mid p \in P, q \in Q \right\}.$$

Wir setzen voraus, P und Q seien so gewählt, daß $p^2 - 4q > 0$ ist für beliebige und festgelegte $p \in P$ und $q \in Q$. Mit $x^{(1)}$ und $x^{(2)}$ bezeichnen wir dann die reellen Wurzeln der entsprechenden quadratischen Gleichung:

$$x^{(1)} = x^{(1)}(p, q) = \frac{1}{2}(p + \sqrt{p^2 - 4q}).$$

$$x^{(2)} = x^{(2)}(p, q) = \frac{1}{2}(p - \sqrt{p^2 - 4q}).$$

Die Lösungsmenge (6) zerfällt also in zwei Lösungsintervalle

$$x^{(1)} = x^{(1)}(P, Q) = \left\{ x^{(1)}(p, q) : p \in P, q \in Q \right\},$$

$$x^{(2)} = x^{(2)}(P, Q) = \left\{ x^{(2)}(p, q) : p \in P, q \in Q \right\}.$$

Die Funktionen $x^{(1)}$ und $x^{(2)} : \mathbb{R}^2 \to \mathbb{R}$ sind unbedingt monoton auf $D = P \times Q$ mit $P, Q \in I^+(\mathbb{R})$, d.h. $x^{(1)}$, $x^{(2)} \in M_0$. Da $x^{(1)}$ und $x^{(2)}$ noch stetig sind, so kann man $x^{(1)}$ und $x^{(2)}$ als natürliche Intervallweiterungen zu $x^{(1)}$ und $x^{(2)}$ betrachten.

Es handelt sich also um die Berechnung der natürlichen Intervallweiterungen zu $x^{(1)}$ und $x^{(2)}$.

Für ein Intervall $x = [x_1, x_2] \subseteq I(R)$ mit $x_1 \geq 0$ setzt man

$$\sqrt{x} = \left[\sqrt{x_1}, \sqrt{x_2} \right].$$
Es bedeutet wie üblich $P^2 = PP$.

Satz 2. Es seien $P = [p_1, p_2]$, $Q = [q_1, q_2] \in \mathbb{R}'(R)$ so gewählt, daß $p^2 - 4q > 0$ für alle $p \in P$ und $q \in Q$ ist. Dann gelten für die Lösungsintervalle $x^{(1)}$ und $x^{(2)}$ die folgenden Intervallformeln:

1. $q < 0$.

1.1. $P > 0$.

$$x^{(1)} = \begin{cases} (1/2)(-P + \sqrt{p^2 - 4q}) & \text{fals} \ w(p^2) \leq w(4q), \\ (1/2)(-P \circ \sqrt{p^2 - 4q}) & \text{anderfalls}; \end{cases}$$

$$x^{(2)} = (1/2)(-P \circ \sqrt{p^2 - 4q}).$$

1.2. $P < 0$.

$$x^{(1)} = (1/2)(-P + \sqrt{P^2 - 4q});$$

$$x^{(2)} = \begin{cases} (1/2)(-P \circ \sqrt{p^2 - 4q}) & \text{fals} \ w(p^2) \leq w(4q), \\ (1/2)(-P + \sqrt{p^2 - 4q}) & \text{anderfalls}. \end{cases}$$

2. $q > 0$.

2.1. $P > 0$.

$$x^{(1)} = (1/2)(-P \circ \sqrt{p^2 - 4q});$$

$$x^{(2)} = (1/2)(-P \circ \sqrt{p^2 - 4q}).$$

2.2. $P < 0$.

$$x^{(1)} = (1/2)(-P + \sqrt{P^2 - 4q});$$

$$x^{(2)} = (1/2)(-P \circ \sqrt{P^2 - 4q}).$$

Beweis. Man setze $f(p, q) = -(1/2)p$, $g(p, q) = (1/2)\sqrt{p^2 - 4q}$. Daraus folgt $x^{(1)} = f + g$, $x^{(2)} = f - g$. Weil $f, g, x^{(1)}, x^{(2)}$ unbedingt monoton und stetig sind, so kann man zur Berechnung von $x^{(1)}$ bzw. $x^{(2)}$ (Satz 1, a) bzw. b) und Bemerkung 2 verwenden.

Da nach Voraussetzung $p^2 - 4q > 0$ für alle $p \in P$, $q \in Q$ ist, so existieren dann die partiellen Ableitungen

$$\frac{\partial x^{(i)}}{\partial p}, \quad \frac{\partial x^{(i)}}{\partial q}, \quad i = 1, 2.$$

Man erhält die Ausdrücke

$$\frac{\partial x^{(1)}}{\partial p} = \frac{p - \sqrt{p^2 - 4q}}{2p^2 - 4q} \begin{cases} > 0 & \text{falso} Q > 0, P > 0; \\ < 0 & \text{falso} Q > 0, P < 0; \end{cases}$$

oder $Q < 0$;

$$\frac{\partial x^{(1)}}{\partial q} = \frac{-1}{\sqrt{p^2 - 4q}} < 0.$$
\[
\frac{\partial x^{(2)}}{\partial q} = \frac{1}{\sqrt{p^2 - 4q}} > 0.
\]

Dann werden die reellen Vektoren \(u(x^{(1)}; D), v(x^{(1)}; D), u(x^{(2)}; D), v(x^{(2)}; D)\) in folgender Weise bestimmt:

\[
u(x^{(1)}; D) = \begin{cases}
(p_1, q_2) & \text{falls } Q > 0, P > 0, \\
(p_2, q_2) & \text{falls } Q > 0, P < 0, \\
(p_1, q_1) & \text{falls } Q > 0, P < 0, \text{ oder } Q < 0; \\
(p_2, q_1) & \text{falls } Q < 0, P > 0, \\
(p_1, q_2) & \text{falls } Q > 0, P > 0, \text{ oder } Q < 0; \\
(p_2, q_2) & \text{falls } Q < 0, P < 0, \\
(p_1, q_2) & \text{falls } Q < 0, P > 0, \text{ oder } Q < 0.
\end{cases}
\]

\[
v(x^{(1)}; D) = \begin{cases}
(p_2, q_2) & \text{falls } Q > 0, P > 0, \\
(p_1, q_1) & \text{falls } Q > 0, P < 0, \text{ oder } Q < 0; \\
(p_2, q_1) & \text{falls } Q < 0, P > 0, \\
(p_1, q_2) & \text{falls } Q > 0, P > 0, \text{ oder } Q < 0; \\
(p_2, q_2) & \text{falls } Q < 0, P < 0, \\
(p_1, q_2) & \text{falls } Q < 0, P > 0, \text{ oder } Q < 0.
\end{cases}
\]

Mit \(C_1\) bzw. \(C_2\) bezeichnen wir die konvexe Hülle der Vektoren \(u(x^{(1)}; D), v(x^{(1)}; D)\) bzw. \(u(x^{(2)}; D), v(x^{(2)}; D)\), d.h.

\[
C_1 = \text{co}\left\{u(x^{(1)}; D), v(x^{(1)}; D)\right\}
= \left\{tu(x^{(1)}; D) + (1-t)v(x^{(1)}; D) : t \in [0,1] \right\}.
\]

\[
C_2 = \text{co}\left\{u(x^{(2)}; D), v(x^{(2)}; D)\right\}
= \left\{tu(x^{(2)}; D) + (1-t)v(x^{(2)}; D) : t \in [0,1] \right\}.
\]

Zur Abkürzung wird \(T = [0,1]\) gesetzt.

Wir betrachten die einzelnen Fälle.

Zu 1. Es gelten für \(C_1\) und \(C_2\) die Beziehungen:

\[
C_1 = \text{co}\left\{(p_2, q_2), (p_1, q_1)\right\}
= \left\{t(p_2, q_2) + (1-t)(p_1, q_1) : t \in T \right\}
= \left\{(p, q) : p = p_1 + (p_2 - p_1)t, q = q_1 + (q_2 - q_1)t, t \in T \right\};
\]

\[
C_2 = \text{co}\left\{(p_2, q_2), (p_1, q_2)\right\}
= \left\{t(p_2, q_2) + (1-t)(p_1, q_2) : t \in T \right\}
= \left\{(p, q) : p = p_1 + (p_2 - p_1)t, q = q_2 + (q_2 - q_1)t, t \in T \right\}.
\]

Um Satz 1 anwenden zu können, sollen wir \(F(C_1), G(C_1), F(C_2), G(C_2)\) berechnen (s. Bemerkung 2). Anschließend werden die entsprechenden Berechnungen durchgeführt.

\[
F(C_1) = -(1/2)P;
\]

\[
G(C_1) = \left\{(1/2)\sqrt{p_2^2 - 4q_1} : p = p_1 + (p_2 - p_1)t, q = q_1 + (q_2 - q_1)t, t \in T \right\}
= \left\{(1/2)\sqrt{(p_2 + (p_2 - p_1)t)^2 - 4(q_1 + (q_2 - q_1)t)} : t \in T \right\}.
\]
\[
\begin{align*}
(1/2)\sqrt{(p_1 + (p_2 - p_1)t)^2 - 4(q_1 + (q_2 - q_1)t)} & \quad \text{falle} \ p > 0, \\
(1/2)\sqrt{(p_1 + (p_2 - p_1)t)^2 + 4(q_1 + (q_2 - q_1)t)} & \quad \text{falle} \ p < 0; \\
(1/2)\sqrt{p^2 - 4q} & \quad \text{falle} \ p > 0, \\
(1/2)\sqrt{p^2 + 4q} & \quad \text{falle} \ p < 0.
\end{align*}
\]

\[
\begin{align*}
F(C_2) &= -(1/2)p; \\
G(C_2) &= \left\{ (1/2)\sqrt{p^2 - 4q} : p = p_1 + (p_2 - p_1)t, \right. \\
& \quad \left. q = q_2 + (q_1 - q_2)t, \quad t \in T \right\} \\
&= \left\{ (1/2)\sqrt{(p_1 + (p_2 - p_1)t)^2 - 4(q_2 + (q_1 - q_2)t)} : t \in T \right\} \\
&= \left\{ (1/2)\sqrt{(p_1 + (p_2 - p_1)t)^2 + 4(q_2 + (q_1 - q_2)t)} : t \in T \right\} \\
&= \left\{ (1/2)\sqrt{p^2 - 4q} : p > 0, \\
&\quad (1/2)\sqrt{p^2 + 4q} : p < 0; \\
&= \left\{ (1/2)\sqrt{p^2 - 4q} : p > 0, \\
&\quad (1/2)\sqrt{p^2 + 4q} : p < 0.
\end{align*}
\]

Es sei zunächst \(p > 0 \). Wende man Satz 1a bzw. Satz 1b auf die Funktionen \(x^{(1)} \) bzw. \(x^{(2)} \) an, so erhält man für ihre natürlichen Intervallwerte und \(x^{(1)} \) bzw. \(x^{(2)} \) die Ausdrücke:

\[
\begin{align*}
x^{(1)} &= \left\{ (1/2)(-p + \sqrt{p^2 - 4q}) : \text{falle} \ d(F(C_2))d(G(C_1)) \geq 0, \\
&\quad (1/2)(-p - \sqrt{p^2 - 4q}) : \text{anderfalls}; \\
&= \left\{ (1/2)(-p + \sqrt{p^2 - 4q}) : \text{falle} \ d(G(C_1)) \leq 0, \\
&\quad (1/2)(-p - \sqrt{p^2 - 4q}) : \text{anderfalls}; \\
&= \left\{ (1/2)(-p + \sqrt{p^2 - 4q}) : \text{falle} \ w(p^2) \leq w(4q), \\
&\quad (1/2)(-p - \sqrt{p^2 - 4q}) : \text{anderfalls}.
\end{align*}
\]

Beim Übergang von der ersten zur zweiten Gleichung wird die Beziehung \(d(F(C_2)) \leq 0 \) benutzt, und von der zweiten zur dritten Gleichung - die Äquivalenz \(d(G(C_1)) \leq 0 \iff w(p^2) \leq w(4q) \).

\[
\begin{align*}
x^{(2)} &= \left\{ (1/2)(-p + \sqrt{p^2 \circ 4q}) : \text{falle} \ d(F(C_2))d(G(C_2)) \geq 0, \\
&\quad (1/2)(-p - \sqrt{p^2 \circ 4q}) : \text{anderfalls}; \\
&= \left\{ (1/2)(-p + \sqrt{p^2 \circ 4q}), \\
&\quad (1/2)(-p - \sqrt{p^2 \circ 4q}),
\end{align*}
\]

da in diesem Fall \(d(F(C_2)) \leq 0 \) und \(d(G(C_2)) \geq 0 \) gilt.

Sei \(p < 0 \), so erhält man für \(x^{(1)} \) und \(x^{(2)} \) die Formeln:
\[x^{(1)} = \begin{cases}
\frac{1}{2}(-p + \sqrt{p^2 - 4q}) & \text{falls } d(F(C_1))d(G(C_1)) \geq 0, \\
\frac{1}{2}(-p - \sqrt{p^2 - 4q}) & \text{andernfalls;}
\end{cases} \]

\[x^{(2)} = \begin{cases}
\frac{1}{2}(-p + \sqrt{p^2 - 4q}) & \text{falls } d(F(C_2))d(G(C_2)) \geq 0, \\
\frac{1}{2}(-p - \sqrt{p^2 - 4q}) & \text{andernfalls;}
\end{cases} \]

\[\left\{ p, q \right\} : p = p_1 + (p_2 - p_1)t, q = q_2 + (q_1 - q_2)t, t \in T \]

\[\left\{ p, q \right\} : p = p_2 + (p_1 - p_2)t, q = q_2 + (q_1 - q_2)t, t \in T \]

\[C_2 = \left\{ \text{falls } P > 0 \right\} \]

\[\left\{ p, q \right\} : p = p_2 + (p_1 - p_2)t, q = q_1 + (q_2 - q_1)t, t \in T \]

\[\left\{ p, q \right\} : p = p_1 + (p_2 - p_1)t, q = q_1 + (q_2 - q_1)t, t \in T \]

Nun lassen sich die natürlichen Intervallverlängerungen \(F(C_1), F(C_2), G(C_1) \) und \(G(C_2) \) leicht berechnen:

\[F(C_1) = F(C_2) = -\frac{1}{2} \]

\[G(C_1) = \begin{cases}
\frac{1}{2}\sqrt{p^2 - 4q} : p = p_1 + (p_2 - p_1)t, q = q_2 + (q_1 - q_2)t, t \in T \\
\frac{1}{2}\sqrt{p^2 - 4q} : p = p_2 + (p_1 - p_2)t, q = q_2 + (q_1 - q_2)t, t \in T
\end{cases} \]

\[\left\{ p, q \right\} : p = p_1 + (p_2 - p_1)t, q = q_2 + (q_1 - q_2)t, t \in T \]

\[\left\{ p, q \right\} : p = p_2 + (p_1 - p_2)t, q = q_2 + (q_1 - q_2)t, t \in T \]

\[\left\{ p, q \right\} : p = p_1 + (p_2 - p_1)t, q = q_1 + (q_2 - q_1)t, t \in T \]

\[\left\{ p, q \right\} : p = p_1 + (p_2 - p_1)t, q = q_2 + (q_1 - q_2)t, t \in T \]

\[\left\{ p, q \right\} : p = p_2 + (p_1 - p_2)t, q = q_2 + (q_1 - q_2)t, t \in T \]

\[\left\{ p, q \right\} : p = p_1 + (p_2 - p_1)t, q = q_1 + (q_2 - q_1)t, t \in T \]

\[\left\{ p, q \right\} : p = p_2 + (p_1 - p_2)t, q = q_2 + (q_1 - q_2)t, t \in T \]

\[\left\{ p, q \right\} : p = p_1 + (p_2 - p_1)t, q = q_1 + (q_2 - q_1)t, t \in T \]

\[\left\{ p, q \right\} : p = p_2 + (p_1 - p_2)t, q = q_2 + (q_1 - q_2)t, t \in T \]
\[
\begin{align*}
\{ (1/2) \sqrt{\left(p_1 + (p_2 - p_1)t \right)^2 - 4\left(q_2 + (q_1 - q_2)t \right)} : t \in \mathbb{T} \} \\
\text{falls } P > 0,
\end{align*}
\]
\[
\begin{align*}
\{ (1/2) \sqrt{\left(p_2 + (p_1 - p_2)t \right)^2 - 4\left(q_2 + (q_1 - q_2)t \right)} : t \in \mathbb{T} \} \\
\text{falls } P < 0;
\end{align*}
\]
\[
\begin{align*}
\{ (1/2) \sqrt{\left(p_1 + (p_1 - p_2)t \right)^2 + 4\left(q_2 + (q_1 - q_2)t \right)} \\
\text{falls } P > 0,
\end{align*}
\]
\[
\begin{align*}
\{ (1/2) \sqrt{\left(p_2 + (p_1 - p_2)t \right)^2 + 4\left(q_2 + (q_1 - q_2)t \right)} \\
\text{falls } P < 0.
\end{align*}
\]
\[
= \frac{1}{2} \sqrt{p^2 \otimes 4q}.
\]

\[
G(C_2) = \\
\begin{align*}
\{ (1/2) \sqrt{p^2 - 4q} : p = p_2 + (p_1 - p_2)t, q = q_1 + (q_2 - q_1)t, t \in \mathbb{T} \} \\
\text{falls } P > 0,
\end{align*}
\]
\[
\begin{align*}
\{ (1/2) \sqrt{p^2 - 4q} : p = p_1 + (p_2 - p_1)t, q = q_1 + (q_2 - q_1)t, t \in \mathbb{T} \} \\
\text{falls } P < 0;
\end{align*}
\]
\[
\begin{align*}
\{ (1/2) \sqrt{(p_2 + (p_1 - p_2)t)^2 - 4(q_1 + (q_2 - q_1)t)} : t \in \mathbb{T} \} \\
\text{falls } P > 0,
\end{align*}
\]
\[
\begin{align*}
\{ (1/2) \sqrt{(p_1 + (p_2 - p_1)t)^2 - 4(q_1 + (q_2 - q_1)t)} : t \in \mathbb{T} \} \\
\text{falls } P < 0.
\end{align*}
\]
\[
= \frac{1}{2} \sqrt{p^2 \otimes 4q}.
\]

Unter Verwendung von Satz 1 erhält man schließlich für \(x^{(1)} \) und \(x^{(2)} \):
\[
\begin{align*}
\frac{1}{2} \sqrt{p^2 \otimes 4q} & \text{ falls } d(F(C_1))d(G(C_1)) \geq 0, \\
\frac{1}{2} \sqrt{p^2 \otimes 4q} & \text{ andernfalls;}
\end{align*}
\]
\[
\begin{align*}
\frac{1}{2} \sqrt{p^2 \otimes 4q} & \text{ falls } P > 0, \\
\frac{1}{2} \sqrt{p^2 \otimes 4q} & \text{ falls } P < 0.
\end{align*}
\]
\[
\begin{align*}
\{ (1/2) \sqrt{p^2 - 4q} : p = p_2 + (p_1 - p_2)t, q = q_1 + (q_2 - q_1)t, t \in \mathbb{T} \} \\
\text{falls } P > 0,
\end{align*}
\]
\[
\begin{align*}
\{ (1/2) \sqrt{p^2 - 4q} : p = p_1 + (p_2 - p_1)t, q = q_1 + (q_2 - q_1)t, t \in \mathbb{T} \} \\
\text{falls } P < 0;
\end{align*}
\]
\[
\begin{align*}
\{ (1/2) \sqrt{(p_2 + (p_1 - p_2)t)^2 - 4(q_1 + (q_2 - q_1)t)} : t \in \mathbb{T} \} \\
\text{falls } P > 0,
\end{align*}
\]
\[
\begin{align*}
\{ (1/2) \sqrt{(p_1 + (p_2 - p_1)t)^2 - 4(q_1 + (q_2 - q_1)t)} : t \in \mathbb{T} \} \\
\text{falls } P < 0.
\end{align*}
\]
\[
= \frac{1}{2} \sqrt{p^2 \otimes 4q}.
\]

Damit ist Satz 2 vollständig bewiesen.
Literaturverzeichnis

Anschrift der Verfasser
Prof. Dr. S.M. Markov, N. Dimitrova
Mathematics Institute
Bulg. Academie of Science
P.O. Box 373
BG - Sofia/Bulgarien