Global Optimization

Lecture 17

Lecture Outline

• Global flow analysis
• Global constant propagation
• Liveness analysis

Local Optimization

Recall the simple basic-block optimizations
- Constant propagation
- Dead code elimination

X := 3
Y := Z * W
Q := X + Y

X := 3
Y := Z * W
Q := 3 + Y

Global Optimization

These optimizations can be extended to an entire control-flow graph

```
X := 3
B > 0
Y := Z + W
Y := 0
A := 2 * X
```

Global Optimization

These optimizations can be extended to an entire control-flow graph

```
X := 3
B > 0
Y := Z + W
Y := 0
A := 2 * 3
```
Correctness

- How do we know it is OK to globally propagate constants?
- There are situations where it is incorrect:

```
X := 3
B > 0
Y := Z + W
X := 4
A := 2 * X
```

Correctness (Cont.)

To replace a use of x by a constant k we must know that:

```
On every path to the use of $x$, the last assignment to $x$ is $x := k$ **
```

Example 1 Revisited

```
X := 3
B > 0
Y := Z + W
Y := 0
A := 2 * X
```

Example 2 Revisited

```
X := 3
B > 0
Y := Z + W
X := 4
Y := 0
A := 2 * X
```

Discussion

- The correctness condition is not trivial to check
- "All paths" includes paths around loops and through branches of conditionals
- Checking the condition requires global analysis
 - An analysis of the entire control-flow graph for one method body

Global Analysis

Global optimization tasks share several traits:
- The optimization depends on knowing a property X at a particular point in program execution
- Proving X at any point requires knowledge of the entire method body
- It is OK to be conservative. If the optimization requires X to be true, then want to know either
 - X is definitely true
 - Don't know if X is true
- It is always safe to say "don't know"
Global Analysis (Cont.)

- Global dataflow analysis is a standard technique for solving problems with these characteristics.
- Global constant propagation is one example of an optimization that requires global dataflow analysis.

Global Constant Propagation

- Global constant propagation can be performed at any point where \(\star \) holds.
- Consider the case of computing \(\star \) for a single variable \(X \) at all program points.

Global Constant Propagation (Cont.)

- To make the problem precise, we associate one of the following values with \(X \) at every program point:

<table>
<thead>
<tr>
<th>value</th>
<th>interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>This statement is not reachable</td>
</tr>
<tr>
<td>C</td>
<td>(X = \text{constant } c)</td>
</tr>
<tr>
<td>*</td>
<td>Don't know if (X) is a constant</td>
</tr>
</tbody>
</table>

Example

```
X = *
X = 3
X = 3
X = 3
Y := Z + W
X := 4
X := 4
X := 4
A := 2 * X
Y := 0
X := 3
X := 3
X := 3
X := *
```

Using the Information

- Given global constant information, it is easy to perform the optimization.
 - Simply inspect the \(x = ? \) associated with a statement using \(x \).
 - If \(x \) is constant at that point replace that use of \(x \) by the constant.

The Idea

The analysis of a complicated program can be expressed as a combination of simple rules relating the change in information between adjacent statements.
Explanation

• The idea is to "push" or "transfer" information from one statement to the next.

• For each statement s, we compute information about the value of x immediately before and after s:

$$C_{\text{in}}(x, s) = \text{value of } x \text{ before } s$$

$$C_{\text{out}}(x, s) = \text{value of } x \text{ after } s$$

Transfer Functions

• Define a transfer function that transfers information from one statement to another.

• In the following rules, let statement s have immediate predecessor statements p_1, \ldots, p_n.

Rule 1

if $C_{\text{out}}(x, p_i) = *$ for some i, then $C_{\text{in}}(x, s) = *$

Rule 2

If $C_{\text{out}}(x, p_i) = c$ and $C_{\text{out}}(x, p_j) = d$ and $d \neq c$ then $C_{\text{in}}(x, s) = *$

Rule 3

if $C_{\text{out}}(x, p_i) = c$ or $#$ for all i, then $C_{\text{in}}(x, s) = c$

Rule 4

if $C_{\text{out}}(x, p_i) =#$ for all i, then $C_{\text{in}}(x, s) =#$
The Other Half

- Rules 1-4 relate the out of one statement to the in of the successor statement
 - they propagate information forward across CFG edges

- Now we need rules relating the in of a statement to the out of the same statement
 - to propagate information across statements

Rule 5

\[
\begin{align*}
 & \text{if } C_{\text{in}}(x, s) = \# \\
 & \text{then } C_{\text{out}}(x, s) = \#
\end{align*}
\]

Rule 6

\[
C_{\text{out}}(x, x := c) = c \text{ if } c \text{ is a constant}
\]

Rule 7

\[
C_{\text{out}}(x, x := f(\ldots)) = *
\]

Rule 8

\[
C_{\text{out}}(x, y := \ldots) = C_{\text{in}}(x, y := \ldots) \text{ if } x \neq y
\]

An Algorithm

1. For every entry \(s \) to the program, set \(C_{\text{in}}(x, s) = * \)
2. Set \(C_{\text{in}}(x, s) = C_{\text{out}}(x, s) = \# \) everywhere else
3. Repeat until all points satisfy 1-8:
 Pick \(s \) not satisfying 1-8 and update using the appropriate rule
The Value #

- To understand why we need #, look at a loop

Discussion

- Consider the statement $Y := 0$
- To compute whether X is constant at this point, we need to know whether X is constant at the two predecessors:
 - $X := 3$
 - $A := 2 \times X$
- But info for $A := 2 \times X$ depends on its predecessors, including $Y := 0$!

The Value # (Cont.)

- Because of cycles, all points must have values at all times
- Intuitively, assigning some initial value allows the analysis to break cycles
- The initial value # means “So far as we know, control never reaches this point”

Example

We are done when all rules are satisfied!

Another Example

Must continue until all rules are satisfied!
Orderings

- We can simplify the presentation of the analysis by ordering the values
 \[\# < c < * \]
- Drawing a picture with “lower” values drawn lower, we get

```
  *  
 1 0 1 ...
```

Orderings (Cont.)

- * is the greatest value, \# is the least
 - All constants are in between and incomparable
- Let lub be the least-upper bound in this ordering
- Rules 1-4 can be written using lub:
 \[C_{in}(x, s) = \text{lub} \{ C_{out}(x, p) \mid p \text{ is a predecessor of } s \} \]

Termination

- Simply saying “repeat until nothing changes” doesn’t guarantee that eventually nothing changes
- The use of lub explains why the algorithm terminates
 - Values start as \# and only increase
 - \# can change to a constant, and a constant to *
 - Thus, \(C_{in}(x, s) \) can change at most twice

Termination (Cont.)

Thus the algorithm is linear in program size

Number of steps =
Number of \(C_{in}(_) \) values computed * 2 =
Number of program statements * 4

Liveness Analysis

Once constants have been globally propagated, we would like to eliminate dead code

```
X := 3
B := 0
Y := Z + W
Y := 0
A := 2 * X
```

After constant propagation, \(X := 3 \) is dead
(assuming this is the entire CFG)

Live and Dead

- The first value of \(x \) is dead (never used)
 \[X := 3 \]
- The second value of \(x \) is live (may be used)
 \[X := 4 \]
- Liveness is an important concept
 \[Y := X \]
Liveness

A variable x is live at statement s if
- There exists a statement s' that uses x
- There is a path from s to s'
- That path has no intervening assignment to x

Global Dead Code Elimination

- A statement $x := \ldots$ is dead code if x is dead after the assignment
- Dead statements can be deleted from the program
- But we need liveness information first . . .

Computing Liveness

- We can express liveness in terms of information transferred between adjacent statements, just as in copy propagation
- Liveness is simpler than constant propagation, since it is a boolean property (true or false)

Liveness Rule 1

\[
L_{out}(x, p) = \bigvee \{ L_{in}(x, s) \mid s \text{ a successor of } p \}
\]

Liveness Rule 2

\[
L_{in}(x, s) = \text{true if } s \text{ refers to } x \text{ on the rhs}
\]

Liveness Rule 3

\[
L_{in}(x, x := e) = \text{false if } e \text{ does not refer to } x
\]
Liveness Rule 4

\[L_{in}(x, s) = L_{out}(x, s) \text{ if } s \text{ does not refer to } x \]

Algorithm

1. Let all \(L_{(_)} \) = false initially
2. Repeat until all statements \(s \) satisfy rules 1-4
 Pick \(s \) where one of 1-4 does not hold and update using the appropriate rule

Another Example

- \(X := 3 \)
- \(B > 0 \)
- \(Y := Z + W \)
- \(Y := 0 \)
- \(A := 2 \times X \)
- \(X := X \times X \)
- \(X := 4 \)
- \(A < B \)

Termination

- A value can change from false to true, but not the other way around
- Each value can change only once, so termination is guaranteed
- Once the analysis is computed, it is simple to eliminate dead code

Forward vs. Backward Analysis

We've seen two kinds of analysis:

- Constant propagation is a forwards analysis: information is pushed from inputs to outputs
- Liveness is a backwards analysis: information is pushed from outputs back towards inputs

Analysis

- There are many other global flow analyses
- Most can be classified as either forward or backward
- Most also follow the methodology of local rules relating information between adjacent program points