
this version: July 7, 2009

A semantic Turing machine

Arnold Neumaier

Peter Schodl

Fakultät für Mathematik, Universität Wien
Nordbergstr. 15, A-1090 Wien, Austria
email: Arnold.Neumaier@univie.ac.at
email: Peter.Schodl@univie.ac.at

WWW: http://www.mat.univie.ac.at/∼neum/FMathL

Abstract

A semantic Turing machine (STM) is a variant of a programable register machine that
combines the transparency and simplicity of the action of a Turing machine with a
clearly arranged assembler-style programming language and a user-friendly representa-
tion of semantic information.
This paper describes the concept of the STM, its memory management and �ow control,
and shows how a semantic Turing machine can simulate any ordinary Turing machine.
Analogous to a universal Turing machine, we give a universal semantic Turing machine
(USTM), which is a special STM that can simulate every STM. The USTM serves both
as a self-contained semantic explanation of many aspects of the STM, and as a check
that an STM implementation works correctly.
Three appendices give the grammar of the STM programming language, tables for char-
acter code, and the essential parts of a MATLAB implementation of the STM.

Contents

1 Introduction 2

2 The semantic Turing machine 4

3 The STM programming language 6

4 Flow control 6

5 Nodes with constant meaning 8

6 External values and external processors 9

7 Description of the STM commands 10

8 Turing machines and their simulation 13

9 The USTM 18

1

A The grammar of the STM programming language 26

B Tables of nodes with constant meaning 27

C The MATLAB implementation 31

1 Introduction

A Turing machine, introduced originally in 1936 by Turing [23], is a commonly used
abstract model of a simple computer. Informally, we think of a Turing machine (TM) as a
reading/writing head that moves along an arbitrary long tape which is divided into cells,
each containing one character. The Turing machine is always in some state, and it has a list
of instructions, usually called the transition table. Determined by the character currently
read from the tape and the state the TM is currently in, the transition table assigns to the
TM some character to write on the tape, to move one cell to the left or the right, and some
state to enter. For a rigorous de�nition and properties, see, e.g., the classic book by Rogers
[17] or Aho et al. [3] or almost any other computability book; see also Section 8 below

The concept of a Turing machine is very simple and at the same time very powerful (we
remind of Church's Thesis, discussed, e.g., by Odifreddi [11]), but it has two disadvantages
that prevent the use of a TM as a device for e�ciently performing calculations:

1. The instructions of the TM are too primitive, their formulation is not intuitive in terms
of semantically important actions. Given a set of instructions of some TM, it is very
laborious to �nd out what this TM does.

2. The representation of information on the one-dimensional tape is adequate only in
some cases. Usually the result of a calculation cannot be interpreted easily.

We alter the concept of a TM concerning those two issues, and the resulting machine is a
semantic Turing machine (STM):

Concerning item 1, the STM is able to execute an STM program, i.e., a sequence of
commands written in an assembler-like language. Each command performs a comprehensible
action on the memory.

Concerning item 2, the STM represents information by semantic relations between nodes

represented by a binary operator, the dot operation. Using the dot operation, complex
relations can be represented in a simple and user-friendly way, either as a directed, labelled
graph, or equivalently as a sparse matrix. Thus an STM allows the expression of semantics
in a very natural form.

Alltogether, we think of the STM as a machine that performs some basic actions on its
memory (the labelled graph or sparse matrix). The STM has random access to this memory,
and the actions it performs (like writing, copying, deleting,. . .) are determined by a human-
readable program.

That the STM is as least as powerful as an ordinary Turing machine is shown in Section
8, but we give the STM even more power by allowing it to access the capabilities of the
physical device it is implemented on: external memory and external processors, see Section
6. This has the consequence that the STM is no longer equivalent to an ordinary Turing
machine, or in other words, not every STM program, regarded as a function on the context,

2

is Turing computable. For example, external processors might have access to the system
clock etc..

A cornerstone in the creation of the STM is the proof that the STM is powerful enough
to simulate itself. This is done by giving an STM program that can simulate every other
STM program. Since this is analogous to the role of a universal Turing machine, we call this
program the Universal Semantic Turing Machine (USTM).

The USTM is a program short and transparent enough to be checked by hand. It has
only 230 lines of code, see Section 9 (compare this, e.g., to the re�ective interpreter by
Jefferson & Friedman in [4], which has 273 lines). The USTM gives us a possibility
to check many aspects of the STM for correctness. Once one has convinced oneself of the
correctness of the USTM, one can make the implementation of the STM on some physical
device also trustworthy by checking empirically (or, in principle, in a formal way) that any
STM program executed by the implemented STM produces the same output as in the case
when the USTM simulates this program.

All this makes the STM a semantically self-contained, transparent and easy usable tool that
can be a trustworthy foundation for any computer system that deals with semantic content.
This concept of building up a high-level language step by step, starting from a low-level
languages such as the language of the STM is called bootstrapping. For details about
bootstrapping, see [22].

Currently, we have a tested implementation of the STM in MATLAB, the essential part
of which is given in Appendix C. From the point of view of the physical device, this
implementation of the STM is a virtual machine.

The term `semantic Turing machine' has been used recently in a paper by Rodriguez &
Bollen [16]. However, their concept of a semantic Turing machine is much closer to an
ordinary Turing machine, using a transition table, but operating on a semantic web.

Contents. Section 2 describes the STM and its memory in detail, and Section 3 de�nes
the programming language of the STM. The change from the transition table of a TM to
an assembler-like language for the STM makes programming much more convenient, but it
requires the storage of information for �ow control, described in Section 4. The relation
between nodes denoting constants and their physical representation is described in Section
5. The features of the STM that allow it to make use of other algorithms on the physical
device are discussed in Section 6. In Section 7 we give a description of every command and
some simple examples, and in Section 8 we show how the STM can simulate an ordinary
TM. The USTM, a special STM program that can simulate every other STM program, is
given in Section 9. Appendix A gives a de�nition of the grammar of the STM programming
language, Appendix B gives a list of all nodes with constant meaning, and Appendix C the
essential parts of the current implementation of the STM in MATLAB.

Acknowledgements. D. E. Stevenson from Clemson University contributed useful re-
marks to an earlier version.

3

2 The semantic Turing machine

A semantic Turing machine (STM) is a machine manipulating semantic information
about the relation between objects called nodes. The nodes are taken from a countable
in�nite set containing the nonnegative integers; they are represented in human-readable
programs as alphanumeric text. The relation between nodes is represented as a partial,
binary function written as a dot operation, as in a.b=c. The dot operation assigns to
certain pairs of nodes another node. For example, the information `f is continuous' can be
represented by

f.continuous=true,

where f, continuous, and true are nodes. The left argument of the dot operation is called
the record, the right argument is called the �eld. The dot operation is written as left
associative, hence a.b.c means (a.b).c. We say that the node a.b does (not) exist if
a.b is (not) de�ned.

Instead of a partial function, we can equivalently think of the dot operation as an in�nite
sparse matrix, or as a directed, labeled graph. The representation of the dot operation as a
sparse matrix is called the semantic matrix, abbreviated SM.

continuous

f true

Figure 1: f.continuous=true as a matrix

The dot operation regarded as a directed labeled graph is called semantic graph, abbre-
viated SG.

f

continuous

��
true

Figure 2: f.continuous=true as a graph

In the SM, the record becomes a row and the �eld becomes a column, while in the SG
the record becomes a vertex and the �eld becomes an edge. One can construct arbitrarily
complex records whose content is accessible recursively from their top node. Note that since
there are no safeguards to exclude backreferences leading to in�nite cycles, records may turn
out to be `in�nitely long', in spite of �nite memory!

Both representations have advantages and di�culties: The matrix has the disadvantage that
it is hard to see which nodes are reachable from one node, which is easy in the directed graph
by simply following the edges. On the other hand, when represented as graph, it might be
confusing that a node is used both as a record and a �eld, since some edges might elsewhere
appear as nodes.

4

The SG is related to the concept of a semantic network, introduced by Richens [14] in
1956. This and akin concepts are discussed in detail by Sowa [20]. A standardized and
widely used example of a semantic network with the aim to be used in the World Wide Web
is the Resource Description Framework (RDF), described byManola et al. [7] and speci�ed
by Lassila et al. [6]. Formal details of the semantics of the STM will be given in a separate
publication. However, the language of the STM is independent of this interpretation.

Independent of the interpretation of the dot operation either as semantic matrix or as graph,
we will refer to it as the memory of the STM.

Since there are equivalent formulations of Turing machines which use a 2-dimensional mem-
ory instead of the tape (a proof is given by Cohen [2]) the change to a binary operator
instead of a tape alone would not go beyond the scope of a Turing machine. But by allowing
the STM to manipulate its external environment, the scope of an STM becomes strictly
bigger cf. Section 6.

To allow this, nodes can have an external value, which is not part of the memory of the
STM, but which might be a string, an integer or another data type, stored outside the
memory. This external storage is handled exclusively by external processors, known to
the STM only by name, and the move command. The input/output of he STM is also
handled via external values. External values are discussed in more detail in Section 6.

The memory of the STM contains the program to execute, its context (i.e. input and
output, corresponding to the tape of an ordinary TM), and the information about �ow
control as well, all represented via the dot operation. To enable the processing of more
than one program in the same memory (e.g., when one program calls another program as a
subroutine), each program has its own core, i.e., a record reserved for temporary data. The
core of a called program cannot access the core of the calling program (unless it is reachable
from other nodes, which should be avoided to have transparent programs). A recursively
called program has one core at every level of the recursion.

When denoting nodes, we will use the hash # in the following way: an arbitrary node can
be represented by a hash followed by some suggestive name. For example, instead of writing
a.b.c together with the information that a is a library, b is a program and c is a process,
we simply write #lib.#program.#process.

Since the core is the most important record for a program, will simplify the notation for
it: If no confusion can arise about the program (and hence the core) under consideration,
we use the caret ^ to abbreviate reference to the current core. Hence ^a means #core.a,
where #core is the core of the program under consideration. In any STM program, ^ means
always the core of this program. The caret binds stronger than the dot operation, hence
a.^b means a.(#core.b).

To start processing a program, the STM needs to know the node that contains the con-
text (input and output) of the program, and since we can store the programs in di�erent
libraries, also the node denoting the library in which the program code can be found is
needed. Therefore the call of an STM program has three arguments: the name of the pro-
gram, the library and the context. If no library is speci�ed, a standard library is assumed.
For every call of a program, a new node is created and used as core. Note that we pass
the node where the context can be found to the called program, and not the context itself.
Hence we always call by reference, not by value. Call by value must be simulated by an
explicit copy command.

5

3 The STM programming language

The most elementary part of the STM programming language is a command. There are
33 di�erent commands; a list of the commands and their action is given in Section 7. The
commands are divided into three groups: commands that structure the program but have
no in�uence on the memory at runtime, commands for �ow control, and assignments, which
make alterations in the memory of the STM or external values.

STM programs are, compared to transition tables of Turing machines, much less intricate.
In fact, the STM programming language is much more akin to an assembler-style language.

Before describing the commands in detail, we �rst have to say something about the structure
of the language, nodes with constant meaning, and external processors and values. This is
the content of this and the next two sections.

The STM programming language, fully de�ned by the grammar in Appendix A, has the
reserved names

program process start

for structuring the program, and the reserved names

create

fields

copy

of

const

move

in

out

as

clean

exist

if

vcopy

goto

external

function

stop

for commands making certain alterations in the memory or in �ow control. Other names
that should not be used since they have internal meaning are given in Table 14.

The meaning of these nodes will be discussed in Section 4. All other names and more general
alphanumeric strings may be used as variables for node names.

The STM programming language is the lowest level of a fully comfortable programming
language that we are in the process of developing.

4 Flow control

This section describes how the information for �ow control is represented in the memory of
the STM.

A process is a sequence of commands, beginning with the command process(#proc).
Every process ends with a command that either halts the STM or calls another process. A
process can be antered only at its �rst command, but it is possible to leave a process before
its last command line is reached.

An STM program is the command program(#prog) followed by a sequence of processes.

Each STM-program is represented in the memory by a number of relations of this type:

#lib.#program.#process.#line.#part=#node,

6

where #lib, #program and #process are the names of the library, the program and the
process, and #line is the number of the line in the process. The node #part is a number,
where commname refers to the name of the command, 1 to the �rst argument, 2 to the second
argument, and 3 to the third argument.

The node #lib.#program.start contains the node referring to the �rst process, i.e., the
process that has to be executed �rst in the program #program.

The (changing) STM command currently executed is called the focus. The focus is rep-
resented in the node ^process.^line, where ^process contains the process currently exe-
cuted, and ^line simply contains a number. The node ^process.^line then is the currently
executed line in the currently executed process, hence the focus. Incrementing #line means
to proceed one line forward in the programm. Changing ^process and setting ^line=1, as
done by the goto and if command, sets the focus to the �rst line of another process.

The memory of the STM may contain more than one program: a program (the caller) can
call another program (the callee) as a subroutine. Every STM program that was not called
by the user but by another STM program is called a function. A program can only modify
nodes reachable from its own core and its context node.

Since each program has its own core, context etc., it is not su�cient just to manage the
information which command is currently executed, but a collection of information concerning
�ow control called a frame has to be kept in the memory. There is one frame for every
program, called the local frame, and one special additional frame that enables the STM
to jump between programs, called the global frame. (Note that in this sense, a program
that calls itself as a subroutine are two separate programs with two separate local frames,
although the program code is represented only once in the memory of the STM.)

To separate di�erent programs, and to be able to properly return to the caller, the STM
enters a new level each time one program calls another and returns to the previous level
upon completing the called program. The information in which level the STM actually
operates is available in corelist.depth. The node corelist.depth contains a number
(i.e., a node like 1, 2, . . .), and corelist.(corelist.depth) contains the node which is
the core of the program on level corelist.depth.

So when calling a function via a command of the form function: #commname(^#context,^#lib),
the node corelist.depth has to be incremented and the caret is set to a newly created
node. When leaving a function, corelist.depth is decremented and the caret is set back
to corelist.(corelist.depth).

depth 1 2 . . .
corelist

Table 1: The structure of the global frame

The local frame of some program can be accessed only by this program itself, and holds all
the information about the current state of the program, or of the state the program was in,
in the moment another program was called. The local frame can be accessed via the core,
so which local frame is used is determined only by the current core. Hence when setting
back the caret to the core of the caller of a function, the STM is set to continue executing
the caller, since it now uses the local frame of the caller. In the memory, a local frame looks
as illustrated in Table 2, if #core is the core of the program currently executed. The local
frame contains

7

• the context, library and the core, written in the nodes ^context, ^lib and ^core;

• the name of the program, ^program contains the node #lib.#program, and is needed
to jump to other processes by setting ^process = #lib.#program.#p, where #p is the
name of the process to jump to;

• the node ^process containing #lib.#program.#process, and

• the node ^line containing the number of the current line in the process, and needed
to obtain the focus via ^process.^line.

process line context lib program core

#core

Table 2: The structure of a local frame

Confusion might arise from the fact that ^core always contains the current core.

5 Nodes with constant meaning

Although nodes are semantic entities, on a physical device they always have to be represented
by a list of bytes. Hence we have to store the correlation between nodes and bytes in a
table, but the nodes most often used will be constant.

We write octal numbers with a preceding slash, e.g. /10 = 8. The 512 nodes whose names
are the octal numbers between /0 and /1777 are treated as constants. A byte exists of 8
bits, we write it in terms of 3 octals as /xyz with x a digit between 0 and 3, and y and z
digits between 0 and 7. This naturally groups the 4 · 64 = 256 bytes by their �rst octal x
into 4 groups of 64 characters each.

Our coding scheme allows a compact and readable representation of arbitrary text, accom-
modating up to 3·64 = 192 primary characters quotable without alteration, and a handful of
auxiliary characters with a syntactical meaning. We have chosen our set of primary charac-
ters , speci�ed in Appendix B, with an eye on being able to represent typical mathematical
text, including formulas.

The constants whose names �t a style byte are used as characters. Bytes with x=0 are
called ordinary characters (ochar), those are the digits and alphabetic characters, to-
gether with blank () and newline (←|). In charcode text, which is a low-level output
format, they will be printed directly by the corresponding symbol. The bytes with x=1
are called regular characters (rchar), these are symbols frequently used in text, such as
parenthesis, punctuation marks etc. As charcode text, regular characters are right quotes
followed by an ochar. Since two rchars are frequently used in the programs, we want to
introduce their charcodes here, namely the node with the meaning true (>) with charcode
'T and false (⊥) with charcode 'F. The bytes with x=2 are called special characters

(schar), they represent symbols for mathematical typesetting. As charcode text, they are
printed by a double quote followed by an ochar. The remaining 64 characters with x=3 are
used as auxiliary characters (xchar), and keys: In charcode text, they are a left quote
followed by a digit. The auxiliary characters `0�`9 are quotes and control characters. All
other bytes of the form #3xz represent keys: Keys are operators to the following characters,
for example the key `n means `make a slash through the next symbol'. For example, `n"B

8

is the charcode text for 6⇒. Other keys are used to change fonts, for unicode characters, for
IEEE �oating point numbers etc..

Appendix B contains a complete list of the ochars, rchars, schars and xchars (Tables 10 � 13)
and not for keys since the identi�cation of keys is still under development. On media where
an rchar or schar character prints naturally, the encoding by charcode is optional. Thus
it is permitted to write (xy) for '2xy'3. But xchar characters must always be encoded in
charcode to ensure unique decodability. The details of the coding scheme are relevant for
de�ning speci�c protocols for import and export, and will be described elsewhere.

6 External values and external processors

The STM has the ability to access the facilities of the physical device it is implemented on.
This may provide the STM with much better performance for tasks it can export, and allows
the use of external processors and programs in di�erent programming languages.

Every node can have an external value, which is some data associated to this node, but
not part of the memory of the STM. Instead, it is managed by the physical device which
executes the STM. In descriptions of commands, we refer to the external value of the node
#node by VALUE(#node).

The values of nodes are directly processed by the physical device. Hence one can bene�t
from the full computational power of the physical device. A computation on the external
values is said to be realized by an external processor. External processors have no access
to the memory of the STM, but may be called from the STM as the command external.
From a theoretical point of view, external processors are oracles to the STM, as de�ned by
Shoenfield [19].

External values can be copied to the memory of the STM, and conversely. This is done by the
command move. The information about how to represent the external value in the memory
of the STM is called the protocol, and is used as an argument for the move-command. Our
current implementation includes protocols for representing

• natural numbers,

• charcode text,

• STM-programs,

• tapes and transition tables for the Turing machine (see Section 8).

There may be an arbitrary number of protocols, as long as the device on which the STM is
implemented knows how to interpret them.

STM
external // processor of physical device

memory move out // storage of physical device
move in

oo

Figure 3: Interaction of the STM with the physical device

9

7 Description of the STM commands

We now introduce the commands of the STM language and describe their e�ect. There
are four groups of commands: Table 3 describes the commands that are needed to give the
program an appropriate structure. Table 4 contains the assignments, i.e., those commands
that perform alterations in the memory of the STM. If an assignment refers to an non-
existing node, an error is produced. Table 5 gives the commands used for �ow control, and
Table 6 the commands that establish communication with the physical device, namely call
external processes and access external values.

We remind the reader that 'T stands for true(>), and 'F for false(⊥), see Section 5.

STM command comment
program #1 �rst line of the program #1

process #1 �rst line of the process #1
start #1 start with process #1

Table 3: Structuring commands

STM command comment
^#1=(^#2==^#3) sets ^#1 to 'T if ^#2 = ^#3, else to 'F

^#1=copy of ^#2 makes a complete copy of the graph with root ^#2
to the node ^#1

^#1=copy of #2 makes a complete copy of the graph with root #2

to the node ^#1

#1=copy of ^#2 makes a complete copy of the graph with root ^#2
to the node #1

^#1.#2=^#3 assigns ^#3 to ^#1.#2

^#1.^#2=^#3 assigns ^#3 to ^#1.^#2

^#1=^#2.#3 assigns ^#2.#3 to ^#1

^#1=^#2.^#3 assigns ^#2.^#3 to ^#1

^#1.#2=const #3 writes #3 to ^#1.#2, but produces an error if the
node #3 is not a constant node or an integer

^#1.^#2=const ^#3 writes ^#3 to ^#1.^#2, but produces an error if the
node #3 is not a constant node or an integer

^#1 ++ increments the integer representation of ^#1
^#1 -- decrements the integer representation of ^#1
create ^#1 assigns the next free node to ^#1

^#1=fields of ^#2 assigns the used �elds of the record ^#2 to ^#1.1,
^#1.2,. . .

^#1=exist(#2.#3) sets ^#1 to 'T if #1.#2 exists, else to 'F

^#1=exist(^#2.^#3) sets ^#1 to 'T if ^#1.^#2 exists, else to 'F

clean ^#1 deletes the nodes reachable only from ^#1

Table 4: Assignment commands

10

STM command comment
goto #1 sets the focus to the �rst line of process #1
goto ^#1 sets the focus to the �rst line of process ^#1
if ^#1 goto #2 sets the focus to the �rst line of process #2 if

^#1='T, and to the next line if ^#1='F
function: #1(^#2,^#3) starts execution of the STM program #1 in library

^#3 with context ^#2
stop ends a program

Table 5: Commands for �ow control

STM command comment
external #1(^#2) starts execution of the external processor #1 with

context ^#2
external ^#1(^#2) starts execution of the external processor ^#1 with

context ^#2
move in ^#1 as #2 imports VALUE(^#1) into ^#1 by protocol #2
move out ^#1 as #2 exports ^#1 into VALUE(^#1) by protocol #2
move in ^#1 as ^#2 imports VALUE(^#1) into ^#1 by protocol ^#2
move out ^#1 as ^#2 exports ^#1 into VALUE(^#1) by protocol ^#2
^#1=`string` sets VALUE(^#1) to string

^#1 = vcopy of ^#2 sets VALUE(^#1) to VALUE(^#2)

Table 6: Commands for external communication

Example 7.1: A simple loop. To get acquainted with the STM programing language,
we give a simple example for an STM program.

This example writes 5 in the node ^five and 1 in ^x, increments the node ^x, and if the
two nodes are not equal, loops and increments ^x again. Hence, when this program halts,
it will have performed four iterations of the loop, and ^x will contain 5.
Lines beginning with a percent sign \% are treated as comments and do not a�ect the
execution of the program.

program test

% first line of the program "test"

process setup

% first line of the process "setup"

^core.x=const 1

^core.five=const 5

goto loop

process loop

^x ++

^test=(^x==^five)

if ^test goto end

goto loop

process end

stop

start setup

11

Upon execution of this program the following happens: Because of the line start first at
the end, the focus is set to the beginning of process first. Then the core is �lled: ^five is
set to 5, and ^x is set to 1 (we remind that ^core.a=^a, see Section 4). The next command
makes the focus jump to the �rst line of the process loop. The node ^x is incremented, and
then ^x is compared to ^five. The result of this comparison, i.e., either 'T (true) or 'F

(false), is written in ^test. The next command performs a jump to the process end if the
content of ^test is 'T, and proceeds to the next line if ^test is 'F. The next line sets the
focus back to the �rst line of the process loop.

Example 7.2: Hello, world! This program is an example of how to use an external
processor. It simply prints Hello, world! on the screen, but since the STM has no direct
access to the screen of the physical device, external values and an external processor have to
be used. Hence the display depends on the external processor, which is not described here.
Instead, we assume an external processor printvalue, which prints VALUE(x) to the screen
when invoked printvalue(x).

To explain certain features of the STM, we give two versions of the Hello, world! program:
The �rst version on the left side writes all characters one by one as constant nodes (see section
5), the second one on the right side makes use of a special STM command that writes an
external value while parsing. The reader is invited to create a third equivalent (but less
instructive) program, further shortening the second one.

program helloworld

process fillcontext

^context.0=const 13

^context.1=const H

^context.2=const e

^context.3=const l

^context.4=const l

^context.5=const o

^context.6=const ,

^context.7=const

^context.8=const w

^context.9=const o

^context.10=const r

^context.11=const l

^context.12=const d

^context.13=const !

goto display

process display

move out ^context as charcode

external: printvalue(^context)

stop

start fillcontext

program helloworld2

process fillvalue

^context=`Hello'0 world`

move in ^context as string

^toinc=^context.0

^toinc ++

^context.0=^toinc

create ^exclmark

^exclmark=`'4`

move in ^exclmark as string

^exclmark=^exclmark.1

^context.^toinc=^exclmark

goto display

process display

move out ^context as charcode

external: printvalue(^context)

stop

start fillvalue

We give short descriptions of the processes:
Due to the line start(fillcontext) / start(fillvalue), process fillcontext / fillvalue
is executed �rst. In the program on the left, process fillcontext writes the characters of
the string to the node ^context, one by one, as constants. Since protocol charcode assumes

12

an integer giving the length of the string at position #string.0, ^context.0 is set to 13,
the length of the string.

In the program on the right, the process fillvalue �rst writes at the parse stage the
string Hello, world into VALUE(#newnode) for some unused node #newnode. During run-
time, this command sets VALUE(^context) = VALUE(#newnode), hence we end up with
VALUE(^context) = Hello, world. Then, this external value is imported as a string to the
node ^context. Since the exclamation mark ! is missing, we increment ^context.0 and
append the exclamation mark at the end of the string.

In both programs, the process display writes the string Hello, world! to VALUE(^context).
Then it calls the external processor printvalue, which prints VALUE(^context) to the
screen. So the result of execution of either program is Hello, world! printed on the screen.

8 Turing machines and their simulation

In this section we introduce Turing machines formally and show that the STM is a general-
ization of a Turing machine, by giving an STM-program that simulates an ordinary Turing
machine.

The tape of the Turing machine The cells on the tape of the Turing machine are
simulated by the nodes ^context.tape.0, ^context.tape.1 etc., where ^context.tape.0

is the left end of the tape, and initially holds the delimiting symbol `>'. Nodes that do not
exist are interpreted by the Turing machine as blank spaces. The alphabet of the Turing
machine is arbitrary, but must not contain the pipe |. Furthermore, the characters > and
the blank space are reserved. At the beginning of execution, the head of the TM is assumed
to be on ^context.tape.1, and the TM to be in state 1.

The instructions of the Turing machine The action of the Turing machine is deter-
mined by a �nite list of instructions of the form

S | R |W |M | S′

which applies if S is the state the TM is currently in, and R is the symbol currently read
by the TM. In this case, the following actions are performed, in this order:

1. The symbol W is written. If W is the empty string, then nothing is written.

2. The head moves one cell to the right if M = R and one cell to the left if M = L. If
M is the empty string, then no movement is performed.

3. The state of the TM changes to S′.

If no instruction applies, the TM halts.

Example 8.1: Replacement This is an example of a very simple Turing machine, which
simply replaces in a string of a's and b's every occurring a by c. It has only one state, and
runs through the tape from left to right, replacing every a it runs along. When it reaches
the end of the string, it reads a blank, and no instruction applies, hence the Turing machine
halts.

13

The two instructions are:

1|b||R|1

1|a|c|R|1

Thus, the tape with initial content
> b b b a b b a b b a

has, when the Turing machine halts, the content:
> b b b c b b c b b c

Example 8.2: Division with remainder This is a more complicated example of a
Turing machine that performs a division with remainder. The number of a's at the beginning
of the tape is divided by the number of the b's following. The result is represented as the
number of q's for the quotient, and the number of r's for the remainder, when the Turing
machine halts.

For example, if we want to perform 8 divided by 3, the tape initially looks like this:
> a a a a a a a a b b b

where the eight a's represent the dividend and the three b's the divisor.

When the Turing machine halts, the tape contains:
> A A A A A A A A b b b q q r r

which tells us that the quotient is 2 (represented by the two q's), and the remainder is also 2
(represented by the two r's). Note that the a's have changed to A's in order for the processed
a's to be distinguishable from those not yet processed.

This is the transition table of the Turing machine that performs a division with remainder:

1|a||R|1

1|b||L|2

2|B||L|2

2|A||L|2

2|a|A||3

2|>||R|7

3|a||R|3

3|A||R|3

3|B||R|3

3|b|B|R|4

3| |||5

3|q|||5

4|b||L|2

4|q|||5

4| |||5

5|q||R|5

5| |q||6

6|q||L|6

6|B|b|L|6

6|A|||2

6|a|||2

7|A||R|7

7|B||R|7

7|b||R|7

7|q||R|7

7| ||L|8

8|q||L|8

8|b||L|8

8|r||L|8

8|B|b||9

9|B||R|9

9|b||R|9

9|q||R|9

9|r||R|9

9| |r||8

This Turing Machine performs the division by the following steps:

State 1 just brings the head in the right position to start:
The head moves to the right until the �rst b is read, then moves one cell to the left and
enters state 2.

State 2, 3, 4 and 5 determine the quotient, i.e., the number of q's on the tape: For every b,
an a is replaced by an A, and the b is replaced by a B. If there is no more b on the tape, one
q is written and the B's are replaced by b's:
In state 2, the head is moved to the left, until the rightmost a is reached. If there is no
a on the tape (because all a's have been replaced by A's to mark them as processed), the
TM changes to state 7. Else the rightmost a is changed to A, and the TM enters state 4.
State 3 then replaces the leftmost b by a B and changes to state 4. If there is no b on the
tape (every b has been replaced by a B), the TM changes to state 5. State 4 is only a case
distinction: if the b just replaced was the last one, then change to state 5, and if there is
still a b on the tape, then change to state 2, i.e., perform a loop. State 5 moves the head
to the right until it reaches an empty cell, writes a q, and changes to state 6.

14

State 6 changes all B's back to b's and puts the head on the rightmost cell containing either
A or a. The TM is then set to state 2 again and this is repeated (and every time a q is
written) until there are no more a's on the tape, and state 7 is entered.

State 7 then simply puts the head to the last nonempty cell of the tape and changes to
state 8.

States 8 and 9 determine the remainder of the division (i.e., b's which has not been replaced
by B's in state 3) and write the corresponding number of r's to the tape:
The head is put to the rightmost B by state 8, and before entering state 9, this B is replaced
by a b. If there is no B on the tape, then no instruction applies and the TM halts. In state
9, the head is put to the �rst empty cell of the tape, an r is written there, and the TM
enters state 8 again, hence loops.

Since their introduction, Turing machines have been subject of intensive study. Besides
serving as a theoretical basis of all programming languages (λ-calculus being another), Tur-
ing machines have many interesting applications, reaching from problems in logic, e.g., the
halting problem c.f. Odifreddi [11], to formal languages (see Cohen [2]). Turing machines
have been applied to biology by Tanomaru [21] for the study of mutation, and a special
Turing machine is Langton's Ant, introduced in 1986 by Langton [5] and generalized by
Beuret & Tomassini [1]. Turing Machines have even been considered extensively in cog-
nitive sciences and philosophy, prominently by Penrose [12], and more recently by Scheuz
[18].

There has been put much e�ort in constructing smaller and smaller universal Turing
machines, i.e., special Turing machines that can simulate every other Turing machine,
from the 1950's until today1. Small universal Turing machines were studied, e.g., in the
in�uential paper [9] byMinsky, by Robinson [15], and recently by Neary & Woods [10].

Also there is research going on searching for Turing machines that write as many characters
as possible without looping forever. This problem was introduced in 1962 by Rado in [13],
and such a Turing machine is called a busy beaver. For most classes of busy beavers,
there exists only a current `champion', i.e., the best known version, while maximality is not
proven. E.g., the 2-symbol, 5-state Busy Beaver introduced 1990 byMarxen & Buntrock

[8] writes 4098 characters before halting, making it champion of its class.

Very little e�ort was put in making universal Turing machines user-friendly while keeping
them small, which would be related to the goal of our work.

The STM-code

To get further acquainted with the STM programming style we now specify the STM-
program that simulates an arbitrary Turing machine. The reader should interpret it with
the help of Tables 3 � 6 .

The instructions of the Turing machine are represented in the memory of the STM as follows:

^context.state.n contains S of instruction n
^context.reading.n contains R of instruction n
^context.towrite.n contains W of instruction n
^context.tomove.n contains M of instruction n
^context.tostate.n contains S′ of instruction n

Note that if W in the instruction is

1In October 2007, Alex Smith claimed to have found the smallest Universal Turing Machine possible,

having 2 states and 3 symbols, see www.wolframscience.com/prizes/tm23/solved.html

15

the empty string, #nr.towrite is set to #nr.reading, hence no alteration is done by writing.
If M in the instruction is the empty string, #nr.tomove is set to X, just to distinguish it
from L and R. The position of the head is stored in ^position, and the state of the Turing
Machine is stored in ^state.

The �rst program LOADANDCALL is not part of the universal Turing machine itself, but imports
the instructions to simulate, the tape to work on, and the STM program UTM. To demonstrate
how to import an STM program as an external value, we create a new library in ^lib2 and
import the program UTM there. Then LOADANDCALL calls UTM as a function.

program LOADANDCALL

process loadtm

% imports the tape "divide14by3" and the transition table "division"

create ^tapein

^context.tape=^tapein

^tapein=`divide14by3.tape`

move in ^tapein as tm_tape

^context=`division.tm`

move in ^context as tm_instructions

goto loadutm

process loadutm

% imports the STM program in the file "utm" into the library in ^lib2

create ^utmprog

create ^lib2

create ^progname

^progname=`utm`

^utmprog.lib=^lib2

^utmprog.name=^progname

move in ^utmprog as stmprogram

goto call

process call

% starts execution of the STM program UTM

function: UTM(^context,^lib2)

move out ^tapein as tm_tape

stop

start loadtm

The next STM-program UTM essentially searches for a command that applies, then performs
the instructions, and then loops. In more detail,

init initially sets up the records so that processing can begin,
nextcommand resets the records and replaces an empty cell on the tape by a

blank.
trynext brings the next instruction to consideration, and halts if there is

no next instruction.
checkstate and
checksymbol compares the state of the Turing Machine with S in the instruction,

and the symbol currently read on the tape with R in the instruc-
tion, respectively. In other words, these two processes check if the
instruction under consideration applies.

16

executecommand performs the actions given in the instruction, except for moving the
head to the left or the right, which is performed in the separate
processes

left and
right.

Correctness is straightforward to prove.

program UTM

process init

% makes the necessary nodes available in the core

^core.position=const 1

^core.state=const 1

^core.cR=const R

^core.cL=const L

^commandstate=^context.state

^commandreading=^context.reading

^commandtowrite=^context.towrite

^commandtomove=^context.tomove

^commandtostate=^context.tostate

^taperef=^context.tape

goto nextcommand

process nextcommand

% initializes the comparing, reads the tape, replaces empty node

% by an underscore

^core.trycommand=const 1

^symbolontape=^taperef.^position

^notreadingblank=exist(^taperef.^position)

if ^notreadingblank goto checkstate

^core.symbolontape=const _

goto checkstate

process trynext

% read the next command, halts the TM if there are no instructions left

^trycommand ++

^therearemorecommands=exist(^commandstate.^trycommand)

if ^therearemorecommands goto checkstate

stop

process checkstate

% checks if the state of the TM is equal to the state in the command

^stateincommand=^commandstate.^trycommand

^samestate=(^state==^stateincommand)

if ^samestate goto checksymbol

goto trynext

process checksymbol

17

% checks if the symbol read by the TM is equal to

% the symbol in the command

^symbolincommand=^commandreading.^trycommand

^samesymbol=(^symbolincommand==^symbolontape)

if ^samesymbol goto executecommand

goto trynext

process executecommand

% executes the instructions in the command

^towrite=^commandtowrite.^trycommand

^tomove=^commandtomove.^trycommand

^tostate=^commandtostate.^trycommand

^taperef.^position=^towrite

^core.state=^tostate

^moveleft=(^tomove==^cL)

^moveright=(^tomove==^cR)

if ^moveleft goto left

if ^moveright goto right

goto nextcommand

process left

% moves the head to the left

^position --

goto nextcommand

process right

% moves the head to the right

^position ++

goto nextcommand

start init

The STM program above simulates an arbitrary TM and does not use external storage. Since
an ordinary TM has no external storage and it is not speci�ed how an external processor
should behave, it is impossible to give an ordinary TM that simulates an arbitrary STM
program.

9 The USTM

The USTM is a special STM program capable of `simulating' the processing of an other STM
program P in the following sense: The context of the USTM contains the STM program P

and the context of P. When the USTM has �nished, the USTM has produced the same
changes in the context as P would have produced when called directly.

When the USTM is started, nodes for program, context and library have to be passed
to the USTM as part of its core. It is assumed that this information is stored in the nodes
^sim_prog, ^sim_context and ^sim_lib before calling the USTM.

The following table gives an overview which process in the USTM program simulates which
command in the STM program. The commands program, process and start do not have

18

to be simulated since they only structure the program, and their e�ect is already covered by
the way the program to be simulated is represented in the memory.

Command Process
program #program �
process #process �
start #process �
^#1=^#2.#3 get

^#1=^#2.^#3 refget

^#1.#2=^#3 set

^#1.^#2=^#3 refset

^#1.#2=const #3 setconst

^#1.^#2=const ^#3 setconstref

^#1=copy of ^#2 copy

#1=copy of ^#2 copyfromcore

^#1=copy of #2 copytocore

create ^#newnode create

^#isequal=(^#left==^#right) check

^#counter ++ inc

^#counter -- dec

^#fieldlist=fields of ^#record fields

goto #process goto

goto ^#process move

if ^#cond goto #process if

function: #program(^#context,^#library) function

stop stop

external: #program(^#input) external

external: ^#program(^#input) externalref

clean ^#node clean

move in ^#node as #protocol transportin

move out ^#node as #protocol transportout

move in ^#node as ^#protocol transportrefin

move out ^#node as ^#protocol transportrefout

^#node=exist(#record,#field) exist

^#node=exist(^#record,^#field) existref

^#1=`string1` string

^#1=vcopy of ^#2 vcopy

Table 8: The 33 STM commands and their USTM processes

The STM code of the USTM

The example program below implements a simulator for the STM, which shows that the
STM programming language is universal.

program USTM

process init

% initialize nodes, initialize local and global frame

19

create ^ustmcore

^sim_context=^context.context

^sim_prog=^context.prog

^sim_lib=^context.lib

^sim_libprog=^sim_lib.^sim_prog

^sim_startproc=^sim_libprog.start

create ^corelist

^corelist.depth=const 1

^corelist.1=^ustmcore

^ustmcore.process=^sim_startproc

^ustmcore.core=^ustmcore

^ustmcore.line=const 1

^ustmcore.context=^sim_context

^ustmcore.program=^sim_libprog

^ustmcore.programcore=^simulcore

^ustmcore.lib=^sim_lib

goto load

process next

% proceed to the next command to simulate

^depth=^corelist.depth

^ustmcore=^corelist.^depth

^toinc=^ustmcore.line

^toinc ++

^ustmcore.line=^toinc

goto load

process load

% load the information about the command to simulate to the core

^depth=^corelist.depth

^ustmcore=^corelist.^depth

^sim_process=^ustmcore.process

^sim_line=^ustmcore.line

^sim_focus=^sim_process.^sim_line

^sim_comm=^sim_focus.1

^arg1=^sim_focus.2

^arg2=^sim_focus.3

^arg3=^sim_focus.4

goto ^sim_comm

process external

% external: #program(^#input)

^data=^ustmcore.^arg2

external: ^arg1(^data)

goto next

process externalref

% external: ^#program(^#input)

^prog=^ustmcore.^arg1

20

^data=^ustmcore.^arg2

external: ^prog(^data)

goto next

process transportin

% move in ^#node as #protocol

^totransport=^ustmcore.^arg1

move in ^totransport as ^arg2

goto next

process transportout

% move out ^#node as #protocol

^totransport=^ustmcore.^arg1

move out ^totransport as ^arg2

goto next

process transportrefin

% move in ^#node as ^#protocol

^totransport=^ustmcore.^arg1

^protocol=^ustmcore.^arg2

move in ^totransport as ^protocol

goto next

process transportrefout

% move out ^#node as ^#protocol

^totransport=^ustmcore.^arg1

^protocol=^ustmcore.^arg2

move out ^totransport as ^protocol

goto next

process copy

% ^#1=copy of ^#2

^thecopy=^ustmcore.^arg1

^theoriginal=^ustmcore.^arg2

^thecopy=copy of ^theoriginal

goto next

process copyfromcore

% #1=copy of ^#2

^theoriginal=^ustmcore.^arg2

^arg1=copy of ^theoriginal

goto next

process copytocore

% ^#1=copy of #2

^thecopy=^ustmcore.^arg1

^thecopy=copy of ^arg2

goto next

21

process string

% ^#1=`string1`

^lhsvcopy=^ustmcore.^arg1

^lhsvcopy=vcopy of ^arg2

goto next

process vcopy

% ^#1=vcopy of ^#2

^lhsvcopy=^ustmcore.^arg1

^rhsvcopy=^ustmcore.^arg2

^lhsvcopy=vcopy of ^rhsvcopy

goto next

process setconst

% ^#1.#2=const #3

^setleft=^ustmcore.^arg1

^setleft.^arg2=const ^arg3

goto next

process setconstref

% ^#1.^#2=const ^#3

^setleft=^ustmcore.^arg1

^setright=^ustmcore.^arg2

^toset=^ustmcore.^arg3

^setleft.^setright=const ^toset

goto next

process create

% create ^#newnode

^toassign=^ustmcore.^arg1

create ^toassign

^ustmcore.^arg1=^toassign

goto next

process clean

% clean ^#node

^toclean=^ustmcore.^arg1

clean ^toclean

goto next

process fields

% ^#fieldlist=fields of ^#record

^writeto=^ustmcore.^arg1

^lookfor=^ustmcore.^arg2

^writeto=fields of ^lookfor

goto next

process function

% function: #program(^#context,^#library)

22

^toinc=^corelist.depth

^toinc ++

^corelist.depth=^toinc

create ^newcore

^corelist.^toinc=^newcore

^contextofcallee=^ustmcore.^arg2

^newcore.context=^contextofcallee

^newcore.line=const 1

^libcalled=^ustmcore.^arg3

^libprog=^libcalled.^arg1

^newcore.program=^libprog

^proctoexec=^libprog.start

^newcore.process=^proctoexec

^newcore.lib=^arg3

^newcore.core=^newcore

^newcore.programcore=^simulcore

goto load

process check

% ^#isequal=(^#left==^#right)

^checkleft=^ustmcore.^arg2

^checkright=^ustmcore.^arg3

^checked=(^checkleft==^checkright)

^ustmcore.^arg1=^checked

goto next

process exist

% ^#node=exist(#record,#field)

^exleft=^core.arg2

^exright=^core.arg3

^copytoex=exist(^exleft.^exright)

^answer=^core.arg1

^ustmcore.^answer=^copytoex

goto next

process existref

% ^#node=exist(^#record,^#field)

^exleft=^ustmcore.^arg2

^exright=^ustmcore.^arg3

^copytoex=exist(^exleft.^exright)

^answer=^core.arg1

^ustmcore.^answer=^copytoex

goto next

process goto

% goto #process

^currentprogram=^ustmcore.program

^gotoprocess=^currentprogram.^arg1

^ustmcore.process=^gotoprocess

23

^ustmcore.line=const 1

goto load

process refset

% ^#1.^#2=^#3

^refsetleft=^ustmcore.^arg1

^refsetright=^ustmcore.^arg2

^refsetto=^ustmcore.^arg3

^refsetleft.^refsetright=^refsetto

goto next

process set

% ^#1.#2=^#3

^setleft=^ustmcore.^arg1

^setto=^ustmcore.^arg3

^setleft.^arg2=^setto

goto next

process refget

% ^#1=^#2.^#3

^refgetleft=^ustmcore.^arg2

^refgetright=^ustmcore.^arg3

^towrite=^refgetleft.^refgetright

^ustmcore.^arg1=^towrite

goto next

process get

% ^#1=^#2.#3

^getleft=^ustmcore.^arg2

^towrite=^getleft.^arg3

^ustmcore.^arg1=^towrite

goto next

process if

% if ^#cond goto #process

^core.true=const 'T

^core.false=const 'F

^tojump=^ustmcore.^arg1

^applies=(^tojump==^true)

^appliesnot=(^tojump==^false)

if ^applies goto ifapplies

if ^appliesnot goto ifappliesnot

stop

process ifapplies

^currentprogram=^ustmcore.program

^gotoprocess=^currentprogram.^arg2

^ustmcore.process=^gotoprocess

^ustmcore.line=const 1

goto load

24

process ifappliesnot

goto next

process move

% goto ^#process

^target=^ustmcore.^arg1

^currentprogram=^ustmcore.program

^movetoprocess=^currentprogram.^target

^ustmcore.process=^movetoprocess

^ustmcore.line=const 1

goto load

process inc

% ^#counter ++

^toinc=^ustmcore.^arg1

^toinc ++

^ustmcore.^arg1=^toinc

goto next

process dec

% ^#counter --

^todec=^ustmcore.^arg1

^todec --

^ustmcore.^arg1=^todec

goto next

process stop

% stop

^todec=^corelist.depth

^calleecore=^corelist.^todec

^core.one=const 1

^finish=(^todec==^one)

^todec --

^corelist.depth=^todec

if ^finish goto stopprogram

goto returntocaller

process stopprogram

clean ^calleecore

stop

process returntocaller

^callercore=^corelist.^todec

^resulttocopy=^calleecore.result

^placetocopy=^calleecore.context

^callercore.^placetocopy=^resulttocopy

clean ^calleecore

goto next

start init

Without blank lines and comment lines, the USTM contains 230 lines.

25

A The grammar of the STM programming language

We give the complete grammar of the STM programming language with partially labelled,
BNF like productions. A line beginning with a percent sign % is treated as a comment
without any e�ect on the program. To ease readability, white spaces at the beginning of a
line are ignored.

We de�ne the following macros in the grammar:

: macro(lines of $1)

macro: $1 | macro newline $1

: macro(string of $1)

macro: $1 | macro $1

The tokens BLANK, CHARACTER and ALPHANUMERIC in the grammar stand for a blank space,
any character and any alphanumeric character respectively.

STMPROGRAM = HEADER lines of PROCESS STARTPROCESS

HEADER = program BLANK NAME

NAME = string of ALPHANUMERIC

PROCESS = PROCESSHEADER lines of COMMAND PROCESSEND

PROCESSHEADER = process NAME

COMMAND = NC | GC | SC | string of BLANK COMMAND | COMMENT

PROCESSEND = GC | SC | string of BLANK PROCESSEND | COMMENT

STARTPROCESS = start BLANK NAME

COMMENT = % string of CHARACTER

create: NC = create BLANK ^ NAME

inc: NC = ^ NAME BLANK ++

dec: NC = ^ NAME BLANK --

copy: NC = ^ NAME =copy BLANK of BLANK ^ NAME

copyfromcore: NC = NAME =copy BLANK of BLANK ^ NAME

copytocore: NC = ^ NAME =copy BLANK of BLANK NAME

�elds: NC = ^ NAME =fields BLANK of BLANK ^ NAME

external: NC = external: BLANK NAME (^ NAME)

externalref: NC = external: ^ NAME (^ NAME)

if: NC = if BLANK NAME BLANK goto BLANK NAME

get: NC = ^ NAME =^ NAME . NAME

refget: NC = ^ NAME =^ NAME .^ NAME

check: NC = ^ NAME =(^ NAME ==^ NAME)

exist: NC = ^ NAME =exist(NAME . NAME)

existref: NC = ^ NAME =exist(^ NAME .^ NAME)

set: NC = ^ NAME . NAME =^ NAME

refset: NC = ^ NAME .^ NAME =^ NAME

setconst: NC = ^ NAME . NAME =const BLANK NAME

setconstref: NC = ^ NAME .^ NAME =const BLANK ^ NAME

clean: NC = clean BLANK ^ NAME

function: NC = function: BLANK NAME (^ NAME , ^NAME)

transportin: NC = move BLANK in BLANK ^ NAME BLANK as BLANK NAME

26

transportout: NC = move BLANK out BLANK ^ NAME BLANK as BLANK NAME

transportre�n: NC = move BLANK in BLANK ^ NAME BLANK as BLANK ^ NAME

transportrefout: NC = move BLANK out BLANK ^ NAME BLANK as BLANK ^ NAME

string: NC = ^ NAME=` NAME `

vcopy: NC = ^ NAME =vcopy BLANK of BLANK ^ NAME

goto: GC = goto BLANK NAME

move: GC = goto BLANK ^ NAME

stop: SC = stop

B Tables of nodes with constant meaning

In these tables, the column `symbol' contains the semantic meaning, i.e., the node, the ochar-
, rchar-, schar- and xchar-column are the representation of the nodes in charcode text, and
the column `octal' contains the byte. We use the rchars 'T=> and 'F=⊥ for the logical
constants `true' and `false'

To keep the charcode readable, the charcodes /144, /177, /244, /277, /344 and /377 are not
used.

27

symbol ochar octal
0 0 /000
1 1 /001
2 2 /002
3 3 /003
4 4 /004
5 5 /005
6 6 /006
7 7 /007
8 8 /010
9 9 /011
A A /012
B B /013
C C /014
D D /015
E E /016
F F /017
G G /020
H H /021
I I /022
J J /023
K K /024
L L /025
M M /026
N N /027
O O /030
P P /031
Q Q /032
R R /033
S S /034
T T /035
U U /036
V V /037

symbol ochar octal
W W /040
X X /041
Y Y /042
Z Z /043

newline(←|) ←| /044
a a /045
b b /046
c c /047
d d /050
e e /051
f f /052
g g /053
h h /054
i i /055
j j /056
k k /057
l l /060
m m /061
n n /062
o o /063
p p /064
q q /065
r r /066
s s /067
t t /070
u u /071
v v /072
w w /073
x x /074
y y /075
z z /076

blank() /077

Table 10: The ordinary characters

28

symbol rchar octal
, '0 /100
. '1 /101
: '2 /102
; '3 /103
! '4 /104
? '5 /105
('6 /106
) '7 /107
- '8 /110
_ '9 /111
Ä 'A /112
Å 'B /113
Ç 'C /114
\ 'D /115
É 'E /116
⊥ 'F /117
& 'G /120
† 'H /121̂ 'I /122
Ø 'J /123
È 'K /124
� 'L /125
� 'M /126
Ñ 'N /127
Ö 'O /130
¿ 'P /131
6= 'Q /132
e 'R /133
$ 'S /134
> 'T /135
Ü 'U /136
Ê 'V /137

symbol rchar octal
b 'W /140
d 'X /141
U 'Y /142
� 'Z /143

'←| /144
ä 'a /145
å 'b /146
ç 'c /147
/ 'd /150
é 'e /151
< 'f /152
> 'g /153
~ 'h /154
� 'i /155
ø 'j /156
è 'k /157
ª 'l /160
− 'm /161
ñ 'n /162
ö 'o /163
+ 'p /164
= 'q /165
% 'r /166
ÿ 's /167
* 't /170
ü 'u /171
ê 'v /172
c 'w /173
e 'x /174
∼ 'y /175
c© 'z /176

' /177

Table 11: The regular characters

29

symbol schar octal
∅ �0 /200
| �1 /201
〈 �2 /202
〉 �3 /203
{ �4 /204
} �5 /205
[�6 /206
] �7 /207
∞ �8 /210
‖ �9 /211
∀ �A /212
⇒ �B /213
⇐ �C /214
⇔ �D /215
∃ �E /216
≡ �F /217
� �G /220
� �H /221
q �I /222
.= �J /223
≈ �K /224
� �L /225
' �M /226
∇ �N /227
∼= �O /230∏

�P /231
↑ �Q /232
↓ �R /233
7→ �S /234⊗

�T /235⊕
�U /236∨
�V /237

symbol schar octal∧
�W /240

× �X /241⋃
�Y /242⋂
�Z /243
�←| /244

→ �a /245
← �b /246
↔ �c /247
∈ �d /250
3 �e /251
6∈ �f /252
≥ �g /253
≺ �h /254∫

�i /255
⊆ �j /256
⊇ �k /257
≤ �l /260
· �m /261
¬ �n /262
◦ �o /263
± �p /264
∓ �q /265
∂ �r /266∑

�s /267
⊗ �t /270
⊕ �u /271
∨ �v /272
∧ �w /273
× �x /274
∪ �y /275
∩ �z /276

� /277

Table 12: The special characters

use xchar octal
left quote(`) `0 /300
right quote(') `1 /301
double quote(") `2 /302

hash(#) `3 /304
at(@) `4 /305

tabulator `5 /306
end of �le `6 /307

Table 13: The auxiliary characters

30

C The MATLAB implementation

The STM memory is a sparse matrix, zero entries SM(x,y) of the SM correspond to nonex-
isting nodes x.y In our MATLAB implementation, nodes are represented by an index. The
node representing the number n has the index 2n + 1.

In this appendix we give the essential part of the MATLAB implementation of the STM, i.e.,
the part that re�ects the USTM. Commands that are not simulated by the USTM but are
just called via the USTM are displayed only in abbreviated form. Printing these routines in
full would not improve understanding of the STM since nothing in the USTM corresponds
to them.

A few variables that occur in the MATLAB code shall be described: SM is the MATLAB
representation of the semantic matrix, a sparse matrix of arbitrary size. LINKS is a matrix
of the same size as SM, needed for garbage collection. LABEL is a cell array containing the
names of each node. In particular, it contains all constant nodes, and the nodes with �xed
meaning for execution, given in Table 14. The nodes with index 2 up to 18 in the table
below are reserved for �ow control, the nodes with index greater or equal 30 are reserved
for command names.

index label
2 depth
4 context
6 core
8 corelist
10 lib
12 line
14 program
16 process
18 result
30 external
32 externalref
34 move
36 goto
38 �elds
40 copy
42 copytocore
44 copyfromcore
46 vcopy
48 set
50 get

index label
52 refset
54 refget
56 stop
58 create
60 if
62 check
64 exist
66 existref
68 setconst
70 setconstref
72 inc
74 dec
76 start
78 function
80 clean
82 string
84 transportin
86 transportout
88 transportre�n
90 transportrefout

Table 14: Nodes with �xed meaning

C1. Functions simulated by the USTM:

1 f unc t i on run (var1 , var2 , var3)
% var1=programm , var2=contex t , var3=l i b
g l oba l SM actual_core e r r o r f l a g LABEL oldsecond n_process n_lib ;
g l oba l n_co r e l i s t n_line n_start n_program n_depth n_core
g l oba l n_context n_result ;

31

6 e r r o r f l a g =0;
n_depth = 2 ;
n_context = 4 ;
n_core = 6 ;
n_co r e l i s t = 8 ;

11 n_lib = 10 ;
n_line = 12 ;
n_program = 14 ;
n_process = 16 ;
n_result = 18 ;

16 n_external = 30 ;
n_exte rna l r e f = 32 ;
n_move = 34 ;
n_goto = 36 ;
n_f i e ld s = 38 ;

21 n_copy = 40 ;
n_copytocore = 42 ;
n_copyfromcore = 44 ;
n_vcopy = 46 ;
n_set = 48 ;

26 n_get = 50 ;
n_re f se t = 52 ;
n_refget = 54 ;
n_stop = 56 ;
n_create = 58 ;

31 n_if = 60 ;
n_check = 62 ;
n_exist = 64 ;
n_ex i s t r e f = 66 ;
n_setconst = 68 ;

36 n_setcons t r e f = 70 ;
n_inc = 72 ;
n_dec = 74 ;
n_start = 76 ;
n_function = 78 ;

41 n_clean = 80 ;
n_str ing = 82 ;
n_transport in = 84 ;
n_transportout = 86 ;
n_transpor t r e f in = 88 ;

46 n_transport re fout = 90 ;
semset (l ab s ea r ch (var3) , l ab s ea r ch (var1) , l ab s ea r ch ([var3 ' . ' var1])) ;
actual_prog=SM(labsea r ch (var3) , l ab s ea r ch (var1)) ;
actual_core=nex t f r e e ;
depth=3;

51 o ldsecond=0;
% g l o b a l frame

semset (n_core l i s t , depth , actual_core) ;
semset (n_core l i s t , n_depth , depth) ;

% l o c a l frame
56 semset (actual_core , n_context , l ab s ea r ch (var2)) ;

semset (actual_core , n_program , actual_prog) ;
semset (actual_core , n_lib , l ab s ea r ch (var3)) ;
semset (actual_core , n_core , actual_core) ;
semset (actual_core , n_line , 3) ;

61 i f (SM(actual_prog , n_start) ~= 0)

32

semset (actual_core , n_process ,SM(actual_prog , n_start)) ;
e l s e

semset (actual_core , n_process , actual_prog) ;
end

66 whi le (SM(n_core l i s t , n_depth) >= 3 && e r r o r f l a g==0)
depth=SM(n_core l i s t , n_depth) ;
actual_core=SM(n_core l i s t , depth) ;
p roce s s=SM(actual_core , n_process) ;
p r o g l i n e=SM(actual_core , n_line) ;

71 f o cu s=SM(process , p r og l i n e) ;
i f (f o cus == 0)

di sp ('ERROR c a l l e d by run .m: f ocus=0 ! ') ;
e r r o r f l a g =1;
return ;

76 end

d i sp (labask (f o cus)) ;
comm=SM(focus , 3) ;
actual_prog=SM(actual_core , n_program) ;
ac tua l_ l ib=SM(actual_core , n_lib) ;

81 i f (comm==n_external)
stm_external (SM(focus , 5) ,SM(focus , 7)) ;
e l s e i f (comm==n_exte rna l r e f)
s tm_externa l re f (SM(focus , 5) ,SM(focus , 7)) ;
e l s e i f (comm==n_transport in)

86 stm_transport in (SM(focus , 5) ,SM(focus , 7) , a c tua l_ l ib) ;
e l s e i f (comm==n_transportout)
stm_transportout (SM(focus , 5) ,SM(focus , 7) , a c tua l_ l ib) ;
e l s e i f (comm==n_transpor t r e f in)
s tm_transport re f in (SM(focus , 5) ,SM(focus , 7) , a c tua l_ l ib) ;

91 e l s e i f (comm==n_transport re fout)
stm_transportre fout (SM(focus , 5) ,SM(focus , 7) , a c tua l_ l ib) ;
e l s e i f (comm==n_f i e ld s)
s tm_f ie lds (SM(focus , 5) ,SM(focus , 7)) ;
e l s e i f (comm==n_copytocore)

96 stm_copytocore (SM(focus , 5) ,SM(focus , 7)) ;
e l s e i f (comm==n_copyfromcore)
stm_copyfromcore (SM(focus , 5) ,SM(focus , 7)) ;
e l s e i f (comm==n_goto)
stm_goto (SM(actual_prog ,SM(focus , 5))) ;

101 e l s e i f (comm==n_re f se t)
stm_refset (SM(focus , 5) ,SM(focus , 7) ,SM(focus , 9)) ;
e l s e i f (comm==n_refget)
stm_refget (SM(focus , 5) ,SM(focus , 7) ,SM(focus , 9)) ;
e l s e i f (comm==n_stop)

106 stm_stop () ;
e l s e i f (comm==n_create)
stm_create (SM(focus , 5)) ;
e l s e i f (comm==n_if)
jumpmark=SM(SM(actual_core , n_program) ,SM(focus , 7)) ;

111 stm_if (SM(focus , 5) , jumpmark) ;
e l s e i f (comm==n_check)
stm_check (SM(focus , 5) ,SM(focus , 7) ,SM(focus , 9)) ;
e l s e i f (comm==n_ex i s t r e f)
stm_exist (SM(focus , 5) ,SM(actual_core ,SM(focus , 7)) , . . .

116 SM(actual_core ,SM(focus , 9))) ;
e l s e i f (comm==n_set)

33

stm_set (SM(focus , 5) ,SM(focus , 7) ,SM(focus , 9)) ;
e l s e i f (comm==n_get)
stm_get (SM(focus , 5) ,SM(focus , 7) ,SM(focus , 9)) ;

121 e l s e i f (comm==n_setconst)
stm_setconst (SM(focus , 5) ,SM(focus , 7) ,SM(focus , 9)) ;
e l s e i f (comm==n_setcons t r e f)
s tm_setconst re f (SM(focus , 5) ,SM(focus , 7) ,SM(focus , 9)) ;
e l s e i f (comm==n_inc)

126 stm_inc (SM(focus , 5)) ;
e l s e i f (comm==n_exist)
stm_exist (SM(focus , 5) ,SM(focus , 7) ,SM(focus , 9)) ;
e l s e i f (comm==n_copy)
stm_copy (SM(focus , 5) ,SM(focus , 7)) ;

131 e l s e i f (comm==n_function)
stm_function (SM(focus , 5) ,SM(focus , 7) ,SM(focus , 9)) ;
e l s e i f (comm==n_dec)
stm_dec (SM(focus , 5)) ;
e l s e i f (comm==n_move)

136 stm_move(SM(actual_prog ,SM(actual_core ,SM(focus , 5)))) ;
e l s e i f (comm==n_clean)
stm_clean (SM(focus , 5)) ;
e l s e i f (comm==n_vcopy)
stm_vcopy (SM(focus , 5) ,SM(focus , 7)) ;

141 e l s e i f (comm==n_str ing)
stm_string (SM(focus , 5) ,SM(focus , 7)) ;
e l s e

d i sp (['ERROR c a l l e d by run .m: unknown command ' LABEL{comm}]) ;
e r r o r f l a g =1;

146 return ;
end

end

1 f unc t i on stm_function (v2 , v3 , v4)
% ^v2 = programm , ^v3 = contex t , ^v4 = l i b
g l oba l SM n_line n_depth actual_core n_core n_context
g l oba l n_start n_process n_program e r r o r f l a g n_co r e l i s t n_lib
i n c f o cu s ()

6 var2=v2 ;
var3=SM(actual_core , v3) ;
var4=SM(actual_core , v4) ;
% g l o b a l frame
depth=SM(n_core l i s t , n_depth) ;

11 depth=depth+2;
semset (n_core l i s t , n_depth , depth) ;
actual_core=nex t f r e e ;
semset (n_core l i s t , depth , actual_core) ;
% l o c a l frame

16 semset (actual_core , n_context , var3) ;
semset (actual_core , n_lib , var4) ;
semset (actual_core , n_core , actual_core) ;
i f (var2==0)
di sp ('ERROR c a l l e d by stm_function .m: program not found ! ') ;

21 e r r o r f l a g =1;
return ;
end

actual_prog=SM(var4 , var2) ;

34

i f (actual_prog==0)
26 di sp ('ERROR c a l l e d by stm_function .m: ^arg2 does not e x i s t ! ') ;

e r r o r f l a g =1;
return ;
end

semset (actual_core , n_program , actual_prog) ;
31 i f (SM(actual_prog , n_start)~=0)

semset (actual_core , n_process ,SM(actual_prog , n_start)) ;
e l s e

semset (actual_core , n_process , actual_prog) ;
end

36 semset (actual_core , n_line , 3) ;
di sp ([' >>> s t a r t i n g func t i on : ' labask (actual_prog) . . .

' in core : ' labask (actual_core)]) ;

1 f unc t i on stm_set (var1 , var2 , var3)
g l oba l SM actual_core
var4=actual_core ;
semset (SM(var4 , var1) , var2 ,SM(var4 , var3)) ;
i n c f o cu s () ;

f unc t i on stm_get (var1 , var2 , var3)
g l oba l SM actual_core

3 var4=actual_core ;
semset (var4 , var1 ,SM(SM(var4 , var2) , var3)) ;
i n c f o cu s () ;

f unc t i on stm_move(var1)
g l oba l actual_core n_process n_line

3 semset (actual_core , n_process , var1) ;
semset (actual_core , n_line , 3) ;

f unc t i on stm_stop ()
g l oba l SM n_depth n_co r e l i s t n_result n_context
depth=SM(n_core l i s t , n_depth) ;
c o r e o f c a l l e e=SM(n_core l i s t , depth) ;

5 depth=depth−2;
semset (n_core l i s t , n_depth , depth) ;
i f depth>3

c o r e o f c a l l e r=SM(n_core l i s t , depth) ;
outcore=SM(c o r e o f c a l l e e , n_result) ;

10 i f outcore ~=0
nameofout=SM(c o r e o f c a l l e e , n_context) ;
semset (c o r e o f c a l l e r , nameofout , outcore) ;

end

end

15 i n c f o cu s ()
i o_co r ede l e t e (c o r e o f c a l l e e) ;

1 f unc t i on stm_string (v1 , v2)
g l oba l VALUE SM actual_core ;

var1= SM(actual_core , v1) ;
VALUE{var1}=VALUE{v2 } ;
i n c f o cu s () ;

35

f unc t i on stm_copyfromcore (var1 , var2)
g l oba l SM actual_core
v2=SM(actual_core , var2) ;

4 io_copy (var1 , v2) ;

f unc t i on stm_copytocore (var1 , var2)
g l oba l SM actual_core
v1=SM(actual_core , var1) ;

4 io_copy (v1 , var2) ;

f unc t i on stm_external (var2 , v3)
%program , con t e x t

g l oba l e r r o r f l a g actual_core SM
4 var3=SM(actual_core , v3) ;

i f (var2==0)
di sp ('ERROR c a l l e d by stm_external .m: ^arg2 does not e x i s t ! ')
e r r o r f l a g =1;
return ;

9 end

prog=labask (var2) ;
di sp (['=> ' prog ' c a l l e d ']) ;
f e v a l (prog , var3) ;
i n c f o cu s () ;

The MATLAB implementation corresponding to the USTM has 247 lines, compared to the
230 lines of the USTM. But in this comparison, consider that the MATLAB implementation
covers error messages and stores information for garbage collection. Also consider that the
MATLAB implementation contains 9 lines that display information on the screen, which is
not part of the action of a STM.

C2. Functions not simulated by the USTM:

f unc t i on stm_check (var1 , var2 , var3)
% s e t s ^var1="t rue " i f ^var2=^var3 , and ^var1=" f a l s e " o t h e rw i s e
% 14 l i n e s , c a l l s s u b r ou t i n e s semset and i n c f o c u s

f unc t i on stm_refget (var1 , var2 , var3)
% s e t s ^var1=^var2 .^ var3
% 5 l i n e s o f code , c a l l s s u b r ou t i n e s semset and i n c f o c u s

f unc t i on stm_refset (var1 , var2 , var3)
% s e t s ^var1 .^ var2=^var3
% 5 l i n e s o f code , c a l l s s u b r ou t i n e s semset and i n c f o c u s

f unc t i on stm_goto (var1)
% s e t s t he f o cu s to the f o r s t l i n e o f p roce s s var1
% 4 l i n e s o f code , c a l l s s u b r ou t i n e semset

f unc t i on s tm_externa l re f (v2 , v3)
% c a l l s t h e e x t e r n a l p ro c e s s o r ^v2 wi th c on t e x t ^v3
% 13 l i n e s o f code

f unc t i on stm_transport in (var1 , var2)
% import s VALUE(^ var1) i n t o var1 us ing p r o t o c o l var2
% 5 l i n e s o f code , c a l l s s u b r ou t i n e s accord ing to the p r o t o c o l

36

f unc t i on stm_transportout (var1 , var2)
% expo r t s var1 i n t o VALUE(^ var1) us ing p r o t o c o l var2
% 5 l i n e s o f code , c a l l s s u b r ou t i n e s accord ing to the p r o t o c o l

f unc t i on s tm_transport re f in (var1 , var2)
% import s VALUE(^ var1) i n t o var1 us ing p r o t o c o l ^var2
% 6 l i n e s o f code , c a l l s s u b r ou t i n e s accord ing to the p r o t o c o l

f unc t i on s tm_transportre fout (var1 , var2)
% expo r t s var1 i n t o VALUE(^ var1) us ing p r o t o c o l ^var2
% 6 l i n e s o f code , c a l l s s u b r ou t i n e s accord ing to the p r o t o c o l

f unc t i on stm_setconst (var1 , var2 , var3)
% wr i t e s var3 to ^var1 . var2 and produces e r ro r i f var3 i s not a cons tan t
% 11 l i n e s o f code , c a l l s s u b r ou t i n e l aba sk , char search and semset

f unc t i on s tm_setconst re f (var1 , var2 , var3)
% wr i t e s ^var3 to ^var1 .^ var2 and produces e r ro r i f ^var3 i s not a cons tan t
% 15 l i n e s o f code , c a l l s s u b r ou t i n e l aba sk , char search and semset

f unc t i on stm_copy (var1 , var2)
% makes copy o f t he DAG wi th roo t var1 in the node var2
% 5 l i n e s o f code , c a l l s s u b r ou t i n e io_copy and i n c f o c u s

f unc t i on stm_inc (var1)
% inc r e a s e s ^var1 by 1
% 5 l i n e s o f code , c a l l s s u b r ou t i n e s semset and i n c f o c u s

f unc t i on stm_dec (var1)
% dec r ea s e s ^var1 by 1
% 10 l i n e s o f code , c a l l s s u b r ou t i n e s semset and i n c f o c u s

f unc t i on stm_exist (var1 , var2 , var3)
% wr i t e s " t ru e " to ^var1 i f var2 . var3 e x i s t s , and " f a l s e " o t h e rw i s e
% 9 l i n e s o f code , c a l l s s u b r ou t i n e s semset and i n c f o c u s

f unc t i on stm_if (var1 , var2)
% s e t s f o cu s to p roce s s var2 i f ^var1="t rue " , proceeds one l i n e i f ^var1=" f a l s e "
% 11 l i n e s o f code , c a l l s s u b r ou t i n e semset

f unc t i on stm_clean (arg1)
% d e l e t e s a l l edges r e a c ha b l e on ly from var1
% 4 l i n e s o f code , c a l l s s u b r ou t i n e s i o_co r e d e l e t e and i n c f o c u s

f unc t i on stm_create (var1)
% ^var1 i s a s s i gned a new node
% 7 l i n e s o f code , c a l l s s u b r ou t i n e s n e x t f r e e (12 l i n e s) , l a b p u t and i n c f o c u s

f unc t i on s tm_f ie lds (v1 , var2)
% wr i t e s t he edges from ^var2 i n t o ^v1 . 2 , ^v1 . 3 , ^v1 .4 . . . ^v1 . n and n i n t o ^v1 .1
% 15 l i n e s o f code , c a l l s s u b r ou t i n e s semset and i n c f o c u s

f unc t i on stm_vcopy (var1 , var2)
% s e t s VALUE(^ var1)=VALUE(^ var2)
% 6 l i n e s o f code , c a l l s s u b r ou t i n e i n c f o c u s

37

f unc t i on erg=labsea r ch (var1)
% erg i s t he i n t e g e r cor re spond ing to the l a b e l var1 .
% 15 l i n e s o f code , c a l l s s u b r ou t i n e l a b p u t

f unc t i on labput (var1 , var2)
% in t e g e r var1 g e t s l a b e l var2
% 4 l i n e s o f code

f unc t i on erg=labask (var1)
% erg i s t he l a b e l o f t h e i n t e g e r var1
% 3 l i n e s o f code

f unc t i on erg=charsearch (var1)
% erg i s t he index o f t he node wi th charcode var1
% 14 l i n e s o f code

f unc t i on io_copy (var1 , var2)
% makes a copy o f t he DAG wi th roo t var1 to var2
% 126 l i n e s o f code

f unc t i on i o_co r ede l e t e (var1)
% d e l e t e s a l l nodes r e a cha b l e on ly from var1
% 35 l i n e s o f code

f unc t i on semset (var1 , var2 , var3)
% s e t s var1 . var2=var3 and t a k e s care o f garbage c o l l e c t i o n in the SM
% 12 l i n e s o f code

f unc t i on erg=nex t f r e e
% cr e a t e s a node and r e t u rn s the number r e p r e s e n t i n g t h i s node
% 12 l i n e s o f code

f unc t i on i n c f o cu s ()
% s e t s t he f o cu s to the nex t l i n e
% 3 l i n e s o f code

The MATLAB implementation of functions not simulated by the STM has about 390 lines.

There are auxiliary functions for prettyprinting, protocols, parsing the STM program and
writing it into the SM, displaying the SM, setting up the environment etc. altogether about
820 lines. So the complete MATLAB implementation of the whole STM adds up to about
1500 lines without comments and blank lines.

References

[1] O. Beuret and M. Tomassini. Behaviour of Multiple Generalized Langton's Ants. In
Arti�cial Life V: Proceedings of the Fifth International Workshop on the Synthesis and
Simulation of Living Systems. MIT Press, 1997.

[2] Daniel I. Cohen. Introduction to computer theory. John Wiley & Sons, Inc., New York,
NY, USA, 1986.

[3] J.E. Hopcroft, J.D. Ullman, and A.V. Aho. The design and analysis of computer algo-
rithms. Addison-Wesley, Boston, MA, USA, 1975.

38

[4] S. Je�erson and D.P. Friedman. A simple re�ective interpreter. LISP and symbolic
computation, 9(2):181�202, 1996.

[5] C. Langton. Studying arti�cial life with cellular automata. Physica, D 22:120�149.

[6] O. Lassila, R.R. Swick, et al. Resource Description Framework (RDF) Model and
Syntax Speci�cation. 1999.

[7] F. Manola, E. Miller, et al. RDF Primer. W3C Recommendation, 10, 2004.

[8] H. Marxen and J. Buntrock. Attacking the Busy Beaver 5. Bulletin of the EATCS,
40:247�251, 1990.

[9] Marvin Minsky. Size and structure of universal Turing machines using tag systems.
Proceedings of Symposia in Pure Mathematics, 5.

[10] T. Neary and D. Woods. Small fast universal Turing machines. Theoretical Computer
Science, 362(1�3):171�195, 2006.

[11] Piergiorgio Odifreddi. Classical Recursion Theory. North Holland, Amsterdam, New
York, Oxford, 1999.

[12] R. Penrose and M. Gardner. The emperor's new mind. Oxford Univ. Press, 1989.

[13] T. Rado. On non-computable functions. The Bell System Technical Journal, 41(3):877�
884, 1962.

[14] R. H. Richens. Preprogramming for mechanical translation. Mechanical Translation,
3(1):20�28, 1956.

[15] Raphael M. Robinson. Minsky's Small Universal Turing Machine. International Journal
of Mathematics, 2(5):551�562.

[16] M.A. Rodriguez and J. Bollen. Modeling Computations in a Semantic Network. CoRR,
abs/0706.0022, 2007.

[17] Hartley Rogers. Theory of Recursive Functions and E�ective Computability. McGraw-
Hill, New York, 1967.

[18] Matthias Scheutz, editor. Computationalism: New Directions. MIT Press, Cambridge,
MA, 2002.

[19] J.R. Shoen�eld. Recursion theory. Springer-Verlag New York, 1993.

[20] J.F. Sowa. Knowledge Representation: Logical, Philosophical, and Computational Foun-
dations. MIT Press, 2000.

[21] Julio Tanomaru. Evolving Turing Machines from Examples. Lecture Notes In Computer
Science, pages 167�182, 1998.

[22] P.D. Terry. Compilers and compiler generators: an introduction with C++. Interna-
tional Thomson Computer Press, 1997.

[23] A. M. Turing. On computable numbers, with an application to the Entscheidungsprob-
lem. Proc. London Math. Soc., 42(2):230�265.

39

