
Efficient global unconstrained

black box optimization

Morteza Kimiaei
Fakultät für Mathematik, Universität Wien

Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria
email: kimiaeim83@univie.ac.at

WWW: http://www.mat.univie.ac.at/~kimiaei/

Arnold Neumaier
Fakultät für Mathematik, Universität Wien

Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria
email: Arnold.Neumaier@univie.ac.at

WWW: http://www.mat.univie.ac.at/~neum/

March 29, 2019

Abstract. For the unconstrained global optimization of black box functions, this paper
presents a new stochastic algorithm called VSBBO. In practice, VSBBO matches the quality
of other state-of-the-art algorithms for finding, with reasonable accuracy, a global minimizer
in small and large dimensions, or at least in the majority of cases a point of a quality
comparable with the best competing algorithms.

For smooth, everywhere defined functions, it is proved that, with probability arbitrarily
close to 1, one finds with O(nǫ−2) function evaluations a point with gradient 2-norm ≤ ǫ.

In the smooth convex case, this number improves to O(nǫ−1) and in the smooth strongly

convex case to O(n log ǫ−1). This matches known recent complexity results for reaching a
slightly different goal, namely the expected gradient 2-norm ≤ ǫ.

Keywords: Derivative-free optimization, complexity bounds, global optimization,
sufficient decrease, line search.

2010 MSC Classification: primary 90C56

1

Contents

1 Introduction 2
1.1 Complexity . 3
1.2 Algorithms and data structures . 5

2 Line search techniques for BBO 7
2.1 Probing a direction . 8
2.2 A cumulative direction . 9
2.3 Finite difference L-BFGS direction . 11
2.4 Choice of search direction . 12
2.5 A multi-line search . 13

3 A stochastic descent algorithm for BBO 16
3.1 Setting the scales . 16
3.2 Probing for fixed decrease . 18
3.3 The VSBBO algorithm . 19

4 Complexity analysis of VSBBO 20
4.1 The general (nonconvex) case . 20
4.2 The convex case . 22
4.3 The strongly convex case . 23

5 Numerical results 24
5.1 Test problems used . 24
5.2 Default parameters for VSBBO . 25
5.3 Codes compared . 25
5.4 Results for small dimensions (n ≤ 20) . 28
5.5 Results for medium dimensions (21 ≤ n ≤ 100) 30
5.6 Results for large dimensions (101 ≤ n ≤ 1000) 32
5.7 Results for large dimensions (1001 ≤ n ≤ 5000) 34
5.8 Results for all dimensions . 36

References 36

A Appendix: Estimation of c 38

B Appendix: A list of test problems with fbest 40

C Appendix: Flow charts 41

1 Introduction

We consider the unconstrained optimization problem of minimizing a function f : Rn → R,
assuming the avaialbility of an oracle that returns for a given x ∈ R

n the function value

2

f(x). Neither gradients nor Lipschitz constants nor structural information about f are
assumed to be available, though for convergence and/or complexity analysis one needs to
make further assumptions.

This problem (see, e.g., [7, 40]) is usually called black box optimization (BBO) or derivative-
free optimization (DFO). A huge literature exists about the problem, and we only mention a
few pointers to the literature. Past software of our group on BBO includes the deterministic
algorithms GRID [17, 18] and MCS [25] and the stochastic algorithms SnobFit [26] and
VXQR [35]. Software by many others is mentioned in our extensive numerical comparison;
see Section 5.2.

The techniques for solving BBO problems fall into two classes, deterministic and stochastic
methods. We mainly discuss the stochastic case; for deterministic methods see, e.g., the
book by Conn et al. [7] and its many references. Stochastic methods for BBO go back
to [42] and were later discussed especially in the framework of evolutionary optimization
[2, 23, 41].

Our goal in this paper is to describe a new, practically very efficient stochastic method,
called VSBBO, for which good complexity results can be proved.

In theory, the complexity of VSBBO for reaching a given accuracy with probability arbitrar-
ily close to 1 matches the known recent complexity results for reaching a slightly different
goal, namely the expected gradient 2-norm ≤ ǫ.

In practice, VSBBO matches the quality of other state-of-the-art algorithms for finding,
with reasonable accuracy, a global minimizer in small and large dimensions, or at least in
the majority of cases a point of a quality comparable with the best competing algorithms.

An algorithm loosely related to VSBBO (but without complexity guarantees) is the Hit-

and-Run algorithm by Bélisle [3].

1.1 Complexity

The goal is to find an efficient algorithm that, starting from a point x0, finds with high
probability and at most N(ε) function evaluations a point xbest satisfying1

f(xbest) ≤ sup{f(x) ≤ f(x0) | ‖g(x)‖∗ ≤ ε}. (1)

Here we use a scaled 2-norm ‖p‖ and its dual norm ‖g‖∗ of p, g ∈ R
n, defined by

‖p‖ :=

√∑
p2

i /s2
i , ‖g‖∗ :=

√∑
s2

i g
2
i (all si > 0) (2)

in terms of a positive scaling vector s ∈ R
n.

1To see the meaning of the condition (1) we consider the example of a strictly convex quadratic function
f(x) = ξ + cT x + 1

2
xT Gx with symmetric, positive definite G. If x̂ denotes the minimizer then (1) is

equivalent with f(x) − f(x̂) ≤ ε/2λmin, where λmin denotes the smallest eigenvalue of G. Indeed, the
maximum is attained at x = x̂ + p, where p is an eigenvector of G of length λ−1

min

√
ε corresponding to the

smallest eigenvalue. Thus the flattest direction on a level set determines the quality of the resulting bound.

3

Complexity bounds limit the size of N(ε). The appropriate asymptotic form for the expres-
sion N(ε), found by Vicente [44], Dodangeh & Vicente [14], Dodangeh, Vicente

& Zhang [15], Gratton et al. [20], Bergou, Gorbunov & Richtárik [4], and Nes-

terov & Spokoiny [33, 34], depends on the properties (smooth, smooth convex, or smooth
strongly convex) of f ; cf. Subsection 2.1 below. Standard assumptions for the complexity
analysis of BBO algorithms are:

(A1) The function f is continuously differentiable on R
n, and its gradient is Lipschitz

continuous with Lipschitz constant L.

(A2) On the level set
L(x0) := {x ∈ R

n | f(x) ≤ f(x0)}
of x0, the objective function f is bounded from below.

case goal complexity

nonconvex E(‖g‖∗) ≤ ε O
(
nε−2

)

convex E(‖g‖∗) ≤ ε O
(
nε−1

)

convex E(f − f̂) ≤ ε O
(
nε−1

)

strongly convex E(‖g‖∗) ≤ ε O
(
n log ε−1

)

strongly convex E(f − f̂) ≤ ε O
(
n log ε−1

)

Table 1: Complexity results for stochastic BBO in expectation (Gratton et al. [20] for
the nonconvex case, Bergou et al. [4] for all cases)

Gratton et al. [20] studied direct search with probabilistic descent. If, in each poll step,
one chooses a fixed number of directions uniformly independently distributed on the unit
sphere, they proved that with overwhelmingly high probability a complexity bound O(nε−2)
holds. Bergou et al. [4] and Nesterov & Spokoiny [34] generalized this result to give
algorithms with complexity results for the nonconvex, convex and strongly convex case
shown in Table 1. In each case, the bounds are better by a factor of n than the best known
complexity results for deterministic algorithms (by Dodangeh & Vicente [14], Vicente

[44] and Konečný & Richtárik [30]) given in Table 2. Of course, being a stochastic
algorithm, the performance guarantee obtained by Bergou et al. is slightly weaker, only
valid in expectation.

case goal complexity

nonconvex ‖g‖∗ ≤ ε O
(
n2ε−2

)

convex ‖g‖∗ ≤ ε O
(
n2ε−1

)

convex f − f̂ ≤ ε O
(
n2ε−1

)

σ-strongly convex ‖g‖∗ ≤ ε O
(
n2 log ε−1

)

σ-strongly convex f − f̂ ≤ ε O
(
n2 log ε−1

)

Table 2: Complexity results for deterministic BBO (Vicente [44] for the nonconvex case,
Dodangeh & Vicente [14] for the convex and the strongly convex cases, Konečný &

Richtárik [30] for all cases)

4

case goal complexity

nonconvex Pr(‖g‖∗ ≤ ε) ≥ 1 − η O
(
nε−2

)

convex Pr(‖g‖∗ ≤ ε) ≥ 1 − η O
(
nε−1

)

convex Pr(f − f̂ ≤ ε) ≥ 1 − η O
(
nε−1

)

σ-strongly convex Pr(‖g‖∗ ≤ ε) ≥ 1 − η O
(
n log ε−1

)

σ-strongly convex Pr(f − f̂ ≤ ε) ≥ 1 − η O
(
n log ε−1

)

Table 3: Complexity results for stochastic BBO with probability 1 − η, for fixed 0 < η < 1
(present paper)

1.2 Algorithms and data structures

In the present paper we describe and analyze a new stochastic method, the Vienna stochastic

black box optimization algorithm (VSBBO). It gives the same order of complexity as the
one by Bergou et al. but with a guarantee that holds with probability arbitrarily close to
1; see Table 3. Numerical results in Section 5 show that, in practice, VSBBO matches the
quality of other state-of-the-art algorithms for BBO, including those with good heuristics
but without a complexity guarantee.

To be competitive with the state of the art – which means finding, with reasonable accu-
racy, a global minimizer in small and large dimensions, or at least in the majority of cases
a point as good as competing algorithms – requires our algorithm to be quite complex.
As a consequence, the algorithm manipulates many quantities, which for convenience are
grouped into a number of separate data structures to which the subalgorithms may have
access if needed. On the other hand, to be able to prove complexity results requires a
detailed description of all steps. To present the algorithms in a concise way, we compiled
the variables of all data structures in Table 5, and the in-out dependence of the algorithms
(described later in full detail) on the data structure in Table 4. Flow charts for setScale,
MLS, FDS, and VSBBO can be found in Figures 12 and 11 of Appendix C.

Algorithm 2.2 function [step] = updateCum(point, step, tune)

Algorithm 2.3 function [step] = lbfgsDir(point, step);

Algorithm 2.4 function [step] = enforceAngle(point, step, tune);

Algorithm 2.5 function [step] = direction(point, step, par, tune)

Algorithm 2.6 function [point] = updateSY(point, tune)

Algorithm 2.7 function [point] = updateXF(point, tune)

Algorithm 2.9 function [point, par] = MLS(fun, point, step, par, tune)

Algorithm 3.1 function [point, step, par] = setScales (fun, point, step, par, tune)

Algorithm 3.2 function [point] = FDS(fun, point, step, par, tune)

Algorithm 3.4 function [x,f] = VSBBO(fun, x, tune)

Table 4: List of algorithms defined in present paper. The main algorithm VSBBO solves a
BBO problem; the others are called within VSBBO.

5

VSBBO initally calls the algorithm setScales to estimate a good scaling of norms, step
lengths, and related control parameters. Then it uses in each iteration the fixed decrease
search algorithm FDS, aimed at repeatedly reducing the function value by an amount of at
least ∆ to update the best point. If no progress is made in a call to FDS, ∆ is reduced by
a factor of Q. Once ∆ is below a minimum threshold, the algorithm stops.

Both setScales and FDS work by making repeated calls to the multi-line search MLS. MLS

polls in a number of suitable chosen directions (defined by direction) in a line search fashion
a few objective function values each in the hope of reducing the objective by more than ∆.

direction generates 5 kinds of direction vectors: coordinate directions, limited memory
quasi-Newton directions, random subspace directions, random directions, and cumulative
directions, explained in more detail in Subsections 2.2 and 2.4. Finally, updateSY, updateXF

and updateCum are auxiliary routines for updating the data needed for calculating, limited
memory quasi-Newton steps, random subspace steps and cumulative steps, respectively.

fun (function handle for the objective function f)

point (structure with information about points and function values)

m, X, F (list of the m best points so far and their function values)
b, x = X:b, f = Fb (best point and its function value)
xinit, finit (initial point and its function value), xr, fr (newest point and its function value)
xm, fm (point xr − p and its function value), xl, fl (point at xr − 2p and its function value)
dxg (parameter for quasi-Newton), g̃ and g̃old (newest/oldest approximate gradient)
S (a list of the previous m search directions)
Y (a list of the previous m approximated gradient differences)

step (structure with information about the step management)

s (scaling vector), p (random search direction), dp (scaled length of p)
δmin, δmax (minimum/maximum norm of trial steps)
δ (norm of trial steps), ∆ (threshold for good improvement)
∆min, ∆max (minimal/maximal threshold for good improvement)
q (cumulative step), r (cumulative gain)

par (structure with parameters modified during the search)

T (maximal number of directions in MLS), λ (approximate Lipschitz constant)
good (sufficiently improved function value?), ss (are we in setScale?)
dir (direction type), state (state of cumulative step)
αE (step-size for extrapolation), A (list of step-size)

tune (structure with fixed parameters for tuning the performance)

mmax ≥ 3 (maximum number of best points kept)
T0 ≥ mmax (maximal number of multi-line searches in setScale)
C ≥ n (maximal number of coordinate directions in MLS)
S ≥ 1 (maximal number of random subspace directions in MLS)
R ≥ 1 (number of random direction per random subspace direction in MLS)
1 ≤ E ≤ +∞ (maximal number of extrapolations of each extrapolation stage in MLS)
scSub (scale random subspace direction?), scCum (scale cumulative direction?)
cum (cumulative step type, 0=none, 1, or 2)
a > 0 (bound for cumulative step size), Q > 1 (factor for adjusting ∆)
0 ≤ ∆min < 1, ∆max ≥ 0 (minimal/initial maximal threshold for good improvement)

Continued on next page

6

γδ > 0 (factor for finding δ), γmax > 0 (factor for adjusting ∆max)
γE > 1 (factor for extrapolation test), γλ > 0 (factor for finding initial λ)
0 < γw < 1, 0 < γangle < 1 (tiny parameters for angle condition)
δmin > 0, δmax > 0 (minimum/maximum norm of trial steps)

Table 5: Global data structure for the algorithms of the present paper

In the detailed descriptions of VSBBO, given below, we use a pseudo-Matlab notation. In
particular, the notation ◦ denotes componentwise multiplication, == is the comparison
operator for equality, length(V) computes the length of the vector V , ones(n, 1) generates
a n × 1 vector whose entires are 1, zeros(n, 1) generates a n × 1 vector whose entries are
zero, all determines if all array elements are all nonzero or true, ∼ (or not) finds logical
NOT and A:k denotes the kth column of a matrix A.

In recent years, there has been an increasing interest in finding the best tuning parameters
configuration for derivative-free solvers with respect to a benchmark problem set; see, e.g.,
[1, 37, 38]. In Table 5, there are 6 integral, 2 binary, 1 ternary, and 12 continuous tuning
parameters, giving a total of 21 parameters for tuning our algorithm. A small amount of
tuning was done by hand. Automatic tuning of VSBBO will be considered elsewhere.

2 Line search techniques for BBO

In this section, we describe methods that try to achieve a good decrease in the function
value using line searches along specially chosen directions.

Coordinate directions are the coordinate axes ei, i = 1, · · · , n, in a cyclic fashion.

Limited memory quasi-Newton directions using a finite-differences estimate of the gradient
are used to generate useful quadratic models.

Random subspace directions point into the low-dimensional affine subspace spanned by a
number of good points kept from previous iterations.

Random directions are used to exploit the fact that stochastic black box optimization
methods have a worst case complexity superior to those of deterministic algorithms.

Cumulative directions are based on a simple separable model assumption.

A line search then polls one or more points along the lines in each chosen direction starting
at the currently best point. Several such line searches are packaged together into a multi-line
search, for which strong probabilistic results can be proved.

The details are chosen in such a way that failure to achieve the desired descent implies that,
with high probability, a good bound on the gradient is obtained.

7

2.1 Probing a direction

First we give a theoretical test that either results in a gain of ∆ or more in function value,
or gives a small upper bound for the norm of at least one of the gradient encountered.

Assumption (A1) implies that for every x, p ∈ R
n, we have

f(x + p) − f(x) = g(x)T p +
1

2
γ‖p‖2, (3)

where γ depends on x and p and satisfies one of

|γ| ≤ L, (general case) (4)

0 ≤ γ ≤ L, (convex case) (5)

0 < σ ≤ γ ≤ L. (strongly convex case) (6)

In all three cases,

g(x)T p − 1

2
L‖p‖2 ≤ f(x + p) − f(x) ≤ g(x)T p +

1

2
L‖p‖2. (7)

Continuity and condition (A2) imply that a minimizer x̂ exists and

r0 := sup
{
‖x − x̂‖ | f(x) ≤ f(x0)

}
< ∞. (8)

(It is enough that this holds with x0 replaced by some point found during the iteration,
which is then taken as x0).

2.1 Proposition. Let x, p ∈ R
n and ∆ ≥ 0. Then (A1) implies that

L ≥ |f(x + p) + f(x − p) − 2f(x)|
‖p‖2

, (9)

and one of the following holds:

(i) f(x + p) < f(x) − ∆,

(ii) f(x + p) > f(x) + ∆ and f(x − p) < f(x) − ∆,

(iii) |gT p| ≤ ∆ +
1

2
L‖p‖2.

Proof. Taking the sum of (7) and the formula obtained from it by replacing p with −p gives
(9).

Assume that (iii) is violated, so that ±gT p = |gT p| > ∆ + 1
2
L‖p‖2 for an appropriate choice

of the sign. Then by (3) with ∓p in place of p,

f(x ∓ p) − f(x) ≤ ∓g(x)T p +
1

2
L‖p‖2 < −∆.

8

For the lower sign we conclude that (i) holds. For the upper sign we get the second half of

(ii), and the first half follows from f(x + p) − f(x) ≥ g(x)T p − 1
2
L‖p‖2 > ∆. ⊓⊔

Proposition 2.1 will play a key role in the construction of our multi-line search MLS detailed
in Subsection 2.5:

• It presents a lower bound for the Lipschitz constant L which can be used to find
reasonable estimates for L.

• If (i) holds, then the step p gives a gain of at least ∆.

• If (ii) holds, then the step −p gives a gain of at least ∆.

• If (iii) holds, possibly none of the steps ±p give a gain of ∆ or more. Instead we have
a useful upper bound for the directional derivative.

Care must be taken to ensure that the book-keeping needed for the evaluation of the lower
bound for the Lipschitz constant comes out correctly. To ensure this during a line search, we
always use x for the best point found, and rescale p such that the next evaluation is always
at x + p and a former third evaluation point is at x − p. The function values immediately
after the next evaluation are then

fl := f(x − p), fm := f(x), fr := f(x + p). (10)

At this stage, we can compute the lower bound

L := |fl + fr − 2fm|/‖p‖2

for the Lipschitz constant, valid by (9). Afterwards, whenever fr < fm, the best point is
updated by overwriting x + p over x, with the consequence that then

fl := f(x − 2p), fm := f(x − p), fr := f(x). (11)

This is used in the cumulative contributions discussed now.

2.2 A cumulative direction

We consider two possibilities to accumulate past directional information into a cumulative
search direction:

(i) The first cumulative direction is model independent, computed by p = x − xinit, where
x is the best point and xinit the initial point of the current multi-line search. Here the
idea is that many small improvement steps accumulate to a direction pointing from the
starting point into a valley, so that more progress can be expected by going further into
this cumulative direction.

(ii) The second cumulative direction assumes a separable quadratic model of the form

f
(
x +

∑

i∈I

αipi

)
≈ f(x) −

∑

i∈I

ei(αi) (12)

9

with quadratic univariate functions ei(α) vanishing at α = 0. Here I is the set of directions
polled at least twice, and pi is the corresponding direction as rescaled by MLS.

By construction, we have for any i ∈ I three function values at equispaced arguments. We
write the quadratic interpolant as

f(x + αp) = f − α

2
d +

α2

2
h = f − e(α),

where e(α) :=
α

2
(d − αh). If fr < fm, the last evaluated point was the best one, so

fr ≤ min(fl, fm). In this case, (11) holds and we have

d := 4fm − 3fr − fl, h := fr + fl − 2fm.

Otherwise, the last evaluated point was not the best one, so fm ≤ min(fl, fr). In this case,
(10) holds and we have

d := fl − fr, h := fr + fl − 2fm.

The minimizer of the quadratic interpolant restricted to the interval [−a, a] is

α =
{

a if d ≥ 0,
−a if d < 0

in case h ≤ 0. Otherwise, we have

α =
{

min(a, d/2h) if d ≥ 0,
max(−a, d/2h) if d < 0.

Assuming the validity of the quadratic model (12), we find the model optimizer by additively
accumulating the estimated steps αp and gains e into a cumulative step q with anticipated
gain r, by the following algorithm:

2.2 Algorithm. cumulative update (updateCum)

Purpose: Update the cumulative direction

function [step] = updateCum(point, step, tune);

if (fr < fm), d = 4fm − 3fr − fl; else d = fr − fl; end;
h = fr + fl − 2fm;
if (h ≤ 0),

if (d ≥ 0), α = a; else α = −a; end;
else

if (d ≥ 0), α = min(a, d/2h); else α = max(−a, d/2h); end;
end;
q = q + αp; r = r + 0.5α(d − αh); % update q and r

10

2.3 Finite difference L-BFGS direction

Finite difference quasi-Newton methods estimate the gradient with components

ĝi :=
f(x + αei) − f(x)

α
,

where ei is the ith coordinate vector. The most popular choice for α is

α := max{1, ‖x‖∞}√
εm

where εm is the machine precision; another choice for α is made in Section 2.5. Then the
Hessian approximation is computed by quasi-Newton methods, cf. [36].

Here is given how to compute the L-BFGS direction [36] by the following algorithm:

2.3 Algorithm. L-BFGS direction (lbfgsDir)

Purpose: Generate L-BFGS direction

function [step] = lbfgsDir(point, step);

for (i = 1 : m), ρi = 1/(Y T
:i S:i); end;

q = zeros(n, m + 1); r = zeros(n, 1); α = zeros(m, 1);
β = zeros(m, 1); q:m+1 = ĝ;
for (i = m : −1 : 1), αi = ρiS

T
:i q:i+1; q:i = q:i+1 − αiY:i; end;

r = dxg ∗ q:1;
for (i = 1 : m), βi = ρiY

T
:i r; r = r + S:i(αi − βi); end;

p = −r;

Due to rounding error, the computed direction by lbfgsDir may not satisfy the angle con-
dition. From [29], we call enforceAngle to enforce the angle condition.

2.4 Algorithm. (enforceAngle)

Purpose: Enforce the angle condition

function [step] = enforceAngle(point, step, tune);

κ = ĝT p;
if (κ > 0), act = {i | ĝipi > 0}; pact = −pact; κ = −κ; end;
κ1 = ĝT ĝ; κ2 = pT p; κ3 = κ1κ2; κ = κ/

√
κ3;

if (κ ≥ −γangle)
w = (κ3 max(γw, 1 − κ2))/(1 − γ2

angle); t = (κ + γangle

√
w)/κ1;

if (w > 0 & t 6= ±∞), p = p − tĝ; else, p = −ĝ; end;
end;

11

2.4 Choice of search direction

The following algorithm generates 5 kinds of direction vectors: coordinate directions (dir =
1), limited memory quasi-Newton directions (dir = 2), random subspace directions (dir =
3), random directions (dir = 4), and cumulative directions (dir = 5).

The scaling of the search directions to norm δ may be done with the intention to approx-
imately minimize the final bound

√
cnΓ(δ) for the gradient norm in (16) below. For fixed

∆, the scale-dependent factor Γ(δ) = Lδ + 2∆/δ (see (17) below) is smallest for the choice

δ̂ =
√

2∆/L. (13)

However, in practice, L is unknown and we replace it by the approximation λ from MLS.
Moreover, we safeguard δ by enforcing sensible positive lower and upper bounds.

2.5 Algorithm. Direction generator (direction)

Purpose: Create random subspace, coordinate, quasi-Newton, random, or cumulative direction

function [step, par] = direction(point, step, par, tune);

switch dir

case 1 % coordinate direction p

p = 1; scale = 0;

case 2 % scaling and limited memory quasi Newton direction p

if (m == 0), p = −ĝ/‖ĝ‖; else, lbfgsDir; enforceAngle; end;
scale=0;

case 3 % random subspace direction p

α = rand(m − 1, 1) − 0.5; α = α/‖α‖; p =
m∑

i=1,i6=b

αi(X:i − X:b); scale=ScSub;

case 4 % random direction p

p = rand(n, 1) − 0.5; scale=1;

case 5 % cumulative direction p

p = q; scale=scCum;

end;
if scale % scale to ‖p‖ = δ

δ = max
(
δmin, min

(√
γδ∆/λ, δmax

))
; p = s ◦ p(δ/‖p‖); dp=δ;

else % evaluate ‖p‖
dp=‖p‖;

end;

The coordinate direction values enhances the global search properties, decreasing on average
with the number of function evaluations used.

The quasi-Newton direction to be computed needs the matrix S whose columns are the
previous m search directions and the matrix Y whose columns are the previous m estimated
gradient differences. At first, m = 0 and then increases up to a maximum of mmax. Here is

12

given how to update both S and Y as follows:

2.6 Algorithm. quasi Newton update (updateSY)

Purpose: Update quasi-Newton information

function [point] = updateSY(point, tune);

dx = xm − xmold; dg = ĝ − ĝold; dxg = dxT dg/dgT dg;
if (m < mmax), m = m + 1; else, m = 1; end;
S:m = dx; Y:m = dg;

The subspace direction generated by direction with par.dir = 3 requires to keep a matrix
X whose columns are the m best points and a vector F with their function values. Initially
m = 1, to be increased up to a maximum of mmax; later we overwrite each time the worst
point. The following algorithm updates both X and F :

2.7 Algorithm. subspace update (updateXF)

Purpose: Update subspace information

function [point] = updateXF(point, tune);

if (m == mmax), [f
w

, i
w

] = max(F); % find worst point
else m = m + 1; i

w
= m;

end
X:iw

= xm; Fiw
= fm;

b = i
w

; % select the index of best point

2.8 Proposition. For the random search direction generated by direction with dir = 4,

the output p of direction satisfies ‖p‖ = δ and, with probability ≥ 1

2
,

‖g(x)‖∗‖p‖ ≤ 2
√

cn|g(x)T p| (14)

with a positive constant c ≈ 4/7.

Proof. Define pi := pi/si and gi := sigi. Then by (2), gT p = gT p and ‖g‖∗ = ‖g‖2 and
‖p‖ = ‖p‖2; so the results of Appendix A apply with 4c = c0 ≈ 16/7. ⊓⊔

2.5 A multi-line search

The following multi-line search algorithm MLS polls in T suitable directions (defined by
direction) in a line search fashion a few objective function values each in the hope of reducing
the objective by more than ∆.

Schematically, MLS works as follows:

13

(i) At first, at most C iterations with coordinate directions are used.

(ii) Then, the finite differences L-BFGS direction is used only once.

(iii) Next, except in the final iteration, at most S iterations with subspace directions are
used.

(iv) After generating T −1 directions without sufficient improvement of the function value,
a cumulative direction is used as final, T th direction in the hope of finding a model-
based gain.

(v) For each direction generated, a line search is performed where the following happens:

• A step in the current direction is tried.

• If a large gain is found, a sequence of extrapolations is tried.

• If sufficient negative gain was found, a step in the opposite direction is tried.

• If a large gain is found in the opposite direction, a sequence of extrapolations is
tried.

(iv) Once the algorithm has found an improvement of the function value of more than ∆
it ends after completion of the current line search.

MLS also updates an approximation λ for the Lipschitz constant L of the objective function.
Proposition 2.1 implies that

λ0 ≤ λ ≤ max(λ0, L) ≤ λ0 + L, (15)

where λ0 is the initial value of λ. Moreover, after generating each coordinate search direction
by direction it estimates each component of gradient in a way that is little different than
the forward finite difference approach.

14

2.9 Algorithm. A multi-line search (MLS)

Purpose: Improve function value along multiple directions

function [point, par] = MLS(fun, point, step, par, tune);

xm = X:b; fm = F (b); xinit = xm; finit = fm; r = 0; q = zeros(n, 1); t = 0; state = −1; good = 0; nf = 0;
while (t < T),

switch state

case −1 % new direction

t = t + 1; nE = 0; αE = At;
if (t ≤ C), dir = 1; % pick coordinate step
elseif (t == C + 1), dir = 2; % pick finite difference L-BFGS step
elseif (t ≤ C + S + 1), dir = 3; % pick random subspace step
elseif (t < T), dir = 4; % pick random step
else % check for cumulative step

if (cum == 1), q = x − xinit; % first cumulative step
elseif (cum == 2 & r ≥ ∆), % second cumulative step
end;
if (cum > 0 & all(q == 0)), dir = 4; % pick random step
else, dir = 5; % pick cumulative step

if (cum == 1), state = 1; fl = finit; end; % use initial value
end;

end;
direction; % generate direction

case 0, % extrapolate stage

fe = fr; nE = nE + 1;
if (nE == 1), fl = fm; else, αE = γEαE ; end;

case 1, % opposite direction

p = −p; fl = fr; αE = At;

end;

if (dir == 1), (xr)t = (xm)t + αEp; else, xr = xm + αEp; end;
fr = fun(xr); nf = nf + 1; df = fm − fr;
if (dir == 1 & state == −1), ĝt: = (fr − finit)/αE ; end;
if (nE == 1), λ = max(λ, |fl + fr − 2fm|/dp2); end;
if (cum == 2), updateCum; end;

ext = (df > αE∆); % large gain; extrapolate
sext = (nE < E & ext); % sequence large gain; sequence extrapolate
if sext, state = 0; continue; % with extrapolation stage
else

opp=(state < 0); % opposite gain expected
if opp, state = 1; continue;
if (state==0), % the end of extrapolation stage

good = 1; αE = αE/γE ; At = αE ; fm = fe;
if (dir == 1), (xm)t = (xm)t + αEp; (xr)t = (xm)t; else, xm = xm + αEp; end;

else

At = At/γE ;
if (dir == 1), (xr)t = (xm)t; end;

end

state = −1; % line search completed
end;

end;

We now prove that one obtains either a gain of ∆ or, with high probability, an upper bound
of ‖g‖∗ for at least one of the gradients encountered.

15

2.10 Theorem. Assume that (A1) holds and let nf be the counter for the number of
function evaluations and ∆f be the improvement on the function value in MLS.

(i) f decreases by at least
∆ max(nf − 2T − 1, 0).

(ii) Suppose that 0 < η < 1 and T ≥ 2 + C + S + log2 η. If f did not decrease by more
than ∆ then, with probability ≥ 1 − η, the original point or one of the points evaluated
with better function values has a gradient g with

‖g‖∗ ≤
√

cnΓ(δ), (16)

where c is the constant in Proposition 2.8 and

Γ(δ) := Lδ +
2∆

δ
. (17)

Proof. (i) In the while loop of MLS, a direction p is generated and at most two function
values are computed, unless an extrapolation step is performed. In this case, at most
nf − 2T − 1 additional function values are computed during the extrapolation stage, and
the loop is ended.

As a result, if ∆f < ∆, then f did not decrease by more than ∆. Otherwise, ∆f ≥
(nf − 2T − 1)∆; MLS uses at least 2T + 1 function evaluations. Clearly, the function value
of the best point does not increase.

(ii) Assume that f did not decrease by more ∆. For t = 1, . . . , T , let pt be the tth search
direction generated by MLS, and let xt be the best point obtained before searching in
direction pt. Then, Proposition 2.1 gives

|g(xt)
T pt| ≤ ∆ +

L

2
‖pt‖2 = ∆ +

L

2
δ2 =

δ

2
Γ(δ)

for t = 1, . . . , T . Let R := {C + S + 1 < t < T}. For t ∈ R, the search direction was
generated by direction as a random direction, hence Proposition 2.8 implies that for t ∈ R,

‖g(xt)‖∗ = ‖g(xt)‖∗‖pt‖/δ ≤ 2
√

cn|g(xt)
T pt| ≤

√
cnΓ(δ)

holds with probability 1
2

or more. Therefore ‖g(xt)‖∗ ≤ √
cnΓ(δ) fails with a probability

pt < 1
2

for any fixed t ∈ R. Therefore, the probability p that (16) holds for at least one of

the gradients g = g(xt) (t ∈ R) is p = 1 −
T −1∏

t=1

pt ≥ 1 − 22+C+S−T . ⊓⊔

3 A stochastic descent algorithm for BBO

3.1 Setting the scales

Our stochastic algorithm is sensitive to the choice of the maximal desired gain ∆max and
the initial choice of the approximate Lipschitz constant λ. The following algorithm gives

16

practically useful heuristics for choosing maximal desired gain ∆max and for initializing λ.
At the same time, it is used to estimate a sensible scaling vector s. The algorithm performs
T0 iterations of MLS, updating both X and F by updateXF and S and Y by updateSY.
It estimates the scaling vector s from information stored in X and ∆max and λ by from
information stored in X and F .

3.1 Algorithm. Setting the scales (setScales)

Purpose: Estimate ∆max, initial λ and s

function [point, step, par] = setScales (fun, point, step, par, tune);

% initialization

% get point
n = length(x); f = fun(x); X = x; F = f ; b = 1; m = 1;
m = 0; S = zeros(n, m); Y = zeros(n, m);
% get step
∆ = ∆max; δ = δmax; s = ones(n, 1);
% get par
λ = 0; T = C + S + R + 2; ss = 0; A = ones(T, 1);

% stage 1: no scaling vector

for (t = 1 : T0),
if (t ≥ 2), ĝold = ĝ; xmold = xm; end;
MLS; updateXF;
if (t ≥ 2), updateSY; end;

end;

% stage 2: estimate s, ∆max and initial λ

% get s
ss = 1; % use scaling vector for dir = 4
for (i = 1 : m), dX:i = X:i − X:b; end;
s = sup

i=1:m
(dX:i); s(s == 0) = 1;

% get maximal desired gain ∆max and λ
dF = median

i=1:m
|Fi − Fb|;

if (dF == 0)
∆max = 0; ∆ = ∆max;
if (λ == 0), λ = γλ/

√
n; end;

else,
∆max = γmax min(dF, 1); ∆ = ∆max;

if (λ == 0), λ = γλ

√
dF/n; end;

end;

17

3.2 Probing for fixed decrease

Based on the preceding results, we present a fixed decrease search algorithm whose goal is
to use repeated calls to the multi-line search MLS in order to improve the function value
each time by a fixed amount ∆.

3.2 Algorithm. Fixed Decrease Search (FDS)

Purpose: Repeatedly improve function value by > ∆

function [point] = FDS(fun, point, step, par, tune);

while 1,
ĝold = ĝ; xmold = xm; MLS;
if (∼ good), break; end;
updateXF; updateSY;

end;

3.3 Theorem. Assume that (A1) and (A2) hold and let ∆f , N , f0 and f̂ be the improve-
ment on the function value, the number of iteations of FDS, the initial value of f and the
minimal function value, repectively. Then:

(i) The number of function evaluations of FDS is bounded by

(2T + 1) min(
∆f

∆
, 1)N ≤ (2T + 1)N ≤ (2T + 1)

f0 − f̂

∆
.

(ii) Let η1 := 2−(T −C−S−2). Then, with probability ≥ 1 − η1,

‖g‖∗ ≤
√

cn
(
Lδmin +

√
L′∆ +

2∆

δmax

)
(18)

for at least one of the gradients g encountered. Here c is the constant from Proposition 2.8
and, if λ0 denotes the value of λ before the first execution of FDS,

L′ :=
L2γδ

λ0

+ 4L + 4
λ0 + L

γδ

. (19)

Proof. Because of (A2), f̂ is finite. Denote by fk the result of the kth execution of FDS.
By the definition of good, fk ≤ fk−1 − ∆ for all but the last value of k. We conclude that

f̂ ≤ fN ≤ f0 − N∆, so that N ≤ (f0 − f̂)/∆. If ∆f < ∆, then each iteration uses at most
2T + 1 function evaluations. Otherwise, it uses at most (2T + 1)∆f/∆ function evaluations
since ∆f ≥ (nf − 2T − 1)∆, where nf is the number of calls of MLS; hence (i) follows.

(ii) By Theorem 2.10, ‖g‖∗ ≤ √
cnΓ(δ) holds with probability ≥ 1 − η1. Thus it is sufficient

to show that

Γ(δ) ≤ Lδmin +
√

L′∆ +
2∆

δmax

. (20)

18

By the definition of δ in direction, we have one of the following three cases:

Case 1: δ =

√
γδ∆

λ
. In this case,

Γ(δ) = Lδ +
2∆

δ
= L

√
γδ∆

λ
+ 2

√
λ∆

γδ

= Λ
√

∆,

where

Λ := L

√
γδ

λ
+ 2

√
λ

γδ

. (21)

Case 2: δ = δmin ≥
√

γδ∆

λ
. In this case,

Γ(δ) = Lδmin +
2∆

δmin

≤ Lδmin + 2

√
λ∆

γδ

≤ Lδmin + Λ
√

∆.

Case 3: δ = δmax ≤
√

γδ∆

λ
. In this case,

Γ(δ) = Lδmax +
2∆

δmax

≤ L

√
γδ∆

λ
+

2∆

δmax

≤ Λ
√

∆ +
2∆

δmax

.

Thus in each case,

Γ(δ) ≤ Lδmin + Λ
√

∆ +
2∆

δmax

.

Now (20) follows since by (15) and (21), Λ2 =
L2γδ

λ
+ 4L +

4λ

γδ

≤ L′. ⊓⊔

3.3 The VSBBO algorithm

We now have all ingredients to formulate the Vienna stochastic black box optimization

algorithm VSBBO. It uses in each iteration the fixed decrease search algorithm to update
the best point. If no progress is made in the corresponding FDS call, ∆ is reduced by a
factor of Q. Once ∆ is below a minimum threshold, the algorithm stops.

3.4 Algorithm. Vienna stochastic black box optimization (VSBBO)

Purpose: Solve stochastic black box optimization

function [x,f] = VSBBO(fun, x, tune)

setScales;
while 1,

Continued on next page

19

FDS;
% gain of ∆ unlikely with step of length δ
if (∆ ≤ ∆min), break; end;
∆ = ∆/Q; % reduce ∆

end;

In Section 4, upper bounds are obtained for the total number of function evaluations of
VSBBO for the nonconvex, convex, and strictly convex case.

Appendix 5 provides numerical results, comparing VSBBO with the best previous black
box algorithms on a large benchmark of problems in low and high dimensions.

4 Complexity analysis of VSBBO

We now prove the complexity results for nonconvex, convex and strongly convex objective
function.

4.1 The general (nonconvex) case

4.1 Proposition. Assume that (A1) and (A2) hold and let f0 be the initial and f̂ the
optimal function value. If ∆min > 0 then the number of function evaluations needed up to
iteration k by VSBBO, started at x0, is

nk < (2T + 1)
(
T0 +

Q(f0 − f̂)

(Q − 1)∆min

)
.

Proof. In setScale, we need n0 < (2T + 1)T0 function evaluations. By construction, the kth

call to FDS uses ∆ = Q1−k∆max, hence uses by Theorem 3.3(i) at most

(2T + 1)
f0 − f̂

Q1−k∆max

function evalutions. Then, the total number of function evaluations up to iteration k is

nk ≤ (2T + 1)T0 +
k∑

j=1

(2T + 1)
f0 − f̂

Q1−k∆max

= (2T + 1)
(
T0 +

Q(f0 − f̂)

(Q − 1)∆min

)

since ∆max ≥ Qk−1∆min. ⊓⊔

20

4.2 Theorem. Assume that (A1) and (A2) hold. With c from Proposition 2.8, let ζ ≥ 9c,
0 < η < 1, and let K be a positive integer. Then, for any ε > 0, if

T ≥ C + S + 2 + log2

K + 1

η
, (22)

max
(
Q1−K∆max,

ε2

ζL′n

)
≤ ∆min ≤ ε2

9cL′n
, (23)

δmin ≤ ε

3L
√

cn
, δmax ≥ 2ε

3L′
√

cn
, (24)

Algorithm 3.4 finds after at most O(nε−2) function evaluations with probability ≥ 1 − η a
point x with

‖g(x)‖∗ ≤ ε. (25)

Proof. By the rule of updating ∆ in VSBBO, ∆k = Q1−k∆max ≤ ∆min for k ≥ K. Hence

at most K steps of FDS are performed. By (22), we have η1 = 2−(T −C−S−2) ≤ η/(K + 1).
Thus by Theorem 3.3(ii), we have, with probability ≥ 1 − (K + 1)η1 ≥ 1 − η, for at least
one of the gradients g encountered,

‖g‖∗ ≤ min
j=0:K

Γ(δj) ≤
√

cn
(
Lδmin +

√
L′∆min +

2∆min

δmax

)
≤ ε

3
+

ε

3
+

ε

3
= ε. (26)

Here we used (23) and (24). Moreover, by Proposition 4.1 and (23),

nK ≤
(
T0 +

Q(f0 − f̂)

(Q − 1)∆min

)

≤ (2T + 1)
(
T0 +

ζL′nQ

(Q − 1)ε2
(f0 − f̂)

)
= O

(
nε−2

)
.

⊓⊔

In the limiting case ∆min = δmin = 0, we obtain the following convergence result:

4.3 Corollary. Suppose that (A1) holds. Let fk be the function value at the end of the
kth iteration of VSBBO with ∆min = δmin = 0. Then

fk → −∞ or inf
k

‖gk‖∗ = 0.

Proof. Let S and U be the set of the successful and unsuccessful iterations generated by
Algorithm 3.4, respectively. We may assume that fk is bounded below, and have to show
that lim

k→∞
∆k = 0.

If the number of iterations is finite then S is finite. Let k0 ∈ S be maximal. Then the
updating rule for ∆k implies that ∆k = ∆k0

/Qk−k0 → 0 as k → ∞. If the number of
iterations is not finite then S and U are infinite, and again ∆k → 0 as k → ∞. Theorem
3.3(ii) now implies that inf

k
‖gk‖∗ = 0. ⊓⊔

21

4.2 The convex case

4.4 Theorem. Let f be convex on L(x0) and assume that (A1) and (A2) hold. With c
from Proposition 2.8, let ζ ≥ 9c, 0 < η < 1, and let K be a positive integer. For any

ε > 0, if (22)–(24) hold then VSBBO finds after at most O
(
nε−1

)
function evaluations

with probability ≥ 1 − η a point x with

‖g‖∗ ≤ ε, f − f̂ ≤ εr0, (27)

where r0 is given by (8).

Proof. By (A2), f has a minimizer x̂ and r0 < ∞. By Theorem 4.2, at most K steps of
FDS are performed. Let fk−1 be the results of the (k − 1)th execution of VSBBO satisfying
(25); hence k − 1 ≤ K. The convex case is characterized by (5), so that

f̂ ≥ fk−1 + gT
k−1(x̂ − xk−1).

We know from Theorem 4.2 that, with probability ≥ 1 − η, (25) holds and hence

fk−1 − f̂ ≤ gT
k−1(xk−1 − x̂) ≤ ‖gk−1‖∗‖xk−1 − x̂‖ ≤ εr0 (28)

by (8). (27) now follows from (25) and (28). Let f j
k (j = 0, . . . , Nk + 1) be the finite

sequence of function values generated by performing Nk + 1 steps of MLS at kth execution
of FDS, so that

fk ≤ fNk

k − ∆k ≤ fNk−1
k − 2∆k ≤ ... ≤ fk−1 − Nk∆k, (29)

where fk−1 := f 0
k and fk := fNk+1

k . From (28), (29) and the rule of updating ∆ in VSBBO,
we find

0 ≤ fk − f̂ ≤ fk−1 − f̂ − Nk∆k ≤ εr0 − Nk∆k = εr0 − NkQk−1∆min,

leading to

Nk ≤ Q1−k εr0

∆min

≤ Q1−k r0cζL′n

ε
(30)

by (23). The bound for the number of function evaluations is now obtained from Theorem
3.3 and (30):

nK ≤ (2T + 1)
(
T0 +

K∑

j=1

Nj

)
≤ (2T + 1)

(
T0 +

r0cζL′n

ε

K∑

j=1

Q1−j
)

≤ (2T + 1)
(
T0 +

Qr0cζL′n

ε(Q − 1)

)
= O

(
nε−1

)
.

⊓⊔

22

4.3 The strongly convex case

4.5 Theorem. Let f be convex on L(x0) and assume that (A1) and (A2) hold. Under the

assumptions of Theorem 4.2, VSBBO finds after at most O
(
n log ε−1

)
function evaluations

with probability ≥ 1 − η a point x with

‖g‖∗ ≤ ε, f − f̂ ≤ ε2

2σ
, ‖x − x̂‖ ≤ ε

σ2
. (31)

Proof. By Theorem 4.3, at most K steps of FDS are performed. Let fk−1 be the results of
the (k − 1)th execution of VSBBO satisfying (25); hence k − 1 ≤ K. The strongly convex
case is characterized by (6), so that f has a minimizer x̂ and

f(y) ≥ f(x) + g(x)T (y − x) +
1

2
σ‖y − x‖2

for any x and y in L(x0). For fixed x, the right-hand side of this inequality is a convex
quadratic function of y, minimal when its gradient vanishes. By (2), this is the case iff yi

takes the value xi − si

σ
gi(x) for i = 1, · · · , n, and we conclude that f(y) ≥ f(x)− 1

2σ
‖g(x)‖2

∗

for y ∈ L(x0). Therefore

f̂ ≥ f(x) − 1

2σ
‖g(x)‖2

∗. (32)

The replacement of x by xk−1 in (32) and (25) gives, with probability ≥ 1 − η,

fk−1 − f̂ ≤ ‖gk−1‖2
∗

2σ
≤ ε2

2σ
. (33)

Since the gradient vanishes at the optimal point, we get from Theorem 4.2 and (33)

‖x̂ − xk−1‖2 ≤ 2

σ
(fk−1 − f̂) ≤ ε

σ2
(34)

with probability ≥ 1 − η. By the rule of updating ∆ in VSBBO, we may use (29), where
Nk + 1 is the number of steps performed by MLS at the kth execution of FDS. By (33),

0 ≤ fk − f̂ ≤ fk−1 − f̂ − Nk∆ ≤ ε2

2σ
− Nk∆ ≤ ε2

2σ
− Nk∆min,

so that

Nk ≤ ε2

2σ∆min

≤ cζL′n

2σ
(35)

by (23). Now Theorem 3.3 implies

nK ≤ (2T + 1)
(
T0 +

K∑

j=1

Nj

)
≤ (2T + 1)

(
T0 +

cζL′n

2σ
K

)

= (2T + 1)
(
T0 +

cζL′n

2σ

(
1 + logQ

∆max

∆min

))

= (2T + 1)
(
T0 +

cζL′n

2σ

(
1 + logQ

cζL′n∆max

ε2

))
= O

(
n log ε−1

)
.

⊓⊔

23

5 Numerical results

In this section we compare our new solver with other state-of-the-art solvers on a large
public benchmark.

5.1 Test problems used

VSBBO was compared with other codes from the literature on all 549 unconstrained prob-
lems from the CUTEst [19] collection of test problems for optimization with up to 5000
variables, in case of variable dimension problems for all allowed dimensions in this range.
Figure 1 shows that a total of 525 such test problems were solved by at least one solver.
To avoid guessing the solution of toy problems with a simple solution (such as all zero or
all one), we shifted the arguments, for all i = 1, . . . , n, by

xi = (−1)i−1 m

m + i
,

where m = 2.

1 2 5 10 20 50 100 300 1000 5000

d

0

50

100

150

200

250

300

350

400

450

500

#
 p

ro
b

le
m

s
 o

f
d

im

 d

525unconstrained

Figure 1: The number of problems with at most d variables solved by at least one solver:
There were a total of 525 such problems

24

nf and msec denote the number of function evaluations and the time in milliseconds, re-
spectively. We limited the budget available for each solver by allowing at most





180 if 1 ≤ n ≤ 100,
700 if 101 ≤ n ≤ 1000
1500 if 1001 ≤ n ≤ 5000

seconds of run time and at most 2n2 +1000n+5000 function evaluations for a problem with
n variables. A problem with small dimension is considered solved if the target accuracy
satisfies

qf := (f − fbest)/(finit − fbest) =
{

10−4 if 1 ≤ n ≤ 100,
10−3 if 101 ≤ n ≤ 10000

where finit is the function value of the starting point (common to all solvers) and fbest is
the best point known to us.

Note that this amounts to testing for finding the global minimizer to some reasonable
accuracy. We did not check which of the test problems were multimodal, so that descent
algorithms might end up in a local minimum only.

There have been numerous attempts for finding the best local minimizer or global minimizer
for all used test problems by calling several gradient-based solvers such as LMBFG-DDOGL,
LMBFG-EIG-MS and LMBFG-EIG-curve-inf presented by Burdakov et al. [5], ASACG

presented by Hagar & Zhang [22] and LMBOPT implemented by Kimiaei & Neumaier

[29]. The condition

‖gk‖∞ ≤ 10−5

holds for most test problems but not for them given in Appendix B.

5.2 Default parameters for VSBBO

VSBBO was implemented in Matlab; the source code is obtainable from

http://www.mat.univie.ac.at/~neum/software/VSBBO.

For our tests we used in tune the following parameter choices:

mmax = 5; T0 = 50n; C = n; S = min(fix(n/10) + 1, 5); R = min(fix(n/10) + 1, 20);
E = +∞; scCum = 0; scCor = 0; scSub = 0; cum = 1; δmin = 0.01; δmax = 1; ∆min = 0;
∆max = 10−6; γδ = 106; γmax = 10−6; γE = 4; γλ = 10−6; Q = 2;

5.3 Codes compared

We compare VSBBO with the following solvers for unconstrained black box optimization.
For some of the solvers we had to choose options different from the default to make them
competitive.

25

• RDSFS, RDSVS and PRDS, obtained from the authors of Bergou et al. [4], are
three versions of a stochastic direct search method with good complexity guarantees.

• BFO, obtained from

https://sites.google.com/site/bfocode/file,

is a trainable stochastic derivative-free solver for mixed integer bound-constrained
optimization by Porcelli & Toint [38].

• CMAES, obtained from

http://cma.gforge.inria.fr/count-cmaes-m.php?Down=cmaes.m,

is the stochastic covariance matrix adaptation evolution strategy by Auger & Hansen

[2]. We used CMAES with the following parameters:

oCMAES.MaxFunEvals = nfmax; oCMAES.DispFinal = 0; oCMAES.DispModulo = 0;
oCMAES.LogModulo = 0; oCMAES.SaveVariables = 0; oCMAES.MaxIter = nfmax;
oCMAES.Restarts = 7;

• GLOBAL, obtained from

http://www.mat.univie.ac.at/~neum/glopt/contrib/global.f90,

is a stochastic multistart clustering global optimization method by Csendes et al.
[8]. We used GLOBAL with the following parameters:

oGLOBAL.MAXFNALL = nfmax; oGLOBAL.MAXFN = nfmax/5; oGLOBAL.DISPLAY =’off’;
oGLOBAL.N100 = 300; oGLOBAL.METHOD =‘unirandi’; oGLOBAL.NG0 = 2

• DE, obtained from

http://www.icsi.berkeley.edu/~storn/code.html,

is the stochastic differential evolution algorithm by Storn & Price [41].

• MCS, obtained from

https://www.mat.univie.ac.at/~neum/software/mcs/,

is the deterministic global optimization by multilevel coordinate search by Huyer &

Neumaier [25]. We used MCS with the following parameters:

iinit = 1; nfMCS = nfmax; smax = 5n + 10; stop = 3n; local = 50;
gamma = eps; hess = ones(n, n); prt = 0.

• BCDFO, obtained from Anke Troeltzsch (personal communication), is a deterministic
model-based trust-region algorithm for derivative-free bound-constrained minimiza-
tion by Gratton et al. [21].

• PSM, obtained from

http://ferrari.dmat.fct.unl.pt/personal/alcustodio,

is a deterministic pattern search method guided by simplex derivatives for use in
derivative-free optimization proposed by Custódio & Vicente [10, 11].

26

• FMINUNC, obtained from the Matlab Optimization Toolbox at

https://ch.mathworks.com/help/optim/ug/fminunc.html,

is a deterministic quasi-Newton or trust-region algorithm. We use FMINUNC with
the options set by optimoptions as follows:

opts = optimoptions(@fminunc),‘Algorithm’,‘quasi-newton’
‘Display’, ‘Iter’,‘MaxIter’,Inf,‘MaxFunEvals’, limits.nfmax

‘TolX’, 0,‘TolFun’,0,‘ObjectiveLimit’,-1e-50);

• FMINSEARCH, obtained from the Matlab Optimization Toolbox at

https://ch.mathworks.com/help/matlab/ref/fminsearch.html,

is the deterministic Nelder-Mead simplex algorithm by Lagarias et al. [31]. We use
fminseach with the options set by optimset as follows:

opts = optimset(‘Display’,‘Iter’, ‘MaxIter’, Inf,‘MaxFunEvals’, ...
limits.nfmax,‘TolX’, 0, ‘TolFun’,0,‘ObjectiveLimit’,-1e-50);

• GCES is a globally convergence evolution strategy presented by Diouane et al. [14,
15].

• PSWARM, obtained from

http://www.norg.uminho.pt/aivaz

is Particle swarm pattern search algorithm for global optimization presented by Vaz

& Vicente [43].

• MDS, NELDER and HOOKE, obtained from

https://ctk.math.ncsu.edu/matlab_darts.html

are Multidirectional search, Nelder-Mead and Hooke-Jeeves algorithms, respectively,
presented by Kelley [27].

• MDSMAX, NMSMAX, and ADSMAX, obtained from

http://www.ma.man.ac.uk/~higham/mctoolbox/

are Multidirectional search, Nelder-Mead simplex and alternating directions method
for direct search optimization algorithms, respectively, presented by Higham [24].

• GLODS, obtained from

http://ferrari.dmat.fct.unl.pt/personal/alcustodio/

is Global and Local Optimization using Direct Search, presented by Custódio &

Madeira [9].

• ACRS, obtained from

http://www.iasi.cnr.it/~liuzzi/DFL/index.php/list3

is a global optimization algorithm presented by Brachetti et al. [6]

27

• SDBOX, obtained from

http://www.iasi.cnr.it/~liuzzi/DFL/index.php/list3

is a derivative-Free algorithm for bound constrained optimization problems presented
by [32].

VSBBO and the other stochastic algorithms use random numbers, hence give slightly differ-
ent results when run repeatedly. Each solver was run only once for each problem. However,
we checked in preliminary tests that the summarized results reported were quite similar
when another run was done.

Some of the other solvers have additional capabilities that were not used in our tests; e.g.,
allowing for bound constraints or integer constraints, or for noisy function values). Hence
our conclusions are silent about the performance of these solvers outside the task of global

unconstrained black box optimization with noiseless function values (apart from rounding
errors).

5.4 Results for small dimensions (n ≤ 20)

We tested all 24 solvers on low dimensional test problems (n ≤ 20). The problems unsolved
by all solvers are HATFLDFL, FLETCBV3 and FLETCHBV.

Performance plots [16] for two cost measures nf (number of function evaluations needed to
reach the target) and msec (time used in milliseconds) are shown in Figure 2.

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for msec

a) b)

Figure 2: Small dimensions 2 − 20: Performance plots for (a) nf/(best nf) and (b)
msec/(best msec). ρ denotes the fraction of problems solved within a factor τ of the
best solver.

For a more refined statistics, we use our test environment (Kimiaei & Neumaier [28])
for comparing optimization routines on the CUTEst test problem collection by Gould et
al. [19]. For a given collection S of solvers, the strength of a solver so ∈ S – relative to an

28

10
0

10
5

nf

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
0

10
2

10
4

10
6

msec

10
-1

10
0

a) b)

Figure 3: Small dimensions 2 − 20: Performance plots for (a) nf/(best nf) and (b)
msec/(best msec). ρ designates the fraction of problems solved within the number of
function evaluations and time in milliseconds used by the best solver. Problems solved by
no solver are ignored.

ideal solver that matches on each problem the best solver – is measured, for any given cost
measure cs by the number, qso defined by

qso :=

{
(min

s∈S
cs)/cso, if so solved by the problem,

0, otherwise,

called the efficiency of the solver so with respect to this cost measure. In the tables,
efficiencies are given in percent. Larger efficiencies in the table imply a better average
behaviour; a zero efficiency indicates failure. All values are rounded (towards zero) to
integers. Mean efficiencies are taken over the 174 problems tried by all solvers and solved
by at least one of them, from a total of 177 problems. In the following tables, #100 and
!100 count the number of times we have nf efficiency 100% or unique nf efficiency 100%.
Tmean is defined by

Tmean :=

∑
solved

solved
.

Failure reasons were reported in the anomaly columns:

• n indicates that nf ≥ 2n2 + 1000n + 5000 was reached.

• t indicates that sec ≥ 180 was reached.

• f indicates that the algorithm failed for other reasons.

In the times, the (for some problems significant) setup time for CUTEst is not included. Al-
though running times are reported, the comparison of times is not very reliable for several
reasons:
(i) The times were obtained under different conditions (solver source code Fortran, C and
Matlab).
(ii) In unsuccessful runs, the actual running time depends a lot on when and why the solver

29

Table 12: The summary results for small dimensions n ≤ 20

stopping test: qf ≤ 0.0001, sec ≤ 180, nf ≤ 2n2 + 1000n + 5000

174 of 177 problems without bounds solved mean efficiency in %
dim∈[1,20] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

MCS mcs 162 21 20 428 3 0 12 41 13
GCES gecs 159 5 3 1684 1 0 17 29 9
BCDFO bcd 159 42 38 3796 0 1 17 53 21
VSBBO vsbb 159 2 2 241 18 0 0 25 23
NMSMAX nmsm 157 11 10 193 12 0 8 36 41
NELDER neld 157 16 13 190 0 0 20 37 42
PSM psm 156 7 6 1222 10 2 9 38 14
SDBOX sdb 144 7 7 205 33 0 0 25 43
FMINUNC func 142 54 51 84 0 0 35 53 53
CMAES cma 142 3 2 457 35 0 0 9 10
BFO bfo 140 1 1 269 0 0 37 19 19
ADSMAX adsm 126 1 1 662 37 0 14 14 10
MDSMAX mdsm 123 3 2 318 53 0 1 12 18
GLODS glods 123 9 8 1085 51 0 3 13 5
PSWARM psw 122 2 0 491 33 0 22 7 6
HOOKE hook 120 0 0 196 13 0 44 18 25
FMINSEARCH fmin 97 0 0 575 20 0 60 7 6
GLOBAL glo 93 1 1 166 21 0 63 6 12
DE de 84 0 0 769 68 0 25 0 2
RDSvs rvs 57 1 0 258 120 0 0 3 8
PRDS prd 55 0 0 913 122 0 0 1 2
RDSfs rfs 52 0 0 308 125 0 0 2 5
ACRS acr 50 1 0 330 83 0 44 3 4
MDS mds 13 3 1 133 96 0 68 2 3

was stopped. Table entries use the maximal allowed time (180 sec) for each unsuccessful run.

In Table 12, we see that on problems with few variables, VSBBO has above average per-
formance and can compete in robustness with the best solvers MCS, GCES, NELDER and
BCDFO.

5.5 Results for medium dimensions (21 ≤ n ≤ 100)

We tested all 24 solvers on medium dimensional test problems (21 ≤ n ≤ 100). The
problems unsolved by all solvers are NONMSQRT:49, CURLY10:100, NONMSQRT:100
and OSCIGRAD:100.

Performance plots [16] for two cost measures nf (number of function evaluations needed to
reach the target) and msec (time used in milliseconds) are shown in Figure 4. The other
performance plots for two mentioned cost measures are shown in Figure 5.

In Table 13, we see that on problems with a medium number of variables, VSBBO is
outstanding in robustness, but FMINUNC is the best in terms of nf and sec efficiency.

30

Table 13: The summary results for medium dimensions 21 − 100

stopping test: qf ≤ 0.0001, sec ≤ 180, nf ≤ 2n2 + 1000n + 5000

152 of 156 problems without bounds solved mean efficiency in %
dim∈[21,100] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

VSBBO vsbb 140 30 30 1785 16 0 0 46 38
MCS mcs 133 3 3 3852 3 0 20 22 14
FMINUNC func 128 74 72 911 0 0 28 62 68
SDBOX sdb 126 10 9 1615 30 0 0 37 45
ADSMAX adsm 115 9 9 5021 36 0 5 26 15
CMAES cma 101 1 0 14852 52 3 0 7 2
PSWARM psw 100 0 0 11142 51 0 5 3 2
NMSMAX nmsm 94 3 3 5214 60 2 0 13 10
MDSMAX mdsm 90 1 0 4172 66 0 0 4 7
NELDER neld 90 3 3 25525 5 29 32 13 4
BFO bfo 83 0 0 4781 0 4 69 5 5
HOOKE hook 76 0 0 4616 11 0 69 10 7
DE de 73 0 0 3670 48 0 35 1 4
GLOBAL glo 36 1 1 1925 31 0 89 4 5
PSM psm 31 4 4 28431 0 125 0 8 1
GLODS glods 28 5 5 2225 0 0 128 4 3
GCES gecs 27 0 0 42836 0 124 5 4 0
BCDFO bcd 20 11 10 29203 0 135 1 7 1
RDSvs rvs 18 0 0 6906 137 1 0 0 0
PRDS prd 17 0 0 4408 138 1 0 0 1
RDSfs rfs 15 0 0 7302 140 1 0 0 1
FMINSEARCH fmin 14 0 0 6433 136 2 4 0 0
MDS mds 7 0 0 4691 146 2 1 0 0
ACRS acr 6 0 0 27262 84 66 0 0 0

31

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for msec

a) b)

Figure 4: Medium dimensions 21 − 100: Performance plots for (a) nf/(best nf) and (b)
msec/(best msec). ρ designates the fraction of problems solved within a factor τ of the
best solver. Problems solved by no solver are ignored.

10
0

10
2

10
4

10
6

nf

0.4

0.5

0.6

0.7

0.8

0.9

1

10
0

10
2

10
4

10
6

msec

0.2

0.4

0.6

0.8

1

a) b)

Figure 5: Medium dimensions 21 − 100: Performance plots for (a) nf/(best nf) and (b)
msec/(best msec). ρ designates the fraction of problems solved within the number of
function evaluations and time in milliseconds used by the best solver. Problems solved by
no solver are ignored.

5.6 Results for large dimensions (101 ≤ n ≤ 1000)

We tested the 6 most robust solvers from Table 13 on large dimensional test problems
(101 ≤ n ≤ 1000). The problems unsolved by the 6 solvers are GENROSE:500, NONM-
SQRT:529, CURLY20, CURLY30, FLETCBV3:1000, FLETCHCR:1000, SENSORS:1000
and SPMSRTLS:1000.

Performance plots [16] for two cost measures nf (number of function evaluations needed to
reach the target) and msec (time used in milliseconds) are shown in Figure 6. The other
performance plots for two mentioned cost measures are shown in Figure 7.

32

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for msec

a) b)

Figure 6: Large dimensions 101 − 1000: Performance plots for (a) nf/(best nf) and (b)
msec/(best msec). ρ designates the fraction of problems solved within a factor τ of the
best solver. Problems solved by no solver are ignored.

10
0

10
2

10
4

10
6

10
8

nf

10
-1

10
0

10
0

10
2

10
4

10
6

msec

10
-1

10
0

a) b)

Figure 7: Large dimensions 101 − 1000: Performance plots for (a) nf/(best nf) and (b)
msec/(best msec). ρ designates the fraction of problems solved within the number of
function evaluations and time in milliseconds used by the best solver. Problems solved by
no solver are ignored.

33

Table 14: The summary results for for large dimensions 101 − 1000

stopping test: qf ≤ 0.001, sec ≤ 700, nf ≤ 2n2 + 1000n + 5000

118 of 126 problems solved mean efficiency in %
dim∈[101,1000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

VSBBO vsbb 105 25 24 17780 2 19 0 53 41
SDBOX sdb 103 10 9 10544 10 13 0 42 52
FMINUNC func 96 52 49 9831 2 1 27 55 59
ADSMAX adsm 92 28 27 42157 2 26 6 34 18
MCS mcs 74 7 4 83711 0 6 46 9 4
CMAES cma 53 3 2 214364 4 68 1 6 1

A comparison of five solvers in Table 14 shows that VSBBO is the most robust solver. It
is better than SDBOX in terms of the nf efficiency and than FMINUNC in terms of the
number of solved problems.

5.7 Results for large dimensions (1001 ≤ n ≤ 5000)

We tested the 3 most robust solvers from Table 14 on large dimensional test problems (101 ≤
n ≤ 1000). The problems unsolved by all solvers are NONMSQRT:1024, EIGENALS:2550,
EIGENBLS:2550, MSQRTALS:4900, MSQRTBLS:4900, SPMSRTLS:4999, FLETCBV2:5000
and NONCVXU2:5000.

Performance plots [16] for two cost measures nf (number of function evaluations needed to
reach the target) and msec (time used in milliseconds) are shown in Figure 8. The other
performance plots for two mentioned cost measures are shown in Figure 9.

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for nf

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

(,) for msec

a) b)

Figure 8: Large dimensions 1001 − 5000: Performance plots for (a) nf/(best nf) and (b)
msec/(best msec). ρ designates the fraction of problems solved within a factor τ of the
best solver. Problems solved by no solver are ignored.

In Table 15, we have a comparison of best solvers SDBOX, VSBBO and FMINUNC for
large dimensions 1001 up 5000. The high quality of VSBBO is clearly visible. VSBBO is

34

10
0

10
5

10
10

nf

0.75

0.8

0.85

0.9

0.95

1

1.05

10
0

10
5

10
10

msec

0.75

0.8

0.85

0.9

0.95

1

1.05

a) b)

Figure 9: Large dimensions 1001 − 5000: Performance plots for (a) nf/(best nf) and
(b) msec/(best msec). ρ designates the fraction of problems solved within the number of
function evaluations and time in milliseconds used by the best solver. Problems solved by
no solver are ignored.

Table 15: The summary results for large dimensions 1001 − 5000

stopping test: qf ≤ 0.001, sec ≤ 1500, nf ≤ 2n2 + 1000n + 5000

82 of 90 problems without bounds solved mean efficiency in %
dim∈[1001,5000] # of anomalies for cost measure

solver solved #100 !100 Tmean #n #t #f nf msec

VSBBO vsbb 76 44 43 70724 0 14 0 64 53
SDBOX sdb 75 8 7 61381 0 15 0 49 59
FMINUNC func 67 32 30 92763 0 10 13 49 50

the best in terms of the nf efficiency, #100 and !100.

35

5.8 Results for all dimensions

For dimensions 1 up 5000, VSBBO, SDBOX and FMINUNC have solved 477, 448 and 433
test problems, respectively. Hence VSBBO is robust solver.

Acknowledgement The first author acknowledges the financial support of the Doctoral
Program “Vienna Graduate School on Computational Optimization” funded by Austrian
Science Foundation under Project No W1260-N35.

References

[1] C. Audet and D. Orban, Finding optimal algorithmic parameters using derivative free
optimization, SIAM J. Optim 17 (2006), 642–664.

[2] A. Auger and N. Hansen, A restart CMA evolution strategy with increasing population
size, In: The 2005 IEEE congress on evolutionary computation 2 (2005), 1769–1776.

[3] C.J. Bélisle, H.E. Romeijn, and R.L. Smith, Hit-and-run algorithms for generating
multivariate distributions, Math. Oper. Res. 18 (1993), 255–266.

[4] E.H. Bergou, E. Gorbunov and P. Richtárik, Random direct search method for mini-
mizing nonconvex, convex and strongly convex functions, Manuscript (2018).

[5] Burdakov, Oleg and Gong, Lujin and Zikrin, Spartak and Yuan, Ya-xiang, On effi-
ciently combining limited-memory and trust-region techniques, Math. Program. Com-
put. 9(1) (2017), 101–134.

[6] P. Brachetti, G. Di Pillo, M. De Felice Ciccoli, S. Lucidi, A New Version of the Prices
Algorithm for Global Optimization, J. Glob. Optim. 10 (1997) 165–184.

[7] A.R. Conn, K. Scheinberg, and L.N. Vicente, Introduction to derivative-free optimiza-
tion, SIAM, Philadelphia, PA, 2009.

[8] T. Csendes, L. Pál, J.O.H. Sendin and J.R. Banga, The GLOBAL optimization method
revisited, Optim. Lett. 2 (2008), 445–454.

[9] A.L. Custódio and J.F.A. Madeira, GLODS: Global and Local Optimization using
Direct Search, J. Glob. Optim., 62 (2015), 1–28.

[10] A.L. Custódio, L.N. Vicente, Using sampling and simplex derivatives in pattern search
methods, SIAM J. Optim 18 (2007), 537–555.

[11] A.L. Custódio, H. Rocha, L.N. Vicente, Incorporating minimum Frobenius norm mod-
els in direct search, Comput. Optim. Appl. 46 (2010), 265–278.

[12] Y. Diouane, S. Gratton, and L.N. Vicente, Globally convergent evolution strategies,
Math. Program. 152 (2015) 467–490.

[13] Y. Diouane, S. Gratton, and L.N. Vicente, Globally convergent evolution strategies for
constrained optimization, Comput. Optim. Appl. 62 (2015) 323–346.

36

[14] M. Dodangeh, L.N. Vicente, Worst case complexity of direct search under convexity,
Math. Program. 155(1–2) (2016), 307–332.

[15] M. Dodangeh, L.N. Vicente, Z. Zhang, On the optimal order of worst case complexity
of direct search, Optim. Lett. 10(4) (2016), 699–708.

[16] E. Dolan and J. Moré, Benchmarking optimization software with performance profiles,
Math. Program. 91 (2002), 201–213.

[17] C. Elster and A. Neumaier, A grid algorithm for bound constrained optimization of
noisy functions, IMA J. Numer. Anal. 15 (1995), 585–608.

[18] C. Elster and A. Neumaier, A trust region method for the optimization of noisy func-
tions, Computing 58 (1997), 31–46.

[19] N.I.M. Gould, D. Orban, Ph.L. Toint, CUTEst: a constrained and unconstrained testing
environment with safe threads for mathematical optimization, Comput. Optim. Appl.
60(3) (2015), 545–557.

[20] S. Gratton, C.W. Royer, L. N. Vicente and Z. Zhang, Direct search based on probab-
listic descent, SIAM J. Optim 25 (2015), 1515–1541.

[21] S. Gratton, Ph. L. Toint, and A. Tröeltzsch, An active-set trust-region method
for derivative-free nonlinear bound-constrained optimization, Optim. Methods Softw.
26(4–5) (2011) 875–896.

[22] W.W. Hager and H. Zhang, A New Active Set Algorithm for Box Constrained Opti-
mization, SIAM J. Optim 17(2) (2006), 526–557.

[23] N. Hansen, The CMA evolution strategy: a comparing review, pp. 75–102 in: Towards
a new evolutionary computation, Advances on estimation of distribution algorithms
(J.A. Lozano, ed.), Springer, Berlin 2006.

[24] N.J. Higham, Optimization by direct search in matrix computations, SIAM J. Matrix
Anal. Appl. 14(2)(1993) 317–333.

[25] W. Huyer and A. Neumaier, Global optimization by multilevel coordinate search, J.
Glob. Optim. 14 (1999), 331–355.

[26] W. Huyer and A. Neumaier, SNOBFIT–stable noisy optimization by branch and Fit,
ACM. Trans. Math. Software 35, Article 9 (2008).

[27] C.T. Kelley, Iterative methods for optimization, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1999.

[28] M. Kimiaei, A. Neumaier, Testing and tuning optimization algorithm, in preparation
(2019).

[29] M. Kimiaei, A. Neumaier, LMBOPT–a limited memory method for bound-constrained
optimization, in preparation (2019).

[30] J. Konečný and P. Richtárik, Simple complexity analysis of simplified direct search,
Manuscript (2014), https://arxiv.org/abs/1410.0390.

37

[31] J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, Convergence Properties of the
Nelder-Mead Simplex Method in Low Dimensions, SIAM J. Optim, 9(1) (1998), 112–
147.

[32] S. Lucidi, M. Sciandrone, A Derivative-Free Algorithm for Bound Constrained Opti-
mization, Comput. Optim. Appl. 21(2) (2002), 119–142.

[33] Y. Nesterov, Random gradient-free minimization of convex functions, CORE discussion
paper #2011/1, unpublished (2011).

[34] Y. Nesterov and V. Spokoiny, Random gradient-free minimization of convex functions,
Found. Comput. Math. 17 (2017), 527–566.

[35] A. Neumaier, H. Fendl, H. Schilly and T. Leitner, Derivative-free unconstrained opti-
mization based on QR factorizations, Soft Computing 15 (2011), 2287–2298.

[36] J. Nocedal, S. Wright, Numerical Optimization. Springer New York, 2 edition, 1999.

[37] M. Porcelli, Ph. L. Toint, A note on using performance and data profiles for training
algorithms, (2017), https://arxiv.org/abs/1711.09407

[38] M. Porcelli, Ph. L. Toint, BFO, a trainable derivative–free Brute Force Optimizer for
nonlinear bound-constrained optimization and equilibrium computations with contin-
uous and discrete variables, ACM. Trans. Math. Software 44–1 (2017), Article 6, 25
pages.

[39] I. Pinelis, A probabilistic angle inequality, MathOverflow (2018). https://

mathoverflow.net/q/298590

[40] L.M. Rios and N.V. Sahinidis, Derivative-free optimization: A review of algorithms
and comparison of software implementations, Manuscript (2009).

[41] R. Storn and K. Price, Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces, J. Glob. Optim. 11 (1997), 341–359.

[42] P.J.M. Van Laarhoven and E.H.L. Aarts, Simulated annealing: theory and applica-
tions, Kluwer, Dordrecht (1987).

[43] A.I.F. Vaz and L.N.Vicente, A particle swarm pattern search method for bound con-
strained global optimization, J. Glob. Optim. 39 (2007), 197–219.

[44] L.N. Vicente, Worst case complexity of direct search, EURO J. Comput. Optim. 1(1–2)
(2013), 143–153.

A Appendix: Estimation of c

The following theorem was recently proved by Pinelis [39].

38

A.1 Theorem. There is a universal constant c0 such that for any fixed nonzero real vector
q of any dimension n and any random vector p of the same dimension n with independent
components uniformly distributed in [−1, 1], we have

(pT p)(qT q) ≤ c0n(pT q)2 (36)

with probability ≥ 1/2.

More specifically, Pinelis proved the bounds 0.73 < c0 < 50 for the optimal value of the
constant c0. The true optimal value seems to be approximately 16/7. This is suggested by
numerical simulation. To estimate c0, we executed three times the Matlab commands

10
0

10
1

10
2

10
3

10
4

10
5

1

1.5

2

16/7

2.5

n

 c
n

Figure 10: The plot of cn versus the dimension n suggests that c0 ≈ 16/7.

% run PinConst

N=10000;

nlist=[2:10,20,50,100,200,500,1000,2000,5000,10000,20000,50000,100000];

c0=PinConst(N,nlist);

using the algorithm PinConst below. All three outputs,

c0 = 2.2582, c0 = 2.2444, c0 = 2.2714

are slightly smaller than 16/7 = 2.2857....

39

A.2 Algorithm. (Estimating the Pinelis constant)

Purpose: Estimate c0 satisfying (36) with probability ≥ 1/2

Input: N (the total number of gradient evaluations)
D (vector of dimensions used)

Output: c0

[c0]=PinConst(N ,D);

M = |D|;
for i = 1, · · · , M ,

for k = 1, · · · , N ,
generate random gk and pk with length Di;

gain(k) =
‖gk‖2‖pk‖2

|gT
k pk| ;

end;
medgain(i) = median(gain); % obtain median of gain

c(i) = medgain(i))2/Di;
end;
c0 = max(c);

B Appendix: A list of test problems with fbest

Here is given a list of some test problems for which the condition

‖gk‖∞ ≤ 10−5

don’t hold.

poblem dim fbest ‖g‖∞ ‖g‖2

BROWNBS 2 −2.80e + 00 2.08e − 05 2.08e − 05

DJTL 2 −8.95e + 03 1.44e − 04 1.44e − 04

STRATEC 10 2.22e + 03 8.10e − 05 1.42e − 04

SCURLY10:10 10 −1.00e + 03 5.34e − 04 5.50e − 04

OSBORNEB 11 2.40e − 01 3.47e − 02 3.47e − 02

ERRINRSM:50 50 3.77e + 01 1.89e − 05 1.89e − 05

ARGLINC:50 50 1.01e + 02 1.29e − 05 5.28e − 05

HYDC20LS 99 1.12e + 01 5.54e − 01 8.79e − 01

PENALTY3:100 100 9.87e + 03 2.01e − 03 4.68e − 03

SCOSINE:100 100 −9.30e + 01 1.95e − 02 3.58e − 02

SCURLY10:100 100 −1.00e + 04 5.74e − 02 1.56e − 01

NONMSQRT:100 100 1.81e + 01 3.42e − 05 6.51e − 05

Continued on next page

40

PENALTY2:200 200 4.71e + 13 3.85e − 04 1.07e − 03

ARGLINB:200 200 9.96e + 01 3.27e − 04 2.68e − 03

SPMSRTLS:499 499 1.69e + 01 1.08e − 05 3.59e − 05

PENALTY2:500 500 1.14e + 39 1.97e + 26 4.08e + 26

MSQRTBLS:529 529 1.13e − 02 1.44e − 05 1.03e − 04

NONMSQRT:529 529 6.13e + 01 2.17e − 05 1.76e − 04

SCOSINE 1000 −9.21e + 02 3.38e − 03 9.32e − 03

SCURLY10 1000 −1.00e + 05 5.49e + 01 3.37e + 02

COSINE 1000 −9.99e + 02 5.00e − 05 6.34e − 05

PENALTY2:1000 1000 1.13e + 83 2.53e + 77 3.41e + 77

SINQUAD:1000 1000 −2.94e + 05 1.21e − 05 1.52e − 05

SPMSRTLS:1000 1000 3.19e + 01 9.75e − 05 2.26e − 04

NONMSQRT:1024 1024 9.01e + 01 1.73e − 04 1.28e − 03

MSQRTALS:4900 4900 7.60e − 01 1.88e − 03 3.56e − 02

SPMSRTLS:4999 4999 2.05e + 02 2.36e − 03 9.27e − 03

INDEFM:5000 5000 −5.02e + 05 1.43e − 05 2.00e − 05

SBRYBND:5000 5000 2.58e − 10 3.73e − 04 3.50e − 03

SCOSINE:5000 5000 −4.60e + 03 6.32e − 03 2.72e − 02

NONCVXUN:5000 5000 1.16e + 04 3.94e − 05 7.19e − 04

C Appendix: Flow charts

Here we give flow charts for the algorithms setScale, MLS, FDS, and VSBBO.

41

get by MLS:

• point

• par

good

stop

Yes

No

get by
setScale:

• step

• par

get point

by FDS

∆ > ∆min stopNo

Yes

(a) (b)

Figure 11: Flow charts for (a) FDS, and (b) VSBBO.

42

t = 0

t ≤ T0

t = t + 1;
get by MLS:

• point

• par

estimate:

• ∆max

• initial
λ

No
Yes

(a)

t = 0

t > T stop good

state = 0 extrapolation ext

state = −1
t = t + 1;

get step by
direction

fm > fr
update λ
if nE = 1

state = 1
opposite
direction

opp

No

No

No

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

No

No

No

Yes

(b)

Figure 12: Flow charts for (a) setScale, (b) MLS.

43

