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Abstract. This paper presents rigorous filtering methods for continuous constraint satis-
faction problems based on linear relaxations. Filtering or pruning stands for reducing the
search space of constraint satisfaction problems. Discussed are old and new approaches for
rigorously enclosing the solution set of linear systems of inequalities, as well as different
methods for computing linear relaxations. This allows custom combinations of relaxation
and filtering. Care is taken to ensure that all methods correctly account for rounding errors
in the computations.
Although most of the results apply more generally, strong emphasis is given to relaxing
and filtering quadratic constraints, as implemented in the GloptLab environment, which
internally exploits a quadratic structure. Demonstrative examples and tests comparing the
different linear relaxation methods are also presented.
Keywords. linear relaxations, filtering, pruning, continuous constraints, quadratic con-
straint satisfaction problems, rounding error control, verified computation, quadratic pro-
gramming, branch and bound, global optimization.

1 Introduction

1.1 Context

This paper considers rigorous filtering methods based on computing linear relaxations for
continuous constraint satisfaction problems. A constraint satisfaction problem is the task
of finding one or all points satisfying a given family of equations and/or inequalities, called
constraints. Many real word problems are continuous constraint satisfaction problems, often
high-dimensional ones. Applications include robotics (Grandon et al. [11], Merlet [20]),
localization and map building (Jaulin [13], Jaulin et al. [14], biomedicine Cruz & Bara-
hona [6]), and the protein folding problem (Krippahl & Barahona [16]). In practice,
constraint satisfaction problems are solved by a combination of a variety of techniques, often
involving constraint propagation with either some form of stochastic search or a branch and
bound scheme for a complete search. These techniques are mainly complemented by filter-
ing or pruning techniques based on techniques borrowed from optimization, such as linear
or convex relaxations (see, e.g., Neumaier [23]).
Filtering or pruning stands for reducing the search space of constraint satisfaction problems.
There are many filtering techniques which are usually combined with branch and bound
methods and provide more or less reduction of the search space. If applied to quadratic con-
straints, the classical filtering algorithms based upon local consistencies like 2B-consistency
or Box-consistency (see, e.g., Benhamou et al. [4]) do not take advantage of the special
properties of quadratic forms and therefore often results are poorer than desirable. 3B-
consistency is more effective, but the practice shows that for quadratic problems they usually
tend to be slow due to the exhaustive branching needed to achieve the required precision.
Hull consistency techniques like the classical HC4 (Benhamou et al. [3]) or the newly de-
veloped OCTUM (Chabert & Jaulin [5]) show promising results, but still do not use the
special structure of quadratic problems.
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Another approach — originally developed for global optimization — is to compute linear
relaxations for a problem, and then use these to reduce the search space of the original
problem. As the name suggests, by computing a relaxation, we may also lose some structural
information of the original problem. However this loss is often complementary to that in
the consistency techniques described before. Here only linear relaxations are considered,
higher degree relaxations and convex relaxations are discussed in the literature; for example,
affine and convex functions for non-convex multivariate polynomials in Garloff et al. [10].
Constructing relaxations by using the right method can effectively approximate the structure
of the original constraint; in fact, the criteria for a good relaxation is having a small distance
(in some vague sense) to the original constraints. The resulting linear system usually contains
more variables/constraints than the original problem but is much easier to solve. A classical
method, called RLT (reformulation-linearization technique) by Sherali & Adams [29] is
used by Lebbah et al. [18] in the QUAD algorithm; another interesting approach was given
by Kolev [15]. Since the last two fit the main scope of this paper they will be discussed in
detail. These methods require the rigorous solution of linear programs, as for example given
for programs with uncertain data Jansson & Rump [12].

1.2 Software

A number of software packages for solving constraint satisfaction problems make extensive
use of linear relaxations. The ICOS solver by Lebbah [17] is a free software package for solv-
ing nonlinear and continuous constraints, based on constraint programming, relaxation and
interval analysis techniques. The prize winning, commercial solver Baron by Sahinidis &
Tawarmalani [26] — a highly developed, approximate global optimization solver — uses a
special linear relaxation technique called the sandwich method, while the COCONUT Envi-
ronment [27, 28] applies both linear relaxations using slopes and reformulation-linearization
on Directed Acyclic Graphs (DAGs).
Note that solving constrained global optimization problems by branch and bound is in prac-
tice reduced to solving a sequence of constraint satisfaction problems, each obtained by
adding a constraint f(x) ≤ fbest to the original constraints, where f is the objective function
and fbest the function value of the best feasible point found so far. Thus all techniques for
solving constraint satisfaction problems have immediate impact on global optimization. This
widens the scope of the possible applications of the methods presented.

1.3 Outline

The paper is organized as follows. In Sections 2–5 rigorous techniques for enclosing the
solution set of linear systems of inequalities are discussed, while Sections 6–7 are about
creating linear relaxations for quadratic constraint satisfaction problems. In detail, Section
2 considers finding the interval hull of a bounded polyhedron by means of solving a single
linear optimization problem. In Section 3 the concept of a Gauss-Jordan preconditioner
is introduced. In Section 4 it is shown how the preconditioner can be used to find cheap
bounds for a linear system of inequalities. In Section 5 a more costly approach is given.
Here for the most promising directions two linear programs are solved approximately and
the approximate solutions are verified. Section 6 gives step-by-step instructions how linear
relaxations for multivariate quadratic expressions can be generated, how the method of
Lebbah et al. [18] and Kolev [15] can be unified, and how new relaxation techniques for
bilinear terms can be computed. In Section 7, linear relaxations and filtering for constraint
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satisfaction problems are considered, by discussing how the linear methods can be combined
in order to effectively reduce the search space of a quadratic constraint satisfaction problem.
The integration of the methods in GloptLab (see Domes [7]) environment is explained in
detail. In Section 8 two demonstrative examples are given while Section 9 presents some test
results and comparison of different relaxation techniques.

1.4 Notation

a = [a, a] with a ≤ a denotes a real interval with a possibly infinite lower bound a and
a possibly infinite upper bound a. A bound is large, if its absolute value is greater than
a configurable constant µ (whose default value is 106 in GloptLab). Decisions are often
based on “if a bound is large” rather than on “if a bound is infinite”. An interval is large
if both of its bounds are large. The expressions

wid(a) := a− a

denotes the width,
mid(a) := (a+ a)/2

denotes the midpoint,

〈a〉 :=

{
min(|a|, |a|) if 0 /∈ [a, a],
0 otherwise,

denotes the mignitude and
|a| := max(|a|, |a|)

denotes the magnitude of an interval a. An interval is called thin or degenerate if its
width is zero. An interval is called narrow if its width is less than a configurable constant η
(whose default value is 10−6 in GloptLab). Decisions are often based on “if an interval is
narrow” rather than on “if an interval is thin”. The sign of the interval a is defined by

sign a =


0 if a = a = 0,
1 if a > 0,
−1 if a < 0,

[− 1, 1] if a < 0 < a.

Note that this is not an interval extension of a real sign function.
An interval vector x = [x, x] ∈ IRn

or a box is the Cartesian product of the closed real
intervals xi := [xi, xi], representing a (bounded or unbounded) axiparallel box in Rn. The
values −∞ and ∞ are allowed as lower and upper bounds, respectively, to take care of one-
sided bounds on variables. IRn

denotes the set of all n-dimensional boxes. A box is large or
narrow when all its components are large or narrow. Operations defined for intervals (like
width, midpoint, mignitude and magnitude) are interpreted component-wise when applied
to boxes. The condition x ∈ x is equivalent to the collection of simple bounds

xi ≤ xi ≤ xi (i = 1, . . . , n),

or, with inequalities on vectors and matrices interpreted component-wise, to the two-sided
vector inequality x ≤ x ≤ x. Apart from two-sided constraints, this includes with xi = [a, a]
variables xi fixed at a particular value xi = a, with xi = [a,∞] lower bounds xi ≥ a, with
xi = [−∞, a] upper bounds xi ≤ a, and with xi = [−∞,∞] free variables.
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The n-dimensional identity matrix is denoted by In and the n-dimensional zero matrix is
denoted by 0n. The jth row vector of a matrix A is denoted by Aj:, the kth column vector
by A:k and the number of nonzero entries by nnz(A). The set ¬N denotes the complement
of a set N . The number of elements of a set N is denoted by |N |. Let I ⊆ {1, . . . , n} and
J ⊆ {1, . . . ,m} be index sets and let nI := |I|, nJ := |J |. Let x be an n-dimensional vector,
then xI denotes the nI-dimensional vector built from the components of x selected by the
index set I. Let A be an m× n matrix, then A:I denotes the m× nI matrix built from the
rows of A selected by the index sets I. Similarly, AJ : denotes the nJ × n matrix built from
the columns of A selected by the index sets J . (AT )−1 is denoted by A−T . For vectors and
matrices the comparison operators =, 6=, <, >, ≤, ≥ and the absolute value |A| of a matrix
A are interpreted component-wise.
We also consider a quadratic expression p(x) in x = (x1, . . . , xn)T such that the evaluation
at any x ∈ x is a real number. The box p(x) is called an interval enclosure of p(x) in the
box x if p(x) ∈ p(x) holds for all x ∈ x. There are a number of methods for defining p(x),
for example interval evaluation or centered forms (for details, see, e.g., Neumaier [22]). If
for all y ∈ p(x) an x ∈ x exists such that p(x) = y, then p(x) is called the range. If this
only holds for y = inf p(x) and y = sup p(x), then p(x) is the interval hull ut{p(x) | x ∈ x}.
Another – and somewhat trickier – alternative is is to compute the upper and the lower
bound of the range separately, without the use of interval arithmetic, by using monotonicity
properties of the operations. To get rigorous results when using floating point arithmetic, one
needs here directed rounding. However, not all expressions can be bounded from below or
above using directed rounding only; and detailed considerations are needed in each particular
case. For an expression p, ∇{p} denotes the result obtained when first the rounding mode is
set to downward rounding, then p is evaluated, and by ∆{p} the result obtained when first
the rounding mode is set to upward rounding, then p is evaluated. Assumed is that negating
an expression is done without error; thus, e.g., ∆{−(x − y)} = −∆{x − y} holds. Careful
arrangement allows in many cases to replace downward rounded expressions by equivalent
upward rounded expressions. For example, ∇{x − y} = ∆{−(y − x)}. If this is possible,
one can achieve correct results using only upward rounding (thus saving rounding mode
switches), while in Intlab’s interval arithmetic (see Rump [25]), the rounding mode is
switched often, slowing down the computations.
During the first four sections of this paper linear systems are discussed. Linear systems of
two-sided inequalities are given by

Ex ∈ b, x ∈ x, (1)

where E is an m × n real matrix, b := [b, b] is an m–dimensional box and x := [x, x] is
an n–dimensional box. The linear expressions comprise component-wise linear enclosures
Ei:x ∈ bi. This includes equality constraints if bi is a thin interval with bi = bi, inequality
constraints if one bound of bi is infinite, and two-sided inequalities if both bounds are
finite. Similarly, the n bounds on the variables are interpreted as enclosures xj ∈ xj with
j = 1, . . . , n. Again, fixed variables and one-sided bounds on the variables are included as
special cases.

2 Bounding a polyhedron

Geometrically the linear system (1) defines a polyhedron. If the polyhedron is bounded and
nonempty, the method presented in this section finds a finite enclosure of the polyhedron,
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by solving a single linear program. By using this method only large bounds are reduced; for
a fixed, large constant µ (in our implementation µ = 106) and a given interval a the lower
bound a is large iff a ≤ −µ and the upper bound a is large iff a ≥ µ. Choosing µ too small
may result in improvement of small bounds but it is not recommended since the gain is not
significant enough compared to other methods presented in this paper. In oder to avoid
numerical problems, in this section we also assume that we have found a suitable scaling
vector ω ∈ Rm for the constraints and a suitable scaling vector ρ ∈ Rn for the variables (for
finding these we refer to Domes & Neumaier [8]).

2.1 Completing one-sided bound constraints

Let
Ex ∈ b, x ∈ x,

be a linear system as given in (1). We partition the components of the box b in only lower
bounded (B−), only upper bounded (B+) and bounded (Bf ) ones. We also partition the
components of the box x in unbounded (X∞), only lower bounded (X−), only upper bounded
(X+) and bounded (Xf ) ones. According to this for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, we
define the index sets

B− := {i | bi > −ωiµ, bi ≥ ωiµ},
B+ := {i | bi ≤ −ωiµ, bi < ωiµ},
Bf := {i | bi > −ωiµ, bi < ωiµ},
X∞ := {j | xj ≤ −ρjµ, xj ≥ ρjµ},
X− := {j | xj > −ρjµ, xj ≥ ρjµ},

X+ := {j | xj ≤ −ρjµ, xj < ρjµ},
Xf := {j | xj > −ρjµ, xj < ρjµ},
X± :=X+ ∪X−,
Xb :=X± ∪Xf ,
Xu :=X± ∪X∞.

(2)

Multiplying (1) by a vector y ∈ Rm (choosen later) leads to the enclosure

yTEx ∈ yT b.

Bringing the terms containing the variables with index in Xf and X∞ to the right hand side,
substituting their bounds and evaluating the results by using interval arithmetic, leads to

(yTE:X±)xX± ∈ d := yT b− (yTE:Xf
)xXf

− (yTE:X∞)xX∞ . (3)

Therefore if
(ETy)X∞ = 0. (4)

then by (3) follows that

(yTE:X±)xX± ≥ d = inf(yT
B−bB−) + inf(yT

B+
bB+) + inf(yT

Bf
bBf

)− sup(yTE:Xf
xXf

). (5)

The following proposition shows which conditions must hold such that (5) yields finite bounds
on the half–bounded variables:

Proposition. 2.1 If we can find an y such that the conditions

yi > 0 if i ∈ B−,
yi < 0 if i ∈ B+,
(ETy)j = 0 if j ∈ X∞,
(ETy)j < 0 if j ∈ X−,
(ETy)j > 0 if j ∈ X+,

(6)
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hold, then for each k ∈ X−

xk ≤ ck := (d− yTE:Xk
−
xXk
−
− yTE:X+xX+)/(yTE:,k) (7)

is satisfied, and for each k ∈ X+

xk ≥ ck := (d− yTE:X−xX− − y
TE:Xk

+
xXk

+
)/(yTE:,k) (8)

holds. The bounds ck are finite.

Proof. Since yi > 0 for all i ∈ B− and yi < 0 for all i ∈ B+ by definition of B− and B+

the terms yT
i bi have finite lower bounds for all i ∈ B±. Since (ETy)X∞ = 0 and xXf

is
bounded by definition the inequality (5) holds and d is finite. By definition the bounds xX−

are finite and by (6) the terms (ETy)j = yTE:j < 0 for all j ∈ X−, therefore we have finite
approximation

yTE:X−xX− ≤ yTE:X−xX− . (9)

Similarly, the bounds xX+ are finite and (ETy)j = yTE:,j > 0 for all j ∈ X+, therefore we
have finite approximation

yTE:X+xX+ ≤ yTE:X+xX+ . (10)

For any k ∈ X− and Xk
− := X− \ {k} since by (6) the inequality yTE:,kxk < 0 holds,

considering (5) and (10) we have

yTE:,kxk + yTE:Xk
−
xXk
−

+ yTE:X+xX+ ≥ d

⇒ yTE:,kxk + yTE:Xk
−
xXk
−

+ yTE:X+xX+ ≥ d

⇒ yTE:,kxk ≥ d− yTE:Xk
−
xXk
−
− yTE:X+xX+ ,

which by (6) implies (7) with a finite bound ck. Therefore x′k = [xk, ck] is finite. By similar
considerations for any k ∈ X+ and Xk

+ := X+ \ {k} since yTE:,kxk > 0 we have (8) and
x′k = [ck, xk] is finite. ut

Now we have the necessary conditions on y which allow to find bounds on xX± . We note that
(7) and (8) are automatically obtained by standard constraint propagation on (3) resulting
in finite bounds for the half–bounded variables and improving the bounds which are already
finite. If the polyhedron has a finite hull, the constraint propagation succeeds. The constraint
propagation method quadratic (and linear) constraints introduced by Domes & Neumaier
[9] can be used for this task.
To find tight bounds on xX± the entries of y should not be larger than necessary. This is
achieved by solving the linear program with the objective

minimize
∑
i∈B−

ωiyi −
∑
i∈B+

ωiyi, (11)

where ω is the constraint scaling vector, subject to the constraints given by (6). Solving the
linear program we either obtain a solution y ∈ Rm, or the linear program is infeasible. In
the latter case and the polyhedron is empty or unbounded:

Proposition. 2.2 Suppose that µ = ∞ in (2). If the constraints (6) are inconsistent then
the polyhedron defined by (1) is empty or unbounded.
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Proof. Let x0 be a point satisfying (1). If no such x0 can be found the polyhedron is empty.
If this is not the case then that x0 satisfies (1) is equivalent to

(Ex0)B− ≥ bB− ,

(Ex0)B+ ≤ bB+ ,
(Ex0)Bf

∈ bBf
,

x0
X−
≥ xX− ,

x0
X+
≤ xX+ ,

x0
Xf
∈ xXf

.

Therefore if a z ∈ Rn with z 6= 0 satisfies

(Ez)B− ≥ 0,
(Ez)B+ ≤ 0,
(Ez)Bf

= 0,

zX− ≥ 0,
zX+ ≤ 0,
zXf

= 0,
(12)

then

E(x0 + λz)B− = (Ex0)B− + λ(Ez)B− ≥ bB− ,

E(x0 + λz)B+ = (Ex0)B+ + λ(Ez)B+ ≤ bB+ ,
E(x0 + λz)Bf

= (Ex0)Bf
∈ bBf

,

(x0 + λz)X− = x0
X−

+ λzX− ≥ xX− ,

(x0 + λz)X+ = x0
X+

+ λzX+ ≤ xX+ ,

(x0 + λz)Xf
= x0

Xf
∈ xX+ ,

and thus all x ∈ L := {x0 + λz | λ ≥ 0} satisfy (1). Since the set L describes a line segment
of infinite length and L is contained in the polyhedron defined by (1) the polyhedron must
be unbounded.
For any y ∈ Rm satisfying (6) and z ∈ Rn, z 6= 0 satisfying (12)

0≤
∑
i∈B+

yi(Ez)i +
∑
i∈B−

yi(Ez)i +
∑
i∈Bf

yi(Ez)i

=
∑

j∈X∞

(ETy)jzj +
∑

j∈X+

(ETy)jzj +
∑

j∈X−

(ETy)jzj +
∑
j∈Xf

(ETy)jzj < 0.
(13)

Therefore (6) and (12) cannot be solved simultaneously. The Motzkin’s transposition the-
orem (see Motzkin [21]) implies that exactly one of (6) and (12) is satisfied. Therefore
if the constraints (6) are inconsistent then (12) holds and the polyhedron defined by (1) is
unbounded. ut

In reality we only have an approximate solution ỹ of (11) which usually does not need to
satisfy (4). Therefore using a matrix C (chosen in the next subsection) and a vector z (chosen
below) we construct the corrected solution

y = ỹ − CT z, (14)

such that (4) it satisfied. If we substitute (14) into (4) we see that y satisfies (4) if ỹE:X∞ −
zTCE:X∞ = 0. Thus we choose z such that

(CE:X∞)T z = ET
:X∞ ỹ,

holds and therefore
y = ỹ − CT ((CE:X∞)−T (E:X∞ ỹ)) (15)

satisfies (4). In floating point arithmetic we have to take the rounding errors into account
therefore we evaluate (15) using interval arithmetic and obtain a box y such that for an
y ∈ y equality (4) is satisfied.

7



2.2 Bounding free variables

From this point on we assume that all one-sided unbounded constraints are bounded by the
method presented in the previous subsection and thus the set X± is empty. Therefore we use
(3) with y instead of y and choose C such that we find finite bounds on the free variables
xX∞ :

Proposition. 2.3 Let C be a preconditioner for E:X∞ such that CE:X∞ ≈ I. Suppose y
satisfies

yi > 0 if i ∈ B−,
yi < 0 if i ∈ B+,
(ETy)j = 0 if j ∈ X∞.

(16)

Let u+, u− ∈ Rm be vectors with

u+
j ≤ min{−Cij/yj | i ∈ X∞}, u−j ≥ max{−Cij/yj | i ∈ X∞}, (17)

and
C+ := C + u+yT , C− := C + u−yT , (18)

then
CEX∞:xX∞ ∈ z (19)

for a bounded box

z := [ inf(C−b− (C−E:Xb
)xXb

), sup(C+b− (C+E:Xb
)xXb

)]. (20)

Proof. By (18) and (3), the equation

CE:X∞xX∞ = (C± − u±yT )E:X∞xX∞ = C±E:X∞xX∞ − u±yTE:X∞xX∞ = C±E:X∞xX∞

holds. On the other hand, (1) implies

E:X∞xX∞ + E:Xb
xXb
∈ b,

so that
CE:X∞xX∞ = C−E:X∞xX∞ ≥ inf(C−(b− E:Xb

xXb
)),

CE:X∞xX∞ = C+E:X∞xX∞ ≤ sup(C+(b− E:Xb
xXb

)),

proving (19).
Since xXb

is bounded, E:Xb
xXb

is also bounded, we have to show that sup(C+b)j < ∞ and
inf(C−b)j > −∞ for all j ∈ {1, . . . , n}. By (17) we have

u+
j ≤ (−Cij/yj) for all i ∈ X∞. (21)

If yi < 0 then bi is finite after the construction of y. Using this together with (18) implies
that u+

j yi ≥ −Cij and with (21) results in

C+
ij = Cij + u+

j yi ≥ 0.

Therefore
sup(C+

ij bi) = C+
ij bi < µ. (22)

On the other hand, if yi > 0 then bi > −µ implies that C+
ij = Cij + u+

j yi ≤ 0, again ending
up in

sup(C+
ij bi) = C+

ij bi < µ. (23)
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Since

sup(C+b)j =
m∑

i=1

sup(C+
ij bi),

for all j ∈ {1, . . . , n}, by inequalities (22) and (23) we obtain

sup(C+b)j < µ.

The proof for the lower bounds is similar, with (17) and (18) implying that

inf(C−ij bk) = C+
ij bi > −µ (24)

if yi > 0 or
inf(C−ij bk) = C+

ij bi > −µ (25)

if yi < 0, proving that inf(C−b)j is finite for all j. ut

By the above proposition
xX∞ ∈ (CE:X∞)−1z (26)

gives finite bounds on the free variables xX∞ .

2.3 Bounding a polyhedron

Summarizing the results of both subsections we are ready to give the following algorithm for
bounding a polyhedron:

Algorithm: 2.4 (Bounding a polyhedron)
Purpose: Obtain rigorous finite bounds x on the variables and improve the bounds b of the
linear program (1).

1. In (11) we replace the sharp inequalities by non-sharp ones: yi > 0 and yi < 0 is
replaced by yi ≥ ω−1 and yi ≤ −ω−1 respectively, where ω ∈ Rm is the scaling vector
for the constraints. Similarly (ETy)j > 0 and (ETy)j < 0 is replaced by (ETy)j ≥ ρ−1

and (ETy)j ≤ −ρ−1 respectively, where ρ ∈ Rn the scaling vector for the variables.

2. We solve the linear program (11) by using an approximate linear solver:

(a) If the linear program is feasible, we obtain the approximate solution ỹ and compute
y according to (15) using interval arithmetic.

(b) If the linear program is infeasible, the polyhedron is empty or unbounded. The
algorithm ends.

3. Using constraint propagation on (3) we obtain finite bounds x′X± on the half-bounded
variables xX±.

4. We compute u+, u−, C+, C− and z as defined in Proposition 2.3. Since xXb
is already

bounded the proposition holds and evaluating (26) yields finite bounds x′X∞ on xX∞.

5. Substituting the new components x′X± and x′X∞ for the corresponding components of
the bound constraints in (1) and applying constraint propagation to (1) results in the
new bounds x on the variables.

6. We compute the new bounds b′ := b ∩ Ex for the constraints.
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3 Gauss-Jordan preconditioning

In this section we discuss an extension of Gauss-Jordan elimination, used for preconditioning
interval linear systems of equations. We first discuss the original method then modify it to
suit our applications.
Discussion of the original method. The Gauss-Jordan inversion is similar to Gaussian
elimination but computes the inverse of a matrix. The iterative algorithm starts with an
m × n matrix B (with n ≥ m) and transforms the leading m × m sub-matrix of B to an
identity matrix. The transformation is done by permuting rows and columns, multiplying
whole rows with constants, and subtracting multiplies of a row from other rows. Formally, the
Gauss-Jordan elimination algorithm finds an m×(n−m) matrix L, an m×m transformation
matrix G and an n× n permutation matrix P such that

GBP = [Im, L]. (27)

In practice only the matrices P and L are computed explicitly.

Algorithm: 3.1 (Gauss-Jordan elimination for m× n matrices with pivot search)

1. Given is the m × n matrix B. The permutation matrix P is initially set to the n × n
identity matrix matrix In.

2. For k = 1 . . .m do:

(a) Find the (pivot) element pk; the entry in Bk:m,k:n having the maximum absolute
value.

(b) If |pk| � 1, B is numerically singular, terminate the algorithm and return an
error message.

(c) Shift the pivot to Bkk by exchanging the rows and columns of B; the k-th row Bk:

is exchanged with the row of the pivot and the k-th column B:k is exchanged with
the column of the pivot.

(d) Exchange the same columns in the permutation matrix P as in B.

(e) Divide all nonzero entries in the k-th column of B by the pivot element pk;

λi :=

{
Bik/pk if Bik 6= 0,
0 otherwise,

pk = Bkk. (28)

(f) Overwrite the rows Bi: of B with

B′i: :=

{
λkBk: if i = k,
Bi: − λiBk: otherwise,

making the kth column of B′ to the kth column of the identity matrix Im.

3. Since the matrix B now has the form B = [Im, L], return the matrix L and the column
permutation matrix P .
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Example. 3.2 We apply the above algorithm for

B =

(
3 3 1 0
2 6 0 1

)
and P =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

• (k = 1) The maximal element of B is B22 = 6, which is chosen as the first pivot p1.
In B we exchange the first row with the second one, and in B and P we exchange the
first column with the second one, which results in

B =

(
6 2 0 1
3 3 1 0

)
and P =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 .

Then the multiplier λ2 = 3/6 = 1/2 is computed. We divide the first row with the
pivot, subtract λ2B1: = (3 1 0 1/2) from the second one, and get

B =

(
1 1

3
0 1

6

0 2 1 −1
2

)
.

• (k = 2) The pivot p2 is B22 = 2 which is the maximum element of the submatrix B2,2:4.
In this case the pivot is at the correct position, therefore no exchange of the rows or
columns of B or P is needed. Since λ1 = (1/3)/2 = 1/6 from the first row we subtract
λ1B2: = (0 1/3 1/6 − 1/12), then divide the second one with the pivot, and get

B =
[
I2 L

]
, L :=

(
−1

6
1
4

1
2
−1

4

)
and P =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 . (29)

The algorithm is finished, the matrices L and P from (29) are returned.

The aim of the original Gauss-Jordan inversion is to find the inverse of the m ×m matrix
A. The first version of the Gauss-Jordan inversion was numerically unstable since it did not
use pivoting. If we set B := [A, Im] in the Gauss-Jordan elimination Algorithm 3.1 we get
the Gauss-Jordan inversion with pivoting, by (27) we have

G[A, Im]P = [Im, L], (30)

and after m iterations the Algorithm 3.1 results in the matrix [Im, L] and the column permu-
tation P . Note that for this selection of B even if A is singular B is regular by construction
and thus Algorithm 3.1 never returns an error message.

Proposition. 3.3 If the column permutation matrix P returned by Algorithm 3.1 consists
only of permutations of the first m columns, then the matrix C := P̂L with P̂ := P1:m,1:m is
the inverse of A.
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Proof. Since P consist only of permutations of the first m columns it must have the form

P =

(
P̂ 0
0 Im

)
. (31)

Then by (30)

G[A, Im]P = [Im, L]⇒ GAP̂ = Im, GIm = L⇒ LAP̂ = Im ⇒ (P̂L)A = Im. (32)

Proving that A is regular and P̂L is the inverse of A. ut

Example. 3.4 In Example 3.2, we had

B = [A, I2] with A =

(
3 3
2 6

)
.

By (29), P has the form of (31) with P̂ =

(
0 1
1 0

)
, thus the matrix

C = P̂L = B =

(
1
2
−1

4

−1
6

1
4

)
,

is the inverse of A.

Scaling: Note that if the matrix A is regular, but not scaled correctly, entries from the wrong
part of B may be chosen as pivot elements. In this case even though A is regular, (31) does
not hold, and the inverse of A cannot be found by the algorithm. This would happen if in
the above example we would divide the entries of A by 10. Since this would only scale the
matrix A, it would be still invertible. In this case in the first step of the algorithm B31 = 1
would be chosen as the pivot therefore the prerequisites of Proposition 3.3 would not be met.
To solve this problem, Algorithm 3.1 can be improved by applying suitable scaling to A and
Im. We choose a diagonal row scaling matrix U ∈ Rm×m, a diagonal column scaling matrix
V ∈ Rm×m and an additional scaling constant δ and set

B := [UAV, δIm].

in Algorithm 3.1 and obtain
G[UAV, δIm]P = [Im, L]. (33)

Theorem. 3.5 If the column permutation matrix P returned by Algorithm 3.1 consists only
of permutations of the first m columns, then the matrix C := δ−1V P̂LU is the inverse of A.

Proof. Since P consist only permutations of the first n columns we have

P =

(
P̂ 0
0 Im

)
, (34)

then by (33)

GUAV P̂ = Im, GδIm = L⇒ δ−1LUAV P̂ = Im ⇒ (δ−1V P̂LU)A = Im, (35)

12



holds, proving the assumption. ut

We suggest the following choice of the scaling matrices U and V and the scaling constant δ:
By the scaling method presented in Domes & Neumaier [8] we find matrices U and V such
that the entries of UAV are between zero and one but not too close to zero. The second part
of B = [UAV, δIm] consists of an m×m identity matrix, scaled with the constant δ. Setting
δ as a very small positive number (e.g., δ :=

√
ε) prevents that – even for well conditioned

matrices – some elements of the second part of B are chosen as pivots.
Extension of the Gauss-Jordan inversion. If the matrix A is not square or regular, there
is no (two-sided) inverse, but preconditioner for A can be found, such that for a suitable
chosen index set J the equality CA:J = I holds.

Theorem. 3.6 Let A,L ∈ Rm×n, U,G ∈ Rm×m, V ∈ Rn×n, P ∈ R(n+m)×(n+m) and δ > 0.
(1) Suppose that

G[UAV, δIm] = [Im, L]P, (36)

then
G = δ−1(PMM + LPNM), (37)

where M = {1, . . . ,m} and N = {m+ 1, . . . ,m+ n}.
(2) If V is an invertible diagonal matrix, P is a permutation matrix and R ⊆ {1, . . . , n} is
an index set of size r ≤ m such that

PRMPMR = Ir (38)

holds, then
C := VRRPRMGU (39)

satisfies
CA:R = Ir. (40)

Proof. We write P in block form as

P =

(
PMN PMM

PNN PNM

)
(41)

with PMN ∈ Rm×n, PNN ∈ Rn×n, PMM ∈ Rm×m and PNM ∈ Rn×m. Then we have

[Im, L]P = [ImPMN + LPNN , ImPMM + LPNM ]. (42)

From (42) and (36) the identities

GUAV = PMN + LPNN and G = δ−1(PMM + LPNM)

follow. The second equality proves assumption (1). To prove (2) we multiply the second
equality with the matrix W := VR:PNM from the left and with a vector x from the right side
and obtain

WGUAV x = WPMNx+WLPNNx.

Without loss of generality, we assume that R = {1, . . . , r}. Choosing

xi :=

{
zi/Vii for i ∈ R,
0 otherwise,

13



we find xR = V −1
RRzR and AV x = A:RzR. Since P is a permutation matrix, from (38) follows

that all columns of PMR contain a one; therefore the columns PNR have to be zero columns.
Since V −1 is diagonal, the matrix V −1

RR only contains nonzero elements in the jth rows when
j ∈ R. We summarize and obtain

(PNR)ij = 0 if j ∈ R
(V −1

RR)jk = 0 if j /∈ R. (43)

Then by (43) follows that

(PNRV
−1
RR)ik =

n∑
j=1

(PNR)ij(V
−1
RR)jk = 0, for all i, j.

Therefore PNRV
−1
RRzR = 0 and

VRRPRMGUAzR = VRRPRMPMRV
−1
RRzR.

By (38) we get
VRRPRMGUAzR = zR.

implying (39) and (40). ut

Using the results of the above proposition we generalize Algorithm 3.1:

Algorithm: 3.7 (Gauss-Jordan preconditioner)

1. Given is the matrix A ∈ Rm×n, the diagonal row scaling matrix U ∈ Rm×m and the
diagonal column scaling matrix V ∈ Rn×n.

2. We set u = n+m, K = (1, . . . , u) and B = [UAV, δIm] ∈ Rm×u.

3. For k = 1 . . .m do:

(a) Find the pivot pk := Bij having the maximum absolute value from the submatrix
Bk:m,k:u.

(b) Exchange the kth row Bk,: of B with the row Bi,: of the pivot and the kth column
B:,k of B with the column B:,j of the pivot.

(c) Exchange Kk with Kj in the index list K.

(d) Compute each λi as given in (28).

(e) For each i 6= k overwrite the row Bi: with Bi: − λiBk:.

(f) Overwrite Bk: with Bk:/pk.

4. The row permutation matrix can be set by using the found index set K:

P =

(
PMN PMM

PNN PNM

)
= (In+m):K .

5. The matrix G = δ−1(PMM + LPNM) is computed.

6. Generate the index set R:
R = {j ∈ R1:m | Kj ≤ n}

14



7. Since for P̂RM := P T
MR condition (38) in Theorem 3.6 holds, the preconditioner,

C = VRRP
T
RNGU

with CA:R = Ir is obtained.

8. We have found an index set R and a matrix C ∈ Rr×m such that (36) holds. Return
the matrix C and the index set R.

The preconditioner found by Algorithm 3.7 can be used for solving under- or overdetermined
linear equation systems. If the matrix A is square and has full rank, Algorithm 3.7 returns
the inverse of A.

Example. 3.8 Let

A =

(
1
2

1
6

1
6

1
4

1
2

1
4

)
, U =

(
6 0
0 8

)
, V =

 1 0 0
0 1 0
0 0 3

 , and δ = 1.

Then the matrix

B = [UAV, δIm] =

(
3 1 3 1 0
2 4 6 0 1

)
,

is similar to the matrix in Example 3.4; the same pivots will be chosen. After two iterations,
we get

B =

(
1 0 1

2
−1

6
1
4

0 1 −1
2

1
2
−1

4

)
, K = (3, 1). (44)

Then we have R = {1, 3},

G = δ−1(PMM + LPNM) =

(
0 0
0 0

)
+

(
1
2
−1

6
1
4

−1
2

1
2
−1

4

) 0 0
1 0
0 1

 =

(
−1

6
1
4

1
2
−1

4

)
,

C = VRRPRMGU =

(
1 0
0 3

)(
0 1
1 0

)(
−1

6
1
4

1
2
−1

4

)(
6 0
0 8

)
=

(
3 −2
−3 6

)
,

and find that CA:R = Ir holds.

The above considerations about a suitable scaling (in the sense of making the algorithm
choose all linear independent columns as pivot columns by correctly choosing U , V and δ)
applies again. If P permutes some of the last m columns, then either A has non-maximal
numerical rank or the scaling was not chosen suitably.

Lemma. 3.9 If the matrix R returned by Algorithm 3.7 was computed by using exact arith-
metic and suitable scaling then r := |R| is the rank of A .

Proof. Without the loss of generality we assume that in the kth iteration step the first part
Bk,1:n of the pivot row and the first part Bi,1:n of another row (k < i) are linearly dependent.
Therefore Bi,1:n = cBk,1:n holds for some constant c. Since λi = Bik/Bkk = c the entries
Bi,1:n will be overwritten with Bi,1:n − cBk,1:n = 0. From this point on the first n entries of
this row only contain zeros, and sooner or later a pivot has to be selected from the lower
right m × m part of B. Since this happens for each linear dependent row the number of
pivots selected from the first part of B gives us the rank of the matrix A. ut

Since in our implementation inexact arithmetic is used, due to the rounding errors, we only
get the numerical rank, which (if the scaling is suitable) is correct for the most non-degenerate
matrices.
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4 Linear contraction

Based on the Gauss-Jordan method discussed in Section 3, we present a simple technique
for reducing the bounds of x of the linear system (1).
First a Gauss-Jordan preconditioner for the matrix E is computed; we choose suitable scaling
matrices U and V and a scaling factor δ then apply Algorithm 3.7 for the matrices E, U , V
and the scaling factor δ.
A possible choice for the scaling was given in Section 3. For this application a better
alternative is to specify the scaling matrices U and V such that the rows of E matching the
constraints having tighter bounds are preferred as pivot rows. Similarly, by this scaling the
columns of E matching the variables with tighter bounds, are preferred as pivot columns.
According to this we set

d := max{xi, xj | i = 1 . . . n, j = 1 . . . n}, z = x ∩ [−d, d]n

and for the scaling matrices

U = diag(u), V = diag(v) (45)

with
u = ((b− b) + δ|b− Ex|) and v = (z − z)/(max{zi − zi | i = 1 . . . n}).

For the scaling constant (as in Section 3) we choose δ =
√
ε.

The algorithm returns an index list R with |R| = r and a matrix C ∈ Rr×m such that
CE:R = Ir. We set K := ¬R, multiply (1) with the matrix C and obtain

CE:RxR + CE:KxK ∈ Cb, xR ∈ xR, xK ∈ xK . (46)

Since CE:R = Ir, if we substitute the bounds for xK we get

xR ∈ b̂, b̂ := (Cb− CE:KxK), xR ∈ xR.

and if we cut xR ∈ b′ with the original bounds xR on the variables xR we end up in

xR ∈ x̂, x̂ := b̂ ∩ xR. (47)

If the matrix E is square and has full rank (n = m = r) then we get

x ∈ x̂, x̂ := Cb ∩ x.

In inexact arithmetic, the computation of the preconditioner C is not rounding error free,
and thus only CE:R ≈ Ir holds. This modifies (47) to

MxR ∈ b̂, M := CE:R, xR ∈ xR.

Since the off diagonal entries of M are tiny we have

xR ∈ x̂ with x̂i := (M−1
ii (b̂i−

r∑
j=1, j 6=i

Mijxi))∩xi, M := CE:R, b̂ := (Cb−CE:KxK). (48)

Again, if the matrix E is square and of full rank, then CE ≈ Im and we get the bounds

x ∈ x̂ with x̂i :=
(Cb)i −

∑r
j=1, j 6=i(CE)ijxi

(CE)ii

∩ xi.
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By using this method we obtain new bounds for the variables xR.
An alternative to the above method is to use constraint propagation on (46). Constraint
propagation for quadratic (and linear) systems is discussed in [9]. This alternative costs
more computational time but it also yields new bounds on the variables xK not only on
xR. Both approaches are useful; the decision which alternative is preferable is based on the
dimension of the problem.

5 Linear bounding

Another simple, efficient, but costly method for improving the bounds on the variables in
linear systems is presented in this section.
Consider the linear system (1) of n variables and m two-sided inequalities and choose k ≤ n
variables, where the most reduction is expected. Alternatively all n variables can be selected.
Then for each selected variable xi solve two linear programs (one for each sign) given by

min f(x) := ±xi

s.t. Ex ∈ b, x ∈ x.
(49)

Let x̂i
+ and x̂i

− be the solutions of (49) for the different signs and let yi
+ and yi

− the multiplier
vectors of the solutions not containing the multipliers corresponding to the bound constraints.
If all 2k linear programs are solved, the multipliers are collected in a 2k ×m matrix

Y ∈ R2k×m, Y:,2i−1 = yi
+, Y:,2i = yi

− for all i = 1, . . . , k.

The matrix Y is used to precondition the linear system (1) resulting in a new system of 2k
inequalities

Êx ∈ b̂, x ∈ x, Ê := Y [E,E], b̂ := Y b. (50)

To ensure mathematical rigor, the interval coefficient matrix Ê and the box b̂ must be
computed by using interval arithmetic. Since each solution xj

± of (50) with corresponding
multipliers yj

± must satisfy the first order optimality conditions the equality

∇xL(xj
±, y

j
±) = ±ej − (yj

±)TE = 0

holds and each row Êk: of Ê contains only one dominant entry Êkj and all other entries
should be thin intervals containing zero. Therefore (50) can be solved row-wise for each row
k = 1, . . . , 2k, by substituting the bounds xi for the variables with nearly zero coefficients
and bringing the corresponding interval terms to the right hand side. This results in a new
bound

xj ∈ x̂j, x̂j := xj ∩ (b̂−
n∑

i=1,i 6=j

Êkixi),

on the variable xj. Alternately, constraint propagation for quadratic (and linear) systems is
discussed in [9] can be used to solve (50).

6 Linear relaxations for quadratic expressions

The following sections elaborate techniques for creating linear relaxations of quadratic con-
straint satisfaction problems.
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Let p(x) : Rn → R be a mapping. The function u(x) is called an underestimator of p(x)
over the box x if u(x) ≤ p(x) holds for all x ∈ x. Similarly, the function v(x) is called
an overestimator of p(x) over the box x, if p(x) ≤ v(x) holds for all x ∈ x. If both an
underestimator u(x) and an overestimator v(x) is given then

p(x) ∈ [u(x), v(x)] for all x ∈ x

is an enclosure of p(x) over the box x.

Theorem. 6.1 Let p(x), h(x) : Rn → R be mappings, let c, d be intervals and let x ∈ x. If

p(x) ∈ c ⇒ h(x) ∈ d (51)

for all x ∈ x then
h(x)− p(x) ∈ [d− c, d− c] (52)

is satisfied for all x ∈ x. In this case, the two-sided inequality h(x) ∈ d is called a relaxation
of p(x) ∈ c over the box x.

Proof. (⇒) By (51), for a real number r (choosen later) the inequality h(x) ≥ p(x) + r must
hold for all x ∈ x. Since p(x) ∈ c, h(x) ≥ p(x)+r ≥ c+r. Since h(x) ∈ d, h(x) ≥ d must also
hold. Choose r as minimal and get c+r = d ending up in h(x) ≥ p(x)+r = p(x)+d−c. This
given the lower inequality d−c ≤ h(x)−p(x) of (52). The upper inequality h(x)−p(x) ≤ d−c
can be obtained in the same way.
(⇐) By (52) the inequality d− c ≤ h(x)− p(x) holds for all x ∈ x. Bringing p(x) to the left
hand side results in p(x)+d−c ≤ h(x). By (62) c ≤ p(x) and thus d = c+d−c ≤ h(x). The
inequality h(x) ≤ d can be obtained similarly. Therefore (51) holds, proving the assumption.
ut

In the following subsections give a step-by-step explanation how linear relaxations for quadratic
expressions are generated; in Subsection 6.1 linear relaxations for univariate, quadratic ex-
pressions are construct, then in Subsection 6.2 separable, multivariate, quadratic expressions
are handled, finally in Subsection 6.3 the most general case of generating linear relaxations
for multivariate, not necessary separable, quadratic expressions is discussed.

6.1 Linear relaxations for univariate quadratic expressions

Without loss of generality, an arbitrary univariate quadratic expressions, can be written in
the form

q(x) ∈ c, q(x) := ax2 + bx, x ∈ x, (53)

where a and b are constant and c and x are intervals. We assume without the loss of
generality that a > 0 since for a = 0 we already have a linear expression, with no need of
relaxing, and for a < 0 all the observations below hold with trivial modifications.
For univariate functions Kolev [15] proposes linear relaxations of the form

ex ∈ d for x ∈ x with q(x) ∈ c, (54)

where e is a constant and d is an interval (see, Figure 1). Kolev states that this relaxation is
optimal if w has minimal width and uses a generalized representation of intervals to compute
e and d.
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y  = ex - d

y  = ex - d

_

_

__x
x

Figure 1: Linear relaxations by Kolev

Another approach is the Quad algorithm of Lebbah et al. [18], where linear under- and
overestimators are used to generate linear relaxations. Since a > 0, we obtain for any z ∈ x
linear underestimators

Lz(x) := l′(z)(x− z) + l(z) where l(x) := q(x)− c,

(in [18], the two tangents of l(x) for z = x and z = x are chosen) and the linear overestimator

L(x) :=
q(x)− q(x)

x− x
x+

u(x)x− u(x)x

x− x
where u(x) := q(x)− c,

(the secant of u(x) between the points (x, u(x)) and (x, u(x))) (see, Figure 2).

x_

x
_

x_

L (x)

L (x)

L(x)

_
x

Figure 2: Linear relaxations by Lebbah & Rueher

Note that while L is the best choice for linear overestimator, the choice and the number
of the underestimators Lz are arbitrary. The two underestimators suggested by [18] could
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be replaced by a single one (e.g., Lz(mid(x))) or refined by adding more (e.g., Lz(mid(x))
would be a good choice). The latter can be made adaptive to satisfy a given error bound,
and is then called the sandwich method (see Tawarmalani & Sahinidis [30]), it used in
the solver Baron.
According to this if Z is a finite set with values in the box x and nz = |Z|, then the system

Lz(x) ≥ 0, L(x) ≤ 0, z ∈ Z, x ∈ x, (55)

of nz + 1 linear inequalities is a linear relaxation of (53).
To give an uniform representation for the two methods we choose the form (54) where e is
now a k–dimensional vector d is a k–dimensional box. The relaxation by Kolev is included in
this form for k = 1 while the inequalities by Lebbah & Rueher can be embedded by setting

ei =

{
q′(Xi) for i = 1, . . . , nz,
q(x)−q(x)

x−x
if i = nz + 1,

di =

{
[q′(Xi)Xi − q(Xi) + c,∞] for i = 1, . . . , nz,

[−∞, q(x)x−q(x)x
x−x

− c] if i = nz + 1.

6.2 Linear relaxations for separable quadratic expressions

We consider an arbitrary separable quadratic expression, which we write without loss of
generality in the form

p(x) ∈ c, p(x) := aTx2 + bTx, x ∈ x, (56)

where x2 is the component-wise square of x, a and b are n–dimensional vectors, c is an
interval and x is an n–dimensional box. We assume that a 6= 0 since otherwise we already
would have a linear expression, with no need of relaxing. The results of the univariate case
can be directly applied to the multivariate case with slight modifications:
For a function of n variables, we consider linear relaxations of the form

eTx ∈ d, x ∈ x, (57)

where e is an n–dimensional vector and d is an interval. Since (57) is a linear relaxation of
(56) by (52)

eTx− q(x) ∈ [d− c, d− c],

holds. For this special case of a separable quadratic expression this simplifies to

uTx− aTx2 ∈ [d− c, d− c], u := e+ b.

If we choose a suitable slope vector e, the exact range t of the quadratic expression on the
left hand side is easy to compute rigorously (see Domes & Neumaier [9]). This results in
the equality t = [d− c, d− c] from which the interval c follows directly. Possible selections of
the slope vector could be the derivate 2a · x+ b of q(x) (where · denotes the componentwise
product) in a suitable chosen point z ∈ x (midpoint, upper or lower bound, or midpoint of a
promising region of x). Another useful selection for the slope vector is the the secant slope
q(x)−q(x)

x−x
, of between the points (x, q(x)) and (x, q(x))).

To integrate the method of Lebbah & Rueher [18] for the multivariate case, we generate the
linear relaxations for each univariate quadratic expression separately. Let

Q := {k ∈ {1, . . . , n} | ak 6= 0}, L := {k ∈ {1, . . . , n} | bk 6= 0}, (58)
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with nq = |Q| and nl = |L| be the index sets then (56) can be written as∑
k∈Q yk +

∑
k∈L bkxk ∈ c, x ∈ x,

yk = akx
2
k for all k ∈ Q.

To generate the linear relaxations of the nq univariate quadratic expressions akx
2
k we apply

the results of the previous section; we choose the set Z, compute the nz +1 linear inequalities

ekxk ∈ dk, for xk ∈ xk,

for the nq quadratic expressions separately, whereby ek is now a (nz + 1)–dimensional vector
and dk is a (nz + 1)–dimensional box. Let Z be a finite set with values in x and nz = |Z|
then the linear relaxation can be given as a system of ny(nz + 1) + 1 inequalities:∑

k∈Q yk +
∑

k∈L bkxk ∈ c, x ∈ x, yk − ek
i xk ∈ dk

i , for all k ∈ Q.

ek
i =

{
2akXi for i = 1, . . . , nz,
ak(x+ x) if i = nz + 1,

dk
i =

{
[− akX

2
i ,∞] for i = 1, . . . , nz,

[−∞,−akxkxk] if i = nz + 1.

In order to give an uniform representation for the two methods, we propose the general form

Ex ∈ d, x ∈ x, (59)

with E ∈ Rh×n and d is an h–dimensional box. The relaxation by Kolev is included in this
form for h = 1 while the inequalities by Lebbah & Rueher can be embedded by setting the
h = ny(nz + 1) + 1 components and increasing the number of variables to n+ nq.

6.3 Linear relaxations for quadratic expressions

We consider an arbitrary multivariate quadratic expressions

p(x) ∈ c, p(x) :=
∑
k∈Q

akx
2
k +

∑
(j,k)∈B

bjkxjxk +
∑
k∈L

bkxk, x ∈ x, (60)

where the akx
2
k are the quadratic, the bjkxjxk are the bilinear, the bkxk are the linear terms

and c is an interval. The sets Q and L are are from (58), while

B := {(j, k) ∈ {1, . . . , n} × {1, . . . , n} | bjk 6= 0}, nb = |B|,

and we assume that B is non-empty.
We discuss two different methods to deal with the bilinear entries, the first one is based on
the results of Domes & Neumaier [9] and removes the bilinear terms by modifying the
quadratic or linear coefficients of (60) while the second one from McCormick [19] adds
four linear inequalities for each bilinear term.
In Section 5 of [9] two different methods are presented for separating the constrains; approx-
imation of the bilinear terms by quadratic, by linear and by constant ones. The choice is
made for each bilinear term bjkxjxk separately and the decision is based on the bounds of
the variables xk and xj.
Case 1: If both xk and xj are bounded we approximate the bilinear term by linear terms,
obtaining

bjkxjxk − bjkzjxk − bjkzkxj ∈ [ min
i
∇ui,max

i
∆ui]
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where z = midx and

u1 = bjk((xj − zj)xk − zkxj), u2 = bjk((xj − zj)xk − zkxj),
u3 = bjk((xj − zj)xk − zkxj), u4 = bjk((xj − zj)xk − zkxj).

This modifies the linear and the constant constraint coefficients to

b′k := bjkzj + bk, b′j := bjkzk + bj, c′ := [c−max
i

∆ui, c−min
i
∇ui].

Case 2: If the interval xk or the interval xj is unbounded we eliminate the bilinear terms
bjkxjxk by adding the quadratic term

djk(xj − vjkxk)2 with vjk := sign(bjk)

√
ak

aj

, djk :=
bjk

2vjk

,

to the constraint. This results in the new quadratic coefficients

a′k := ak + djk, a′j := aj +
bjkvjk

2
. (61)

This results in a separable quadratic expression (56), which can be relaxed by using the
methods discussed in the Section 6.2.
The convex envelope of a function f(x) over the box x is the tightest convex underestimating
function for f(x) for x ∈ x. Al-Khayyal [1] and McCormick [19] developed an efficient
relaxation technique to obtain the convex envelope for the bilinear terms xjxk. This requires
that xj and xk are bounded. In this case the convex envelope of xjxk is convex polyhedral
(see Rikun [24]), and its convex and concave parts can be given as

Conv(xjxk) := max{xkxj + xjxk − xkxj, xkxj + xjxk − xkxj},
Conc(xjxk) := min{xkxj + xjxk − xkxj, xkxj + xjxk − xkxj}.

Therefore, a linear relaxation of the bilinear terms can be given by substituting a new
variables yjk for every xjxk, and adding the following linear constraints:

yjk ≥ xkxj + xjxk − xkxj, yjk ≥ xkxj + xjxk − xkxj,
yjk ≤ xkxj + xjxk − xkxj, yjk ≤ xkxj + xjxk − xkxj.

Androulakis et al. [2] showed that the maximum difference between variable yjk and the
bilinear term xjxk depends on the widths of xj and xk and can be given as 1

4
(xj−xj)(xk−xk).

Therefore, algorithms using convex envelopes to underestimate bilinear terms seek maximal
domain reduction, making preprocessing methods helpful in uncovering implicit bounds.
In their Quad algorithm, Lebbah & Rueher [18] used McCormick’s convex and concave
envelopes to relax the bilinear terms. This results in 4nb additional inequalities which can
added to the representation (57), increasing the total number of inequalities to h = ny(nz +
1) + 4nb + 1 and the number of variables to n+ nq + nb. The method of Domes & Neumaier
does not generate additional inequalities but McCormick’s method may yield relaxations of
higher quality.

7 Polynomial constraint satisfaction problems

We consider continuous constraint satisfaction problems of the form

G(x) ∈ F, x ∈ x, G(x) ∈ G(x). (62)
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The m general constraint are interpreted as componentwise enclosures Gi(x) ∈ Fi (i =
1, . . . ,m). This form includes equality constraints if Fi = [F i, F i] is a degenerate interval
(F i = F i), inequality constraints if one of the bounds is infinite and two–sided constraints
F i ≤ Gi(x) ≤ F i if both bounds are finite. For allowing uncertainties in the constraint
coefficients, we allow G(x) to vary in the given interval function G(x). Similarly, the n
bound constraints are interpreted as enclosures xj ∈ xj with j = 1, . . . , n. Again, fixed
variables and one-sided bounds on the variables are included as special cases. Each x ∈ x
for which the constraints of (62) are satisfied, is called a feasible point or a solution of the
constraints satisfaction problem. The set of all feasible points is called the feasible domain.
If the function G(x) has only quadratic, bilinear and linear terms (62) is called a quadratic
constraint satisfaction problems. If G(x) is only linear in the variables we end up in the
linear system given by (1). A linear system of the form of (1) can be obtained by relaxing
(62):

Theorem. 7.1 Every feasible point of the constraint satisfaction problem (62) satisfies (1)
iff for all x ∈ x and G(x) ∈ G(x) the inequalities

Ex−G(x) ∈ [b− F , b− F ] (63)

hold. In this case, the linear system (1) is a linear relaxation of (62).
If (63) holds, then

Ex ∈ b′ with b′ = b ∩ Ex (64)

and
G(x) ∈ F′ with F′ = F ∩G(x) ∩ [ inf(Ex)− b′ + F , sup(Ex)− b′ + F ] (65)

holds for all x ∈ x and G(x) ∈ G(x).

Proof. That the linear system (1) is a linear relaxation of (62) follows directly from Theorem
6.1, with p(x) := G(x), c := F, h(x) := Ex, and d := b and for all G(x) ∈ G(x). By (51),
every feasible point of (62) satisfies (1).
In addition to this Ex ∈ Ex holds for all x ∈ x and by (1) Ex ∈ b also holds for all x ∈ x
proving (64).
Since (64) is a linear relaxation of (62) by Theorem 7.1 the two-sided inequality (63) holds,
implying that

G(x) ∈ [Ex− b′ + F , Ex− b′ + F ]. (66)

Since Ex ∈ Ex for all x ∈ x, with (66) implies that

G(x) ∈ [ inf(Ex)− c+ F , sup(Ex)− c+ F ]. (67)

for all x ∈ x and for all G(x) ∈ G(x). From this, (65) follows since both G(x) ∈ G(x), and
G(x) ∈ F holds for all x ∈ x and for all G(x) ∈ G(x). ut

If G(x) is quadratic in x, the linear relaxations of (62) can be computed according to the
results of the previous section. If for each constraint the quadratic terms are relaxed by
the method of Kolev and the bilinear terms are eliminated by our approach, the resulting
linear system (1) has m inequalities and n variables. If the approach of Lebbah & Rueher
for the quadratic terms is combined with our approach for eliminating the bilinear terms,
the resulting linear system has at most m(3n+4) inequalities and 2n variables. The original
method of Lebbah & Rueher results in a linear system of at most m(7n + 4) inequalities
and 3n variables. The methods discussed above can now be applied to the linear relaxation
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in order to obtain tighter bounds on the variables. The following corollary shows how the
relaxation and the new bounds on the variables can be used to tighten the bounds of the
constraints of (62).
If we have tightened the bounds on the variables, the bounds of the relaxation can be
tightened with (64). With (65) we may also tighten the bounds on the general constraints
of the original constraint satisfaction problem.
The Gauss-Jordan preconditioner Algorithm 3.7 from Section 3 can be also applied to precon-
dition a quadratic system. In GloptLab (see [7]), the quadratic constraints are represented
as

Aq(x) ∈ F, x ∈ x, A ∈ A, (68)

where A ∈ Rm×n2+n is a (generally sparse) matrix, A represents the bounds for the constraint
coefficients, x is n-dimensional and F is m-dimensional. The linear, quadratic, and bilinear
monomials occurring in at least one of the constraints (but not the constant term) are
collected into the n2 + n dimensional column vector

q(x) := (x1, . . . , xn, x
2
1, . . . , x1xn, . . . , xnx1, . . . , x

2
n)T .

For this system the Gauss-Jordan preconditioner algorithm 3.7 can be applied.
All our methods can be applied after suitable preprocessing to arbitrary algebraic constraints.
We can always transform a polynomial constraint to a collection of quadratic constraints by
introducing explicit intermediate variables, and the same holds for constraints involving
roots, provided that we also add nonnegativity constraints to the intermediate variables
representing the roots. Rewriting an algebraic constraint satisfaction problem as an equiv-
alent problem with linear and quadratic constraints only increases the number of variables,
but allows one to apply the methods discussed in this paper. Of course, all techniques can
be applied to the subset of quadratic (or algebraic) constraints in an arbitrary constraint
satisfaction problem.
How the different techniques presented in this paper can be applied and combined to solve
quadratic constraint satisfaction problems is visualized in Figure 3.

8 Examples

In this section two examples are given in order to demonstrate how the linearization tech-
niques can be combined by filtering methods. The first example is a quadratic constraint
satisfaction problem, to which linearization by Lebbah and Kolev are applied and then the
arising linear system solved by both linear contraction (see, Section 4) and linear bounding
(see, Section 5).

Example. 8.1 Let

x2
1 + x2

2 ≤ 25, x1 ∈ x1 = [4, 5], x2 ∈ x2 = [0, 5]. (69)

We linearize the quadratic expression (69). Since both quadratic terms x2
1 and x2

2 have positive
coefficients we compute the tangents

t(xi) := mxi + d, t(xi) ≤ x2
i , m = 2x̃i, d = x̃2

i −mx̃i

for i = 1, 2 at the midpoints x̃1 = 4.5 and x̃2 = 2.5 of the intervals x1 and x2 obtaining

t(x1) = 9x1 − 20.25 ≤ x2
1, t(x2) = 5x2 − 6.25 ≤ x2

2. (70)
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Figure 3: Rigorous filtering using linear relaxations.

By Lebbah’s method we substitute the new variables x3 ∈ x2
1 and x4 ∈ x2

2 for the terms
x2

1 and x2
2 and get the linear relaxation

x3 + x4 ≤ 25,
9x1 − x3 ≤ 20.25
5x2 − x4 ≤ 6.25
x1 ∈ [4, 5], x2 ∈ [0, 5], x3 ∈ [16, 25], x4 ∈ [0, 25],

(71)

of the constraint satisfaction problem (69).
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Figure 4: Example of solving a quadratic constraint satisfaction problem by linear relaxation.
The arrow indicates the reduction of the bound x2.

Then we can use linear contraction to obtain tighter bounds on x2: In the first step we have

x3 + x4 ≤ 25, 16 ≤ x3, 0 ≤ x4 ⇒ x3 ≤ 25, x4 ≤ 9
9x1 − x3 ≤ 20.25, 4 ≤ x1 ⇒ 15.75 ≤ x3

5x2 − x4 ≤ 6.25, 0 ≤ x2 ⇒ − 6.25 ≤ x4,

getting improved bounds x4 ∈ [0, 9] and in the second step

5x2 − x4 ≤ 6.25, − 9 ≤ −x4, 0 ≤ x2 ⇒ x2 ∈ [0, 3.05].

If we use the linear bounding and minimize x1, −x1, x2, and −x2 subject to the constraints
(71) we obtain the approximate multiplier matrix Y which has all zero rows expect for the
last row Y4: =

(
0.2 0 0.2

)
corresponding to the objective −x2. The matrix representation

of (71) can be given as

Ex ≥ c, E =

 0 0 −1 −1
−9 0 1 0

0 −5 0 1

 , c =
(
−25 −20.25 −6.25

)T
.

Since the first three rows of Y are zero, the first three of the inequalities Y E ≥ Y c are trivial
and the last one is

5x2 + 0.2x3 + 2.7 · 10−17x4 ≤ 6.25

can be solved by substituting the lower bounds for x3 and x4, obtaining x2 ≤ 3.005.

We use Kolev’s method to linearize the quadratic expression (69) by substituting (70) into
it, obtaining

9x1 − 20.25 + 5x2 − 6.25 ≤ x2
1 + x2

2 ≤ 25,

ending up in
9x1 + 5x2 ≤ 51.5 x1 ∈ [4, 5], x2 ∈ [0, 5].
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From there a single step of linear contraction

9x1 + 5x2 ≤ 51.5 4 ≤ x1 ⇒ x2 ≤ 3.1,

yields improved bounds on x2.
If we use the linear bounding method we obtain the approximate multiplier matrix Y which
has all zero rows expect for the last row Y4: =

(
0.2 1.8

)
resulting in

x2 ≤ 10.3− 1.8x1 ≤ 10.3− 1.8x1 = 3.1.

The second example extends the first one by solving a simple system of separable constraint
satisfaction problem.

Example. 8.2 Let

x2
1 + x1x2 + x2

2 ≤ 25, x1 ∈ x1, x1 = [4, 5], x2 ∈ x2, x2 = [0, 5]. (72)

Figure 5: Example of solving a separable constraint satisfaction problem by linear relaxation.
The arrow indicates the reduction of the bound x2.

By Lebbah’s method we compute the McCormick relaxations for the bilinear terms and
approximate the quadratic terms as in the previous example, obtaining

x3 + x4 + x5 ≤ 25,
4x2 − x3 ≤ 0,
5x1 + 5x2 − x3 ≤ 25,
9x1 − x4 ≤ 20.25,
5x2 − x5 ≤ 6.25,
x1 ∈ [4, 5], x2 ∈ [0, 5], x3 ∈ [0, 25], x4 ∈ [16, 25], x5 ∈ [0, 25].

(73)

Solving (73) with linear contraction results in x2 ≤ 2.25 while by solving with linear bounding
we get x2 ≤ 1.6944.
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By Kolev’s method we first separate (72) by approximating the bilinear term x1x2 by linear
terms obtaining

x2
1 + x2

2 + 2.5x1 + 4.5x2 ≤ 37.5,

then we approximate the quadratic terms as in the previous example, ending up in

11.5x1 + 9.5x2 ≤ 64. (74)

Solving (74) with either linear contraction or with the linear bounding we get x2 ≤ 1.8947.

9 Test Results

In this section we compare different linearization techniques. We use the following linear
relaxation methods to reduce the bounds of the different test problems:

identifier bilinear quadratic

LinCL constant linear
LinLL linear linear
LinQL quadratic linear
LinLN linear new inequalities
LinEL envelope linear
LinEN envelope new inequalities

whereby the bilinear column describes the technique for approximating the bilinear terms
and the quadratic column describes the technique for approximating the quadratic terms.
After the linearization the three most promising variables are chosen, and linear solving are
used tho reduce the bound constraints (for details see Section 5). Each method is applied to
all test problems of a test set, one by one. If a method fails to reduce the bound constraints
for some of the test problems, these will be solved again with the same method but with
tighter bound constraints. With each retry the width of the bound constraints are reduced
by 33% but the retries are counted and the solution times are summed up. The table below
shows the average solution times (in seconds), the minimum, the average and the maximum
number of retries as well as the gain:

g :=
1

n

n∑
i=1

wid(x′i)

wid(xi)

where x are the original bounds on the n variables, and x′ the reduced bounds.
The first test consisted of 200 two dimensional, quadratic, randomly generated problems.
Each problems had two equality constraints which intersected at least in the origin. The
bound constraints for each variable were set between -10 and 10.

Linearization Test Results.
dimension n = 2

method time retry gain

LinCL 0.136 [0 1.345 3] 0.127
LinLL 0.159 [0 1.345 3] 0.127
LinQL 0.110 [0 0.515 3] 0.187
LinLN 0.128 [0 0.305 3] 0.186
LinEL 0.132 [0 0.6 3] 0.201
LinEN 0.102 [0 0 0] 0.388
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The second test consisted several quadratic, randomly generated problems with equality
constraints which intersected at least in the origin. The test parameters and the test results
are shown in the following tables.

Test case parameters.
name probs variables constraints

# bounds # relations types
Test 1 20 2 [− 20, 20] 2 equalities ellipsoids
Test 2 20 5 [− 1, 1] 5 equalities ellipsoids
Test 3 20 10 [− 0.1, 0.1] 10 equalities ellipsoids

Linearization Test Results.
dimen n = 2 n = 5 n = 10

method time retry gain time retry gain time retry gain

LinCL 0.134 [0 2.3 3] 0.107 0.260 [0 1 2] 0.019 0.185 [0 0 0] 0.054
LinLL 0.166 [0 2.3 3] 0.107 0.734 [0 1 2] 0.019 2.276 [0 0 0] 0.054
LinQL 0.137 [0 1.25 3] 0.174 0.287 [0 0.3 2] 0.040 0.511 [0 0 0] 0.070
LinLN 0.248 [0 1.65 3] 0.159 0.511 [0 0.3 1] 0.020 2.360 [0 0 0] 0.068
LinEL 0.140 [0 0.75 3] 0.225 0.193 [0 0 0] 0.095 0.568 [0 0 0] 0.153
LinEN 0.107 [0 0 0] 0.422 0.232 [0 0 0] 0.192 0.630 [0 0 0] 0.183

The third test consisted of 100 two dimensional and 100 ten dimensional, quadratic, randomly
generated problems. Each problem had a single inequality constraint describing the boundary
and the interior of an ellipsoid through the origin. The bound constraints were set to [0, 3]
for the two and [0, 0.3] for the ten dimensional problems. No retries were allowed and the
number of problems where the methods did not improve the bound constraints is listed in
the column no gain. The column gain2 is the average of the gain of all problems where the
methods produced an improvement. Note that for the methods where new inequalities or
envelopes were computed we use the linear solving method while the linear contraction for
the other ones. This choice reflects some of our experience gained from experimenting with
different combinations linearization and solution techniques.

Linearization Test Results.
dimension n = 2 n = 10

method time gain no gain gain2 time gain no gain gain2

LinearCLContract 0.020 0.589 7 0.633 0.024 0.148 24 0.194
LinearLLContract 0.017 0.587 5 0.618 0.102 0.181 18 0.221
LinearQLContract 0.018 0.634 2 0.647 0.048 0.275 16 0.327
LinearLNSolve 0.085 0.720 1 0.728 0.459 0.211 14 0.245
LinearELSolve 0.083 0.665 4 0.693 0.647 0.286 11 0.321
LinearENSolve 0.075 0.845 1 0.853 0.685 0.341 11 0.384

As the test show introducing new variables instead of approximating the bilinear terms by
constant linear or quadratic ones and the quadratic terms by constant or linear ones yields
more gain but is slower even in low dimensions.
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