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Abstract. This paper discusses the mathematical formulation of and solution attempts for the
so-called protein folding problem. The static aspect is concerned with how to predict the folded
(native, tertiary) structure of a protein, given its sequence of amino acids. The dynamic aspect asks
about the possible pathways to folding and unfolding, including the stability of the folded protein.

From a mathematical point of view, there are several main sides to the static problem:
– the selection of an appropriate potential energy function;
– the parameter identification by fitting to experimental data; and
– the global optimization of the potential.
The dynamic problem entails, in addition, the solution of (because of multiple time scales very

stiff) ordinary or stochastic differential equations (molecular dynamics simulation), or (in case of
constrained molecular dynamics) of differential-algebraic equations. A theme connecting the static
and dynamic aspect is the determination and formation of secondary structure motifs.

The present paper gives a self-contained introduction to the necessary background from physics
and chemistry and surveys some of the literature. It also discusses the various mathematical problems
arising, some deficiencies of the current models and algorithms, and possible (past and future) attacks
to arrive at solutions to the protein folding problem.
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1. Introduction. It is God’s privilege to conceal things,
but the kings’ pride is to research them.
(Proverbs 25:2; ascribed to King
Solomon of Israel, ca. 1000 B.C.)

This paper is the result of my investigations into the problems involved in the
mathematical prediction of (tertiary, 3-dimensional) protein structure given the (pri-
mary, linear) structure defined by the sequence of amino acids of the protein. This
so-called protein folding problem is one of the most challenging problems in current bio-
chemistry, and is a very rich source of interesting problems in mathematical modeling
and numerical analysis, requiring an interplay of techniques in eigenvalue calculations,
stiff differential equations, stochastic differential equations, local and global optimiza-
tion, nonlinear least squares, multidimensional approximation of functions, design of
experiment, and statistical classification of data. Even topological concepts like the
Morse index (Mezey [205]) and invariants in knot theory (Jones polynomials) have
been discussed in this context; see, e.g., Sumners [311]. An extensive recent report
[218] from the U.S. National Research Council on the mathematical challenges from
theoretical and computational chemistry shows the protein folding problem embedded
into a large variety of other mathematical challenges in chemistry.

The aims of the present paper are to introduce mathematicians to the subject,
to provide enough background that the problems in the mathematical modeling of
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2 A. NEUMAIER

proteins become transparent, to expose the merits and deficiencies of current models,
to describe the numerical difficulties in structure prediction when a model is speci-
fied, and to point out possible ways of improving model formulation and prediction
techniques.

Molecular biology is mankind’s attempt to figure out how God engineered His
greatest invention – life. As with all great inventions, details are top secret; however,
even top secrets may become known. I find it a great privilege to live in a time where
God allows us to gain some insight into His construction plans, only a short step away
from giving us the power to control life processes genetically. I hope it will be to the
benefit of mankind, and not to its destruction.

After the successful deciphering of the genetic code that defines how the amino
acid sequences of proteins are coded in the DNA, one of the major missing steps in
understanding the chemical basis of life is the protein folding problem: the task of
understanding and predicting how the information coded in the amino acid sequence
of proteins at the time of their formation translates into the 3-dimensional structure of
the biologically active protein. (Actually, there are also folding problems in connection
with nucleotide sequences in DNA and RNA, but this survey is limited to protein
folding only. For the mathematics of nuclein acids and genome analysis see, e.g., a
recent U.S. National Research Council report by Lander & Waterman [178].)

Proteins are the machines and building blocks of living cells. If we compare a
living body to our world, each cell corresponds to a town, and the proteins are the
houses, bridges, cars, cranes, roads, airplanes, etc. There are huge numbers of different
proteins, each one performing its specific task.

Since it is known already how to use genetic engineering to produce proteins with
a given amino acid sequence, knowledge of how such a protein would fold would allow
one to predict its chemical and biological properties. If we were able to solve the
protein folding problem, it would greatly simplify the tasks of interpreting the data
collected by the human genome project, understanding the mechanism of hereditary
and infectuous diseases, designing drugs with specific therapeutical properties (see,
e.g., Balbes et al. [12]), and of growing biological polymers with specific material
properties.

The literature on the various aspects of protein folding is enormous, and I made
no attempt of being complete in the coverage of papers; instead I simply quote the
papers that I have found useful in the preparation of this study. Given the current
amount of activity in this broad field and my own time limitations, it is probably
inevitable that I also omitted one or the other recent paper with new developments,
and I’d appreciate being informed about any serious omissions.

However, I tried to draw a complete picture of the physical and chemical back-
ground needed to understand modeling details and to be able to read more special-
ized literature. To allow an assessment of the approximations made in the traditional
modeling process and to aid investigations in other molecular modeling problems not
directly related to protein folding, I also included (less complete) remarks and point-
ers to the literature regarding attempts of more detailed or accurate modeling (e.g.,
quantum corrections) even if these are (in the near future) unlikely to be relevant to
practical calculations with macromolecules. Thus the paper can also be viewed as a
case study in mathematical modeling of a complex scientific problem.

For further information, we refer to the introductory paper Richards [252] in
Scientific American, to the books by Brooks et al. [34] and Creighton [62], which
contain thorough treatments of the subject, to the Reviews in Computational Chem-
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istry edited by Lipkowitz & Boyd [191] with many excellent articles on related
topics, to the recent survey of Chan & Dill [48], which contains many additional
pointers to the recent literature related to the physics, chemistry and biology of pro-
tein folding, and to Pardalos et al. [229] for algorithmic aspects of the optimization
problems associated with the problem. Two books providing a general background in
computational chemistry are Clark [53] (an introductory overview with little theory)
and, more oriented towards biological applications, Warshel [339].

Further useful books on the subject are [30, 34, 44, 110, 138, 253], and another
survey, emphasizing the biological aspects, is Jaenicke [156].

More and more, useful material becomes available electronically on the World
Wide Web. At http://solon.cma.univie.ac.at/ neum/protein.html, there is a
necessarily biased and incomplete list of links, collected while working on this study.

Acknowledgments. Much of the research necessary for writing this survey was
done during a year I spent at AT&T Bell Laboratories, Murray Hill.

I’d like to thank David Gay and Margaret Wright for introducing me to the
subject, Frank Stillinger for providing me with background literature and for patiently
answering my questions, and Tamar Schlick for her many comments on a draft version
of the paper and additional pointers to the literature.

Thanks also go to an anonymous referee who made many suggestions that widened
the perspective of the survey so that it covers the entire field of protein structure pre-
diction; and to Erich Bornberg-Bauer who interpreted the referee’s condensed remarks
by providing the literature relevant to meet his requests, and who produced most of
the figures.

2. Proteins. Chemical structure. From a purely chemical point of view, a
protein is simply a polymer consisting of a long chain of amino acid residues. More
precisely, polymers of this type are called di-, tri-, oligo-, or polypeptides if they consist
of 2, 3, several, or many residues, respectively. Each amino acid (except proline) has
the structure given in Figure 1, where R stands for the side chain characteristic for
specific amino acids.

αH   N   C   C   O   H

        R

    H   H   O

Fig. 1. An amino acid with side chain R

The proteins in living cells contain 20 different residues, with side chains having
1-18 atoms. The residues are usually abbreviated with three identifying letters of the
corresponding amino acid, giving the list

{Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ile,
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Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val}.

(A set of (ECEPP-)geometries for these amino acids can be found, e.g., in Momany
et al. [210]. For generalities on biochemical nomenclature see [155].

Under the influence of RNA containing the genetic information coding for the
amino acid sequence, amino acids polymerize in a specific sequence to a chain with
the structure as given in Figure 2. Bonds joining two residues (called peptide bonds)
hydrolize (i.e., break under consumption of a water molecule) in a sufficiently acid
environment, and this can be used to determine the precise sequence of residues in
a given protein. Sometimes, the end groups of a protein, the NH2 amino group and
the COOH carboxyl group, are substituted by other groups; e.g., so-called blocked
polypeptides have CH3 methyl groups at both ends. Since amino acid residues are
asymmetric, two distinct proteins correspond to a chain of residues and the chain in
reversed order.

     amide group
          H   H   O       R

              R       H   H   O

 peptide unit

     

αα

residue  residue

i+1

i side chain

 side chain

 H  ...   N   C   C   N   C   C  ...  O   H
peptide bond

carboxyl group

Fig. 2. The chemical structure of a protein

The repeating –NCαC′– chain of a protein is called its backbone. Although looking
linear in the diagram displaying the bond structure, interatomic forces bend and twist
the chain in a way characteristic for each protein. They cause the protein molecule to
curl up into a specific three-dimensional geometric configuration called the folded state
of the protein. This configuration and the chemically active groups on the surface of
the folded protein determine its biological function.

Consequently, biochemists are very keen in wanting to understand how the pri-
mary structure (the sequence of the residues) gives rise to the tertiary structure (the
folded state). Intermediate between the two is the secondary structure, i.e., local sys-
tematic patterns or motifs like helices, recognizable in shorter pieces of many proteins.
The quaternary structure, i.e., the pattern in which proteins crystallize, is less inter-
esting from a biological point of view. (The naming reflects the fact that the primary
structure, coded in the cell genome, is the basic information from which the synthe-
sis of proteins in a cell proceeds. While folding, secondary structure appears and is
modified until the folded tertiary structure is established; the quaternary structure is
the latest stage, if it is attained at all.)

The smallest proteins, hormones, have about 25 − 100 residues, typical globular
proteins about 100−500; fibrous proteins may have more than 3000 residues. Thus the
number of atoms involved ranges from somewhat less than 500 to more than 10000.
One of the smallest proteins, BPTI (bovine pancreatic trypsin inhibitor), with 58
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Fig. 3. Bond vectors, bond angles, and the dihedral angle

residues and 580 atoms only, has become a well-studied model protein from both the
computational and the experimental point of view; very accurate data for the crystal
structure are available. Another small protein that has found considerable attention
is Crambin (with 46 residues).

Local geometry. The geometry is captured mathematically by assigning to the
ith atom a 3-dimensional coordinate vector

xi =




xi1
xi2
xi3




specifying the position of the atom in space. If two atoms with labels j and k are
joined by a chemical bond, we consider the corresponding bond vector

r = xk − xj ,

with bond length

‖r‖ =
√

(r, r),

where

(p, q) := p1q1 + p2q2 + p3q3

is the standard inner product in IR3.
Similarly, for two adjacent bonds i-j and k-l, we have the bond vectors

p = xj − xi, q = xl − xk.

The bond angle α =<)(i-j-k) can then be computed from the formulas

cosα =
(p, r)

‖p‖‖r‖ , sinα =
‖p× r‖
‖p‖‖r‖ ,

(together with α ∈ [0o, 180o]), where

p× r =




p2r3 − p3r2

p3r1 − p1r3

p1r2 − p2r1



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Fig. 4. Backbone dihedral angles of a protein

is the cross product in IR3. The bond angle β =<)(j-k-l) is similarly found from

cosβ =
(q, r)

‖q‖‖r‖ , sinβ =
‖q × r‖
‖q‖‖r‖ .

Finally, the dihedral angle ω =<)(i-j-k-l) ∈ [−180o, 180o] (or the complementary
torsion angle 180o − ω) measures the relative orientation of two adjacent angles in a
chain i-j-k-l of atoms. It is defined as the angle between the normals through the
planes determined by the atoms i, j, k and j, k, l, respectively, and can be calculated
from

cosω =
(p× r, r × q)
‖p× r‖‖r × q‖ , sinω =

(q × p, r)‖r‖
‖p× r‖‖r × q‖ .

In particular, the sign of ω is given by that of the triple product (q × p, r).
A full set of bond lengths, bond angles and dihedral angles already fixes the ge-

ometry of a molecule (and often overdetermines it). However, the geometry is quite
sensitive to small changes in the angles, and, to reduce the sensitivity, it is useful
to specify in addition a number of so-called out-of-plane bending or improper torsion
angles τ =<)(i-j-k-l), that are defined in a similar way for any tetrahedron formed
by an atom k with three adjacent atoms i, j, l. Clearly, bond lengths, bond angles,
dihedral angles and improper torsion angles are invariant under translation, rotation,
and path reversal. However, dihedral and improper torsion angles change sign un-
der reflection; their signs therefore model the chirality (left- or right-handedness) of
subconfigurations.

In a protein, the bond angles are usually denoted by the letter θ, and the dihedral
angles describing the torsion around the backbone N–Cα, Cα–C’, and C’–N bonds by
the letters ϕ, ψ and ω, respectively; dihedral angles in the side chain by χ.

Under biological conditions, the bond lengths and bond angles are fairly rigid
(with a standard deviation of less than 0.2Å for bond lengths and of about 2o for
bond angles, see Hendrickson[137]; recent experimental values are reported, e.g., in
Engh & Huber [90]). Therefore, the dihedral angles along the backbone (usually
labeled as in Figure 4) determine the main features of the final geometric shape of
the folded protein.

Structural information for the proteins with known geometry is collected world
wide in the quickly growing Brookhaven Protein Data Bank (Bernstein [19]), acces-
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sible through the WWW at http://www.pdb.bnl.gov; see also Walsh [338], Stampf
et al. [302].

3. Molecular mechanics. In this section we look at the physics governing the
motion of the atoms in a protein (or any other molecule). To reduce the formal
complexity of the discussion, we replace the family of coordinate vectors xi in 3-space
by a single coordinate vector

x =




x1

...
xN


 =




x11

x12

x13

.

.

.
xN1

xN2

xN3




in a 3N -dimensional state space, where N is the total number of atoms in the molecule.
Since x contains three coordinates for each atom, we see that for a real protein, the
dimension of x is in the range of about 1500− 30000.

The force balance within the molecule and the resulting dynamics can be approx-
imated mathematically by means of the stochastic differential equation

Mẍ+ Cẋ+∇V (x) = DẆ (t).(1)

(The dots denote differentiation w.r. to time. Physicists and chemists often use the
term Langevin dynamics for such equations. For an exposition of stochastic differential
equations from a rigorous point of view but without excessive generality, and with
some chapters readable by non-specialists, see Kloeden & Platen [167].)

The first term of (1) describes the change of kinetic energy, and is the product
of the mass matrix M and the acceleration ẍ. In Cartesian coordinates (as we have
adopted here), the mass matrix is diagonal, with diagonal entries equal to the mass of
an atom at the three positions corresponding to this atom. The second term describes
the excess energy dissipated to and absorbed by the surrounding, and is the product
of a symmetric, positive definite damping matrix C and the velocity ẋ. The third term
describes the change in potential energy, and is expressed as the gradient of a real-
valued potential function V characteristic of the molecule and defined for all x except
when two coordinate vectors xi and xj coincide. The potential is discussed in more
detail in the next section. Finally, the right hand side is a random force accounting for
fluctuations due to collisions with the surrounding that dissipate the energy; it is the
product of normalized white noise Ẇ (t) with a suitable matrix D. Here W (t) is the
Wiener process. For generalities about modeling with stochastic differential equations
(from the physicist’s point of view) see van Kampen [335], Gardiner [103].

Actually, the interaction with the environment is much more intricate, the damp-
ing and fluctuation terms are only simplified descriptions; e.g., their dependence on
positions and velocities is ignored, memory terms are missing, and time correlations
of the noise are neglected, although they figure in more careful elimination procedures
of the environment. Rather than improving such contracted formulations, more accu-
rate representations used in practice add the positions of a number of water molecules
(and other molecules present in the solvent in a significant amount) to the state vec-
tor, and the potential is extended to account for their interactions with each other
and the molecule.
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Because of the orthogonal symmetry of the multivariate Wiener process, the
stochastic differential equation (1) only depends on the covariance matrix of the noise
term ε(t) = DẆ (t),

DDT = 〈εεTdt〉

(where 〈...〉 denotes expectation, and DT denotes the transpose of D) called the diffu-
sion matrix of the fluctuation term. Conservation of energy on the microscopic level
requires that the diffusion matrix is related to the damping matrix by the fluctuation-
dissipation theorem

DDT = 2kBTC,(2)

involving the temperature T and the Boltzmann constant kB . For discussions of its
validity see, e.g., Deutch & Oppenheim [77] and Bossis et al. [27].

The matrices C and D which model the coupling to the environment are typically
matrices with small entries. Since little is known about this coupling, C is usually
modeled by a small scalar multiple of the (diagonal) mass matrix,

C = γM,

with the damping coefficient γ as a free parameter determined by some heuristic (see,
e.g., [358]), and the random part is then determined by (2) as D =

√
2kBTγM

1/2 (the
choice of another solution of (2) is equivalent to this one). As long as the coupling
to the environment is small, this can be justified to some degree since the qualitative
features of the dynamics are independent of the precise form of the damping and
random forces, being mainly governed by the form of the potential.

One can argue for the above default choice from the form of the equation. Indeed,
if C ÀM , the second-order term can be neglected except in an initial phase, and one
would naturally expect that the resulting first order equation follows the solution of
the initial value problem

Mż +∇V (z) = 0, z(0) = z0,(3)

although on a different time scale. (After a suitable transformation, this can be
interpreted as the steepest descent path in the physically relevant, mass-scaled coor-
dinates.) This requires that C is a scalar multiple of the mass matrix M . An even
simpler heuristic argument simply demands that the acceleration ẍ is damped in the
direction of the negative velocity ẋ only, giving the same dependence of C on M .

However, the choice of C affects the boundaries of the catchment regions for the
dynamics, hence may be relevant for more detailed investigations. Realistic choices
for C are position (and probably also velocity) dependent non-diagonal matrices.
These can be derived in terms of time correlation functions from the interaction
with the solvent; see Deutch & Oppenheim [77], Ciccotti & Ryckaert [51] and
Chapter 9 of Allen & Tildesley [3]. An estimation of the required time correlation
functions can be obtained by molecular dynamics simulations involving explicit solvent
molecules.

The low temperature limit. In the low temperature limit T → 0, the covari-
ance matrix (2) vanishes; so this limit corresponds to the absence of random forces.
In this limit, (1) becomes the ordinary differential equation

Mẍ+ Cẋ+∇V (x) = 0.(4)



MOLECULAR MODELING OF PROTEINS 9

In this case, the sum of kinetic and potential energy,

E =
1

2
ẋTMẋ+ V (x),

has time derivative Ė = ẍTMẋ +∇V (x)T ẋ = −ẋTCẋ. Since C is positive definite,
this expression is negative, and vanishes only at zero velocity, when all energy is
potential energy. Thus the molecule continually loses energy until (in the infinite
time limit) it comes to rest at a stationary point of the potential, ∇V (x) = 0 (by (4)).
This stationary point generally is a local minimum of the potential, since otherwise
it is unstable under even tiny random fluctuations.

Under realistic conditions, the temperature is positive, and random forces will
continue to add kinetic energy to the molecule, so that it will describe random os-
cillations around the local minimum. And after sufficient time, rare large random
forces may allow the molecule to stray very far from the local minimum, possibly into
another valley corresponding to another geometric configuration.

For reasonably rigid molecules, characterized by the fact that there is a unique lo-
cal (and hence global) minimizer in the part of state space accessible to the molecules,
this determines the kinetics of the molecules up to temperatures sufficiently high to
break some of the chemical bonds, thus altering the nature of the molecules. There-
fore, the geometry defined by the minimizer of the potential energy surface, referred
to as the stable state of the molecule, gives a correct geometric description of the
average shape of rigid molecules.

However, proteins, as other polymers, are not rigid but can be easily twisted
along the bonds of the backbone. As a consequence, the potential energy surface
becomes very complicated and exhibits a large number of local minima. Thus, from
time to time, and more frequently at higher temperature where the random forces are
larger, large random excitations allow the molecule to escape from the neighborhood
of one local minimum and reach the neighborhood of another one. In the language of
chemistry, the local minima of the potential (and their neighborhoods) are now only
metastable states, and the occasional escapes to other local minima are referred to as
state transitions.

State transitions. The frequency of transitions depends on the temperature
and on the energy barrier along the energetically most favorable path between two
adjacent local minima. Any such path has its highest point on the energy surface at a
saddle point called a transition state. (The most natural definition – the literature is
somewhat vague here – of this path, the so-called reaction coordinate, is a continuously
differentiable, non-constant solution of

(det∇2V (z))Mż +∇V (z) = 0,(5)

passing a number of stationary points, among them the two local minima, and the
saddle point as the unique stationary point in-between. Here ∇2V (z) denotes the
Hessian matrix of second derivatives of V at z.)

A state transition thus proceeds from the neighborhood of one metastable state,
passing near a transition state, and moving towards a neighboring metastable state.
The book Mezey [205] contains a thorough treatment of the topology of potential
energy surfaces, their stationary points and their catchment regions. In particular, it
turns out that the transition states (saddle points) are stationary points of the poten-
tial whose Hessian has just one negative eigenvalue while the Hessian at metastable
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Fig. 5. Transition energies between adjacent local minima

states (local minima) has, of course, no negative eigenvalues. (For methods to calcu-
late saddle points and associated reaction paths see McKee & Page [204], Culot
et al. [68], and the references there. These methods appear to be much less developed
and are at present much less reliable than methods for minimization.)

The energy difference ∆E between the energies at a local minimum and at a
transition state is called the activation energy for the transition. Using suitable ap-
proximations (see, e.g., van Kampen [335], Section XI.6-7 or Gardiner [103]), one
can derive from the stochastic differential equation (1) the Arrhenius law, that pre-
dicts the mean transition frequency k as

k =
kBT

h
exp

(
− ∆E

kBT

)
,(6)

with h being Planck’s constant. Note that in the literature on reaction dynamics,
energies are often normalized to correspond to one mole of a substance instead of to
single molecules; then the constant appropriate in place of the Boltzmann constant is
the gas constant R, and the Arrhenius law takes the more familiar form

k =
RT

h
exp

(
−∆E

RT

)
.

The exponential term shows that transitions become vastly more difficult and more
rare as the activation energy increases, while at higher temperatures, transitions be-
come easier. This is in accordance with the intuition that at higher temperatures
more random energy is available, which more frequently exceeds the amount required
to pass the transition state.

We now consider two adjacent local minima with potential energies E1 and E2

and the corresponding transition state with energy E12. (See Figure 5 for a cross
section of the energy surface along the reaction coordinate.) Suppose that E1 < E2.
The activation energy ∆E1→2 = E12 − E1 needed to cross from state 1 to state 2
is larger than the activation energy ∆E2→1 = E12 − E2 needed to cross from state
2 to state 1. Using the Arrhenius law (6) we find that the corresponding transition
frequencies satisfy

k2→1 : k1→2 = 1 : exp

(
E2 − E1

kBT

)
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Fig. 6. A metastable state with high energy barrier

independent of the transition state energy. In particular, unless both metastable
states have nearly the same potential energy, transitions from the state with the
higher energy to that with the lower energy are much more frequent than transitions
to a higher energy level.

This implies that over sufficiently long time scales, a molecule spends most of its
time in the deepest valley near the global minimizer of the potential. It also shows
that in a collection of many (independent) molecules of the same kind, most molecules
are in a conformation close to the state with absolutely smallest potential energy. This
is the reason why most experts (exceptions will be discussed later) expect that the
geometry defined by the global minimum of the potential energy surface is the correct
geometry describing the conformation observed in folded proteins. However, if the
energy barrier of a metastable state is sufficiently high, transition frequencies may be
so low that within a biologically meaningful time the metastable state behaves like
the stable state given by the global minimum.

It should be noted that the Arrhenius law, based on classical dynamics and
bistable potentials (i.e., with only two local minima), is only approximately valid.
For a discussion of quantum corrections see vanGunsteren & Berendsen [334]
and Voth & O’Gorman [337]. A complete review of the subject from the classical
and the quantum point of view is given by Hänggi et al. [125].

4. The harmonic approximation. In a molecular system (such as a protein)
where the atoms are highly mobile, the potential energy surface has a complicated
shape; the varied topography of our earth gives an impression of what is possible
in two dimensions, and the possibilities in the high-dimensional state space are even
greater. Therefore it seems impossible to attain the ideal of studying all features
of the dynamics; in practice one must be content with the exploration of sample
paths through the state space by means of so-called molecular dynamics calculations
[26, 138, 142, 202]. These ‘solve’ the stochastic differential equation by simulating
sample paths of (1) using pseudo-random techniques. (Actually, the texts on molec-
ular dynamics calculations are not clear about this relation; they usually treat the
stochastic terms in an ad hoc manner that makes it difficult to assess the accuracy
of the results obtained.) A detailed description of the intricacies of Monte Carlo and
molecular dynamics simulations is given in the book by Allen & Tildesley [3]; a
useful survey is van Gunsteren [331]. For a discussion of numerical methods for
general stochastic differential equations see, e.g., Greiner et al. [121], Honerkamp
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[145], Iniesta & de la Torre [151], Kloeden et al. [168], Sobczyk [300], and
van Gunsteren & Berendsen [333]. For an error analysis of numerical methods
for stochastic differential equations see the book by Kloeden & Platen [167] and
references there, and Bishop & Frinks [21]. The gap to the present knowledge in
the numerical analysis of deterministic differential equations (see, e.g., Hairer et al.
[128, 129]) seems enormous, leaving much scope for research.

However, the high frequency behavior of the motion of molecules at low temper-
ature can be studied in a simpler way by means of the so-called harmonic approxima-
tion. The reason is that at high frequencies, only tiny motions are possible, and at
low temperature, the motion is confined with high probability to a neighborhood of a
local minimizer xloc. Thus it is justified to expand the potential into a Taylor series
around xloc, truncating it after the quadratic term. Since the gradient vanishes at a
local minimizer, we obtain the approximation

V (x) ≈ V (xloc) +
1

2
(x− xloc)TK(x− xloc).(7)

Here K = ∇2(xloc), the Hessian of the potential, is (in the absence of degeneracy) a
positive definite symmetric matrix, called the stiffness matrix. Under our assumptions
we may also neglect damping and random forces, and obtain from (1) the linear
differential equation for the harmonic approximation,

Mẍ+K(x− xloc) = 0.(8)

This differential equation has the general solution

x = xloc +
∑

l

eiωltul,(9)

where the frequencies ωl and the normal modes ul (describing the vibration patterns
corresponding to these frequencies) are the eigenvalues and corresponding eigenvectors
of M−1K. (Here we assumed for simplicity that no multiple eigenvalues occur.) The
frequencies are observable as spectral lines, and (by linear response theory) the normal
modes are observable, too.

The highest frequencies occurring in proteins are of the order of 1014/sec and
the corresponding normal modes essentially correspond to stretching a C-H bond
(with small compensating changes in the other bonds and the angles). Vibrations
corresponding to bond-angle bending have frequencies of the order of 1013/sec. Non-
vibrational internal motions are geometrically distinguishable at time scales of around
1011/sec Creighton [63]. These involve non-local changes and roughly correspond
to lower frequency normal modes. While low frequencies are irrelevant for the real
dynamics since the assumptions used to derive the harmonic approximation are no
longer valid, the invariant subspace spanned by all low frequency eigenvectors is the
space in which the long time dynamics takes place.

For large molecules, the eigenvalue problem is in itself already a nontrivial numer-
ical task, with work growing like O(n3) for n degrees of freedom if the full spectrum
is wanted. To obtain only the low frequency eigenmodes, iterative methods like the
Lanczos algorithm or subspace iteration can be used; see, e.g., Parlett [231]. The
work can also be reduced by various approximations. Fixing bond lengths and bond
angles removes the high frequency spectrum (Levitt et al. [187], Gibrat et al.
[108]). Splitting the molecule into suitable pieces allows an approximate divide-and-
conquer approach by solving eigenvalue problems for the pieces and for a condensed
matrix (Hao & Harvey [131]).
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Time scales. The frequency analysis has consequences for the molecular dynam-
ics simulations. Indeed, current algorithms for tracking sample paths for solutions of
stochastic differential equations need to proceed in time steps significantly smaller
than the smallest time scale of the oscillations in order to properly trace the effect of
the interaction between these oscillations and the random forces. Thus, time steps of
the order of 10−15sec are called for. Since, as will be explained in the next section,
the potential evaluation needed for each time step is rather expensive, only of the
order of 107 time steps can be performed in a reasonable amount of time on present
day computers, corresponding to an interval of up to a few nanoseconds.

These numbers mainly intend to give an idea of typical scales; detailed numbers
depend of course on the computer used, on the algorithms used, on the size of the
protein, on the potential employed, and on the time one is prepared to wait for the
results. In 1985, the limit was at only about 0.3 nanoseconds (Levy et al. [188]);
now there are studies covering several nanoseconds (e.g., Tobias et al. [319], Guo
et al [124], Soman et al. [301]) and, according to Godzik et al. [115], 100ns
are feasible in a lattice approximatimation. Progress in algorithmic ingenuity and
computer technology will push up the limit further. A recent survey of folding studies
is Caflisch & Karplus [42]; see also Daggett & Levitt [69].

On the other hand, the experimentally accessible time resolution (see, e.g., Rad-
ford & Dobson [246]) is of the order of milliseconds, and typical times observed
experimentally for a protein to fold (in the absence of catalyzing enzymes) are in the
order of ∼ 10−1 − 103 seconds. This shows that we are still very far away from a com-
putational treatment of the dynamics of protein folding. A critical evaluation of the
results currently obtainable with molecular dynamics simulations on some practical
problems in drug design is given in Köppen [170]. See also McCammon & Har-
vey [202], McCammon & Karplus [203]. Time saving techniques using so-called
multiple time-steps are based on the fact that different parts of the forces change at
different time scales; see Teleman & Jönsson [317], Tuckerman et al. [322, 323],
and Watanabe & Karplus [340].

The fastest time scales can be suppressed by fixing the fastest changing variables,
especially bond lengths. (Fixing also bond angles distorts the dynamics significantly;
see van Gunsteren & Berendsen2 [333].) Enforcing a vector of constraint equa-
tions B(x) = 0 in a dynamical equation requires adding to the differential equation a
force term proportional to the gradient of B(x). (This can be justified by variational
principles.) The result is the differential-algebraic equation

Mẍ+ Cẋ+∇V (x)−∇B(x)λ = DẆ (t),
B(x) = const.

(10)

for the pair (x, λ) consisting of the state vector and the Lagrange multiplier. In the
chemical literature, people speak of constrained dynamics; see, e.g., Ryckaert et
al. [258], vanGunsteren & Berendsen [332, 333] and Miyamoto & Kollman
[208]. A mathematical analysis of the widely used SHAKE algorithm [258] is given
by Barth et al. [14]. For the mathematics and the solution of (non-stochastic)
differential-algebraic equations in general, see the books by Brenan, Campbell
and Petzold [31] and Hairer et al. [127], and the survey article März [193].

Some speed can also be gained by considering instead of a full molecular represen-
tation of the protein a reduced representation in terms of extended atoms, where the
hydrogen atoms responsible for the highest frequencies are not modeled explicitly but
are treated as part of the atoms they are bonded to, thus producing extended atoms



14 A. NEUMAIER

like CH2, OH, NH, etc. and using large time steps. However, the results obtained in
this way can only be considered as rough approximations. (The models discussed in
Momany et al. [212] and Troyer & Cohen [321] make even more drastic simplifica-
tions to reduce the size of the problem further. See also Chan & Dill [48].) Monge
et al. [213] gains speed in a different way by assuming known secondary structure (cf.
Section 7), that is frozen to limit the number of degrees of freedom.

An important development concerns the numerical methods for solving stochastic
differential equations, that at present are mostly explicit methods. To cope with the
oscillatory stiffness introduced by frequencies on multiple time scales, implicit meth-
ods used successfully for the numerical solution of stiff systems of ordinary differential
equations [129], in particular so-called A-stable methods, can be adapted to take ac-
count of random forces. Implicit Euler-steps were studied in Peskin & Schlick
[237]. The solution of the resulting implicit equations can be achieved by local opti-
mization of a dynamical energy function (Schlick [272]); see Appendix 1 for more
details. Since the high frequencies are damped, this approach is suitable for macro-
scopic models where the high frequencies are absent, or virtually uncoupled, from the
slow modes. For applications to DNA supercoiling, see [275, 248].

An interesting possibility explored in Zhang & Schlick [358] is to combine the
harmonic approach and the stochastic molecular dynamics approach to get a direct
handle on the fast oscillations and simulate essentially the behavior on the slow modes.
Zhang & Schlick [359] improve this further by solving the linearized stochastic
differential equations exactly. Together, these developments offer a promising way
out of the limitations described above, and allow already much larger step sizes of
up to 10−12sec, valuable for sampling. Indeed, significant speedup was achieved very
recently by a simplified version of this approach in barth et al. [15]. The resulting
scheme can be considered as a method with two different timesteps: δτ = 0.5 ×
10−15sec for solving the harmonic model, and δt = 5 × 10−15sec for updating the
harmonic model.

Multiple time scales also arise in the dynamics of electrical circuits; multirate
strategies developed in that context (see, e.g., the papers by Denk, by Günther &
Rentrop and by Wriedt in Bank et al., [13]) may also prove useful to the dynamics
of proteins.

Robustness questions of numerical methods, related to the symplectic (Hamil-
tonian) nature of the (undamped) dynamics and discussed, e.g., in Sanz-Serna [263]
and Skeel et al. [292], may also turn out to be relevant. Numerical methods taylored
to Hamiltonian problems are treated in a recent book by Sanz-Serna & Calvo [264].
Hamiltonian formulations are also worthy of investigation in the case of constrained
dynamics. The use of symplectic integrators in molecular dynamics calculations is
discussed in Gray et al. [119].

A good discussion of the numerical problems involved in tracing the dynamics
of molecules, together with further references, is given in the section on molecular
dynamics algorithms of [218].

5. Modeling the potential. Strictly speaking, the dynamics of atoms in a
molecule is governed by the quantum theory of the participating electrons. For chemi-
cal applications, the so-called Born-Oppenheimer approximation is usually considered
to be adequate. In the Born-Oppenheimer approximation, one obtains the energy
V (x1, . . . , xN ) at fixed nucleus positions xi as the smallest eigenvalue of an associated
partial differential operator for the electron wave function (the Hamiltionian of the
electron system). Approximations of such eigenvalues (and of their partial derivatives



MOLECULAR MODELING OF PROTEINS 15

with respect to the nucleus positions) can be computed by so-called ab initio methods.
However, for complex molecules, quantum mechanical calculations are far beyond the
computational resources likely to be available in the near future.

Hence chemists usually use a classical description of molecules in terms of bonds
and effective atomic interactions, the only trace left of the electrons being partial
charges on the atoms. Quantum theoretical calculations are restricted to the calcu-
lations of properties of small constituent parts of the molecule (such as amino acids),
and phenomenological models are constructed from the data obtained in this way and
from experiment to allow extrapolation to larger molecules. Some general references
on molecular modeling are Burkert & Allinger [37], Gund & Gund [122] and
Hirst [138].

The interactions of the atoms in proteins can be classified into bonded and non-
bonded interactions. Bonded interactions depend on the nature of the bond: At
the energies and time scales of interest, covalent bonds (the bonds drawn as lines
in chemical formulas) are considered un-breakable, disulfide bonds (joining two close
sulfur atoms, S - - - S) are slow to form and to break, and hydrogen bonds (joining
hydrogen atoms with close oxygen atoms, H · · · O) are fairly easily formed and broken.

Atoms far apart are subject to non-bonded interactions: If both atoms carry
partial charges, there is the long range, slowly decaying electrostatic (Coulomb) in-
teraction, and for all pairs of atoms there is the short range, fast decaying van der
Waals interaction.

Hydrogen bonds and non-bonded interactions are particularly relevant for the
interaction of the molecule with the atoms of the solvent (water). The Coulomb
interaction is modified by polarization effects due to the presence of solvent, and this
is modeled in the simplest case by a (often distance-dependent) dielectric constant
D. However, this is somewhat inadequate, and there have been a number of recent
studies that treat the electrostatic effects due to the solvents by adding energy terms
defined by so-called continuum solvation models. Two promising methods are in use
(see Cramer & Truhlar [60] for a detailed, up-to-date review): Cheaper models are
based on solvent-accessible surface area (Richmond [251], Wesson & Eisenberg
[343], Schiffer et al. [270]); cf. Appendix 2. More realistic models (e.g., Gilson
et al. [113], Nicholls & Honig [223, 147]) are based on an approximate solution of
the Poisson-Boltzmann equation

∇ · [ε(x)∇ϕ(x)]− κ(x)2 sinh(ϕ(x)) = −4πρ(x).

The solution of this nonlinear partial differential equation for the electrostatic poten-
tial ϕ(x), given model assumptions defining the spatial dielectric function ε(x) (often
discontinuous at the molecule boundary), the Debye-Huckel parameter κ(x) (often
taken constant), and the charge distribution ρ(x) (typically a sum of partial charge
delta functions), is a nontrivial numerical problem. (For background information on
dielectrics, see, e.g., Fröhlich [101]. In a constant external electric field E, there
is an additional electrostatic contribution −µ(x) · E to the potential involving the
molecular dipole moment µ(x), but we do not discuss this further since usually an
electrically neutral environment is assumed.) For molecular dynamics studies of sol-
vent effects, obtained by embedding the protein molecule in a large set of explicit
water molecules, see, e.g., Schreiber & Steinhauser [278, 279, 280] and Tapia
[315].

The static forces in a molecule are fully determined by the formula defining the
potential V (x), so modeling the molecule simply amounts to specifying the contribu-
tion of the various interactions to the potential. The models – also called force fields –
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V (x) =
∑

bonds

cl(b− b0)2 (b a bond length)

+
∑

bond angles

ca(θ − θ0)2 (θ a bond angle)

+
∑

improper
torsion angles

ci(τ − τ0)2 (τ an improper torsion angle)

+
∑

dihedral angles

trig(ω) (ω a dihedral angle)

+
∑

charged pairs

QiQj

Drij
(rij the Euclidean distance from i to j)

+
∑

unbonded pairs

cwϕ

(
Ri +Rj

rij

)
(Ri the radius of atom i).

Table 1
The CHARMM potential

currently in use (see [7, 33, 52, 72, 212, 219, 341, 342]; a short comparative description
of many force fields is given in the discussion part of Cornell et al. [58]) derive their
basic structure from the times when molecular mechanics was only used to match the
observed structural and spectral data for rigid molecules (or molecules of very limited
mobility) to the available theory. In particular, local expansions around equilibrium
data could be used without difficulties, and this still shows in the current models.

However, local expansions are much more questionable for global optimization
and global dynamical calculations since the potential must now be approximated cor-
rectly over much larger regions. We shall therefore describe in some detail one par-
ticular modeling approach implemented in the molecular mechanics software package
CHARMM (Brooks et al. [33]), mention some of the numerical difficulties reported
in the use of this package, and discuss the problems associated with the use of the
CHARMM potential for global purposes. The analysis leads naturally to the proposal
of a revised model that avoids both the numerical difficulties and the non-physical
aspects of this model.

The CHARMM potential. The CHARMM model represents the potential
essentially as a sum of six kind of terms given in Table 1.

The Qi are partial charges assigned to the atoms in order to approximate the
electrostatic potential of the electron cloud, and D is the dielectric constant. The
quantities indexed by 0 are reference bond lengths, bond angles, and improper tor-
sion angles near their equilibrium values; different constants apply depending on the
names of the atoms in the various atomic sequences, and sometimes on their loca-
tion in the functional group, too. The coefficients of the trigonometric terms trig(ω),
(linear combinations of cosines of multiples of ω), and the force constants c· (whose
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magnitude reflects the strength of the respective forces) are determined, too, by the
names of the atoms corresponding to the term in question. That these constants
are indeed independent of the molecule is a basic assumption of molecular mechan-
ics called transferability, an assumption not always unquestioned (Veenstra et al.
[336]).

Some further terms, accounting specifically for disulfide bonds and hydrogen
bonds, are also present, but will not be discussed here. (For the modeling of hy-
drogen bonds see, e.g., Scheiner [267] and Ladanyi & Skaf [176].) There are also
more complicated alternative versions for the electrostatic interaction; cf. Williams
[345].

The van der Waals interactions (defined by the final sum in the potential) depend
on the interatomic pair potential ϕ that, in the simplest case, is taken as the Lennard-
Jones potential

ϕ(
R0

r
) =

(
R0

r

)12

− 2

(
R0

r

)6

.(11)

The first term drastically decreases for small r forcing atoms to repel each other at
short distance. The second term slowly increases for large r, causing an attraction
of neutral atoms at large distance. The particular linear combination leads to an
equilibrium at the minimum of ϕ(R0

r ) at r = R0, and thus accounts for a qualitatively
correct behavior. The large distance decay of the potential as r−6 can be derived from
quantum mechanics (see, e.g., Kaplan [162] or Kihara & Ichimaru [165]), whereas
the power 12 in the attractive term, modeling strong physical repulsion, is chosen
mainly for easy calculation (by squaring the second term). However, details of the
attractive term may change the nature of global opima; e.g., Hoare & McInnes [140]
report that, for the simpler problem of inert gas crystals, softer Morse potentials favor
regular crystals (that are believed to be the global optimum of the ‘true’ potential).

To make the interatomic potential more realistic quantitatively, terms with other
powers of R

r are included in CHARMM. (For more in depth studies of pair potentials
see Steele [303], Maitland [195].) It is quite possible that more accurate potentials
will also need to take three-body forces into account, such as those given by so-called
Axilrod-Teller terms, predicted by quantum mechanics (Axilrod & Teller [11],
Kihara & Ichimaru [165]).

Taking the equilibrium distance R0 between two atoms as the sum R0 = Ri +Rj
of the atomic radii is a simple intuitive instance of a combination rule designed to
reduce the number of parameters that need to be supplied. However, the form of
the best combination rules is not clear; e.g., Maple et al. [196] use instead the rule
R6

0 = R6
i + R6

j . Thus R0 < Ri + Rj , i.e., the atoms overlap in their equilibrium
position. (Some arguments for a particular combination rule are given in Slater &
Kirkwood [297] Gilbert [111]. From a quantum theory point of view, there is of
course no atomic radius, and what we here call atoms are just balls with semiempirical
nominal radii Ri around the nucleus positions.)

The sum over the charged terms is the Coulomb interaction. There is some
disagreement on how to assign the partial charges (see the discussion in Williams
[345] Lee et al. [181]), and there is even some indication that, except for molecules
with net charge, better results might be obtainable without such Coulomb terms
Clark et al. [52]).

As stated, the Coulomb interaction is valid only for a homogeneous dielectric
medium. However, the protein in solution is really inhomogeneous, with a position-
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dependent dielectric constant that near the atoms of the protein is only about one
eighth of that of the solvent water. It is not clear how this affects the effective
Coulomb interaction between the atoms of the proteins, and so far, only heuristic
corrections (such as a distance-dependent D) are in use. The free energy of solvation
can also be accounted for by terms proportional to the surface area exposed to the
solvent; see, e.g., Wesson & Eisenberg [343] Perrot et al. [235], Scheraga [269]
and Schiffer et al. [270]. See also the molecular surface review by Conolly [56].
Possibly, the solvation energy can also be accounted for by modifications of the pair
potentials and the combination rules; see Appendix 2. For the explicit modeling of
water molecules, which is much more expensive but avoids all these problems, see
Stillinger [305] and Warshel [339].

To speed up the potential evaluation, the potential is further modified by intro-
ducing a cutoff distance beyond which the interatomic potential is neglected. (Recent
evaluations of the effect of cut-offs on molecular dynamics simulation include Smith
& Pettit [299], Steinbach & Brooks [304] and Schreiber & Steinhauser
[278, 279, 280].) With such a cutoff, only a small part of the O(n2) terms in the
last sum in the potential of Table 1 need to be calculated. To make full use of the
resulting sparsity (which varies from iteration to iteration), efficient data structures
must be maintained; see, e.g., Schreiber et al. [281]. More recently, fast multipole
expansions [25, 120, 284] and variants [70, 91] of the Ewald method (Ewald [92])
were used as an alternative to cut-off methods, with a significant increase in quality
York et al. [353, 354]. An improvement of a divide-and-conquer method by Appel
[8] for fast potential evaluation is discussed in Xue et al. [352]. While useful for the
simulation of fluids, the break-even point seems to be too high to make it useful for
protein calculations.

Improving potential features. It is easy to see that the first three sums in
the potential derive their form from a truncated Taylor expansion around equilibrium
values. Linear terms are missing since they can be incorporated into the quadratic
term by changing the value of the equilibrium constants. But cross terms like (ω −
ω0)(θ−θ0), considered in Hagler [126] and to be expected in any multivariate Taylor
expansion (Bowen & Allinger [28]), are missing, too, and the main reason (to be
discovered by reading between the lines of a number of standard texts on molecular
mechanics) seems to be that – in the past – the available data were not sufficient to
estimate the corresponding coefficients!

However, cross terms lead to much better agreement with vibrational spectrosco-
py measurements (Derreumaux & Vergoten [75], Maple et al. [196]. Moreover,
cross terms can drastically modify the global behavior, especially because of the non-
linearities in the non-bonded contributions, and if we ever want to obtain reliable
quantitative predictions from global molecular mechanics calculations, these issues
must be addressed much more carefully.

Since much more data are available now (and even more can be generated by
ab initio calculations) than at the time when the form of the potential was fixed by
tradition, the old reasons for such drastic simplifications are no longer appropriate.
The literature discusses some other possibilities: Adding so-called Urey-Bradley in-
teraction terms (Urey & Bradley [326] and references in Chapter III of Brooks
et al. [34]), of the form

c‖rik − r0‖2
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for atoms bonded as i-j-k has, locally, an effect similar to adding cross terms between
bond lengths and bond angles. Maple et al. [196] add even some cubic interaction
terms, and show that these significantly improve the fit to ab initio data. Fogarasi
& Pulay [98] mention (at the end of section III) that using inverse bond lengths
instead of bond lengths may be advantageous, and by the same reasoning one can
also argue for bond length denominators in cross terms.

For the forces accounting for the relatively easy twisting along the bonds it was
well-known that Taylor expansions were not realistic, and this accounts for the more
sophisticated trigonometric terms involving the dihedral angles. However, since bond
lengths, bond angles, and improper torsion angles involving the peptide bonds are
much more rigid, the need for analogous corrections on the corresponding contribu-
tions was not apparent as long as the potentials were only used for local (spectral)
analysis. However, it is easy to see that globally, the terms for bond angles and
improper torsion angles are non-physical: For example, the physically equivalent an-
gles θ = 160o and 200o give rise to different potentials. The minimal change needed
to restore a global physically meaningful interpretation is to replace the bond angle
contributions by c(cos θ − cos θ0)2 and the improper torsion angle contributions by
c(sin(τ − τ0))2, for suitable constants c. This is (approximately) realized in the force
field used in [226, 271, 277].

Another defect of the dihedral angles (and similar remarks apply to improper
torsion angles) is the fact that these angles are geometrically undetermined when a
bond angle is 180o; the formulas then give the expression 0/0 for cosω and sinω. This
invites numerical disaster: for angles close to 180o, these quotients are numerically
very unstable. Thus rounding errors lead to low accuracy or even essentially random
values for the dihedral angles, resulting in random energy contributions. Although
equilibrium angles are typically far away from 180o, this is an important defect in
global applications; for example it ruins (or produces unpredictable results in) any
local optimization routine if one of the angles in an intermediate calculation (such
as a line search) happens to come close to 180o. Brooks et al. [33] observe (on p.
191/2) “singularities when angles become planar (which is rather common)”; they
correct for it in an ad hoc way by using Taylor expansions.

However, the natural resolution of this difficulty is to use in the potential only
expressions that are geometrically well-defined for all values of the bond angles. In
the notation of Section 2, the natural quantities involving dihedral angles are the
products sinα sinβ sinω and sinα sinβ cosω that can be calculated in a numerically
stable fashion from the formulas

sinα sinβ sinω =
(q × p, r)
‖p‖‖q‖‖r‖ ,

sinα sinβ cosω =
(p× r, r × q)
‖p‖‖q‖‖r‖2 .

The force field used by Schlick [271, 277] avoids the instabilities in a different way
by replacing the denominators in the definition of all angles by constant reference
values. As a byproduct of these proposed modifications, the evaluation of V (x) even
becomes cheaper since no inverse trigonometric functions have to be computed.

The conclusion of our analysis is that, in order to construct globally meaningful
potentials that would allow one to hope for a correct quantitative predictions of protein
structure, we need to use more carefully designed terms implementing the bonded
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interactions. In particular, the coefficients of such a revised model must be newly
adapted to the data available at present. For additional, experimental support of this
conclusion see Roterman et al. [256].

6. Parameter estimation. Currently, the determination of the coefficients in
a potential energy model is based on data obtained by one of the following methods:

– X-ray crystallography gives the equilibrium positions of the atoms in crystallized
proteins (or rather their average over the high frequency vibrations, which introduces
errors due to anharmonic effects). A basic text is Giacovazzo [106]; specifically for
proteins see, e.g., Zanotti [357], Fortier et al. [99].

– Nuclear magnetic resonance (NMR) spectroscopy, (see, e.g., Jardetzky &
Lane [157], Torda & van Gunsteren [320]), gives position data of proteins in
solution.

– Ab initio quantum mechanical calculations [80, 98, 196, 211, 236] give ener-
gies, energy gradients, and even energy Hessians (i.e., second derivative matrices) at
arbitrarily selected positions of the atoms, for molecules in the gas phase;

– Measurements of energy spectra give rather precise eigenvalues of the Hessian;
– Thermodynamical analysis gives specific heats, heats of formation, conforma-

tional stability information, related to the potential in a more indirect way, via sta-
tistical mechanics.

The model parameters are adapted to data from one or several of these sources by
using a mixture of least squares fitting and more heuristic or interactive procedures.
Starting values for the coefficients come from general knowledge about atomic radii,
average bond lengths and angles, and (for the force constants) from the frequencies
of the oscillations of these quantities. The resulting rough parameters are then fitted
to the data using a least squares approach.

The state of the art of numerical methods for least squares calculations is surveyed
in Björck [22, 23] for the linear case. In addition, recent work by Matstoms [201]
on multifrontal orthogonal factorizations for large and sparse least squares problems
is relevant. The nonlinear case is reduced to the linear case, most commonly by means
of damped Gauss-Newton steps, see, e.g., Dennis & Schnabel [74], Fletcher [97].

For a survey of parameter fitting procedures used in molecular mechanics see
Hopfinger & Pearlstein [148]. More heuristic techniques are used to correct
the parameters to match spectral data available, e.g., for the amino acids; see, e.g.,
[33, 175]. A detailed description of the development of a potential model is given
by Lifson [190]. From a mathematical point of view, the ab initio approach (with
second derivative information) poses interesting questions about multidimensional
Hermite interpolation (or approximation) and the optimal choice of trial points for
the quantum mechanical calculations; since the least squares problems are here linear,
traditional methods for the optimal design of experiments (see, e.g., Atkinson [9],
Atwood [10], Pukelsheim [241] and the books by Fedorov [94] or Silvey [286])
should lead to improved fits for the same amount of work.

The assessment of the sensitivity of the parameters with respect to the input data
generally received very little attention. Maple et al. [196] mention the calculation of
parameter uncertainties, but give no details on their magnitude. One reason for the
importance of parameter uncertainties is that parameters with large uncertainties are
unlikely to be transferable. Thacher et al. [318] discuss other applications of these
sensitivities.

The sensitivity of equilibrium internal coordinates with respect to changes in the
values of the parameters is discussed in Susnov [314].
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Knowledge of such sensitivity information gives information on the quality of the
model potential, and helps to assess the relative importance of the various terms in
the potential; cf. Rabitz [243]. Together with the parameter uncertainties it also
gives an idea of the accuracy obtainable in potential minimizations, and hence of the
accuracy to which these minimizations are worth computing.

In principle, sensitivity information can be obtained together with the least
squares calculation (see, e.g., Draper & Smith [83]); but the improvements gained
through the spectral information can be similarly assessed only when this information
is combined with the position data available in a larger (and more nonlinear) least
squares problem.

Ab initio potentials. Problems of a different kind appear in attempts to derive
the potential from basic principles. Strictly speaking, the quantum mechanical ab
initio potential is not the right potential to use in molecular mechanics applications
since it gives as potential energy the quantity referred to by chemists as the enthalpy
H. But the potential relevant for calculations at fixed finite temperature T > 0,
the Gibbs free energy G = H − TS, has a correction term involving the conforma-
tional entropy S of the system. The conformational entropy is proportional to the
logarithm of the number of microscopically distinguishable configurations belonging
to an observed macrostate and is thus roughly proportional to the logarithm of the
volume of the catchment region of a metastable state. Thus large flat minima (having
a large catchment region) or large regions covered by many shallow local minima (cor-
responding to a glassy regime) are energetically more favorable than a narrow global
minimum if this has only a slightly smaller potential.

Some early calculations are reported by Farnell et al. [93]. To estimate the
conformational entropy, Creighton [62], p. 161, apparently only counts local min-
imizers, taking his intuition from simple random polymers where these minima can
be assumed to be equidistributed with similar-sized catchment regions. For the much
more complex energy surfaces of proteins, this assumption seems questionable. Go
& Scheraga [118] (see also Scheraga [268], who surveys alternative approaches
to entropy, too) use second derivative information on all nearly global minima (at
x(1), x(2), . . .) to approximate the conformational entropy of a minimum at x(m) by

Sm = −kB log pm + kB log
∑

k

pk,(12)

where

pm =
exp(−V (x(m))

kBT
)

√
det∇2V (x(m))

.(13)

(The log
∑

term can be ignored since it shifts the entropy and hence the free energy
by the same term for all minima.) This formula derives from statistical mechanics
by replacing the potential near each nearly global minimum by its quadratic Taylor
expansion. Anharmonicities (i.e., effects due to non-quadratic higher order terms)
are thus not taken into account. Molecular dynamics simulations, started at a nearly
global minimizer and exploring the neighborhood over a sufficiently long time interval,
would in principle allow the determination also of anharmonic contributions to the
conformational entropy. (Formula (12) makes only sense at the local minima them-
selves. For non-equilibrium configurations, one has to work with partition functions,
that are more difficult to handle; cf. again [118].)
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Currently, entropy considerations are often addressed computationally in a qual-
itative fashion only, using very simple (e.g., lattice) models together with techniques
from statistical mechanics. A survey of typical results obtainable in that way, and
many further references on the statistical mechanics approach, are given in Wolynes
[347].

Entropy of mixing with the solvent is another term that may play a role; see
Chen et al. [49]. See also Abagyan [1] for a discussion of the various terms that
need to be added to the ab initio potential to get a more realistic potential.

For semiempirical potentials fitted to experimental data, these fine points appear
somewhat less important in view of the other approximations made: the resulting
potentials are always effective potentials adapted to the form of potential used and
the experimental conditions from which the data are derived. However, this implies
that caution is needed when combining data from different sources.

7. The native state. We concluded Section 3 with the remark that most ex-
perts expect that the geometry defined by the global minimum of the potential energy
surface is the correct geometry describing the conformation observed in folded pro-
teins. In the present section we look at the structure of the potential landscape. We
also take a critical look at the statement that the folded state is given by the global
minimum, and discuss some alternatives considered in the literature.

The most challenging feature of the protein folding problem is the fact that the
objective function has a huge number of local minima, so that a local optimization is
likely to get stuck in an arbitrary one of them, possibly far away from the desired global
minimum. People working in the field expect an exponential number of local minima.
Estimates I have seen range from 1.4n to 10n for a protein with n residues; the highest
estimate is from Creighton [62], p. 161. For very general energy minimization
problems, combinatorial difficulty (NP-hardness) can be proved by showing that the
traveling salesman problem can be phrased as a minimization of the sum of two-body
interaction energies (Wille & Vennik [344]), but the potential is very contrived,
and the result implies nothing for more realistic situations.

For less structured problems with more symmetries, like the problem of the opti-
mal configuration for a cluster of n identical atoms with a Lennard-Jones interaction
(11), the number of local minima appears to grow even more violently; an estimate

by Hoare [139] is O(1.03n
2

). However, most of these local minima would have a
large potential energy and thus be irrelevant for global optimization; the number of
low-lying minima is more likely to grow simply exponential in n, too. A remarkable
observation of Hoare & McInnes [140] reveals that using in place of the Lennard-
Jones pair interactions more realistic Morse functons gives cluster potentials with a
much smaller number of local minima. Thus it may be that, also in the protein folding
case, more realistic potentials will be easier to handle than current simpler models.

A bead model. To get a feeling for the origin of the exponential number of
local minima, consider the following intuitive bead model, that ignores all non-local
interaction and simulates the local interaction by a rubber band. Imagine a chain
of n irregularly shaped beads (20 different kinds, corresponding to the amino acids)
threaded along a rubber band knotted at one end and held at the other end. The
rubber band tries to contract, and the beads arrange themselves in a way as to
minimize the potential energy (tension). Now consider fixing the top i beads of
the chain while rotating the (i + 1)st bead along the chain together with the rest
of the chain below. Because of the irregular shape of the beads, the rotated bead
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and the bead above it move somewhat apart to allow the rotation, but after some
local irregularity is overcome the beads can come closer together again. Thus the
energy increases at first, passes a saddle point (a local maximum along the reaction
coordinate), and moves towards a new local minimum. Depending on the shape
of the two adjacent beads, there may be a different number mi of locally optimal
arrangements of the two beads. Noticing that rotations at different beads can be
performed independently, we see that the total number of different local optima is
m1 · . . . ·mn−1, and if each mi is greater than one, this gives an exponential number
of possibilities.

Of course, this model is very simplistic; interaction in a realistic molecule is
much more complex and also non-local. But the model allows one to understand
the qualitative origin of the large diversity of local minima possible and is likely to
be realistic in this respect. So-called genetic algorithms for global optimization (see
below) attempt to make use of the insight from such simple analogies by allowing
mutations and crossing over between candidates for good local optima in the hope to
derive even better ones.

The folded state and molten globule states. Observed in experiments are
unique conformations in the folded state (to within a certain accuracy), independent
of the history. This strongly suggests the existence of a unique global minimizer with
a significantly lower energy than all other local minimizers. This is also supported
by experiments that suggest that the approach to the global minimum proceeds in
two phases, a rapid phase to reach a nearly folded state, followed by a lag period to
complete the folding to the final state (Creighton [63]).

The most natural explanation is the existence of a large barrier with many (but
not too many or too deep) saddles around the valley containing the global minimum.
For example, Šali et al. [260] discuss a (lattice) scenario where the global minimum
is well separated in energy from the other local minima, and the number of transition
states leading to the global minimum is large, thus favoring the formation of the
folded state from many less compact nearly folded states. They show that about 15%
of randomly generated structures in their (simplistic) model had this property and
indeed folded correctly within a reasonable number of Monte Carlo simulation steps.
An apparently more reliable indicator of good folding is a low mean square distance
between different configurations obtained in molecular simulations; see Irbäck et al.
[153].

However, there are other possibilities: Quantum mechanical corrections account-
ing for vibrational zero-point energy might disfavor the global minimum state Mezey
[205], Slanina [296]. The main effect is that a slightly non-global minimum in a
broader valley may be more highly populated than a global minimum in a valley
with steep walls; cf. Richards [250]. (Possibly taking account of these corrections
is equivalent to the incorporation of the conformational energy; the effects are quite
similar.) In some cases – as, e.g., for the molecule IHI – the ab initio potential sur-
face does not even have a finite local minimum, and the observed metastable state
is close to a saddle point of the potential (cf. [205], p.302). However, a remark in
[296] suggests that so far there is no evidence that this difficulty occurs in organic
molecules.

The folded state might be a metastable state with high energy barriers, or it
might just be the lowest local minimizer that is kinetically accessible from most of the
state space. The folded state may also correspond to more extended regions in state
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space where there are many close local minima of approximately the same energy as
at the global minimum.

This last situation corresponds to what physicists refer to as glassy behavior
(see the statistical dynamics treatment surveyed in Wolynes [347] and references
there), and there are some indications from molecular dynamics simulations (Elber
& Karplus [89], Honeycutt & Thirumalai [146]) that this might be the situation
in typical energy surfaces of proteins. (Temperature effects also play a role, see
Abkevich et al. [2].) On the other hand, calculations of Iori et al. [152], using
a different model, arrive at the opposite conclusion.

Camacho & Thirumalai [43] find that, in lattice models, there appear to be
exponentially many local minimum structures and exponentially many compact struc-
tures, but the number of compact local minimum structures seens to be nearly inde-
pendent of the number of residues.

More recent studies (Karplus et al. [163], Leopold et al. [185] Onuchic et al.
[227], Šali et al. [260, 261, 262], Wolynes et al. [348]; see also Hao & Scheraga
[132] and a very informative survey by Dill et al. [78]) seem to reach an agreement
in that the native state is a pronounced global minimizer that is reached dynamically
through a large number of transition states by an essentially random search through a
huge set of secondary, low energy minima (representing a glassy molten globule state),
separated from the global minimum by a large energy gap. In simulations with crude
lattice models (see, e.g., Dill et al. [78], pp. 594-595 for the merits and faults of
this simplifying assumption), this scenario appears to be the necessary and sufficient
conditions for folding in a reasonable time. (Crude off-lattice models also appear to
confirm this statement; see Irbäck et al. [153, 154].)

It explains the so-called Levinthal paradox (Levinthal [186]) that the time a
protein needs to fold is by far not large enough to explore even a tiny fraction of all
local minima only. However, fast collapse to a compact molten globule state, followed
by a random search through the much smaller number of low energy minima could
account for the observed time scales, and the energy gap provides the stability of
the native state over the molten globule state. The time-limiting step is provided by
the task to drive the molten globule into one of the transition states to the native
geometry. Experimental characterizations of molten globule states are discussed in
Dobson [81] and Miranker & Dobson [207].

On the other hand, the studies mentioned disagree on many of the details, and
the simplified drawings of the qualitative form of the potential energy surface are
mutually incompatible between different schools.

This shows that the interpretation of the literature on this point is difficult. At
the present stage of development, unless the models are extremely simple, numerical
calculations do not allow one to check reliably whether a global minimizer has been
found; all that can be said is that the minimizers found were the best ones in an
incomplete search. Discrepancies with experiments or with theoretical expectations
might as well be interpreted as artifacts created by deficiencies of the potential used;
the model accuracy is probably not higher than the distance between several near-
global minima. And the papers with the more impressive simulations do not even
claim that their (lattice) models represent more than only rough qualitative aspects
of real proteins.

A serious limitation of many simulation studies is the fact that the presence of a
solvent is poorly accounted for in the models used for folding simulations. Methods
based on the Poisson-Boltzmann equation or the solvent-accessible surface are too
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expensive for long simulations. However, because of the tendency to form hydrogen
bonds with water, hydrophilic residues involving charged or polar groups tend to
be located at the surface, while the other, hydrophobic groups tend to be buried
in the core of the molecule. Without solvent, the tendency is almost reversed since
oppositely charged groups now tend to form complementary pairs neutralizing the
Coulomb forces. Typical qualitative studies (e.g., Miyazawa & Jernigan [206])
therefore use a (drastic) simplification by employing just two (or three) kinds of
residues, polar, hydrophobic (and indifferent).

Systematic studies of how the solvent changes the potential energy surface appear
to be missing. However, a particularly striking illustration is given in Novotný et
al. [225]. They show that a particular natural protein can be ‘folded’ by energy
minimization (with the CHARMM potential, describing an isolated molecule) into
nearly the shape of another protein; the resulting minimal structure had similar energy
as the native structure. However, simple modifications of the potential energy function
to take account of solvent screening and non-polar surface effects allow the correct
discrimination between native and misfolded structure. Similarly, a computational
study of LeGrand & Merz [183] reports severe distortions of the minimal energy
configuration when the solvent is ignored.

From an evolutionary point of view, the hypothesis of a single, well separated
global minimum well is also very likely. Indeed, in order that organisms can function
successfully, the proteins performing specific tasks must fold into identical forms.
Polypeptides that do not satisfy this requirement lack biological reliability and are
not competitive. Thus one expects that at least the polypeptides realized as natural
proteins have a single global minimum, separated from nearby local minima by a
significant energy gap.

Recently, however, a number of proteins called prions were discovered that exist
in two different folded states in nature (Prusiner [240]). The normal form appears
to be a metastable minimum only, separated by a huge barrier from the sick ‘scrapie’
form in the global minimum. Under ordinary circumstances, only the metastable
form is kinetically accessible from random states; but the presence of molecules in
scrapie form acts as a catalyst that reduces the barrier enough to turn the normal
form quickly into scapie form, too. Substitution of a few crucial amino acids (caused
by mutations of the prion-coding genes) also reduces the barrier.

Another indication that the global minimum picture may be too simple is the
existence of an organic compound that crystallizes into a 4:1 mixture of two different
geometric conformations of the molecule (Dunitz et al. [86]), indicating two nearly
global minima separated by a low energy barrier.

A study of insulin by Hua et al. [149, 150] also suggests that a family of similar
but distinct low energy conformations form the biologically functional state.

8. Global optimization. In this section we review techniques and problems
related to finding the global minimum and discuss some of the studies made concerning
the local and global optimization of macromolecular potentials.

One of the obvious difficulties is that because of the high dimension and the
expensive evaluation of the potential, even local optimization is slow. (For large
molecules, this is the case even when the potential calculations are speeded up using
fast multipole expansions [25, 120, 284] or potential cutoffs.) The fastest optimization
methods, the adopted basis Newton-Raphson (ABNR) method and truncated Newton
(TN) methods, employed, e.g., in CHARMM [33, 76], combine elements of New-
ton’s method with reduced subspace techniques to reduce storage requirements and
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to limit the amount of work done at each iteration. A comparison of these methods
developed by chemists with some of the recent methods for large scale optimization
developed by the optimization community, in particular truncated Newton methods
(Nash [217], Schlick & Overton [276], Schlick & Fogelson [274]), is given in
a recent survey article by Schlick [273]. For an adaptation of the truncated Newton
optimization package TNPACK [274] to the molecular mechanics package CHARMM
[33] see Derreumaux et al. [76].

However, since the objective function has a huge number of local minima, a lo-
cal optimization is likely to get stuck before the global minimum is reached. Thus
some kind of global search is needed to find the global minimum with some reli-
ability. Leach [180], Scheraga [268], and Pardalos et al. [229] survey, from
different perspectives, the different methods for global optimization that have been
used so far on molecular conformation problems. Together with the proceedings
of the workshop on global minimization of nonconvex energy functions by Par-
dalos et al. [230], these give an up to date bibliography on this part of the lit-
erature. Online information on global optimization in general (including public do-
main software packages) can be found on the World Wide Web, e.g., at the address
http://solon.cma.univie.ac.at/∼neum/glopt.html.

Instead of describing technical details of the various methods (these vary from
author to author, and can be found in the citations above), I want to present a vivid
informal view of the most useful basic techniques, their strengths and weaknesses.
The methods that are considered by the folding community most useful at present
are simulated annealing, genetic algorithms, and smoothing methods. All three are
based on analogies to natural processes where more or less global optima are reached.

Simulated annealing. Introduced by Kirkpatrick [166], simulated annealing
takes its intuition from the fact that the heating (annealing) and slowly cooling a
metal brings it into a more uniformly crystalline state, that is believed to be the state
where the free energy of bulk matter takes its global minimum. (Incidentally, even
for the simplest potentials, it is still an unsolved problem whether this is indeed true
with mathematical rigor. For some results in this direction, see Radin & Schulmann
[247]). The role of temperature is to allow the configurations to reach higher energy
states with a probability given by Boltzmann’s exponential law, so that they can
overcome energy barriers that would otherwise force them into local minima. This
is quite unlike line search methods and trust region methods on which good local
optimization programs are based (see, e.g., Gill et al. [112]).

In its original form, the simulated annealing method is provably convergent (in
a probabilistic sense) but exceedingly slow; various ad hoc enhancements make it
much faster. In particular, except for simple problems, success depends very much on
the implementation used. For results of simulated annealing techniques for protein
structure prediction see, e.g., Kawai [164], Shin & Jhon [285].

Genetic algorithms. Introduced by Holland [143], genetic algorithms make
use of analogies to biological evolution by allowing mutations and crossing over be-
tween candidates for good local optima in the hope to derive even better ones. At
each stage, a whole population of configurations are stored. Mutations have a similar
effect as random steps in simulated annealing, and the equivalent of lowering of the
temperature is a rule for more stringent selection of surviving or mating individuals.

The ability to leave regions of attraction to local minimizers is, however, drasti-
cally enhanced by crossing over. This is an advantage if, with high probability, the
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crossing rules produce offspring of similar or even better fitness (objective function
value); if not, it is a severe disatvantage. Therefore the efficiency of a genetic algo-
rithm (compared with simulated annealing type methods) depends in a crucial way
on the proper selection of crossing rules. The effect of interchanging coordinates is
beneficial mainly when these coordinates have a nearly independent influence on the
fitness, whereas if their influence is highly correlated (such as for functions with deep
and narrow valleys not parallel to the coordinate axes), genetic algorithms have much
more difficulties. Thus, unlike simulated annealing, successful tuning of genetic al-
gorithms requires a considerable amount of insight into the nature of the problem at
hand. For a more detailed discussion of genetic algorithms in general see Davis [73];
for applications to protein folding see, e.g., Brodmeier & Pretsch [32], Kawai
[164], Le Grand & Merz [183], ShinJhon [285].

Both simulated annealing methods and genetic algorithms are, in their simpler
forms, easy to understand and easy to implement, features that invite potential users
of optimization methods to experiment with their own versions. The methods often
work, if only slowly, and lacking better alternatives, they are very useful tools for
biochemists, where the primary interest is to find (near-)solutions now, even when
the reliability is uncertain.

To make simulated annealing methods and genetic algorithms efficient, clever en-
hancements are essential. However, theoretical work on explaining the effectiveness of
useful enhancements is completely lacking. I also haven’t seen careful comparisons of
the various options available and their comparative evaluation on standard collections
of test problems.

Smoothing methods. First suggested by Stillinger [306] and Stillinger &
Weber [308], smoothing methods are based on the intuition that, in nature, macro-
scopic features are usually an average effect of microscopic details; averaging smoothes
out the details in such a way as to reveal the global picture. A huge valley seen from
far away has a well-defined and simple shape; only by looking more closely, the many
local minima are visible, more and more at smaller and smaller scales. The hope is
that by smoothing rugged potential energy surface, most or all local minima disap-
pear, and the remaining major features of the surface only show a single minimizer.
By adding more and more details, the approximations made by the smoothing are
undone, and finally one ends up at the global minimizer of the original surface.

While it is quite possible for such a method to miss the global minimum (so that
full reliability cannot be guaranteed, and is not achieved in the tests reported by their
authors), a proper implementation of this idea at least gives very good local minima
with a fraction of the function evaluations needed for the blind annealing and genetic
methods. It should be possible to further increase the reliability of the methods
by using a limited amount of global search in each optimization stage, though this
appears not to have been done so far.

A conceptually attractive smoothing technique is the diffusion equation method
(Piela et al., [239], Li & Scheraga [189]), where the original potential function V (x)
is smeared out by artificial diffusion. The solution V (x, t) of the diffusion equation

Vxx(x, t) = Vt(x, t)

with initial condition V (x, 0) = V (x), that can be solved explicitly if V (x) is a linear
combination of Gaussians in ‖xi − xk‖, gets smoother and smoother as t gets larger;
for large enough t, it is even unimodal. Thus V (x, t) can be minimized by local
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methods when t is sufficiently large, and using the minimizer at a given t as a starting
point for a local optimization at a smaller t, a sequence of local minimizers of V (x, t)
for successively smaller t is obtained until finally, with t = 0, a minimizer of the
original potential is reached. Unfortunately, for general functions, smoothing is very
expensive, and at present the methods are practically useful mainly when the potential
is a sum of univariate functions of distances between atomic coordinates. With minor
errors, the potentials currently used in protein modeling can be approximated in this
way.

Positive and negative results for both Lennard-Jones clusters and oligopeptides
are reported in Kostrowicki et al. [172, 173]. Modifications to take account of the
rigid structure of bond lengths and bond angles are discussed in Kostrowicki &
Scheraga [174]. Similar techniques for smoothing have been proposed and applied
to potential energy surfaces by Coleman et al. [55], Moreé & Wu [214, 215],
Shalloway [283] and Wu [349].

A different smoothing technique is proposed in Dill et al. [79]. They construct
a surrogate potential surface by fitting an underestimating function to known local
optima, hoping that the global optimum lies near the minimizer of this surrogate
function. A kind of hybrid method between simulated annealing and smoothing is
the quantum mechanical annealing technique of Straub et al. [4, 192, 310].

While the above techniques are motivated by nature it is important to remember
that processes in nature need not be the most efficient ones; at best it can be as-
sumed to be efficient given the conditions under which they have to operate. (Much of
our present technology has vastly surpassed natural efficiency, by unnatural means.)
Even assuming that nature solves truly global optimization problems (a disputable
assumption), simple lower estimates for the number of elementary steps – roughly
corresponding to function evaluations – available to natural processes to converge are
(in chemistry and in biology) in the range of 1015 or even more. Thus to be successful
on the computers of today or the near future, we must find methods that are much
faster, exploring the configuration space in a planned, intelligent way, not with a blind
combination of chance and necessity. And the challenge is to devise methods that can
be analyzed sufficiently well to guarantee reliablility and success.

Some other recent papers don’t fit one of the above general paradigmas. Byrd et
al. [39, 40, 41] and van der Hoek [329] employ a mixed stochastic sampling, local
optimization and global subset optimization strategy specially adapted to parallel
computing. Vajda & Delisi [327] use dynamic programming. Billeter [20] works
with an ellipsoid algorithm.

Branch and bound methods. Traditionally, see, e.g., Nemhauser & Wolsey
[220], branch and bound methods are the method of choice for solving global opti-
mization problems of a combinatorial nature, formulated as mixed integer programs.
Since protein folding problems have a combinatorial aspect, branch and bound meth-
ods appear to be suitable for this task as well. However, since the coordinates are
continuous variables instead of discrete ones, the methods do not immediately extend
to potential minimization.

Though at present limited to small oligopeptides, the branch and bound meth-
ods developed by Maranas & Floudas [197, 198, 199, 200] are potentially most
interesting since they lead to lower bounds on the minimal energy. They are the only
current methods that allow an assessment of the quality of the local minima obtained,
and combined with the sufficient conditions for global minima derived in Neumaier
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[222], they may allow one to actually prove global optimality of the best local opti-
mizers obtained, and thus may remove the aura of ambiguity inherent in all ‘global’
calculations of the past.

In the worst case, branch and bound methods take an exponential amount of
work; but while this might well be realistic for the case of Lennard-Jones clusters,
there are signs that the situation is much better than worst case with potentials
for proteins. Indeed, a recent study by Buturović et al. [38] abstracted from the
continuous global optimization problem a cruder combinatorial version based on a
reduction of the Ramachandran plots (explained in the next section) to a discrete
set of points, and showed that an exhaustive search for the solution of the resulting
combinatorial optimization problem was feasible for several small proteins. With more
refined techniques for the construction of underestimating functions, there is hope for
repeating the calculations without the need for such drastic simplifications. Many
of the heuristic techniques used currently for searching the conformational space of
molecules (see Leach [180] and Saunders et al. [265]) can be adapted to or combined
with the branch and bound approach to take advantage of the structural insights of
current chemistry.

Branch and bound methods will ultimately allow one not only to calculate the
global minimum reliably, but also to find all local minima and saddle points within
a certain energy margin of the global minimum. This is essentially the problem of
finding all zeros of the nonlinear system ∇V (x) = 0 that satisfy a constraint on the
signature of the Hessian and on the value of V . Such problems can already be han-
dled in low dimensions by branch and bound methods, combined with techniques for
interval analysis (Hansen [130], Neumaier [221]), and it should be possible to com-
bine these techniques with the underestimation techniques of Maranas & Floudas
[197, 198, 199]. Some results of a branch and bound method on oligopeptides are
given in Androulakis et al. [5].

Since this would provide information about the low-lying transition states and
metastable states, developing these branch and bound methods to work for higher-
dimensional problems will allow one to study not only the folded equilibrium state
but also the final stages of folding and the early stages of unfolding. (However,
Eksterowicz & Houk [88] observed that semiempirical potentials derived from
stable molecules may be not accurate enough for the calculation of transition states.
See also Anet [6].)

Since no near global minimum will be missed, calculation of the entropy contri-
butions (12), (13) will allow finding the global minimum of the Gibbs free energy,
that is more likely to match the true folded state. See Saunders et al. [265] for a
performance study of several methods for finding most (or perhaps even all) low-lying
local minima of a cycloheptadecane potential. (A huge number of near global min-
ima – and a fortiori transition states, as expected for proteins if they exhibit glassy
behavior, would, however, result in exponentially large space and time requirements.)

Constraints. In view of the expected huge number of local minima, techniques
that reduce the size of the region in state space that must be searched for the global
minimum are very valuable (Head-Gordon et al. [134, 135, 133], van der Graaf
& Baas [328]). Trivial restrictions that can be used are two-sided bounds on bond
lengths and bond angles, and lower bounds on contact distances of arbitrary pairs.
The bounds can be implemented either as hard bounds (via constraints) or as soft
bounds (via penalty terms). A book by Mockus [209] discusses stochastic methods
for constrained global optimization.
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More generally, bounds on distances would allow one to combine the optimization
approach to molecular modeling and the distance geometry approach surveyed in
Crippen [65], Crippen & Havel [66] and Blaney & Dixon [24]. Steps in this
direction are discussed in Crippen [64] and Scarsdale et al. [266]; they assume
that further distance information is known about the molecule, e.g., from nuclear
magnetic resonance (NMR) spectroscopy.

In the absence of such detailed experimental information, the most likely candi-
dates for a further significant reduction are constraints for the dihedral angles along
the backbone. Indeed, biochemists have known for a long time experimentally that
these dihedral angles are severely constrained. They discuss the pertaining informa-
tion under the concept of secondary structure treated in the next section.

A little simpler is the constrained optimization problem known as side chain
prediction. The task is to find the positions of the side chains of a protein, given the
positions of the backbone atoms. See, e.g., Lee & Subbiah [182], Tufféry et al.
[324], Dunback & Karplus [84, 85].

The refinement of crystallographic data of limited (known) accuracy by means
of a model potential, cf. Brünger et al. [36], can also be treated as a global
constrained optimization problem, and since the given data already strongly restrict
the conformation space, this problem may even be solvable in high dimensions. The
same holds for the construction of Cartesian coordinates from distance data obtained
by nuclear magnetic resonance (NMR) spectroscopy (Scarsdale et al. [266], Torda
& van Gunsteren [320]) by finding the global minimum of a weighted sum

Vdc =
∑

i,k
i6=k

cik(‖xi − xk‖−3 − r−3
ik )2

to find the Cartesian coordinates that best match a set of measured distances rik.
The related problem of finding the optimal superposition of two geometries for

a molecule is discussed in Kabsch [160]. This technique is important since it allows
the comparison of experimental coordinates of a molecule with those derived from
computational predictions.

9. Simplified models. Various simplifications of the protein folding problem
are studied in the literature in order to understand the global optimization process
and to simplify the development and testing of optimization algorithms. The Lennard-
Jones cluster problem (a problem also of independent interest in applications) has
extra symmetry. Hence more specialized techniques can be used (see, e.g., [224, 139,
57, 351]) that allow one to reach rather low lying minimizers even for a huge number
of atoms ([350] reports calculations for up to 105 atoms). If one adds constraints
for fixed bond lengths one gets the models discussed in Pardalos et al. [229]. Even
simpler are the ‘toy models’ of Stillinger et al. [307], the bead models of Ferguson
et al. [95], and the lattice models considered by Phillips & Rosen [238]. A survey
of simplified models is given by Troyer & Cohen [321].

Some of the simplified models are accurate enough so that the resulting optimal
structures resemble the real native structures, and still simple enough so that the
global optimization by one of the methods discussed above appears feasible. Together
with a final refinement of the structure by a local optimization, this is believed to give
already useful structural information, though structural mistakes cannot be excluded.

These models fall into several classes:
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Full energy models. Simplified full energy models have fixed bond lengths,
bond angles and some torsion angles (e.g., around the peptide bond). At this level of
approximation, many of the difficulties explained in the section on potentials become
irrelevant. The only degrees of freedom are an independent set of torsion angles, which
limits the number of variables to ∼ 3n− 5n, where n is the number of residues. Such
models are regarded as highly reliable; but function evaluation is expensive due to the
required transformations between angles and Cartesian coordinates. The reconstruc-
tion of met-enkephalin (5 residuess, 19 torsion angles) is reported in Kostrowicki &
Scheraga [173], using the diffusion equation method; in the latter case, a near-global
minimum structurally similar to the native geometry is found.

Statistical backbone potential models. Here only the backbone (or the back-
bone and a side chain center, or even only the set of Cα atoms) is modeled, with fixed
bond lengths, bond angles and peptide bond torsion angles (or fixed distant of neigh-
boring Cα’s, respectively). In both cases, the number of variables is reduced to 2n,
and the potential has a simple form, determined by assuming that a set of known
structures is an equilibrium ensemble of structures, so that the energy can be cal-
culated from Boltzmann’s law and statistics on the known structures. In order to
obtain a useful statistics, the protein structures used must be carefully selected; see,
e.g., Hobohm et al. [141]. A more detailed overview can be found in Sippl [287].
Other statistical force field construction techniques are discussed in Bauer & Beyer
[17] and Ulrich et al. [325]. The fact that the potential is now directly derived from
geometric data implies that it automatically takes account of solvation and entropy
corrections; on the other hand, one only gets a mean potential of less resolution. Re-
constructions using such mean potentials are reported by Sun [313] for mellitin (26
residues), APPI (36 residues) and crambin (46 residues) using simulated annealing, by
Sun [312] for mellitin and apamin (18 residues) using genetic algorithms, by Gunn et
al. [123] for myoglobin (153 residues) using a combination of simulated annealing and
genetic algorithms, and by Sippl et al. [289] for lysozyme, myoglobin and thymosin.
In all these papers, results are only ‘native-like’ when compared with the experimental
structures.

Related techniques based on backbone models with terms involving information
from Ramachandran plots (see next section) are discussed in Dill et al. [79]. As in
earlier models (e.g., Honeycutt & Thirumalai [146]), the amino acids are treated
in a reduced descriprion only, based on their hydrophilic or hydrophobic affinity.

Lattice models with contact potentials. Here the molecule is forced to have
its atoms lying on lattice positions, and the potential is a sum of contact energies
taken from tables derived again from statistics on databases. Now function evalua-
tion is extremely cheap (addition of table entries for close neighbors only, resulting
in a speedup factor of two order of magnitudes), and the problem has become one
of combinatiorial optimization. The quality of a lattice model is mainly determined
by its coordination number, the number of permitted sites for a Cα atom in a residue
adjacent to a residue with a Cα atom in a fixed position. Models used to study
qualitative questions of statistical mechanics (e.g., Šali et al. Sali2) usually use a
nearest neighbor cubic lattice (with coordination number 6). While these are occa-
sionally used for structure prediction (e.g., Rabow & Scheraga [244], who also
report inadequacies of the Miyazawa-Jernigan-Cowell [59] contact potential), a good
representation of Cα−Cα distances and angles requires at least a face-centered cubic
(FCC) lattice approximation (Covell & Jernigan [59] with coordination number
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42). More realistic approximations use a high coordination number of 56 (Kolinski
et al. [171]) or 90, with a corresponding increase in combinatorial complexity which
partially offsets the gain in evaluation speed. Godzik et al. [114, 115, 116] survey the
various lattice models, discuss their merits and deficiencies, and report on some fold-
ing predictions. Another recent survey is Skolnick & Kolinski [294]. The broken
translational and rotational symmetry causes problems when projecting a molecular
geometry into a lattice, see Rykunov et al. [259].

However, Skolnick et al. [295] recover speed and motion invariance by using
a three stage approach with an initial coarse lattice search, a fine lattice refinement
phase and a final off-lattice optimization using full atom molecular dynamics. They
report that compared with direct optimization of a full atom model, a factor of 100
in speed is gained.

All studies mentioned make smaller or larger structural mistakes, at least on some
of the test examples. Therefore it is important to have independent ways of checking
whether the structure found is likely to be the native structure or an artifact. Two
recent studies addressing this with statistical potentials are Maiorov & Crippen
[194], Hendlich et al. [136] and Casari & Sippl [45].

Threading. A different approach to ensure natural folding is to try to match
known folding structures to amino acid sequences with unknown geometry. This pro-
cess becomes more interesting as the database of available protein geometries becomes
larger and more representative. (Because of its dependence on large databases, this
approach is also termed ‘knowledge-based’.) It is likely to be particularly effective if
a homologous protein with a similar amino acid sequence – with mutations only in a
few places – has a known fold; then there is a good chance that the new protein folds
in a closely related way.

Various folding structures are tried in turn until one is found that makes some
measure of fit (usually a statistical potential) small enough. The matching process,
done in one of the above approximations followed by local optimization, is called
inverse folding or threading; the latter name derives from intuition for the bead model,
where the beads are threaded one by one onto a given wire frame. All reasonable fitting
structures are then subjected to a stability test (using molecular dynamics or Monte
Carlo simulation) in order to check the correct energetic behavior of the computed
structures. (Inverse folding is also used to design protein sequences with a particular
folding pattern; see, e.g., Yue & Dill [356].) The decision whether a fit is reasonable
must again be based on statistical potentials.

Some papers describing achievements and problems in threading are Fetrow &
Bryant [96], Goldstein et al. [117], Bowie & Eisenberg [29], Godzik et al. [114,
115], Johnson et al. [158], Jones & Thornton [159], Lathrop & Smith [179],
Sippl et al. [290, 291] and Wodak & Rooman [346]. Several successful predictions
have been reported; see, e.g., Crawford et al. [61], Bazan [18], Gerloff et al.
[105] and Edwards & Perkins [87].

Lemer et al. [184] gives a critical evaluation of the quality of predictions in gen-
eral. Zu-Kang & Sippl [360] discuss problems in identifying suitable superpositions
of protein structures. For successful inverse folding of general sequences, there are
still considerable obstacles to overcome, mainly because the irregular coil regions can
have variable length, so that the structural match must reckon with insertions and
deletions. Nevertheless, at present, inverse folding seems to be the most efficient way
of structural prediction; and it will become more reliable as more and more proteins
with known structure become available.
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Fig. 7. A Ramachandran plot. The cross-shaped region centered near (ϕ,ψ) = 0 is for-
bidden; the regions designated αL, αR and β correspond to left-handed helices, right-handed helices
and sheets, respectively.

However, there is a danger of misfolding a structure dissimilar to the known
ones by forcing it to attain a known fold. Therefore the quest for finding reliably
the global minimum from the potential only will continue. And the improvement of
the potentials used to gauge the quality of a proposed fold will remain the key to a
reduction of the error rate of current folding procedures.

Competitions. Competitions for (and evaluations of) the best prediction tech-
niques are held every two years in Asilomar, California, USA; see the World Wide
Web page http://iris4.carb.nist.gov/casp2/ of the Second Meeting on the Crit-
ical Assessment of Techniques for Protein Structure Prediction.

10. Secondary structure. Since bond lengths, bond angles and side chain con-
formations are reasonably rigid, the dihedral angles determine the rough structure of
the folded protein. Since the dihedral angle at the peptide bond is usually around
180o (except for residues involving proline, where it often is around 0o), it suffices for
an overall view of the protein to know approximations to the sequence of angle pairs
(ϕj , ψj) along the backbone.

Only a small subset of the set of all possible angle pairs is energetically favorable;
most pairs are heavily penalized for steric (i.e., geometric) reasons, since atoms of
the side chains are not allowed to come too close. The preferred regions are usually
plotted in a so-called Ramachandran plot; see Figure 7. Only the smallest amino acid,
Glycine, has larger preferred regions since its residue (a single hydrogen atom) is so
small that steric effects are much milder.

Modulo 1800, the amount by which one amino acid is twisted with respect to the
previous one is approximately given by the sum ϕ+ψ. If several adjacent amino acids
repeat roughly the same angle pair – a frequent situation in practice – then a regular
local geometrical pattern emerges. These are usually referred to as sheets if

|ϕ+ ψ| < ≈ 30o,

as right-handed helices if

ϕ+ ψ < ≈ −50o,
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and as left-handed helices if

ϕ+ ψ > ≈ 50o

(assuming for simplicity that the peptide bond dihedral angle ω is ≈ 180o). Actually
several types of sheets and helices can be distinguished by a more careful classification
(see, e.g., Creighton [62], Table 5-2).

Further geometrically recognizable local structures are reverse turns and bends,
determined by appropriate (wide) ranges of two adjacent angle pairs ([62], Table 6-5).
Other, irregular patterns are called coils. The assignment of such local geometrical
patterns (i.e., one of the labels helix, sheet, turn, coil) to the amino acids in the
amino acid sequence of a protein is referred to as the secondary structure of the
protein. Dynamically, secondary structure is frequently formed in the early stages of
folding.

Results from lattice computations by Chan & Dill [46, 47] suggest that the
formation of secondary structure is primarily due to the compact nature of folded
proteins and not to the detailed form of the interaction. (But of course the detailed
form will depend on it.) For some related results for tertiary structure see Covell
& Jernigan [59].

Given the secondary structure, it is still a highly nontrivial task to derive the
tertiary structure, i.e., the full protein geometry. See, e.g., Monge et al. [213].

Pattern recognition. There have been a number of attempts to predict the
secondary structure assignment directly from the sequence of amino acids, using pat-
tern recognition techniques (often neural networks) trained on proteins with known
geometric structure; see, e.g., [100, 108, 144, 169, 177, 242, 245, 316]. (The many
traditional statistical techniques for pattern recognition see, e.g., Fukunaga [102],
Young & Fu [355], have hardly been tried.)

However, success was rather limited; see Schulz [282] and Stolorz et al. [309]
for critical evaluations of the state of affairs in 1988 and 1991, but also Rose &
Creamer [254] for a more (and most likely too) optimistic perspective for the fu-
ture. Two recent 1995 reviews of secondary structure prediction are Barton [16] and
Russell & Sternberg [257].

Currently, the best methods predict the correct assignment in only about 70% of
the positions (Rost & Sander [255]). The missing 30% are, according to current
interpretation, mainly due to global influences; a simple estimate in [282] shows that
most subsequences of 8 or fewer residues must be expected to give rise to more than
one possible secondary structure sequence. A way to model some global influence
is by minimizing statistical potential functions where the residues are considered as
unstructured units (Oobatake & Crippen [228], Crippen & Snow [67]); it should
be possible to combine this approach with pattern recognition techniques. Another
source of ambiguity is the lack of clear delineations of precisely which sets of geometries
are classified to the various secondary structure labels; borderline geometries are
interpreted differently by different experts. Also, the core of helices and their ends
behave differently, the latter having a more varying range of angles associated with
it.

The high error rate of 30% makes it impossible to even roughly determine the
shape of the protein in a reliable way; see, e.g., Garnier [104]. Moreover, even
given the backbone positions, the reconstruction of the full geometry of a protein
is still a nontrivial global optimization task (Lee & Subbiah [182], Dunback &
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Karplus). Secondary structure considerations have been, however, more successful
in the converse problem of designing residue sequences that produce tertiary structures
of prescribed form; see, e.g., Regan [249].

But it is possible that the bad results reported are rather due to a too restric-
tive view of how to model local structure. The typical method studied in the past
tries to predict the ith member Si ∈ {helix, sheet, turn, coil} of the secondary
structure sequence . . . Si−2 Si−1 Si Si+1 Si+2 . . . from a small local section (typi-
cally with 10-25 residues) of the amino acid sequence . . . Ri−2 Ri−1 Ri Ri+1 Ri+2 . . .
(Ri ∈ {Ala,. . .,Val}); different methods differ in details of how they modify this basic
approach (e.g., by grouping the amino acids into classes of similar ones, by encod-
ing the amino acids in different ways numerically, by a posteriori adaptation of the
sequence of secondary structure labels, etc.).

Local statistical dependencies. However, if one looks at typical problems
in physics with local and global aspects, e.g., finding the shape of a string fixed
at both ends and loaded with different weights (an analogy to the different amino
acids), one finds that the shape of the string is only very loosely determined by the
sequence of nearby weights, since the location of the end points has a large influence
on the shape. On the other hand, some relations between neighboring positions are
determined completely by local information.

Of course, this analogy is very superficial, but it suggests the following natural
way of capturing some of the secondary structure information. Indeed, there seem to
be enough data available in the Brookhaven Protein Data Bank to be able to look for
local statistical dependencies of the form

cosϕi (or sinϕi) ≈ ΦRi−1,Ri(ψi−1, ψi)(14)

and

cosψi (or sinψi) ≈ ΨRi+1,Ri(ϕi+1, ϕi)(15)

with suitable trigonometric polynomials Φ,Ψ in two variables depending on two ad-
jacent residues.

While this is not enough to fix the secondary structure, it would be very useful
information that, together with suitable boundary conditions, has a chance to fix the
rough global structure of the protein. It also avoids the problem of ambiguity in the
classification of borderline geometries mentioned above. A step in this direction is
taken by Kang et al. [161]

Moreover, and independently of this, conditions like (14) and (15), coupled with
realistic error bounds, would be very useful as constraints in global optimization
routines, since they would drastically reduce the size of the region in state space that
must be searched for the global minimum. Evidence for the potential effectiveness of
such an approach is the paper by Monge et al [213]. They freeze assumed secondary
structure to limit the number of degrees of freedom, and they discretize the dihedral
angles along the backbone turns by selecting one of six particular angle pairs. Then a
Monte Carlo search method is used to find good minimizers which resemble the true
folded geometry. A constrained approach would yield a more realistic version in place
of the frozen secondary structure, and a branch and bound methodology would yield
a more satisfactory and adaptive way of handling the unconstrained turns.
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11. Conclusions. We discussed the physical and chemical background of pro-
tein folding, focussed on the mathematical models used, surveyed the prospects for
global optimization of potential energy functions with many local minima, and looked
at the various approximations needed to make the problem tractable.

The discussion of the various problems involved in protein folding revealed a
number of weaknesses in the current models and in the schemes used for their analysis.
Our presentation also indicated a number of new ideas that might overcome some of
these weaknesses and ultimately lead to quantitatively predictive models within the
limits of present-day computational power.

The importance of the topic, the many open questions, the intricacies of model-
ing, and the challenging computational aspects of protein folding make the subject
a paradise not only for researchers in biochemistry but, we hope, also for applied
mathematicians and numerical analysts.

Appendix 1: On the choice of the dynamic energy function. We present
an improved formulation of the dynamic energy minimization approach of Zhang &
Schlick [358, 359] to the solution of the dynamical system

Mẍ+ Cẋ+∇V (x, t) = 0(16)

with initial conditions

x(t0) = x0, ẋ(t0) = ẋ0.

We assume that M and C are positive semidefinite, and, for each t, V (·, t) is twice
continuously differentiable and bounded from below. (The time-dependent character
of the potential allows us later to include the stochastic case as well.)

Each time step consists in the calculation of an approximation x̂ to x(t) at t =
tl+1 := tl +hl, but, clearly, it suffices to look at the case t = t0 +h, thus saving many
indices. The key idea of the new approach is to determine x̂ by minimizing

Ṽ (x) := V (x, t) +
1

2h2
(x− z)TN(x− z)(17)

for a suitable symmetric matrix N and a simpler approximation z to x. In the time
independent case, (17) is motivated by the fact that for small h the second term
dominates and forces x̂ = z + O(h) , while for h → ∞ the second term drops away
and a local minimizer of V is approached. Thus (17) captures the qualitative behavior
expected from a solution to (16).

N and z will be chosen to make the resulting approximation x̂ accurate of high
order when h is small. Following Zhang & Schlick, we first solve a simpler approx-
imate problem

Mÿ + Cẏ +∇W (y, t) = 0,(18)

y(t0) = x0, ẏ(t0) = ẋ0,(19)

where W is an approximate potential satisfying the consistency condition

∇W (x0, t0) = ∇V (x0, t0).(20)

A typical choice is

W (y, t) = ∇V (x0, t0)T (y − x0) +
1

2
(y − x0)TH(y − x0)
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for a suitable simplified Hessian H. Since ∇W is linear, (18)-(19) can be solved
exactly; see below.

For computational reasons, H is chosen as block-diagonal or banded matrix (i.e.,
Hik = 0 except when |i − k| is small), so that the spectral factorization of H is
easy to obtain. However, to get a sufficiently good approximate problem, we must
choose H in such a way that it captures the dominant entries from the Hessian
G = ∇2V (x0, t0), and hence the high-frequency behavior of the system (16). More
precisely, M−1/2HM−1/2 should approximate M−1/2GM−1/2 since the spectrum of
the latter determines the short term motion.

Noting that if (17) is minimized at x̂ then ∇V (x̂, t) + h−2N(x̂− z) = 0, or

z = x̂+ h2N−1∇V (x̂, t),(21)

we see that we would get x̂ = x for the choice z = x + h2N−1∇V (x, t) . Since x is
unknown, we replace in this equation the true potential V by the approximation W
and the unknown x by the known y = y(t). Thus we define

z := y + h2N−1∇W (y, t),(22)

where

t = t0 + h, y = y(t).(23)

The choice N = M+hC corresponds to the method advocated in Zhang & Schlick
[358, 359] (who consider only the case C = γM,M definite) derived form the implicit
Euler step and hence gives an approximation x̂ = x + O(h3) (but only x + O(h2) if
M = 0). However a different choice gives better accuracy:

Theorem 11.1. (i) If M is positive definite then any choice

N = 6M +O(h)(24)

gives an approximation

x̂ = x+O(h4)(25)

and hence a global error of O(h3) over long time intervals.
(ii) If M = 0 and C is positive definite then any choice

N = 2hC +O(h2)(26)

gives an approximation

x̂ = x+O(h3)(27)

and hence a global error of O(h2) over long time intervals.
Proof. (i) By (19) and (20), a comparison of (16) and (18) shows that ÿ(t0) =

ẍ(t0), whence

y − x =
h3

6
(
...
y (t0)− ...

x (t0)) +O(h4).

Using (24), we deduce

N(y − x) = 6M(y − x) +O(h4) = h3(M
...
y (t0)−M ...

x (t0)) +O(h4)

= h3 d

dt
(Mÿ −Mẍ)

∣∣∣∣
t=t0

= h3 d

dt
(−∇W +∇V )

∣∣∣∣
t=t0

.
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Now (21) gives

x̂ = z − h2N−1∇V (x̂, t) = y − h2N−1(∇V (x̂, t)−∇W (y, t))

= y − h2N−1

(
h
d

dt
(∇V −∇W )

∣∣∣∣
t=t0

+O(h2)

)

= y − (−(y − x) +O(h4)) +O(h4) = x+O(h4).

(ii) If M = 0 then (16), (18) and (19) force ẏ(t0) = ẋ(t0) (that can now no longer
be prescribed freely), whence

y − x =
h2

2
(ÿ(t0)− ẍ(t0)) +O(h3).

Using (26), we deduce

N(y − x) = h3C(ÿ(t0)− ẍ(t0)) +O(h4)

= h3 d

dt
(Cẏ − Cẋ)

∣∣∣∣
t=t0

+O(h4)

= h3 d

dt
(−∇w +∇v)

∣∣∣∣
t=t0

+O(h4),

and as before we get x̂ = x + O(h3). A power of h is lost since N = O(h). Finally,
the statements about the global errors follow along standard lines.

We conjecture that the choice

N = 6M + 2hC(28)

which gives the approximation (25) if M is definite and (27) if M = 0 will be a good
choice that gives good long time results even in the case of strong damping C À M
(when, after rescaling the time, a singularly perturbed version of (ii) results, and the
choice of an arbitrary N with (24) would be accurate only for times of the order of
C−1M).

Note that the theorem is valid for all consistent choices of W ; however, this choice
affects the time scale on which the asymptotic result is valid. In order to be able to use
large time steps, ∇2W should account well for all absolutely large eigenvalues of ∇2V ,
thus eliminating them from the corrective dynamics handled by the minimization.

We now look at the solution of (18), (19) for the choice

W (y, t) = gT (y − x0) +
1

2
(y − x0)TH(y − x0),(29)

with a symmetric matrix H, in principle arbitrary but in practice an easily factorizable
approximation to ∇2V (x0, t0). Using a spectral factorization

M−
1
2HM−

1
2 = QΛQT , QTQ = I, Λ diagonal(30)

and

S := M−
1
2Q,(31)

we have

HS = MSΛ, (MS)−1 = ST .(32)
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Hence multiplication of (29) with ST and use of the new variable u with

y = x0 + Su

reduces the system (18) to the form

ü+ Γu̇+ Λu+ h = 0, h = ST g,

where Γ = STCS. In molecular dynamics simulations, where we have little informa-
tion about C anyway, the choice

C = γM(33)

has been repeatedly used in the literature. For this choice, Γ = γI, and we get the
decoupled system

ü+ γu̇+ Λu+ h = 0, h = ST g(34)

that is easy to solve. (For other choices of C, one would need to solve a quadratic
eigenvalue problem in place of (30) in order to diagonalize the system, recast in first
order form.)

In the case of a stochastic differential equation we have

V (x, t) = V (x)− ε(t)T (x− x0),

where

〈ε(t)ε(t)T dt〉 = 2kBT C.

It is then natural to keep this stochastic linear term also in W , thus using g− ε(t) in
place of g. We find in place of h the transformed forcing term

ST (g − ε(t)) = h− η(t)

with a random term η satisfying the relation

〈η(t)η(t)T dt〉 = 〈ST ε(t)ε(t)TSdt〉 = 2kBT STCS.

Hence, assuming again (33), we find

ü+ γu̇+ Λu+ h = η(t), h = ST g,(35)

where

〈η(t)η(t)T dt〉 = 2γkBT I.

Thus the system is again fully decoupled and is easy to solve; for the details see
Zhang & Schlick [359].

Using (22) and (23), we find from u = u(t) the vector

z = y + h2N−1(g +H(y − x0)) = y +
h2

6 + 2hγ
M−1(g +HSu).
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Hence, using (31) and (32),

z = y +
h2

6 + 2hγ
S(Λu+ h),(36)

and in the stochastic case (35)

z = y +
h2

6 + 2hγ
S(Λu+ h− η(t)).(37)

Since the formulas (34), (36) (or (35), (37) in the stochastic case) no longer depend
on H, they remain valid even when only an approximate spectral factorization of
M−1HM−1 (but with orthogonal Q) is used. This is equivalent to using instead of
the original H the matrix H = MSΛ(MS)T for which the spectral factorization (30)
is valid.

Moreover, due to the fact that the matrix S is only used to calculate two matrix
vector products, the spectral matrix Q need not be available explicitly. Instead it
can be held as a product of reflections and rotations, as obtained from the cheaper
eigenvalue calculation. (This is usually done by tridiagonalization and subsequent
use of the implicit QR algorithm; see e.g. Parlett [231]. There is a trade-off be-
tween storing the rotations from the QR iteration or recomputing them at the time
of calculating ST g and later again for S(...).) This also assures that the linear map-
ping Q determined in this way remains essentially orthogonal even in finite precision
arithmetic.

Appendix 2: Solvation energy and combination rules. We give here some
arguments suggesting that by modifying the combination rules for the pair potential
parameters, a large part of the solvation effects can be taken into account automati-
cally.

Suppose we have a molecule with coordinate vector x in a solvent whose molecular
position coordinates are part of the vector xsolv. The combined system is governed by
a potential Vtot(x, xsolv), and a natural way to eliminate the solvent from consideration
is to look at the reduced potential

V (x) := min
xsolv

Vtot(x, xsolv).(38)

Thus we assume that at given molecule position, the solvent molecules take the po-
sitions at the global minimum of the total energy, which amounts to looking at the
molecule in a completely frozen solvent. If we could find a phenomenological de-
scription of the reduced potential V (x), the solvent would not need to be considered
explicitly.

Wesson & Eisenberg [343] suggest that the solvation energy could be ap-
proximately modeled by adding to the potential Vmol(x) of the molecule in isolation
additional terms proportional to the surface area exposed to the solvent. We modify
his approach and argue that it might be feasible to account for much of the solvation
energy by means of suitable corrections to the pair potentials in the force field, and
by suitable adjustments of the combination rules for their parameters.

Indeed, suppose we have two atoms i and k with atomic radii Ri and Rk at
distance rik. Seen from the nucleus of atom i, atom k appears under an angle α given
by sin(α/2) = Rk/rik, and the corresponding cone cuts out on the surface of atom i
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a cap of area

Aik = 2πR2
i

(
1− 1√

1 + (Rk/rik)2

)
.

Since the total surface area is Ai = 4πR2
i , we find

Aik/Ai =
1

2

(
1− 1√

1 + (Rk/rik)2

)
=: µ(rik/Rk)

as an approximation to the surface fraction of atom i excluded by atom k, at least
when rik is not large. For large rik, one would have to change µ so that it decays
at least like the inverse 6th power since particles are not expected to have a larger
influence over large distances.

The total excluded fraction can now be approximated by summing over all atoms
k 6= i, and the solvation energy contributed by atom i could be modeled by a multiple
of the difference between this sum and 1, hence by

Esolv,i = σi


1−

∑

k 6=i
µ

(
rik
Rk

)
 ,

where σi is the solvation energy of an isolated atom i. Apart from constant terms
that don’t affect forces and energy differences, a natural form for a phenomenological
total solvation energy term is therefore

Esolv = −
∑

i

σi
∑

k 6=i
µ(rik/Rk),(39)

for suitable constants σi and a suitable quickly decaying function µ.

Hydrophilic and hydrophobic behavior. We now show that for a simple
model situation, a solvation term (39) is indeed sufficient to model hydrophilic and
hydrophobic effects. We consider a hypothetical situation where we have atoms of
two kinds A and B that interact by two-particle forces only, given by a pair potential
W (r). The particles are assumed to have the same unit radius and identical behavior
with respect to each other, irrespective of their kind. However, their behavior with
respect to the solvent (water) is assumed to be opposite: The A’s are hydrophobic,
i.e., a larger excluded surface (less surface exposed to water) decreases the solvation
energy. On the other hand, the B’s are hydrophilic, i.e., a smaller excluded surface
(more surface exposed to water) decreases the solvation energy. In our model (39),
this is achieved by the choice σi = σA > 0 for hydrophobic atoms and σi = σB < 0
for hydrophilic ones. Thus the potential energy (including the solvation terms) is

V =
∑

x∈A
VA(x) +

∑

x∈B
VB(x),(40)

where, for simplicity, A and B now also denote the set of position vectors of atoms of
type A and B, respectively, and

VA(x) =
∑

y 6=x

(
1

2
W (‖y − x‖)− σAµ(‖y − x‖)

)
,(41)
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VB(x) =
∑

y 6=x

(
1

2
W (‖y − x‖)− σBµ(‖y − x‖)

)
.(42)

Theorem 11.2. In any global minimum configuration,

min
x∈A

D(x) ≥ max
x∈B

D(x),(43)

where

D(x) =
∑

y 6=x
µ(‖y − x‖).

In other words, the hydrophobic atoms occupy the positions with largest values of
D(x).

Proof. Consider a global minimum configuration, and suppose we swap the places
of a single pair of atoms in positions x1 ∈ A and x2 ∈ B. Then the potential (40)
changes into a potential

V ′ = V − VA(x1)− VB(x2) + VA(x2) + VB(x1)
= V + (VA(x2)− VB(x2))− (VA(x1)− VB(x1))
= V − (σA − σB)(D(x2)−D(x1)).

Now σA > 0 > σB and V ′ ≥ V since we started at a global minimum. The formula for
V ′ therefore implies that D(x2) ≤ D(x1). Since x1 ∈ A and x2 ∈ B were arbitrary,
the theorem follows.

Now if µ(r) is a sufficiently fast decaying function, the dominant contributions to
D(x) are those by the atoms closest to the atom at x. Therefore, in a large molecular
cluster, D(x) is largest far away from the surface of the molecule and smallest at
the surface. Thus the hydrophobic atoms occupy the interior of the cluster, and the
hydrophilic atoms are found at the surface. Thus the simple model correctly predicts
the structure expected from purely qualitative reasoning, and the result still leaves
much room for the precise form of the solvation potential. Of course, in more complex
situations, various forces compete for their influence on the shape of the cluster, and
may cause modifications of this qualitative picture.

We can give the potential (40) a different interpretation by noting that the solva-
tion terms just act as asymmetric corrections to the pair interactions: If we introduce
the pair potentials

VAA(r) = W (r)− 2σAµ(r),

VBB(r) = W (r)− 2σBµ(r),

VAB(r) = W (r)− (σA + σB)µ(r),

we can write the total potential in the traditional form

V (x) =
∑

i<k

Vik(‖xi − xk‖),
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where

Vik =

{
VAA if both atoms i and k are of type A,
VBB if both atoms i and k are of type B,
VAB otherwise.

Moreover, from the construction, we see that the new pair potentials satisfy the
combination rule

VAB =
1

2
(VAA + VBB).(44)

In particular, if we think of W (r) as a Lennard-Jones potential (11) and of µ(r) =
const · r−6 (a cheap choice for µ; the small-distance singularity does not matter since
the repulsion term dominates there), then the Vik are also Lennard-Jones potentials,
but with modified radii, and with a combination rule different from what we would
expect from the unsolvated case. However, this suggests that, by fitting the radii and
the combination rules to experimental data instead of deriving them from geometric
considerations, we might be able to catch a large part of the solvation energy without
the need for explicit solvation energy terms. Essentially we are fitting directly the
reduced potential (38) with the data at hand, and for this we need more flexible
combination rules.
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[38] L. J. Buturović, T. F. Smith and S. Vajda, Finite-state and reduced-parameter represen-
tations of protein backbone conformations, J. Comp. Chem. 15(1994), pp. 300–312.

[39] R. H. Byrd, E. Eskow, R. B. Schnabel and S. L. Smith, Parallel global optimization:
numerical methods, dynamic scheduling methods, and applications to molecular configu-
ration, in Parallel Computation, B. Ford and A. Fincham (eds.), Oxford University Press,
1993, pp. 187–207.

[40] R. H. Byrd, E. Eskow, A. van der Hoek, R. B. Schnabel and K. B. Oldenkamp, A
parallel global optimization method for solving molecular cluster and polymer conformation
problems, in Proc. 7th SIAM Conf. Parallel Processing Sci. Comput., SIAM, 1995, pp. 72–
77.

[41] R. H. Byrd, E. Eskow, A. van der Hoek, R. B. Schnabel, C.-S. Shao and Z. Zou, Global
optimization methods for protein folding problems, in Global Minimization of Nonconvex
Energy Functions: Molecular Conformation and Protein Folding, P. M. Pardalos et al.,



MOLECULAR MODELING OF PROTEINS 45

eds., Amer. Math. Soc., Providence, RI, 1996, pp. 29–39.
[42] A. Caflisch and M Karplus, Molecular dynamics studies of protein and peptide folding and

unfolding, Chapter 7 in The Protein Folding Problem and Tetiary Structure Prediction, K.
Merz et al., eds, Birkhäuser, Boston 1994.
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[225] J. Novotný, R. Bruccoleri and M. Karplus, An analysis of incorrectly folded protein
models, J. Mol. Biol. 177 (1984), pp. 787–818.

[226] W. K. Olson, How flexible is the furanose ring? An updated potential energy estimate, J.
Am. Chem. Soc. 104 (1982), pp. 278–286.

[227] J. N. Onuchic, P. G. Wolynes, Z. Luthey-Schulten and N. D. Socci, Toward an
outline of the topography of a realistic protein-folding funnel, Proc. Natl. Acad. Sci. USA
92 (1995), pp. 3626–3630.

[228] M. Oobatake and G. M. Crippen, Residue-residue potential function for conformational
analysis of proteins, J. Phys. Chem. 85 (1981), pp. 1187–1197.

[229] P. M. Pardalos, D. Shalloway and G. Xue, Optimization methods for computing global
minima of nonconvex potential energy functions, J. Global Optim. 4 (1994), pp. 117–133.

[230] P. M. Pardalos, D. Shalloway and G. Xue, eds., Global Minimization of Nonconvex En-
ergy Functions: Molecular Conformation and Protein Folding, Amer. Math. Soc., Provi-
dence, RI, 1996.

[231] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, N. J. ,
1980.

[232] R. W. Pastor, Techniques and applications of Langevin dynamics simulations, in The Molec-
ular Dynamics of Liquid Crystals, G. R. Luckhurst and C. A. Veracini, eds., Kluwer, Dor-
drecht 1994, pp. 85–138.

[233] R. W. Pastor, B. R. Brooks and A. Szabo, An analysis of the accuracy of Langevin and
molecular dynamics algorithm, Mol. Phys. 65 (1988), pp. 1409–1419.

[234] D. A. Pearlman and P. A. Kollman, Evaluating the assumptions underlying force field
development and application using free energy conformational maps for nucleotides, J.
Am. Chem. Soc. 113 (1991), pp. 7167–7177.

[235] G. Perrot, B. Cheng, K. D. Gibson, J. Vila, K. A. Palmer, A. Nayeem, B. Mai-
gret and H. A. Scheraga, MSEED: a program for the rapid analytic determination of
accessible surface areas and their derivatives, J. Comput. Chem. 13 (1992), pp. 1–11.

[236] W. B. Person and K. Szcepaniak, Calculated and experimental vibrational spectra and



52 A. NEUMAIER

force fields for isolated pyrimidine bases, in Vibrational Spectra and Structure, Vol. 20,
J. R. Durig, ed., Elsevier, Amsterdam 1993, pp. 240–325.

[237] C. S. Peskin and T. Schlick, Molecular dynamics by the backward-Euler method, Comm.
Pure Appl. Math. 42 (1989), pp. 1001–1031.

[238] A. T. Phillips and J. B. Rosen, A quadratic assignment formulation of the molecular
conformation problem, J. Global Optim. 4 (1994), pp. 229–241.

[239] L. Piela, J. Kostrowicki and H. A. Scheraga, The multiple-minima problem in the
conformational analysis of molecules. Deformation of the protein energy hypersurface by
the diffusion equation method, J. Phys. Chem. 93 (1989), pp. 3339–3346.

[240] S. B. Prusiner, The prion disease, Scientific American, January 1995, 30–37.
[241] F. Pukelsheim, On linear regression designs which maximize information, J. Statist. Plann.

Inference, 4 (1980), pp. 339–364.
[242] N. Qian and T. Sejnowski, Predicting the secondary structure of globular proteins using

neural network models, J. Mol. Biol. 202 (1988), pp. 865–884.
[243] H. Rabitz, Systems sensitivity analysis at the molecular scale, Science 246 (1989), pp. 221–

226.
[244] A. A. Rabow and H. A. Scheraga, Lattice neural network minimization, J. Mol. Biol. 232

(1993), pp. 1157–1168.
[245] S. Rackovsky, On the nature of the protein folding code, Proc. Natl. Acad. Sci. USA 90

(1993), pp. 644–648.
[246] S. E. Radford and C. M. Dobson, Insight into protein folding using physical techniques:

studies of lysozome and α-lactalbumin, Phil. Trans. R. Soc. Lond. B 348 (1995), pp. 17–25.
[247] C. Radin and L. S. Schulmann, Periodicity of classical ground states, Phys. Rev. Lett. 51

(1983), pp. 621–622.
[248] G. Ramachandran and T. Schlick, Beyond optimization: simulating the dynamics of su-

percoiled DNA by a macroscopic mode, in Global Minimization of Nonconvex Energy Func-
tions: Molecular Conformation and Protein Folding, P. M. Pardalos et al., eds., Amer.
Math. Soc., Providence, RI, 1996, pp. 215—231.

[249] L. Regan, S. P. Ho, Z. Wasserman and W. F. De Grado, Helical proteins. De novo
designs, in Protein Folding, L. M. Gierasch and J. King, eds., Amer. Ass. Adv. Sci., Wash-
ington 1990, pp. 171–176.

[250] W. G. Richards, Calculation of conformational free energy of histamine, J. Theor. Biol. 43
(1974), pp. 389.

[251] T. J. Richmond, Solvent accessible surface area and excluded volume in proteins, J. Mol.
Biol. 178 (1984), pp. 63–89.

[252] F. Richards, The protein folding problem, Scientific American 264 (January 1991), pp. 54–63.
[253] B. Robson and J. Garnier, Introduction to Proteins and Protein Engineering, Elsevier,

New York 1986.
[254] G. D. Rose and T. P. Creamer, Protein folding: predicting predicting, Proteins: Struct.

Funct. Gen. 19 (1994), pp. 1–3.
[255] B. Rost and C. Sander, Prediction of protein secondary structure at better than 70% accu-

racy, J. Mol. Biol. 232 (1993), pp. 584–599.
[256] I. K. Roterman, M. H. Lambert, K. D. Gibson and H. A. Scheraga, A comparison

of the CHARMM, AMBER and ECEPP potentials for peptides. II. ϕ − ψ maps for N-
acetyl alanine N’-methyl amide: Comparisons, contrasts and simple experimental tests, J.
Biomol. Struct. Dyn. 7 (1989), pp. 421–453.

[257] R. B. Russell and M. E. Sternberg, Protein structure prediction: how good are we?,
Current Biology 5 (1995), pp. 488–490.

[258] J. P. Ryckaert, G. Ciccotti and H. C. Berendsen, Numerical integration of the cartesian
equations of motion of a system with constraints: molecular dynamics of n-alcanes, J.
Comp. Phys. 23 (1977), pp. 327–341.

[259] D. S. Rykunov, B. A. Reva and A. V. Finkelstein, Accurate general method for lattice
approximation of three-dimensional structure of a chain molecule, Proteins: Struct. Func.
Gen. 22 (1995), pp. 100–109.
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