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Abstract.  A method for incorporating uncertainty in terrain modelling by expressing 

elevations as fuzzy numbers is proposed. Given a finite set of fuzzy elevations representative of 

the topographic surface in a certain region, we develop methods to construct surfaces that 

incorporate the uncertainty. The smoothness and continuity conditions of the surface generating 

method are maintained. Using this approach, we generalize some classic interpolators and 

compare them qualitatively. Extensions to wider classes of interpolators follow naturally from 

our approach. A numerical example is presented to illustrate this idea. 

 
 

1 Introduction 

Modeling a topographic surface from a finite set of samples is a well-known problem 
in GIS. Our research interest focuses on the uncertainty of this process. One source of 
uncertainty in this problem arises from incomplete knowledge of the surface under 
study, including the uncertainty in the sampled values. Another source is in the choice 
of the model to describe the phenomena. 

The most common method to access spatial uncertainty is to obtain elevation 
samples from more accurate sources and compare them to Digital Terrain Model 
(DTM) elevations. Non-spatial statistical parameters like Root Mean Square Error 
(RMSE) are derived from this method. The RMSE is widely used for many 
cartography producers like USGS. When the topographic surface is expressed by 
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contours, some cartographers use epsilon bands to model elevation uncertainty 
indirectly ([13]). Another approach to this problem is to apply error propagation 
techniques to predict uncertainty in DTM from uncertainty in elevation samples [16]. 
More recently, probability surfaces and simulation techniques have been used [13] 
and others are based on fuzzy set theory ([1], [17]). We generalize and expand the 
approach that was developed in [17]. 

Uncertainty is incorporated in DTM by expressing elevations as fuzzy 
numbers. A fuzzy number z  is a fuzzy set with a special membership function (see 
[11] or [15]). That distribution is defined by an upper semi-continuous concave 
membership function [ ]: 0,1zμ →R  with non-empty core. The core is the set of 
values with membership equal to 1. When the core has only one element, that element 
is called the modal value. The interval of positive membership is called support of the 
fuzzy number (see, for example, [15]). An alternative way to express z  is by the α-
levels, which, in the case of fuzzy numbers, are nested intervals [ ]z α  defined by 

, { : ( ) , (0,1]}z z z z− +
α α⎡ ⎤ = μ ≥ α α∈⎣ ⎦ , see figure 1. 

 

Fig. 1. Fuzzy number with support ( ),z z− +
α α  and modal value 1z . The α-level [ ]z α  is the 

interval ,z z− +
α α⎡ ⎤⎣ ⎦  

 

The problem on which we focus is defined in the following way: given a 
finite set of fuzzy elevations { }( ), 1,2,...,i iz z i N= =x associated with locations 

{ }2or , 1,2,...,i D i N∈ ⊂ =x R R , respectively, which are representative of a 

topographic surface in the region D, find a fuzzy-valued function ( )f x  such that 
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where iφ  are basis functions of a class C  (Lagrange interpolation polynomials, 
Hermite polynomials, splines, or radial basis functions). The left side of (1.2), being a 
fuzzy-valued function, is a fuzzy number for each x. As such it possesses nestedness 
of the α-levels. Moreover smoothness conditions, for example, will be imposed. This 
is not true of the right side of (1.1) as was proved in [17]. Fuzzy-valued functions 
used here associate real numbers (position) to fuzzy numbers (elevations). 

Uncertainty is incorporated in two ways, via intervals [18] and via fuzzy 
numbers. While intervals are fuzzy numbers whose core equals its support, it guides 
our development of fuzzy surface generation, since fuzzy numbers will be viewed as a 
nested set of α-levels and α-levels are intervals. 

 
1.1 Interval case 

We begin by considering the left side of (1.1) as an interval; that is, ( )If x  is the 
particular type of fuzzy number where the membership function is constant in the 
closed interval and 0 outside. The interpolation condition (1.1) becomes 

1

( ) ( ), ,  with  [ , ]
N

I I I
i i i i i

i

f z D z z z− +

=

⊇ φ ∀ ∈ ≡∑x x x . (1.2) 

 
Using the midpoint/radius form1 (see [18], [19]) we write 

1 1 1

( ) ( ) ( ) | ( ) | [ 1,1]
N N N

I I
i i i i i i

i i i

z z rad z
= = =

φ = φ + φ −∑ ∑ ∑x x x . (1.3) 

Note that 
1

( )
N

i i
i

z
=

φ∑ x  is the polynomial interpolation at the midpoint ( )f x . 

The absolute value in (1.3) implies that 
1

( ) | ( ) |
N

I
i i

i
rad z

=

φ∑ x  is not in the same class C 

of functions from which the basis iφ  are taken (see [17]). Substituting in (1.2) we 
have 

1 1
( ) ( ) ( ) | ( ) | [ 1,1]

N N
I I

i i i i
i i

f z rad z
= =

⊇ φ + φ −∑ ∑x x x , (1.4) 

and, because ( ) ( ) ( ( ))[ 1,1]I If f rad f= + −x x x , we get the interpolation condition  

1

( ( )) ( ) | ( ) |,
N

I I
i i

i

rad f rad z D
=

≥ φ ∀ ∈∑x x x . (1.5) 

                                                           
1 An interval [ ],Ia a a− += is defined by its midpoint ( ) / 2a a a− += +  and radius 

( ) ( )/2Irad a a a+ −= −  following that [ ]( ) 1,1I Ia a rad a= + − . 
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The consistent representation problem (see [17]) is finding the minimum 
upper bound of (1.5) such that ( )f − x  and ( )f + x  belongs to the same class C of 

functions as its generator, that is 
1

( ) ( )
N

i i
i

f − −

=

= ζ φ∑x x  and 
1

( ) ( )
N

i i
i

f + +

=
∑= ζ φx x  

belong to class C. Thus, to obtain a consistent representation we solve the semi-
infinite optimization problem (see [12]) 

1 1

min ,  where  is a vector with elements ( )

subject to ( ) ( ) | ( ) |, .

I
i i

N N
I

i i i i
i i

r rad

r rad z D
= =

= ζ

φ ≥ φ ∀ ∈∑ ∑
r

r r

x x x
 (1.6) 

 

1.2 Fuzzy case 

The interval case can be generalized to the fuzzy case if we express a fuzzy number 
z by its α-levels [ ]z α . Since an α-level is an interval [ , ]z z− +

α α  (see [14]), we solve the 
optimization problem (1.6) for every α. In the particular case of triangular fuzzy 
numbers2 1( / / )z z z z− +≡ , where ( , )z z− +  is the support and 1z  the modal value, the 
problem is solved for all α by applying the interval case to [ , ]z z− + ; the modal value 
can be treated as a real number. Moreover, trapezoidal fuzzy numbers3 can likewise be 
efficiently treated by applying the interval case to the support ( , )z z− +  and the 
core 1 1[ , ]z z− + . The complexity of the general case is dependent upon the number of α-
levels that are required. 

 

2 Fuzzy Digital Terrain Model (DTM) using semi-infinite 
programming 

To solve the above optimization problem, we have to deal with an infinite set of 
constraints. There are algorithms to solve this type of problems (see [12]). In a first 
approach a grid to discretize the region D was used yielding KL  conditions 

1 1
( ) ( , ) ( ) | ( , ) |,  ( , ) ,  1,..., ,  1,..., .

N N
I I
i i k l i i k l k l

i i
rad x y rad z x y x y D k K l L

= =

ζ φ ≥ φ ∀ ∈ = =∑ ∑  (2.1) 

The Optimization Toolbox of Matlab™ has a minimization function that allows 
semi-infinite conditions. The prototyping and numerical examples that we present are 
developed and implemented using this toolbox. 

 

                                                           
2 A fuzzy number whose membership function has triangular shape. 
3 A fuzzy number whose membership function has trapezoidal shape. 
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3 Examples of fuzzy interpolators 

For irregularly distributed points we use a fuzzy linear interpolator based on the 
Triangulated Irregular Network (TIN) developed in [17]. Fuzzy kriging (see [9]) and 
thin plate spline (see, for example, [10]) are also well-known interpolators for 
irregularly distributed data points and can also be generalized to fuzzy interpolation 
by (1.6). 

Fuzzy spline interpolators developed in [17] need a regular grid arrangement 
of data points. The TIN based interpolator were used to get gridded data from initial 
irregularly distributed data set. The fuzzy kriging interpolator is based on the variance 
minimization of the unbiased estimator ( ) ( )i i

i
Z z= λ∑x x , where the weights iλ  

depend on the Gaussian variogram model used to express spatial dependence between 
sampled values (see [7]). 

 

4 Numerical Example 
In the example below, elevations are expressed by triangular fuzzy numbers. The 
initial data points are represented in figure 1. In figure 2 is a 20×20 fuzzy grid used 
to evaluate the fuzzy splines. The resulting fuzzy surfaces are evaluated in a 120×120 
grid and shown in figures 3, 4, 5 and 6, where the middle surface corresponds to 
modal interpolator values and the fuzzy support is represented by lower and upper 
surfaces (see figure 9  for detail). 
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Fig. 2. Fuzzy data (the dots represent modal values) 
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Fig. 3. Gridded fuzzy data 

 
 
 
 
 
 

 
Fig. 4. Fuzzy TIN 
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Fig. 5. Fuzzy linear spline 

 

 

5 Discussion 
The properties of fuzzy interpolators are similar to the crisp4 ones. As it would be 
expected, the fuzzy linear spline is smoother than the fuzzy polyhedral TIN surface 
but not so much as the fuzzy cubic spline. The smoothness of fuzzy kriging surface 
depends on the adopted spatial dependence model. In this case it resembles the TIN 
surface. 

 

 

                                                           
4 To distinguish between fuzzy entities and classical (no fuzzy) ones, we refer to the latter as crisp 
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Fig. 6. Fuzzy cubic spline 

 

Fig. 7. Fuzzy kriging surface 

 

 

Fig. 8. Fuzzy thin plate spline 
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Fig. 9. Detail of fuzzy thin plate spline 

 
 
The fuzzy thin plate spline is smoother than the other interpolators. Thus, these 
interpolators can generate surfaces quite different for the same data set. The model 
choice is one source of uncertainty. One way to include model choice in membership 
values of fuzzy elevations is to make the different generated surfaces a part of the 
uncertainty itself. The different elevations given by different interpolators in a same 
position can be included in a fuzzy elevation for that position. The type of interpolator 
to choose obviously depends on the characteristics of the surface to be modeled. 
Another approach would be to take weighted combinations of the various generated 
surfaces. 

The methods we have developed for fuzzy surfaces are able to generate 
fuzzy DTM’s that can be used to study the effect of DTM uncertainty in spatial 
analyses, like slope and aspect calculations ([20]) or other spatial variables, such as 
the mapping of the bottom of the ocean ([6], [17]) or visibility ([2]). The proposed 
methods we have developed can generalize crisp interpolators that are in the form 

1
( ) ( )

N

i i
i

f z
=

= φ∑x x  to fuzzy interpolators. 
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