SYMPOSIUM ON
COMBINATORICS AND GRAPH THEORY
25 February — 29 February, 1969

NEW INEQUALITIES FOR THE PARAMETERS
OF AN ASSOCIATION SCHEME

A. NEUMAIER

Technische Universität Berlin
New inequalities for the parameters of an association scheme

By A. Neumaier, Fachbereich Mathematik,
Technische Universität Berlin, D-1000 Berlin 12

Let X be a finite set with v objects. An s-class scheme
on X is a partition of the set of all 2-subsets of X into
s nonempty classes. Two objects x and y are i-th
associated if x \neq y and x,y is in the i-th class of
the partition. We define k_i(x) as the number of i-th
associates of x, and p_{ij}(x,y) as the number of z \in X
which are i-th associates of x, and j-th associates of y. If we
write D_i = \{d_{xy}^i\} with d_{xy}^1 = 1 or 0 according as x and y
are i-th associates or not then

\[D_i D_j = \{p_{ij}(x,y)\}, \]

(1)

\[p_{ij}(x,z) = k_i(x) \delta_{ij}, \]

(1')

where \(\delta_{ij}\) (= 1 or 0 according as i = j or not) is the
Kronecker symbol. An association scheme is a scheme with
k_i(x) = k_i for all x \in X, and p_{ij}(x,y) = p_{ij} whenever
x and y are i-th associates.

For the following well-known results see e.g. Cameron, et al [1].

The Bose-Wenner-algebra of an association scheme is the
algebra generated by the matrices I and D_1,...,D_s. There
is a basis \(E_1,...,E_s\) of \(V\) satisfying for i,j = 1,...,s

\[E_i E_j = \delta_{ij} E_j. \]

(2)

Also, the Bose-Wenner-algebra is closed under pointwise
multiplication \((e_{xy})^2 = (e_{xy})^2\), whence
\[E_{j}^{j} = \sum_{\ell=0}^{n} q_{j}^{\ell} \xi_{j}^{\ell} \]

(3)

For appropriate numbers \(q_{j}^{\ell} \), which can be calculated from the parameters, the

Rokhlin condition

\[q_{j}^{\ell} > 0 \text{ for } i, j, \ell = 0, \ldots, n \]

(4)

gives a restriction on the parameters.

The ranks \(E_{j}^{j} \) can also be calculated from the parameters; they satisfy

\[f_{0}^{*} \ldots f_{n}^{*} = v, \]

and the fact that all \(f_{i} \) must be integers places a severe restriction on the possible parameter sets. We prove here a new inequality for the ranks:

Theorem 1

The following inequalities hold:

\[\sum_{\{\xi_{j}^{\ell} \neq 0\}} f_{\ell} \leq \begin{cases} \frac{f_{i}f_{j}}{2f_{i}} & \text{for } i \neq j, \\ \frac{f_{i}^{*}}{2f_{i}}(f_{i}^{*} + 1) & \text{for } i = j. \end{cases} \]

(5)

Proof. By the following lemmas, the rank of \(E_{j}^{j} \) is at most

\[\min f_{i} f_{j} \text{ if } i \neq j, \]

and

\[\frac{f_{i}^{*}}{2f_{i}}(f_{i}^{*} + 1) \text{ if } i = j. \]

On the other hand, since the \(E_{j}^{j} \) are mutually orthogonal, (3) implies that the rank of \(E_{j}^{j} \) is given by the left hand side of (5).

Lemma

(i) Let \(A \) be a matrix of rank \(r \). Then \(A^2 \) has rank \(\leq \frac{1}{2}(r+1) \).

(ii) Let \(A \) and \(B \) be matrices of the same size of rank \(f \) resp. \(g \). Then \(AB \) has rank \(\leq fg \).
Proof. Write $A = (a_{xy})$, and let x_1, \ldots, x_f be the labels of f independent rows. Then each a_{xy} is a linear combination of a_{x_jy}, $j = 1, \ldots, f$. Hence each entry a_{xy} of AA is a linear combination of a_{x_jy}, $j = 1, \ldots, f$, of which there are $f + \binom{f}{2} = \frac{f(f+1)}{2}$ terms. This proves (i), and the proof of (ii) is completely analogously.

A 2-class association scheme is essentially the same as a strongly regular graph (see e.g. Seidel [2] for a definition). A strongly regular graph with $d_2^2 = 0$ is called a Smith graph. Cameron et al. [1] show that d_2^0 and d_2^1 are non-zero. Hence theorem 1 gives

Theorem 2

(i) The parameters of a strongly regular graph which is not a Smith graph satisfy
\[v \leq \frac{1}{2} \left(f_2^4 + 1 \right). \]

(ii) The parameters of a Smith graph satisfy
\[v \leq \frac{1}{2} \left(f_2^2 + 1 \right). \]

Proof. Apply theorem 1 with $i = j = 2$, and observe that $f_0 f_1 f_2 = v$.

Example

The following parameter set for a strongly regular graph satisfies all previously known conditions for strongly regular graphs (as stated e.g. in Seidel [2]) but fails (6):
\[v = 881, k = 300, \lambda = 97, \mu = 35, r_2 = 10. \]
Problem. Characterize those graphs for which (6) is satisfied with equality.

Remarks. 1. More inequalities can be obtained similarly by looking at $E_{\lambda, \mu}(\mathbf{X})$, etc., but it is not known whether they are really more restrictive than those of theorems 1 and 2.

2. The special case of theorem 2, where the graph has a rank 2 automorphism group, has been proved already in Cameron, et al [1].

3. Theorem 2 improves the absolute bound (see e.g. Seidel [3]) for strongly regular graphs; it is not known how theorem 1 relates to the more general absolute bound mentioned in [1], proposition 6.1.

References
