...
Acknowledgment: I want to thank Prof. Cottle for his critical comments and Prof. Trotter for suggesting the minimal surface equation as an interesting application.

References

Annex

The error parameter

$\epsilon = 0.01$.

In both cases we have $\epsilon < 1$, although the true error is ϵ. This is partially explained by the fact that the overrelaxation converges very slowly. For the first 25 iterations starting from $\phi = 1$, the average error is only linear, with factor 0.7. The first three with $\phi = 1$ in the 16th, with $\phi = 0.0001$, with $\phi = 0.00001$. This allows checking the validity of the other two bounds. Thus we have here a very nonlinear problem.

All examples were calculated on a UNIVAC 1100. The time for one Newton iteration was 0.5 sec (without error information). An extra use (with error information) was made of (3) to compute ϕ, although the matrices A were neither nonsingular nor diagonally dominant. Perhaps this accounts for the fact that the example u was found even when ϕ was too large.