The extremal case of some matrix inequalities

by

A.P. Nikulin

Introduction. The paper discusses the problem of characterizing the matrices satisfying one of the inequalities \(A \preceq \lambda I + A^*B + \sum_{i=1}^{n} A_i^*B_i \) for all \(\lambda \geq 0 \), where \(A \) is a Hermitian matrix and \(\{ A_i \} \) with \(A_i \preceq B_i \) are Hermitian matrices for \(i = 1, \ldots, n \). The matrix inequalities are treated for Hermitian matrices. The problem is solved by applying the following result.

1. The equation \(xA + \lambda I \preceq B \) Determine the set of all matrices \(A \) which satisfy the inequality \(xA + \lambda I \preceq B \) for all \(\lambda \geq 0 \). The equation is solved by applying the following result.

Theorem 1. Let \(A \in \mathbb{C}^{n \times n} \) and \(B \in \mathbb{C}^{n \times n} \) satisfy the equation

\[\lambda B = A \]

Then \(A \) is a Hadamard factor of \(B \).
Then one of the following holds:

(i) Every row of \(A \) contains some zero entry.

(ii) Every column of \(B \) contains some zero entry.

(iii) There are nontrivial diagonal matrices \(D, D' \) such that \(DAB \) and \(D'AB^{-1}B' \) are reducible and nonseparable.

Proof. The assumptions imply that

\[
\left[\begin{array}{c}
A_i \cdot B_i \\
... \\
A_n \cdot B_n
\end{array} \right] = (AB)_i = (AB)_n \in \mathbb{R},
\]

for \(i = 1, \ldots, n \) and \(k = 1, \ldots, n \). With

\[
\alpha = \text{diag}(A), \quad \beta = \text{diag}(B),
\]

and the lemma (apply the existence of nontrivial matrices \(\alpha, \beta \in \mathbb{R} \)), we have

\[
\alpha_i \beta_j = \delta_{ij} \quad \text{for all } i, j,
\]

Now suppose that neither (ii) nor (iii) holds. Then there are indices \(i, j \) such that \((AB)_k = 0 \) for \(k = 1, \ldots, n \) and by (ii),

\[
\alpha_i \beta_j = \delta_{ij} \neq 0.
\]

Therefore, the diagonal matrices

\[
D = \text{diag}(\alpha), \quad D' = \text{diag}(\beta), \quad D' = \text{diag}(\beta)
\]

are nonsingular, and by (ii) and (iii) we have

\[
(AB) = \alpha_i \beta_j = (\alpha) (\beta) = (\alpha) (\beta),
\]

\[
(AB) = \beta_i \alpha_j = (\beta) (\alpha) = (\beta) (\alpha).
\]

Hence (ii) holds.

Conversely, it is obvious that \((AB) = (\alpha) (\beta) \) for all pairs \((A, B) \) satisfying (i). On the other hand, the characterization of those pairs \((A, B) \) with \((AB) = (\alpha) (\beta) \) satisfying (i) or (ii) depends on the zero structure of \(A \) and \(B \) and seems to be a nontrivial conditional problem. Simple examples which may occur here are the matrix pairs of type

\[
A = (C, 0), \quad B = \left(\begin{array}{c}
0 \\
... \\
0
\end{array} \right), \quad A = (C, 0), \quad B = \left(\begin{array}{c}
0 \\
... \\
0
\end{array} \right).
\]

with arbitrary \(C, D \) of the proper size. Moreover, with \((A, B) \), the pairs \((M \cdot A, M^{-1} \cdot B') \) occur, where \(M, M', M' \) are nonsingular matrices, i.e., have precisely one nonzero entry in each row and column. A particular case, used in the next section, is

(iii) \((AB) = (\alpha) (\beta) \) if \(A \) or \(B \) is diagonal.
Theorem 1. If \(T \) is a continuously invertible operator, then for any operator \(S \) in \(K \), there exists an operator \(T^{-1} \) such that:

\[T^{-1}ST = S \]

Proof: Since \(T \) is invertible, there exists an operator \(T^{-1} \) such that:

\[TT^{-1} = I \]

where \(I \) is the identity operator. Then, for any operator \(S \) in \(K \), we have:

\[T^{-1}ST = S \]

This completes the proof of the theorem.
Corollary 1. There is \(i \neq 0 \) such that \(A_i = 0 \) for some \(i \neq 0 \). Fix one such \(i \neq 0 \) and put \(a_i = A_i \). Then for \(i \neq 0 \), we have

\[a_i^* A_i a_i - a_i^* A_i = a_i^* A_i a_i - a_i^* A_i \geq 0. \]

Moreover, since \(A_i \) is irreducible, there are indices \(j_1, \ldots, j_k \) such that \(a_{j_1} \ldots a_{j_k} a_i = 0 \) for any \(i \neq 0 \) due to this.

\[a_i^* A_i a_i - a_i^* A_i = a_i^* A_i a_i - a_i^* A_i \geq 0. \]

Together with (i) for \(a_i = 0 \), this contradicts the minimality of \(E \).

Corollary 2. There is \(i \neq 0 \) such that \(A_i = 0 \) for some \(i \neq 0 \). This leads to a contradiction by the usual argument.

Therefore, \(E = \{0, 1, \ldots, n\} \), and with \(D = \text{Diag}(a) \) we have \((D - M)^{-1} A_i D - \text{tr}^{-1} A_i \geq 0 \) for all \(i \neq 0 \) and that (ii) holds. Finally, (iii) holds as the nonnegative matrix \(D = D^{-1} a \) is similar to \(a \), hence \(a_{\text{tr}} = 1 \), \((D - M)^{-1} \geq 0 \), and \(D - M^{-1} \geq 0 \). Therefore (ii) holds.

Corollary. If \(x \in \mathbb{K}^n \) is an irreducible matrix, with \(x_i < 0 \) for satisfying (ii) then

\[(x - D^{-1} x) \leq 0. \]

If \(A \) is reducible then these theorems are no longer equivalent; we only have the implication (B) \(\Rightarrow\) (A). Counterexamples to (iii) are the matrices of shape \(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \) which have

\[a_{22}^* A_{22} a_{22} = 0, \quad \text{and} \quad (D - M)^{-1} \geq 0. \]

and counterexamples to (ii) are the strictly upper triangular matrices \(A \), where \(a_{22}^* A_{22} a_{22} = 0 \) and (D) agree on and below the diagonal. The demonstration of all reducible \(A \) satisfying (ii) or (iii) again seems to be a numerical problem.

Theorem 3. Let \(A \) be an irreducible. Then \(A \) and \((A)^{-1} \) are nonsingular, and

\[|A|^* \leq |(A^{-1})|^*. \]

Moreover, if \(A \) is irreducible then one of the following holds:

(i) \(A \) satisfies the semipositive inequality \((A^*)^* \leq (A)^*\).

(ii) \(A \) is semipositive and \((A^*)^* \leq (A)^*\).

(iii) \(A \) is semipositive and \((A^*)^* \leq (A)^*\).

Proof of (ii). By Theorem 1, let \(A \) be an irreducible. Then \(A \) is an irreducible and there is a real vector \(a > 0 \) such that \(A a = 0 \). Since \(A \) is an irreducible, there is a real vector \(b > 0 \) such that \(a^* b = 0 \). Now \(a^* a \leq a^* b \leq a^* (A^{-1} a) \leq a^* a \) by (ii) and since...
Mani inequalities

$[M]^{-1} [N] = \frac{N}{\text{det}(N)} [M]^{-1} [N] \quad \text{for } C = [M]^{-1} [N]$.

Thus $[A] = [M]^{-1} [N]$ and $(A) = [N]^{-1} [M]$ are nonsingular.

By (6) and Theorem 2, we have:

$$(A) = [M]^{-1} [N] = \frac{N}{\text{det}(N)} [M]^{-1} [N] = \frac{N}{\text{det}(N)} [M]^{-1} [N] \frac{N}{\text{det}(N)} [M]^{-1} [N]$$

$= [M]^{-1} [N] [M]^{-1} [N] = (A)^{-1}.$

So that (6) holds. Moreover, $[C] = [C]^{-1}$ and $(A) = (A)^{1},$ have a common root, as do

$[M]^{-1} [N]^{-1}$ and $[M]^{-1} [N]^{-1}.$ Now if A is not of the form $M^{-1} N$, it is nonsingular, and by Lemma 2, the matrix $[M]^{-1} [N]^{-1}$ of such that $C = [M]^{-1} [N]^{-1} N$ is real and nonsingular. The vector $v = [M]^{-1} [N]^{-1} N$ is positive and satisfies

$$v = [M]^{-1} [N]^{-1} N \quad \text{for } v = (C) \text{ and } (C) = [M]^{-1} [N]^{-1} N.$$

Hence the matrix $B = B_{C}$ - constitutes $(B) = [M]^{-1} [N]^{-1} N < (D)^{-1} = v$. But $B = [M]^{-1} [N]^{-1} N$ is therefore as Moraitis. But $B = [M]^{-1} [N]^{-1} N \neq [M]^{-1} [N]^{-1} N$ with the nonsingular diagonal matrix $B = [M]^{-1} [N]^{-1} N$.

Conversely if B, C are nonsingular diagonal matrices such that $B = [M]^{-1} [N]^{-1} N$ is an invertible (see invertible) $B_{C} = B_{C}$ - constitutes $(B) = [M]^{-1} [N]^{-1} N$ and

$$(A) = [M]^{-1} [N]^{-1} N = (A)^{-1}.$$

References

Keywords: nonnegative, square matrices.