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1. Introduction

Set theory is the offspring of analysis and logic. It was first developed ”naively”1

in the late 19th century by George Cantor who was motivated by real analysis and
the study of sets of uniqueness of Fourier series.

Definition 1. A set D ⊆ R is a set of uniqueness, if whenever the series

1

2
a0 +

∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
converges pointwise to 0 for all x ∈ R \D, then an = 0 = bn for all n ∈ N.

Cantor proved that whenever D is “small enough” then it is a set of uniqueness.
In the process of making sense of what “small enough” means, he came up with the
notion of a “countable set” and he proved that any interval [a, b] ⊆ R with a < b
is not countable. This discovery, that infinite sets come into different sizes, lead
Cantor to develop a theory of “cardinality,” which may be viewed as the beginning
of set theory. While part of the mathematical community viewed Cantor’s theory
of sets with skepticism it quickly gained popularity. Two factors were:

(1) Using Cantor’s theory of cardinality the theorem of Liouville, that there
exist real numbers which are not algebraic, is an easy exercise2.

(2) Many constructions in analysis (such as the construction of the collection
of all Borel functions) involve processes naturally indexed by the ordinal
ω1.

The naive treatment of set theory was soon proven to be problematic. Bertrand
Russell discovered in 1901 that if we are too liberal in what we allow to be a set
then we can provably produce contradictions. For example, in Frege’s Begriffsschrift
(1879) the convention was that given any property ϕ one may form the set

(1) Sϕ := {x | ϕ(x) holds},
which consists of all sets x that satisfy the property ϕ. Russell’s paradox is the
following observation: if ϕ is taken to be the property x 6∈ x we get a contradiction:

Sϕ ∈ Sϕ ⇐⇒ Sϕ 6∈ Sϕ,
It is therefore necessary to find an axiomatization of set theory which:

(A) is restrictive enough in what qualifies as a set, so that we avoid Russel’s
type of paradoxes;

(B) is flexible enough in allowing us to perform constructions which we find
intuitive enough with respect to how sets “ought to behave”.

With respect to (B) above, lets attempt to describe intuitively the universe V
of all sets. The universe V is built bottom up in stages. At the 0-th stage we have

1meaning: non-axiomatically
2Indeed, see HW2
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the smallest possible set: V0 := ∅. Given Vn, the set Vn+1 is simply the powerset
P(Vn) of Vn, i.e., the set of all subsets of Vn. So,

V1 = P(∅) = {∅}, V2 = P({∅}) = {∅, {∅}}, V3 =
{
∅, {∅}, {{∅}}, {∅, {∅}}

}
, . . .

Of course, we have only described a very small fragment of the universe V so far:

V0 ⊆ V1 ⊆ · · · ⊆ Vn ⊆ · · · · · · · · · ⊆ V.

Every day mathematical objects such as ω = {0, 1, 2, . . .} “ought” to be in V . Ans
similarly collection such as {V0, V1, V2, . . .} should also be V . For one, if ω is in V
and each Vn is in V , then one should be able to form the set {V0, V1, V2, . . .} by
induction. Setting Vω :=

⋃
{V0, V1, V2, . . .} to be the union of all the sets we defined

so far and letting Vω+1 = P(Vω), Vω+2 = P(Vω+1),... we can keep going:

V0 ⊆ V1 ⊆ · · · ⊆ Vn ⊆ · · · ⊆ Vω ⊆ · · · ⊆ Vω+n ⊆ · · · ⊆ Vω+ω ⊆ · · · · · ·Vα · · · · · · ⊆ V.

The length of this procedure depends on what constructions we believe we are al-
lowed to perform in order to get new sets from old: if A is a collection of stages
which happens to be a set, i.e. A ∈ V , then we can “intuitively” form a new stage
sup(A), that is the supremum of A, and Vsup(A) :=

⋃
α∈A Vα, so that both are in V .

Hence, the length of the hierarchy above depends on how large sets A of stages we
can form. This will become more clear soon. Either way, we let V :=

⋃
α Vα to be

the universe of all sets.
In order to study the universe V , we will work within first order logic with our

language L∈ = {∈} consisting of a binary relation symbol ∈. In V , the interpretation
of ∈ is the standard belonging relation. Using ∈ we will be able to define all other
necessary set theoretic relations such as:

⋃
,
⋂
,⊆, . . .

Besides (V,∈) we will also be considering other L∈-structures U = (U,∈U) which
will often also be models of our set-theoretic axioms. In these “non-standard” mod-
els, ∈U is just some subset of U2, a directed graph relation if you want, which satisfies
additional axioms (which are perhaps artificial for the theory of directed graphs).
Even when U is taken to be a subset of V and ∈U is taken to be the restriction of
∈V on U it is not necessary that the powerset P(x) of some x ∈ U , when computed
in U , is equal to the actual powerset (the one computed in V ). Indeed, by the down-
ward Lowenhein-Skolem, if there are models of set theory, then there are countable
such models. As a consequence, in such a countable model (U,∈U), the set P(ω) is
countable, although within (U,∈U) we cannot find a bijection between P(ω) and ω.





CHAPTER 1

A first course in set theory

1. The Zermelo axioms and the Zermelo universe

The first axiomatization of set theory is due to Zermelo (1908). As we will see,
although this axiomatization is strong enough to contain (with the addition of axiom
of choice) almost all mathematics, it still does not satisfy (B) above. Hence, in later
sections we will need to introduce further axioms.

The Zermelo Axioms.

A.0. Non-triviality. There exists a set: ∃x(x = x).

A.1. Extensionality. Two sets are equal if and only if the contain the same
elements: ∀x∀y(x = y ⇐⇒ ∀z(z ∈ x ⇐⇒ z ∈ y)).

A.2. Pairing. For any two sets there is another set containing exactly these
two sets: ∀x∀y∃z∀w(w ∈ z ⇐⇒ (w = x ∨ w = y)).

We introduce here the notation {x, y} replacing z. We write {x} for {x, x}.

A.3. Union. Given any set (collection) of sets, there is a set which contains
precisely those sets which are members of some set in the collection:

∀x∃y∀z(z ∈ y ⇐⇒ ∃w(z ∈ w ∧ w ∈ x)).

The set y above is called the union of x and it is denoted by ∪x. The set
∪{x1, x2} will often be denoted by x1 ∪ x2.

A.4. Powerset. Given any sets, there is a set whose elements are precisely all
subsets of the original set. If we introduce the notation

x ⊆ y := ∀z(z ∈ x =⇒ z ∈ y),

then the powerset axiom is: ∀x∃y∀z(z ∈ y ⇐⇒ z ⊆ x).
The set y above is called the powerset of x and it is denoted by P(x).

A.5. Subset (scheme). Given any set and any definable with parameters first
order property P , there is a set that contains precisely those elements of the original
set which satisfy P : for every formula ϕ(z, x1, . . . , xn) we have

Subsetϕ := ∀x, x1, . . . xn∃y∀z(z ∈ y ⇐⇒ (z ∈ x ∧ ϕ(z, x1, . . . , xn))).

7



8 1. A FIRST COURSE IN SET THEORY

The set y above will often be denoted by {z ∈ x | ϕ(x, x1, . . . , xn)}. This axiom
is a local version of (1).

A.6. Infinity. There is a set which contains the empty set and it is closed under
the powerset operation: ∃x(∅ ∈ x ∧ ∀y(y ∈ x =⇒ P(y) ∈ x)).

The notation ∅ stands for the empty set, which is the set that contains no
element. By Lemma 3 such a set exists and it is unique. We will denote the
collection A.0.-A.6. of the Zermelo axioms by Z.

Remark 2. When we informally “define” some collection A and we say that it
exists (provably from Z) or, equivalently, that it is a set (provably from Z), what
we mean is that there is a formula ϕ(x) of set theory so that Z |= ∃!x ϕ(x) and when
we apply this formula ϕ(x) to the universe V we curve out the collection A. For
example, in the introduction, we “defined” Vω in terms of the “set” {V0, V1, V2, . . .}.
While we all understand what set the informal expression {V0, V1, V2, . . .} describes,
we still need to show that this set can be curved out of V via some formula (which
holds for a unique set) in order for it to “exist”, i.e., to ”be a set”. See next lemma
for some examples.

Lemma 3. The following sets exist (provably from Z):

(1) the set ∅ which contains no element;
(2) for every natural number n the set Vn described in the intro;
(3) the set Tω := {V0, V1, . . . , Vn, . . .};
(4) the set Vω described in the intro.
(5) for every natural number n, the set Vω+n described in the intro.

Proof. For (1) let x be the set given by A.0. and set ∅ := {z ∈ x | z 6= z}.
Then ∅ exists by A.5., it contains no element since ∀z(z = z) is an axiom of first
order logic, and it is unique by A.1.

(2)Given that V0 = ∅ is a set by (1), so is Vn by applying n-times the axiom A.5.
Uniqueness is a consequence of A.0 (proved inductively).

For (3), call a set inductive if it contains ∅ and it is closed under x 7→ P(x). By
A.6. an inductive sets exists; call it u. Consider the property ϕ(x) defined by

∀z
(
(∅ ∈ z ∧ ∀y(y ∈ z =⇒ P(z) ∈ x)) =⇒ x ∈ z

)
Notice now that T := {x ∈ u | ϕ(x)} is a set by A.5. and it is the “smallest”
inductive set. We leave to the reader to check T = Tω.

For (4), Vω =
⋃
Tω exists and is unique by A.3, A.1. (5) is similar to (2). �

Hence the Zermelo axioms are strong enough to produce the beginning of what
intuitively should be the V -hierarchy. However, these axioms cannot take us much
further. The next exercise is left to the reader.

Exercise 4. The L∈-structure (Vω,∈) is a model of Z \ {A.6.} (i.e., of the
axioms A.0.-A.5). The L∈-structure (Vω+ω,∈) is a model of the Zermelo set theory
Z.
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Corollary 5. The axioms Z \ {A.6.} (i.e., A.0.-A.5) cannot prove that Vω is
a set. The Zermelo axioms cannot prove that Vω+ω is a set.

Proof. Consider the sentence σ which states that “there exists a set which
contains ∅ and which is closed under the operation x 7→ P(x)”; see A.6. Assume
towards contradiction that Z\{A.6.} proves that Vω+ω exists. Then it can also proves
σ. But then, by the previous exercise (Vω,∈) |= σ. This leads to a contradiction
since every x ∈ (Vω,∈) is finite and any set that is a witness to σ is infinite.

A similar argument can be used for showing that Z does not prove Vω+ω is a set.
But here is an alternative argument that is more “universal” and can be used in other
situations as well: if Z implies that Vω+ω exists, then from the previous exercise it
follows that Vω+ω ∈ Vω+ω. But then we can repeat Russell’s Paradox to get a
contradiction. More precisely, S = {x ∈ Vω+ω | x 6∈ x} is a set by A.5., and therefore
it is in Vω+ω. Following the definitions we have that S ∈ S ⇐⇒ S 6∈ S. �

Definition 6. The Zermelo universe VZ is simply the structure (Vω+ω,∈)

From the standpoint of set theory, i.e., from the standpoint of trying to capture
V , the Zermelo universe is small since it does not even contain collections such as
{Vω, Vω+1, . . . , Vω+n, . . .} which intuitively ought to be sets. From the standpoint
of classical mathematics however, every commonly used mathematical object can
be identified with some set of Vω+ω. For example, the collection ω of all natural
numbers is usual identified with the smallest set that contains ∅ and is closed under
the operation x 7→ x∪{x}. We will prove later that ω exists and it is a subset of Vω.
Hence ω ∈ Vω+1. Since an integer k can be identified with an equivalence class [(a, b)]
of pairs (a, b) := {{a}, {a, b}} of elements of ω. We can see that [(a, b)] ∈ Vω+1 and
therefore Z ∈ Vω+2. Similarly Q ⊆ Vω+3 and similarly reals r which are identified
with the set {q ∈ Q | q < r} are elements of Vω+3. So, R ∈ Vω+4. Similarly one can
see that R2 ∈ Vω+4 and therefore, since any function f : R → R can be identified
each graph, f ∈ Vω+5.

2. Notation and standard constructions

We have already defined ⊆,P(·),∪ in terms of ∈. Given a set X, the inter-
section ∩X of X, also denoted by ∩{x ∈| x ∈ X} is the set whose elements are
contained in every set x which is a member of X. By A.3. and A.5. we have that
∩X exists:

∩X := {z ∈ ∪X | ∀x(x ∈ X =⇒ z ∈ x)}.
We denote ∩{x, y} by x ∩ y. Similarly we define

x \ y := {z ∈ x | z 6∈ y} and x4y := (x \ y) ∪ (y \ x).

Given sets x, y, the pair (x, y) of x, y is the set {{x}, {x, y}}. We also let (x, y, z) :=
(x, (y, z)), etc. The fundamental property of the pair is the following.

Proposition 7. (a, b) = (c, d) if and only if a = c and b = d.
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Proof. Easy and left as an exercise. �

The Cartesian product X × Y of the sets X, Y is the set {(x, y) | x ∈ X, y ∈
Y }, which exists by applying the A.5., with ϕ(z) ≡ ∃x∃y

(
z = (x, y)∧x ∈ X∧y ∈ Y

)
,

to the set P(P(X ∪ Y )). We set X2 := X ×X, X3 := X × (X ×X), etc.
By a relation is any set R which consists entirely of ordered pairs. We write

xRy, whenever (x, y) ∈ R. The domain and the range, respectively, the sets

dom(R) = {x | ∃y(x, y) ∈ R} and rng(R) = {y | ∃x(x, y) ∈ R}.

Exercise 8. Show that dom(R) and rng(R) are sets. Similarly for any other
collection in this section which we have left without any justification.

If R ⊆ X × Y then we say that R is a relation from X to Y .
An equivalence relation is any R ⊆ X ×X which is reflexive (xRx), sym-

metric (xRy =⇒ yRx), and transitive (xRy ∧ yRz =⇒ xRz). We denote by
[x]R := {y ∈ X | xRy} the R-equivalence class of x and set X/R := {[x]R | x ∈ X}.

A function is any relation which satisfies xfy ∧ xfz =⇒ y = z. We denote
xfy by f(x) = y. If dom(f) = X and rng(f) = Y then we write f : X → Y , The
function f is onto if rng(f) = Y and it is injective if f(x) = f(x′) =⇒ x = x′.
It is bijective if it is both injective and onto. If Z ⊆ X, we denote by f�Z the
restriction f ∩ (Z × Y ) of f on Z. We let f ′′A and f−1(B) be the front and inverse
image of the sets A ⊆ X and B ⊆ Y under f . The set of all functions f : X → Y
from X to Y is denoted by Y X .

Definition 9. An indexed family of sets {Xi}i∈I is any function f whose
domain is the set I and f(i) = Xi. The Cartesian product of {Xi}i∈I , denoted
by ∏

i∈I

Xi,

is the set of all functions g with domain I so that g(i) ∈ Xi. Notice that if Xi = X
for all i then this is simply the set XI .

Notice that if Xi = ∅ for some i ∈ I then
∏

i∈I Xi = ∅. If Xi 6= ∅ for all i ∈ I
then, intuitively,

∏
i∈I Xi 6= ∅. That is, we “should” always be able to produce a

function that chooses an element xi from each Xi. However, this is not provable
from the Zermelo axioms and, as we will later see, it is one of the equivalent forms
of the axiom of choice.

3. ω and definition by induction

By a number system we mean any triple (A, a0, S) which satisfies the Peano
axioms (second order). In other words:

(1) a0 ∈ A;
(2) S : A→ A;
(3) S(a) 6= a0 for all a ∈ A;
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(4) S is injective;
(5) if B ⊆ A with a0 ∈ B and with (b ∈ B =⇒ S(b) ∈ B), then B = A.

Intuitively, and therefore in V , a number system looks like {a0, S(s0), S(S(a0)), . . .}.
Notice however, that if U = (U,∈U) is a model of Z, and A, a0, S ∈ U , then the above
axioms can be phrased in first order logic of the language {∈} and therefore,
U = (U,∈U) has its “own idea” of what a number system is. By that, we mean that
if, for example, U does not contain the “true” powerset P(A) := PV (A) of A, but
rather PU(A) ( PV (A), then the induction axiom σ5 above may not be true in V ,
yet it is possible that U |= σ5. See Exercise 13 for more information.

The following theorem is the first in a series of theorems which will allow to
argue that several collections exist as sets and consequentially better approximate
the hierarchy (Vα)α discussed in the introduction.

Theorem 10 (Definition by induction I). Let (A, a0, S) be a number system, let
g : C × A → C a function, and c0 ∈ C. There exists a unique function f : A → C
so that:

(2) f(a0) = c0 and f(S(a)) = g(f(a), a).

Proof. The uniqueness is immediate from the induction property of (A, a0, S):
If f1, f2 are two functions satisfying (2) then let B = {a ∈ A | f1(a) = f2(a)} and
notice that (2) implies the assumptions of the induction axiom. Hence A = B.

To prove existence we need the following notion of approximation of f . A set
B ⊆ A is an initial segment of A if a0 ∈ B and S(a) ∈ B =⇒ a ∈ B.
An approximation to f is a map u : B → C, where B is an initial segment
of f , u(a0) = c0, and for every a ∈ A with S(a) ∈ B = dom(u), we have that
u(S(a)) = g(u(a), a). Notice that the collection

F := {u | u is an approximation to f},
is a set by applying the appropriate formula to the set P(A × C). It is also non-
empty, since {(a0, c0)} ∈ F . Let f :=

⋃
F . We claim that f is a function and it

satisfies (2) above.
Clearly f is a relation since it is a union the relations u ∈ F . By the induction

axiom we also see that dom(f) = A, since {(a0, c0)} ∈ F =⇒ = a0 ∈ dom(f), and
whenever a ∈ dom(u), with u ∈ F we have that u′ = u ∪ {(S(a), g(u(a), a))} ∈ F .

To see that f is a function, let B = {a ∈ A | f is uniquely defined}. That is,

B = {a ∈ A | ∃c ∈ C∀u ∈ F (u(a) = c)}.
Now a0 is clearly in B and if for some fixed a there is a fixed c so that all u ∈ F
agree that u(a) = c, the definition of approximation implies that S(a) ∈ B. By
induction axiom we have that B = A and therefore f is a function.

We leave to the reader to similarly check that (2) holds for f . �

Corollary 11. Any two numbers systems (A, a0, S) and (B, b0, T ) are isomor-
phic, i.e., there is a bijection π : A→ B, s.t. π(a0) = b0, π(S(a)) = T (π(a)) for all
a ∈ A.
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Proof. Apply Theorem 2 with c0 := b0 and g(a, c) := T (c) to get π. Use
induction axiom (axiom 5 above) to show that π is an injection, a surjection, and
that it preserves the number system structure. �

Remark 12. Notice that the above corollary shows that second order logic
behaves very differently than first order logic. Indeed, by the upward Lowenheim-
Skolem the usual first order formulation of Peano arithmetic has many pairwise
non-isomorphic models, while the above corollary says that all models of second
order PA are isomorphic. In other words, the upward Lowenheim-Skolem is not true
in second order logic. How can we reconcile this observation with the discussion
following the definition of a number system? Well, that is the content of the next
exercise.

Exercise 13. Let U = (U,∈U) and W = (W,∈W) be models of Z. Prove that:

(1) If (A, a0, S) ∈ U and U |= “(A, a0, S) is a number system′′ then (A, a0, S)
is a model of first order Peano arithmetic in L = {0, s};

(2) If (A, a0, S), (B, b0, T ) ∈ U , U |= “(A, a0, S) is a number system′′, and U |=
“(B, b0, T ) is a number system′′ then (A, a0, S) and (B, b0, T ) are isomor-
phic {0, s}-structures;

(3) Assume that (A, a0, S) ∈ U , (B, b0, T ) ∈ W , U |= “(A, a0, S) is a number system′′,
and W |= “(B, b0, T ) is a number system′′. Does the above theorem imply
that (A, a0, S) and (B, b0, T ) are isomorphic {0, s}-structures?

Next we describe a specific number system of V , which we will identify with
the set ω of all “natural numbers”, and we show that the existence of this number
system is guaranteed by the axioms we have so far. By the corollary which follows
Theorem 2 any other number system in V is isomorphic to ω.

Let x be a set. The successor x+ of x is the set x∪{x}. In V we can intuitively
form the set {∅, ∅+, ∅++, . . .}. We take this to be the set ω of all natural numbers.
The formal definition is as follows: a successor set z is any set which contains ∅
and which is closed under the operations x 7→ x+, that is, any set z which satisfies:

ϕsucc(z) := (∅ ∈ z) ∧ (∀x x ∈ z =⇒ x+ ∈ z)

We define ω to be the “smallest successor set”, that is the unique set satisfying:

ϕω(w) := ∀x
(
(x ∈ w) ⇐⇒ (∀z ϕsucc(z) =⇒ x ∈ z)

)
Theorem 14. Z proves that there exists a unique set satisfying ϕω

Proof. Uniqueness of ω follows immediately from the extensionality axiom A.5.
since any two sets w1, w2 which satisfy the formula ϕω(w) are forced by this formula
to the exact same x, that is, all x with (∀z ϕsucc(z) =⇒ x ∈ z).

For existence, it suffice to show that there exists some successor set S because
then we can use the subset axiom A.5., to attain ω as {w ∈ P(S) | ϕω(w)}. This
follows from the next lemma. �

Lemma 15. Vω, which exists by Lemma 3, is a successor set.
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Before we proceed to the proof of this lemma we introduce the following notion
that is going to play important role, not only in the proof of this lemma, but also
for the development of the general theory of the class ORD of all “ordinals” which
we will define later on.

Definition 16. A set X is called transitive if whenever v ∈ x and x ∈ X, we
have that v ∈ X. Equivalently, whenever x ∈ X =⇒ x ⊆ X.

Proof of 15. By definition, Vω :=
⋃
Tω where Tω is the “smallest set” that

contains ∅ and it is closed under the operation x 7→ P(x). Since ∅ ∈ Tω, we have
that {∅} = P(∅) ∈ Tω and therefore ∅ ∈

⋃
Tω.

To see that
⋃
Tω is closed under x 7→ x+, notice first that every element X ∈ Tω

is transitive. This because

T := {X ∈ Tω | X is transitive}
contains ∅ and it is closed under X 7→ P(X) (if x ∈ P(X) then x ⊆ X; so if v ∈ x
then v ∈ X, and by transitivity of X, v ⊆ X; hence v ∈ P(X)) and by minimality
of Tω we have Tω = T .

Let now x ∈
⋃
Tω. Then, there is X ∈ Tω with x ∈ X. By transitivity of X

we have that x ⊆ X and therefore x ∈ P(X). So x ∈ X and x ⊆ X. In other
words, x+ := x ∪ {x} ⊆ X. That is x+ ∈ P(X), and since P(X) ∈ Tω we have that
x+ ∈

⋃
Tω. �

Theorem 17. The triple (ω, ∅, s), where s(x) = x+, is a number system.

Proof. (1), (2) are immediate. For (3) notice that x+ 6= ∅ since x ∈ x+. For (4),
notice first that each x ∈ ω is transitive. Indeed, let Ω := {x ∈ ω | x is transitive}
and notice that ∅ ∈ Ω and Ω is closed under x 7→ x+: if v ∈ y ∈ x+, then either
v = x or v ∈ y ∈ x; the first immediately implies v ∈ x+ and so does the second
after invoking transitivity of x. By minimality of omega we have that ω = Ω.

If now x+ = y+ with x, y ∈ ω the x ∪ {x} = y ∪ {y}. It follows that

(x ∈ y or x = y) and (y ∈ x or x = y)

In the worst case scenario we have that x ∈ y and y ∈ x. But then, by transitivity
we have that x ⊆ y and y ⊆ x. Hence, by extensionality A.2. we have x = y.

Property (5) is immediate by minimality of ω. �

We will usually denote elements of ω by k, l,m, n, . . . and we set

0 := ∅, 1 := ∅+, 2 := ∅++, 3 := ∅+++, . . .

Notice that for every n ∈ ω we have that n+ = {0, 1, . . . , n}. Theorem 10 easily
generalizes (with the same proof) to the next theorem:

Theorem 18 (Definition by induction II). Let h : X → Y and g : Y ×ω×X → Y
be to functions. Then there exists a unique f : X × ω → Y so that

f(0, x) = h(x) and f
(
n+, x) = g(f(n, x), n, x

)
.
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Using this we can define addition, multiplication, and exponentiation by:

f+(0,m) = m and f+

(
n+,m) = f(n, x)+;

f∗(0,m) = 0 and f∗
(
n+,m) = f+

(
f∗(n,m),m

)
;

fexp(0,m) = 1 and fexp

(
n+,m) = f∗

(
fexp(n,m),m

)
;

We will denote f+(n,m), f∗(n,m), fexp(n,m) simply by n+m, n ∗m,mn. Finally

for n,m ∈ ω we let (n < m ⇐⇒ n ∈ m)

Theorem 19. The relation < is a linear ordering on ω

Proof. We need to show that < is a transitive, non-reflexive, total relation.
We already showed that every l ∈ ω is transitive: if n ∈ m ∈ l then n ∈ l.

We show that n 6< n by induction on n. It is clear that ∅ 6∈ ∅. Moreover notice
that if n ∪ {n} ∈ n ∪ {n} then either n ∪ {n} ∈ n or n ∪ {n} = n. In both cases it
would follow n ∈ n which contradicts the inductive assumption that n 6< n.

We finally need to show that < is total (since n < m =⇒ n follows from that
and non-reflexivity). We will show by induction on n that the following holds:

T (n) ⇐⇒ ∀m
(
(n ∈ m) ∨ (n = m) ∨ (m ∈ n)

)
For n = 0 an easy induction shows that ∀m

(
(0 ∈ m) ∨ (0 = m)

)
. We leave this

to the reader. Assume now that T (n) holds and we prove T (n+). We do this by a
second induction on m. For m = 0 it is easy to see that m ∈ n+ since 0 ∈ {0} = 0+

and 0+ ⊆ 1+ ⊆ · · · ⊆ n+. Assume now that(
(n+ ∈ m) ∨ (n+ = m) ∨ (m ∈ n+)

)
,

we need to show that(
(n+ ∈ m+) ∨ (n+ = m+) ∨ (m+ ∈ n+)

)
.

If n+ ∈ m then n+ ∈ m+ by transitivity and the fact that m ∈ m+. If n+ = m then
n+ ∈ m+. Finally, if m ∈ n+, we have two cases to consider. First case is m = n, in
which case m+ = n+ and we are done. Second case is m ∈ n. We also have:(

(n ∈ m+) ∨ (n = m+) ∨ (m+ ∈ n)
)
,

since, by inductive assumption, T (n) holds. But m ∈ n contradicts the first alter-
native since (n ∈ m+) =⇒ (n ∈ m) ∨ n = m, and T (n) holds by assumption. The
other two cases both imply that m+ ∈ n+ and we are done. �

Theorem 20. The relation < is a well ordering on ω. That is, for every A ⊆ ω,
if ∅ 6= A, there is a ∈ A so that for all b ∈ A we have a ≤ b. Moreover, for all n ∈ ω
we have that there is no k ∈ ω with n < k < n+ 1.

Proof. For the second assertion, if n < k < n+1, then n ∈ k ∈ n∪n∪{n}. So
either n < n by transitivity n ∈ k ∈ n, a contradiction; or n < n by since n ∈ k = n,
again a contradiction.
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For the first statement, let B = {n | ∀k ≤ nk 6∈ A}. Assume towards contra-
diction that A has no least element then we will show B = ∅. This would imply
that A = ∅. Clearly 0 ∈ B since otherwise, 0 ∈ A and it would clearly be the least
element of A. If n ∈ B, i.e., ∀k ≤ nk 6∈ A we want to show n + 1 ∈ B, that is,
∀k ≤ n+k 6∈ A. But if that fails than n+ 1 ∈ A is the least element of A. �

To summarize, ω was chosen to be a “canonical” number system inside V : the
well founded linear ordering < that is associated with the system (ω, 0, S) is no other
than ∈ itself. The notion of a transitive set (Definition 16) was used extensively in
the process of establishing the relationship between the various elements of ω. It is
not difficult to see that not only the elements n of ω are transitive sets but also ω
itself. Insisting on viewing ∈ are an ordering <, we have

0 < 1 < 2 < . . . < n < . . . < ω.

V

· ω·

Vω, the set

· · Vω, the collection

...

· n

...

· 2

· 1

∅ 0

Of course, we can now start applying the operation x 7→ x+ to continue this
ordering to ω+ 1 := ω+, ω+ 2 := ω++. Every set of the form ω+n is easily seen to
be transitive and well-ordered by ∈. These sets form the initial segment of the class
ORD of all ordinals. Ordinals is the formal name for what we referred to as “stages”
in the introduction. The class ORD will form for us the “spine” of the universe V
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which we will use, among others, to formally define the hierarchy (Vα)α∈ORD that
exhausts the universe V .

Definition 21. An ordinal (in the sense of Von Neumann) is any set α which is
transitive and well-ordered by ∈, that is, {(x, y) | x, y ∈ α, x ∈ y} is a well-ordering.

4. Cardinality: finite vs infinite

Two sets x, y are equinumerable, or have the same cardinality, if there is
a map f : x→ y which is bijective. We denote this by

x ≈ y.

It is clear that for all x, y, z we have that x ≈ x, x ≈ y =⇒ y ≈ x and x ≈ y ∧ y ≈
z =⇒ x ≈ z. In other words, if it was not for the fact that ≈ is not a set, then ≈
would be an equivalence relation. A set x is finite if there is n ∈ ω with x ≈ n. It
is infinite if it is not finite. Being finite is a “smallness” property:

Proposition 22. The collection of all finite sets forms an ideal. That is:

(1) ∅ is finite;
(2) if x is finite and y ⊆ x, then y is finite;
(3) if x, y are finite then x ∪ y is finite.

Proof. For (1), notice that ∅ : ∅ → ∅ is a bijection. For (3), notice that if
f : n → x and g : m → y are bijections, then h : n + m → x ∪ y with h(k) = f(k),
if k < n and h(l + n) = g(l) if l < m; is a bijection. Property (2) follows from the
lemma:

Lemma 23. If x ( n, then x ≈ m for some m < n.

Proof of Lemma. By induction on n. For n = 0 it is clear. Assume now that
it holds for n and assume that x ( n+ = n ∪ {n}. If n 6∈ x then either x = n, in
which case we are done since x ≈ m := n < n+; or x ⊆ n, in which case we are
done by inductive hypothesis and transitivity of <. So assume that n ∈ x. But then
let i ∈ n with i 6 x and consider the function {(k, k) | k ∈ x \ n} ∪ {(n, i)}. This
function shows that x ≈ x′ where x′ ⊆ n. Then either x′ = n and we are done since
m := n < n+; or x′ ( and we are done by inductive hypothesis. �

�

Taking the contrapositive we have that “being infinite” is a “largeness” property.

Corollary 24. The collection of all infinite sets forms a filter. In particular,
if y ⊆ x and y is infinite, then so is x.

Theorem 25 (Non-compressibility). If x is finite and y ( x then x 6≈ y.

Proof. By next lemma it suffices to show that if m < n ∈ ω then m 6≈ n. We
need to show that the set A := {n ∈ ω | ∀m < n m 6≈ n} is equal to ω. But 0 is
clearly in ω and assuming n ∈ A we can easily show that n+ ∈ A: if n+ ≈ m < n+
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then n ≈ x ( m. By the above lemma we have n ≈ x ≈ k < m. Since m < n+,
by the second part of Theorem 20 we have that k < n. This, together with n ≈ k,
contradicts n ∈ A. �

Corollary 26. ω is infinite.

Proof. Notice that n 7→ n+ 1 is a “compression” of ω. �

The fact that ω is “compressible” while no finite set is “compressible” suggest
that the following alternative definition of “infinite.” A set x is Dedekind infinite,
or compressible, if for some set y we have x ≈ y ( x. By Theorem 25, we have
that

Dedekind infinite =⇒ Infinite.

However, the converse is independent of the Zermelo axioms. That is a good excuse
to introduce a new axiom. Let x be a set. A choice function for P(x) is any
function ϕ : P(x) \ {∅} → x so that ϕ(y) ∈ y for all non-empty y ⊆ x.

The Axiom of Choice.

AC. If x is non-empty then there exists a choice function for P(x).

We should emphasize that for many sets x which come together with some rea-
sonable structure, such as ω, one can directly define a choice function for P(x). For
example, Theorem 20 proves that the assignment A 7→ min<(A) is a choice function
for P(ω)

Theorem 27. Assuming the axiom of choice: Infinite =⇒ Dedekind infinite.

Proof. Let x be infinite. It suffices to find an injective map f : ω → x because
then we can define a compression g : x → x by setting g(y) = y if y 6∈ rng(f) and
g(y) = f(n+ 1) if f(n) = y.

To define f , fix any choice function ϕ : P(x) \ {∅} → x for P(x) and set:

f(0) = ϕ(x) and f(n+) = ϕ(x \ {f(0), . . . , f(n)}).
Formally, this is defined using Theorem 10: first define by induction a map F : ω →
P(x) using, in the notation of Theorem 10, c0 = x ∈ P(x) and g : P(x)×ω → P(x)
with g(c, n) = c \ ϕ(c). Then let f(n) = ϕ(F (n)). �

For every finite set x we say that the cardinality of x is n if x ≈ n. We denote
this by |x| = n. Notice by the results of this section such a number is unique for
each x. Here are some basic properties of cardinalities of any two finite sets x, y:

(1) for all n ∈ ω we have that |n| = n;
(2) |x× y| = |x| ∗ |y|;
(3) |xy| = |x||y|;
(4) |P(x)| = 2|x|;
(5) x ∩ y = ∅ =⇒ |x ∪ y| = |x|+ |y|.
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We say that the cardinality of a set x is less than or equal to the cardi-
nality of y, or x / y, if there is an injection f : x → y, that is, if x ≈ z ⊆ y. We
have that:

(1) under (AC), x is infinite if and only if ω / x;
(2) if x, y are finite then x / y if and only if |x| ≤ |y|;
(3) if x is finite and f : x→ y then f(x) is finite and |f(x)| ≤ |x|.

5. Compactness and combinatorics on the boundaries of Peano
Arithmetic

When it comes to infinite sets, the following trivial fact is the starting point for
many, often non-trivial, combinatorics.

Pigeonhole Principle. Assume that X0, . . . , Xn is a covering of an infinite set
X, i.e., X0

⋃
· · ·
⋃
· · ·Xn = X and Xi

⋂
Xj = ∅ for all distinct i, j ≤ n. Then there

is i ≤ n with Xi infinite.

To see this, notice that it suffices to prove that if all Xi are finite then so is the
union of them. This is proved by induction of n using Proposition 22. The first ap-
plication of the Pigeonhole Principle will be a combinatorial compactness principle,
known as König’s Lemma, which often allows us to bridge finite combinatorics with
infinite combinatorics.

Let A be a set. A tree on (alphabet) A is any set T of finite sequences
(a0, . . . , an−1) from A closed under initial segments, that is:

(a0, . . . , an−1) =⇒ ∀m ≤ n(a0, . . . , am−1) ∈ T

Formally, a finite sequence is any function s : n→ A with n ∈ ω. For n = 0 we get
the empty sequence ∅, which is obviously contained in any non-empty tree. A node
of T is simply an element of T .

Examples. ω<ω, 2<ω; draw pictures.
By an infinite branch of T we mean any function f : ω → A so that f�n ∈ T

for all n ∈ ω. Notice that an infinite branch of T is not an element of T but it
is “approximable” by elements of T . A tree is finite splitting if for every s =
(a0, . . . , an−1) ∈ T , the collection of all a ∈ A so that s_a := (a0, . . . , an−1, a) ∈ T
is finite. If s_a ∈ T we call s_a and immediate extension of s.

Theorem 28 (König’s Lemma (AC)). Every finite splitting infinite tree has an
infinite branch.

Proof. Let T be a finite splitting tree on some alphabet A. Fix a choice function
ϕ : P(A)→ A. We define inductively, using Theorem 10, the element an ∈ A by

a0 := ϕ({a ∈ A | (a) ∈ T and T(a) is infinite})

an+1 := ϕ({a ∈ A | (a0, . . . , an, a) ∈ T and T(a0,...,an,a) is infinite}),
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where for any sequence s = (b0, . . . , bk−1) we let

Ts := {t ∈ T | t = (b0, . . . , bk−1, bk, . . . , bl−1), for some bk, . . . , bl−1 ∈ A}
The fact that each an exists follows from the pigeonhole principle applied on the
assumption that T is finitely branching. It is immediate to prove by induction that
(a0, . . . , an−1) ∈ T for all n, and therefore (an)n∈ω is an infinite branch. �

Example. For an example of an infinite tree without infinite branch consider
the subtree of ω<ω consisting of all sequences (n0, . . . , nk−1) with i ≤ ni.

König’s Lemma is often used to connect the infinitary with finitary results. We
will will illustrate this by reflecting the infinite Ramsey theorem to its finitary coun-
terpart. Lets start with the infinitary Ramsey theorem which we will simply call
the “Ramsey theorem.” The Ramsey theorem is a higher-dimensional analogue of
the Pigeonhole Principle. The 2-dimensional Pigeonhole Principle known as the
Ramsey theorem for edges can be stated as follows. Given a set X, let

[X]2 =
{
{a, b} | a, b ∈ X, a 6= b

}
.

One may think of the pair (X, [X]2) as the complete graph on domain X. By a
finite coloring of [X]2 we mean a partition [X]2 = C1 t · · · t Cm of [X]2 into
finitely many sets C1, . . . , Cm which we call colors. The Ramsey theorem for edges
states that if we finitely color the edges of any infinite complete graph then one of
the colors is “large”, in that, it contains the edges of an infinite complete subgraph.

Theorem 29 (Infinite Ramsey for edges (AC)). Let X be an infinite set. If
[X]2 = C1 t · · · t Cm is a finite coloring of [X]2 then there is some infinite Y ⊆ X
and some i ≤ m, with [Y ]2 ⊆ Ci.

Proof. Notice that it suffices to prove this for colorings [X]2 = BtR consisting
of 2 colors. Indeed by a simple induction we can reduce the general case which uses
m colors to the one which uses m− 1 many colors by setting B = C1 t · · · t Cm−1

and R := Cm. Moreover using AC we can assume without loss of generality that
X = ω. We will use the notation {n < n′} to denote the set {n, n′} ∈ [ω]2 where
n < n′.

We will first construct an infinite subset X∞ ⊆ ω which is not necessarily
“monochromatic” but the colors of the edges are nicely organized: the color of
the edge {n, n′} with n, n′ ∈ X∞ depends only on the minimum element n, i.e. if
{n, n′′} is also an edge in X∞ then then the color of {n, n′} is the same as the color
of {n, n′′}.

Let n0 = 0. By Pigeonhole Principle there is an infinite subset X0 ⊆ ω and a
color C ∈ {B,R} so that for all n ∈ X0 we have {n0 < n} ∈ C.

Assume that nk and Xk have been defined so that Xk is infinite. Let nk+1 :=
minXk. By the Pigeonhole Principle we have that there is an infinite subset Xk+1 ⊆
Xk and a color C ∈ {B,R} so that for all n ∈ Xk+1 we have {nk+1 < n} ∈ C.

Let X∞ := {n0 < n1 < n2 < . . . < nk < . . .} and notice that indeed, if
{ni < nj} ∈ [X∞]2 then nj is an element of Xi and therefore the color of {ni, nj}
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depends only on ni and it is specified at the i-th stage of the above induction. This
way we define a coloring X∞ = B′ tR′ of the vertexes of X∞:

n ∈ B′ ⇐⇒ ∀n′ > n {n < n′} ∈ B ⇐⇒ ∃n′ > n {n < n′} ∈ B

By a final use of the Pigeonhole Principle we find an infinite Y ⊆ X∞ so that
Y ⊆ B′ or Y ⊆ R′. This implies that wither [Y ]2 ⊆ B or [Y ]2 ⊆ R as desired. �

In the Pigeonhole principle we colored vertexes and in the Theorem above we
colored edges. More generally, for any dimension d ∈ {1, 2, 3, . . .} let

[X]d :=
{
{x1, . . . , xd} | xi ∈ X, xi 6= xj

}
,

be the set of all d-dimensional faces with vertexes from X. We have:

Theorem 30 (Infinite Ramsey (AC)). Let X be an infinite set. If [X]l = C1 t
· · · t Cm is a finite coloring of [X]l then there is some infinite Y ⊆ X and some
i ≤ m, with [Y ]l ⊆ Ci.

Proof. The proof is exactly the same as in Theorem 29. The only difference
is that the green uses of the Pigeonhole Principle are replaced with the Ramsey
theorem of dimension (d − 1), so that the color of {nk} ∪ σ, for any σ ∈ [Xk], is
entirely determined by nk. �

The finite version of the general Ramsey theorem can be stated as follows. First
let a, b, c ∈ ω which, intuitively, will satisfy a ≤ b ≤ c and let mω be the number of
colors. We will use the notation

c→ (b)ak

whenever these numbers satisfy: “if the [c]a is colored with k-many colors then there
is a subset Y ⊆ a of cardinality b so that [Y ]a is monochromatic.”

Theorem 31 (Ramsey Theorem (finite)). For all a, b, c,m ∈ ω there is c ∈ ω
with

c→ (b)ak.

Proof. Assume that the statement is false. That is, for every c there is a
“bad” m-coloring of [c]a which has no monochromatic [Y ]a with |Y | = b. We will
identify an m-coloring with a function t : [c]a → k. Let T be the collection of all
such colorings t : [c]a → k, for all c ∈ ω and notice that T can be given the structure
of a tree, where t2 : [c2]a → k extends t1 : [c1]a → k if t2�c1 = t1. It is easy to see
that T is finitely branching.

Consider the subcollection Tbad ⊆ T which contains all bad colorings. Clearly
Tbad is a subtree of T and therefore it is a finitely branching tree. Moreover the
assumption: “for every c there is a bad m-coloring of [c]a” implies that Tbad is also
infinite. By König’s Lemma there is and infinite branch (tn)n in Tbad. Let f =

⋃
n tn.

It is easy to see that f is a bad coloring of [ω]a, in that, it has no monochromatic
[Y ]a with |Y | = b. This contradicts, of course, Theorem 30. �
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Using Gödel’s coding tricks one can actually write a sentence σfinR in the (first
order) language of Peano arithmetic, so that (ω, 0, S,+∗) |= σfinR if and only if
Theorem 31 is true. Moreover, PA proves σfinR (which is equivalent to PA |= σfinR,
by Gödel’s completeness theorem). Of course the statement in the Theorem 30 is
intrinsically infinitary and it cannot be “phrased” in Peano arithmetic. More inter-
esting is the situation with the following statement known as the Paris-Harrington
principle.

Definition 32. Let a, b, c,m ∈ ω. We write c →PH (b)am if whenever [c]a is
m-colored, then there is a set Y ⊆ c so that [Y ]a is monochromatic and moreover:

(1) |Y | ≥ b;
(2) |Y | ≥ minY .

Using the same argument as in the proof of Theorem 31 we have that

Theorem 33 (Paris-Harrington Principle). For all a, b,m ∈ ω there is c ∈ ω
with

c→PH (b)am

As in the case of Theorem 31, the above statement can be viewed as a sentence
σPH in the language of first order Peano Arithmetic. However, it is a theorem of
Paris and Harrington that PA cannot prove σPH! The interested reader may consult
Marker’s model theory book or my notes (Topics in Computability) for a sketch
of the proof of this “negative result.” This additional strength of the Zermelo set
theory which allows us to prove Theorem 33 comes from the assumption that there
exists an infinite set (axiom A.6.). This theme repeats in set-theory we will see for
example later on that if we assume the existence of certain “large cardinals” which
cannot be proved to exist in Z, then we can prove various results in analysis which
cannot be proved in Z.

6. Countable sets

A set x is countable if x / ω. It is countably infinite if x ≈ ω. We write |x| ≤
ℵ0 and |x| = ℵ0 to denote that x is countable and countably infinite, respectively,
and we say that the cardinality of x is less than ℵ0 and equal to ℵ0, respectively.

Here are some properties which follow directly by the definitions:

(1) |x| = ℵ0 if and only if there is a surjective function f : ω → x;
(2) if |x| ≤ ℵ0 and |x| 6= ℵ0, then |x| = n, for some n ∈ ω;
(3) if |x| ≤ ℵ0 and y ⊆ x then |y| ≤ ℵ0;
(4) if |x| ≤ ℵ0 and f : x→ y then |rng(x)| ≤ ℵ0.

Here are some additional closure properties for countable sets

Lemma 34. Let x, x1, . . . , xn be countable sets. Then

(1) x1 × · · · × xn is countable;
(2) x1 ∪ · · · ∪ xn is countable;
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(3) x<ω :=
⋃
n∈ω x

n is countable.

Proof. (1) It suffices to show that ω×ω ≈ ω. Consider the map f : ω×ω → ω
with

f((m,n)) =
(m+ n+ 1)(m+ n)

2
+m.

It is easy “geometric” argument based on the lattice shows that this is a bijection:

(0, 0) (0, 1) (0, 2) . . .

(1, 0) (1, 1) (1, 2) . . .

(2, 0) (2, 1) (2, 2) . . .
...

...
...

(2) This is left as an exercise.
(3) It suffice to show that ω<ω ≈ ω. For every (k0, . . . , kn−1) ∈ ωn let

〈k0, . . . , kn−1〉 := pk0+1
0 ∗ · · · ∗ pkn−1+1

n−1 − 1,

where p0, p1, . . . is the unique increasing enumeration of primes. Let also 〈∅〉 :=
0. �

Theorem 35 ((AC)). A countable union of countable sets is countable.

Proof. Let {xi | i ∈ ω} be a countable family of countable sets. Recall that,
formally, this is just a function h with dom(h) = ω and h(i) = xi. For every i ∈ ω
we pick a bijection fi : ω → xi. This is where (AC) is used. Let g : ω× ω →

⋃
i∈ω xi

with g(i, j) = fi(j). Clearly g is onto
⋃
i∈ω xi.

Formally, we let ϕ : P
(
P(ω×

⋃
i∈ω xi)

)
→ P(ω×

⋃
i∈ω xi) be a selection map by

(AC). Let also

G = {(n, F ) ∈ ω × P
(
P(ω ×

⋃
i∈ω

xi)
)
| F = { all bijections f : ω → h(n)}}

Then G is a function and ϕ ◦ G is a function assigning to each i ∈ ω the desired
function fi above. �

Using these results we can show that many other sets such as Z, Q, and the set
of all algebraic numbers, are countable. That being said, by the following theorem
we also have that P(ω) is not countable.

Theorem 36 (Cantor). For any set X we have that P(X) 6≈ X.

Proof. Let f : X → P(X) be any function. Then f cannot be onto: let

Z := {x ∈ X | x 6∈ f(x)}
Then Z ∈ P(X) and Z 6∈ rng(f) because if f(z) = Z then we have a contradiction:

z 6∈ Z ⇐⇒ z ∈ f(z) ⇐⇒ z ∈ Z.
�
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We clearly have that X / P(X) via x 7→ {x}. Hence the “cardinality” of P(X)
is strictly bigger than the cardinality of X. Notice that, by Cantor’s theorem, even
in the Zermelo universe Vω+ω we have infinitely many ≈-different infinities.

7. The Cantor-Schröder-Bernstein Theorem

Even if two sets X, Y can be brought into bijective correspondence, it is often
difficult to find an explicit map h : X → Y which is both 1-1 and onto. It is often
much easier to produce an injection f : X → Y and an injection g : Y → X. The next
theorem shows that these two injections can always be combined into the desired
bijection. We observe that while a big part of the theory of cardinality depends on
the axiom of choice, this is not the case for the next theorem.

Theorem 37 (Cantor-Schröder-Bernstein). (X / Y ) ∧ (Y / X) =⇒ X ≈ Y .

Proof. Going back to Hilbert’s hotel thought experiment: think of X as being
a collection of guests and Y as being a collection of rooms in the hotel. The given
injection g : Y → X has assigned to each room a guest but there are possibly some
guest left without a room: the guests in X0 := X \ g′′Y . We can use the injection
f : X → Y to move the guests in X0 to the rooms f ′′X0 but these are already
occupied by the guests in X1 := g′′f ′′X0. So we have to displace X1 using f to the
rooms currently used by X2 := g′′f ′′X1 and so on...

So define inductively X0 := X\g′′Y and Xn+1 := g′′f ′′Xn. Let also X∞ =
⋃
nXn.

Define h : X → Y with h(x) = f(x), if x ∈ X∞; and h(x) = g−1(x), if x ∈ X \X∞.
h is a function, since g is injective, whose domain is clearly X. It also clearly

injective on X∞ and injective on X \X∞. So let x ∈ X∞ and x′ ∈ X \X∞. Assume
that h(x) = h(x′). That is f(x) = g−1(x′) and therefore x′ = g ◦ f(x). Since x ∈ Xn

for some n, this implies that x′ ∈ Xn+1, a contradiction.
Surjectivity is easy to see since at its stage of the “displacement procedure”

above every room is always occupied (left as an exercise). �

8. The cardinality of the continuum

Classically, the continuum is the space R of all reals. Recall that a real r is by
definition a Dedekind cut, i.e., any subset r ⊆ Q so that

(1) (bounded) there is q ∈ Q so that for all p ∈ r we have p < q.
(2) (downward closed) if p < q and q ∈ r, then p ∈ r.

We say that X has the cardinality of the continuum and we denote this by
|X| = 2ℵ0 if X ≈ R. In modern set theory, “the continuum” refers to either of the
following sets, or more generally to any Polish space (to be defined):

2ω ≈ nω ≈ ωω ≈ P(ω) ≈ R.

Lemma 38. For all n ∈ ω, with n > 1, we have 2ω ≈ nω ≈ ωω.
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Proof. It is clear that 2ω / nω / ωω, since 2ω ⊆ nω ⊆ ωω. By Cantor-
Schröder-Bernstein it suffices to show that ωω / 2ω. The desired injection is given
by:

(n0, n1, n2, . . .) 7→ (

n0+1︷ ︸︸ ︷
1, . . . , 1, 0,

n1+1︷ ︸︸ ︷
1, . . . , 1, 0,

n2+1︷ ︸︸ ︷
1, . . . , 1, 0, . . .).

�

Lemma 39. 2ω ≈ P(ω) ≈ R.

Proof. 2ω ≈ P(ω) as witnessed by the bijection which sets any A ∈ P(ω) to its
characteristic map χA ∈ 2ω. Since R ⊆ P(Q) and Q ≈ ω, we have that R / P(ω).
By Cantor-Schröder-Bernstein it suffices to find an injection from 2ω to [0, 1] ⊆ R.

We define inductively a closed interval Is for every s ∈ 2<ω as follows. Let
I∅ = [0, 1]. Given Is = [a, b] let Is_0 be the left and Is_1 be the right third of [a, b]:

Is_0 := [a, a+
b− a

3
], Is_1 := [a+ 2

b− a
3

, b]

By compactness of [0, 1] (see HW2), for every α ∈ 2ω the intersection
⋂
n∈ω Iα|n is

non-empty. Moreover, since the diameter of Iα|n goes to 0 as n increases we have
that

⋂
n∈ω Iα|n is a singleton. This defines a function f : 2ω → [0, 1] with

{f(α)} =
⋂
n∈ω

Iα|n.

We leave to the reader to check that f is injective. �

Lemma 40. If A ⊆ R is countable then |R \ A| = 2ℵ0.

Proof. It suffices to find B ⊆ R \ A with |B| = ℵ0 because then we can break
B = B0 t B1 to the even B0 and odd B1 elements of the enumeration witnessing
|B| = ℵ0 and define a bijection h : R \ A → R where h′′B0 = B, h′′B1 = A and
h(x) = x for all x ∈ R \ (A

⋃
B).

By (AC) we immediately get such B by we leave to the reader to use a diagonal
argument to get such B without invoking (AC). �

Theorem 41. Let |X| = 2ℵ0, |Y | = 2ℵ0, |Z| = ℵ0. Then

(1) |X
⋃
Y | = 2ℵ0;

(2) |X × Y | = 2ℵ0;
(3) |XZ | = 2ℵ0.

Proof. For (1) it is clear that 2ω ≈ X / X
⋃
Y . By CSB it suffices to show

that X
⋃
Y / 2ω. Let f : X → 2ω and g : Y → 2ω be injections (which exist by

assumption) and let h : X
⋃
Y → 2ω by h(x) = (0)_f(x), if x ∈ X; and g(x) =

(1)_g(x) otherwise. Then h is clearly an injection.
For (2), notice that ((a0, a1, . . .), (b0, b1, . . .)) 7→ (a0, b0, a1, b1, . . .) is a bijection

between 2ω × 2ω and 2ω.
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For (3), notice that if f : ω × ω → ω is a bijection then the map(
(a0

0, a
0
1, a

0
2, . . .), (a

1
0, a

1
1, a

1
2, . . .), (a

2
0, a

2
1, a

2
2, . . .), · · · · · ·

)
7→ (b0, b1, b2, . . .)

with bf(n,m) = anm, is a bijection from (2ω)ω to 2ω. �

Corollary 42. The set C(R,R) of all continuous real functions has the cardi-
nality of the continuum. The sets Open(R), Closed(R) of all open subsets and all
closed subsets of R has the cardinality of the continuum.

Proof. Notice that R / C(R,R) / RQ since the constant functions are con-
tinuous and since every continuous function is entirely determined its values on the
rationals. The rest follows from CSB and Theorem 41.

It is clear that Open(R) ≈ Closed(R) and that R / Open(R). To see that
Open(R) / R notice that Open(R) / P(Q×Q), since every open set U is determined
by all open intervals (p, q) ⊆ U with rational coefficients. �

We write |X| ≤ 2ℵ0 there is an injection from X to R

Theorem 43 ((AC)). (1) If f : X → Y and |X| = 2ℵ then |rng(f)| ≤ 2ℵ0.
(2) The union of continuum many sets of the cardinality of the continuum has

the cardinality of the continuum.

Proof. The ideas used in this proof have been already laid out in previous
sections and are left to the reader. We are going to repeat one final time in later
section when we develop the general theory of cardinality under (AC). �

9. The continuum hypothesis: part I

We have established (under AC) that ℵ0 is the least infinite cardinality. That
is, if X is an infinite set then ω / X. We have also seen that applications of the
powerset operation strictly increase the cardinality. That is,

ℵ0 � 2ℵ0 .

The obvious question is whether there is a set whose cardinality is strictly between
ℵ0 and 2ℵ0 . To phrase it in more classical terms:

Problem 44. Is there a set A ⊆ R which is neither countable, nor of the size of
the continuum?

Cantor believed that this is not the case. In fact, he put a lot of energy in proving
what we now call the “continuum hypothesis.”

The Continuum Hypothesis.

CH. Every uncountable set of reals has the cardinality of the continuum.

In 1939 Gödel proved that if set-theory (ZFC) is consistent there is a model of set
theory (ZFC) in which (CH) holds. In 1963 Cohen developed the forcing technique
which he used to show that if set-theory (ZFC) is consistent then there is a model



26 1. A FIRST COURSE IN SET THEORY

of set theory (ZFC) in which ¬(CH) holds. In other words Cantor’s efforts to prove
(CH) using the standard axioms of set theory (ZFC) were doomed to fail.

That being said, we now know that any set A ⊆ R which witnesses the nega-
tion of (CH) has to be too complicated to be accessible through countable limiting
constructions which naturally occur in topology and analysis. In other words, every
“sufficiently simple” set A ⊆ R is either countable or of the size of the continuum.

In this section we will establish that if A ⊆ R is closed (in the standard topology
of R) then A satisfies (CH). Next quarter we will extend the analysis of this section
to show the same is true when A is Borel or even analytic (which makes precise what
I above called “accessible through countable limiting constructions which naturally
occur in topology and analysis”). In a later section we will also construct Gödel’s
universe and next quarter we will develop the forcing method and construct Cohen’s
universe.

Definition 45. A subset U of R is closed if it is the union of some family U
consisting of open intervals (a, b). A set F is closed if F c is open. A set P is
perfect if it is closed and it has no isolated points, i.e., whenever (a, b) ∩ P 6= ∅
then |(a, b) ∩ P | > 1.

It is immediate from the definition that if P is perfect and (a, b) ∩ P 6= ∅ then
|(a, b)∩ P | ≥ ℵ0. In fact we can work a little harder to prove the following theorem

Theorem 46. If P ⊆ R is perfect and non-empty then |P | = 2ℵ0.

Proof. Since P 6= ∅ we can find an interval I = [a, b] so that (a, b) ∩ P 6= ∅.
For each s ∈ 2<ω we define a closed interval Is = [as, bs] so that:

(1) I∅ = I;
(2) (as, bs) ∩ P 6= ∅;
(3) Is_0 ∩ Is_1 = ∅.
(4) diam(Is) ≤ [a, b]/2length(s)

For the construction, assume that Is = [as, bs] is given as above. Since (as, bs)∩P 6= ∅
and P is perfect there are at least two elements x0 < x1 of P inside [as, bs]. Let Is_0

be the interval with center x0 and radius less than (x1−x0)/2. Similarly Is_1 be the
interval with center x1 and radius less than (x1 − x0)/2. It is clear that Is_0, Is_1

satisfy (3) and (4) above. They also clearly satisfy (2), perpetuating this way the
induction. As in the case of Lemma 39 we define a map f : 2ω → I with

{f(α)} =
⋂
n∈ω

Iα|n

Compactness of I guarantees that the intersection is indeed non empety and property
(4) above guarantees that the intersection is a singleton. Hence f is well defined.
Property (3) above guarantees that f is an injection. Finally property (2) above
and the fact that P is closed shows that rng(f) ⊆ P . Hence we have that 2ω / P ,
which finishes the proof. �



10. WELLORDERINGS AND TRANSFINITE INDUCTION 27

Theorem 47 (Cantor-Bendixson). If F ⊆ R is a closed then F = P ∪N where
P is perfect, N is countable, and P ∩N = ∅. Moreover, this decomposition is unique,
i.e., if F = P ′ ∪N ′ satisfies the above conditions then P = P ′ and N = N ′.

Before we prove this theorem we record the following immediate corollary.

Corollary 48. If F is closed and uncountable then |F | = 2ℵ0.

Proof of Theorem 47. For every A ⊆ R and every x ∈ R we say that x is a
condensation point of A if for every open interval (a, b) with x ∈ (a, b) we have

that (a, b) ∩ A is uncountable. Let Ã = {x ∈ R | a is a condensation point ofA}.
Notice, for example, that Ã = ∅ if A is countable.

Notice that is F is closed then F̃ ⊆ F , since every condensation point is, in
particular, a limit point. We therefore have that

F := F̃
⋃

(F \ F̃ ),

and we claim that setting P := F̃ and N = F \ F̃ works.

F \ F̃ is countable. Notice that if x ∈ F \ F̃ then there is an interval (p, q)
with with rational coefficients so that x ∈ (p, q) and (p, q)∩A is countable. We have

F \ F̃ =
⋃
{(p, q) ∩ A | (p, q) as above}

which is countable, as a union of countably many countable sets.

F̃ is perfect. Notice first that is closed since if x ∈ F̃ c then there is (a, b)

with x ∈ (a, b) and (a, b) ∩ F countable and therefore (a, b) ⊆ F̃ c. It also has no

isolated points since if x ∈ F̃ was isolated then we could find an interval (a, b) so

that (a, b) ∩ F̃ = {x}. But then (a, b) ∩ F would be countable since we already

showed that F \ F̃ is countable, contradicting that x was a condensation point.
For the second part of the statement, we first point out that the “local” version of

Theorem 46 also holds, i.e., if P ⊆ R is perfect and P ∩ (a, b) 6= ∅ then P ∩ (a, b) 6= ∅
is uncountable. We leave to the reader to confirm this. Assume now that F = P ′tC ′
is another decomposition of F into a perfect set and a countable set. By the local
version Theorem 46 we have that every x in P ′ is a condensation point of F . Hence
P ′ ⊆ P . Conversely, we also have that P ⊆ P ′ since if x ∈ P \ P ′, then we can find
an interval (a, b) with x ∈ (a, b) and (a, b) ∩ P ′ = ∅. This because P ′ is closed. But
then x ∈ (a, b)∩P ⊆ N ′ which contradicts that N ′ is countable by the local version
of Theorem 46. �

10. Wellorderings and transfinite induction

Looking back at the notes, ω was the first infinite set for which we had a sys-
tematic way of defining functions out of. This “systematic method” was definition
by induction–see Theorem 10 and Theorem 18–and relied on the fact that ω came
equipped with a linear order that satisfied the wellordering principle. We will extend
the nice properties of ω to more general wellorderings.
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Let (W,<) be a linear order. We say that it is a wellordering if every non-empty
X ⊆ W has a minimum element, that is:

∀X ⊆ W
(
X 6= ∅ =⇒ ∃x ∈ X ∀y (y ∈ X =⇒ x ≤ y)

)
Notice that (ω,<) and (n,<) are wellorderings while (Z, <) and (Q, <) are not.
If A = (A,<) and B = (B,<) are two linear orderings with A ∩ B = ∅ then we

can define the linear ordering A+B = (A∪B,<+) so that <+ on the A part looks
like A, <+ on the B part looks like B and for every a ∈ A, b ∈ B we have a <+ b.
Similarly we can define A · B = (A×B,<×) as the antilexicographic ordering:

(a, b) <× (a′, b′) ⇐⇒
(
(b < b′) ∨ (b = b′ ∧ a < a′)

)
.

Notice that ω · 2 looks like ω + ω (assume the copies are disjoint),

• • • . . .︸ ︷︷ ︸
ω

• • • . . .︸ ︷︷ ︸
ω

while 2 · ω looks like ω.

Exercise 49. If A = (A,<) and B = (B,<) are wellorderings then so are

A+ B and A · B.
For every wellordering W = (W,<) there are three types of points: a unique

“least”; the “successor” points; and the “limit” points. We first need a lemma.

Lemma 50. Let W = (W,<) be a wellordering. Then

(1) W has a least element;
(2) if x ∈ W and there is y ∈ W with x < y, then x has a successor;
(3) if X ⊆ W is bounded from above (there is y ∈ W with x ≤ y for all x ∈ X),

then X has a least upper bound (a least z ∈ W with x ≤ z for all x ∈ X).

Proof. For (3), if X has a maximum element then that element is clearly a
least upper bound. Otherwise, the least upper bound is the least element of

{z ∈ W | ∀x ∈ X x < z}.
�

Let x be a point in the wellordering W = (W,<). We say that x is a successor
if {y ∈ W | y < x} has a largest element. If x is neither the least element nor a
successor then we say that x is a limit.

Theorem 51 ((AC)). Let W = (W,<) be a linear ordering. It is a wellordering
if and only if it has no infinite decreasing chain x0 > x1 > x2 > . . ..

Proof. If (xn)n∈ω is an infinite decreasing sequence then X := {xn | n ∈ ω}
has no least element. Conversely assume that Y ⊆ W has no least element Fix a
choice function ϕ : P(Y )→ Y . Define inductively:

x0 := ϕ(Y ) and xn+1 = ϕ({x ∈ Y | x < xn}).
�
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An initial segment of the wellordering (W,<) is any set S ⊆ W which is <-
downward closed, i.e., if y ∈ S and x < y then x ∈ S. It is proper if S 6= W . If
x ∈ W then set Wx := {y ∈ W | y < x}. Notice that Wx = ∅ if and only if x is the
least element.

Lemma 52. S is a proper initial segment of (W,<) iff S = Wx for some x ∈ X.

Proof. Let x be the least element of W \ S. �

Theorem 53 (Transfinite induction principle). Let W = (W,<) be a wellorder-
ing and X ⊆ W . If for all x ∈ W we have (Wx ⊆ X =⇒ x ∈ X), then X = W .

Proof. If not, then let x be the least element of W \X and notice that Wx ⊆
X. �

The next theorem gives us a systematic way of defining maps on domain W , for
every wellordering W = (W,<).

Theorem 54. Let W = (W,<) be a well ordering and let A be any set. Let also
g : S → A be a function from the set S :=

⋃
x∈W AWx of all maps from any proper

initial segment of W to A. Then there is a unique function f : W → A with

f(x) = g(f�Wx, x)

Proof. The proof follows the lines of the proof of Theorem 10.
For uniqueness. If f1 = g(f1�Wx, x) and f2(x) = g(f2�Wx, x) for all x ∈ W ,

then by Theorem 53 the set

X = {x ∈ W | f1(x) = f2(x)}
is easily shown to be equal to W .

For existence. Consider the set F of all “approximations” to f :

F = {u ∈ S | if u : Wx → A then ∀y < x
(
u(y) = g(u�Wy, y)

)
},

and set f :=
⋃
F . We need to show that f is the desired object:

(1) f is a relation;
(2) dom(f) ⊆ W and rng(f) ⊆ A;
(3) f is a function;
(4) dom(f) is an initial segment of W and if x ∈ dom(f), then f(x) =

g(f�Wx, x);
(5) dom(f) = W .

Claims (1), (2) follow immediately from the fact that f = F , since the elements
u ∈ F satisfy (1),(2). For (3) notice that if x ∈ dom(u) ∩ dom(v) for some u, v ∈ F
then dom(u)∩dom(v) = Wx0 for some x0 since the intersection of initial segments is
an initial segment. As in the proof of uniqueness of f we can use transfinite induction
to show that u�Wx0 = v�Wx0 , and therefore u(x) = v(x). So the relation f is in fact a
function. For claim (4) notice that the union of initial segments is an initial segment.
Hence dom(f) = dom(

⋃
F) is an initial segment. Moreover if x ∈ dom(f) then
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x ∈ dom(u) for some u ∈ F . Hence f(x) = u(x) = g(u�Wx, x) = g(f�Wx, x) = f(x).
For (5), if not, then dom(f) = Wx0 for some x0 ∈ W . But then the following map
is clearly in F :

f
⋃
{(x0, g(f�Wx0 , x0))},

contradicting that x0 6∈ dom(
⋃
F). �

11. Comparing wellorderings

One important aspect of wellorderings is that they are pairwise comparable with
respect to embeddings. Moreover, whenever two wellorderings are isomorphic, there
is a unique such isomorphism.

Theorem 55. Let (W,<) be a wellordering and let f : W → W be any map with
x < y =⇒ f(x) < f(y). Then f(x) ≥ x for all x ∈ W .

Proof. Assume that for some x we have f(x) < x. Since f is order preserving
we have f(f(x)) < f(x), f(f(f(x))) < f(f(x)), etc. But then, using Theorem 10,
we may build an infinite decreasing sequence

x > f(x) > f(f(x)) > · · ·
which contradicts (via Theorem 51) that (W,<) is a wellordering. �

Corollary 56. If (W,<) and (W ′, <) are isomorphic wellorderings, then there
is a unique isomorphism between them. In particular, Aut((W,<)) = {idW}.

Proof. Assume that f : W → W ′ and g : W → W ′ are two different isomor-
phisms. But then both g−1 ◦f : W → W and f−1 ◦g : W → W are order preserving.
By the previous theorem we respectively have g−1 ◦ f(x) ≤ x and f−1 ◦ g(x) ≤ x.
But

g−1 ◦ f(x) ≤ x =⇒ f(x) ≤ g(x), and f−1 ◦ g(x) ≤ x =⇒ g(x) ≤ f(x),

Since g and f are order preserving. It follows that f(x) = g(x) for all x ∈ W . �

Corollary 57. Let (W,<) be a wellordering.

(1) for each z ∈ W we have that (Wz, <) 6' (W,<).
(2) if x, y ∈ W with x 6= y, then (Wx, <) 6' (Wy, <).

Proof. If f : W → Wx was an isomorphism, then f is, in particular a map from
W to W with x < y =⇒ f(x) < f(y). But then, f(x) ∈ Wx =⇒ f(x) < x,
contradicting Theorem 55. Similarly for (2). �

The following result is fundamental for the theory of wellorderings

Theorem 58. Let (W,<), (W ′, <) be two wellorderings. Then precisely one
holds:

(1) (W,<) ' (W ′, <);
(2) there is unique x′ ∈ W ′ so that (W,<) ' (W ′

x′ , <);
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(3) there is unique x ∈ W so that (Wx, <) ' (W,<).

Proof. Uniqueness is easily established using (2) of the last corollary. It there-
fore suffices to prove the above without any mention to uniqueness.

Fix some new element ∞ outside of W ′ and define using Theorem 54 a map:

f : W → W ′ ∪ {∞}

by setting f(x) :=“the least element of W ′ \ {f(z) | z ∈ Wx}”, if the latter set is
non-empty; and f(x) :=∞, otherwise. We may now consider two cases:

Case 1. f(x) 6= ∅ for all x ∈ W . Then f : W → W ′. Clearly f is order
preserving. We are left to prove the following claim which implies that one of the
alternatives (1) or (2) of the trichotomy holds:

Claim. rng(f) is an initial segment of W ′.
To prove the claim, notice that if rng(f) = W ′ then we are done. Otherwise let

x′ be the least element of W ′ \ rng(f). It is clear that W ′
x′ ⊆ rng(f), so it suffices to

show the converse as well. Assume towards contradiction that rng(f) 6⊆ W ′
x′ and let

w ∈ W be the least element with x′ ≤ f(w). But then, since f(x) < x′ for all x < w
we have by the definition of f that f(w) ≤ x′. But then f(w) = x′ contradicting
that x′ is not in rng(f).

Case 2. If f(x) = ∞ for some x ∈ W then pick x to be the least such. This
implies that f�Wx : Wx → W ′. It is clear that f�Wx is order preserving. As in case
1 one argues that the range of f�Wx is an initial segment of W ′. This initial segment
cannot be proper since this would imply that f(x) 6=∞. It follows that f�Wx is an
isomomorphism from Wx to W ′. �

Definition 59. Let W = (W,<) and W ′ = (W ′, <) be two wellorderings. We
set:

W <seg W ′ ⇐⇒ W ' (W ′
x′ , <) for some x′ ∈ W ′

W ≤seg W ′ ⇐⇒
(
W <seg W ′ ∨W ' (W ′, <)

)
,

and we say that W is isomorphic to a proper initial segment of W ′ and W is
isomorphic to an initial segment of W ′, respectively.

The collection WELLORD of all wellorderings is not a set (formally it is just the
formula ϕwellord(x), stating that x is a wellordering) behaves itself as a wellordering
under <seg, if we identify isomorphic wellorderings. We make this precise in the
following theorem.

Theorem 60. For any wellorderings W ,W ′,W ′′ we have that:

(1) W <seg W ′ of W ′ <seg W or W 'W ′.
(2) W <seg W ′ =⇒ W ′ 6<seg W.
(3) W <seg W ′ and W ′ <seg W ′′ implies W <seg W ′′.
(4) if COLL is a non-empty collection of wellorderings (given by ψ(x), say),

then there is a <seg-least element of COLL.



32 1. A FIRST COURSE IN SET THEORY

Moreover, if X is a set of wellorderings then there is a wellordering WX = (WX , <)
which is the ≤seg-(least upper bound) of X.

Proof. The first three properties follow immediately from Theorem 58.
For property (4), let W = (W,<) in COLL. Let x be the least element W for

which there is W ′ in COLL with (Wx, <) ' W ′ (if such x does not exist then W is
already least). Then W ′ is the least element.

For property (5) notice that, by property (4), it suffices to find a wellordering
that is ≤seg-above all elements of X. We may assume without loss of generality
that if (W,<), (W ′, <) ∈ X then W ∩W ′ = ∅. Let A =

⋃
{W | (W,<) ∈ X} and

consider the equivalence relation

a ∼ b ⇐⇒ W (a)
a ∼ W

(b)
b ,

where W (c) is the unique element of X containing c, for every c ∈ A. Let [a] be the
equivalence class of [a] under ∼ and let WX := W/ ∼. Define

[a] <X [b] ⇐⇒ W (a)
a <seg W

(b)
b

It is easy to see that (WX , <X) is a wellordering and a 7→ [a] shows that each
(W (a), <) in X is ≤seg-below (WX , <X). �

12. Zermelo’s wellordering theorem

Recall that when a set, like ω, admits a nice structure, e.g. a wellordering
<, then (AC) is not required for defining a choice function ϕ : P(ω) \ {∅} → ω.
Zermelo’s theorem shows that (AC) is, in fact, equivalent to the assumption that
we can “nicely structure” every set.

Theorem 61. The axiom of choice is equivalent to the assumption that every
set X admits a wellordering.

Proof. If < is a wellordering on X, then Z 7→ min<(Z) is clearly a choice
function for P(X).

Conversely, let I := {W | W is a wellordering with domain W ⊆ X}. By Theo-
rem 60 we have a wellorderingWI = (WI , <I) so thatW <seg WI , for allW ∈ I. In-
deed one may find someW0 so thatW ≤seg W0, for allW ∈ I, and setWI :=W0+1.
Using transfinite induction (Theorem 54), for some ∞ 6∈ WI we define a map

f : WI → X ∪ {∞},

, by f(w) = ϕ(X \ rng(f�(WI)w)), where ϕ is a choice function for P(X).
If f(w) 6= ∞ for all w, then f : WI → X. Since f is clearly injective, rng(f)

may be endowed with a wellordering W := (rng(f), <f
I), which is the push-forward

of <I under f . ClearlyW ∈ I and thereforeW <seg WI . This implies that f is also
surjective by definition of f and since there is still “room” in the domain. Hence
W 'WI by f , contradicting that W <seg WI .
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We therefore have that f(w) =∞ for some w; and pick w to be the least such.
As in the previous paragraph we can then see that f�(WI)w is a bijection between
WI)w and X, so we can take the push-forward wellordering. �

Corollary 62 (AC). For any two sets x, y we have that either x / y or y / x.

Proof. Use Theorem 61 and then Theorem 58. �

Corollary 63 (AC). For every collection COLL of sets there is an element x
in COLL of least cardinality, i.e. x / y for all y in COLL.

Proof. Use Theorem 61 and then Theorem 60. �

13. Ordinals I

We saw that if we mod out the class WELLORD of all wellorderings by the
isomorphism relation 'ISO between wellorderings then we get a class (not a set)
which behaves exactly as a well ordering. We will view the collection ORD of all
ordinals as a collection of canonical representatives for the equivalence classes in

WELLORD
/
'ISO

Recall that x is transitive if for all y ∈ x and all z ∈ y we have x ∈ z. Recall also:

Definition 64. A set α is an ordinal if it is transitive and wellordered by ∈,
i.e.,

(a) (transitive) ∀y, z (z ∈ y ∈ α =⇒ z ∈ α);
(b) ∀x ∈ α (x 6∈ x);
(c) ∀x, y ∈ α (x ∈ y ∨ x = y ∨ y ∈ x);
(d) ∀y, z ∀x ∈ α (z ∈ y ∈ x =⇒ z ∈ x);
(e) ∀X ⊆ α(X 6= ∅ =⇒ ∃x ∈ X∀y ∈ X(x = y ∨ x ∈ y)).

We will denote ordinals by letters α, β, γ, . . .. We denote by ORD the collection
of all ordinals. We often write α < β for α ∈ β and α ≤ β for (α < β) ∨ α = β.

Examples. Every natural number n is an ordinal and ω is an ordinal. Moreover
we can produce new ordinals such as ω+ := ω ∪ {ω} using the following operations:

(1) If α is an ordinal then so is ω+ := α ∪ {α}.
(2) If A is a set of ordinals then lub(A) :=

⋃
A is an ordinal.

It is immediate from the definitions that α+ is an ordinal. Before we prove that
lub(A) is an ordinal we will establish some basic properties of ordinals.

Lemma 65. Let α, β be ordinals. We have

(1) α 6∈ α;
(2) if x ∈ α then x is an ordinal;
(3) if x ⊆ α and x is transitive then x is an ordinal;
(4) α ∈ β ⇐⇒ α ( β;
(5) (α < β) ∨ (α = β) ∨ (β < α);
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∅

V

WELLORD

ORD

Proof. (1) if α ∈ α then α ∈ α ∈ α, contradicting (a) from the definition
of an ordinal. For (2), by transitivity of α we have that x ⊆ α hence (x,∈) is a
subordering of (α,∈), and therefore, a wellordering. Finally x is transitive by (d)
from the definition of an ordinal. The same argument shows (3).

For (4), by transitivity, α ∈ β implies α ⊆ β; and by (1) the inclusion is strict.
For the converse, assume that α ( β. Then β \ α has a least element, call it γ. We
will show that γ = α. Notice that if δ ∈ γ then by minimality of γ we have δ 6∈ β \α.
Hence δ ∈ α. So δ ⊆ α. But also if δ ∈ α then (γ ∈ δ)∨ (γ = δ)∨ (δ ∈ γ). The first
two cases imply that γ ∈ α, a contradiction since γ ∈ β \ α.

For (5) assume that α 6= β and consider the set α ∩ β. It is clear that α ∩ β is
transitive and hence, by (3) it is an ordinal. Clearly α ∩ β ⊆ α and α ∩ β ⊆ β. If
α ∩ β = β then β ⊆ α. By assumption we then have β ( α which by (4) implies
β ∈ α. Similarly α∩ β = α implies α ∈ β. We can therefore assume that α∩ β ( α
and α ∩ β ( β. By (4) we have α ∩ β ∈ α and α ∩ β ∈ β. This implies that
α ∩ β ∈ α ∩ β which contradicts (1). �

Theorem 66. If α is an ordinal then α+ := α ∪ {α} is an ordinal and there is
no ordinal β with α < β < α+.

If A is a set of ordinals then lub(A) :=
⋃
A is an ordinal which is the least

upper bound of A, i.e., (i) for all α ∈ A we have that α ≤ lub(A); (ii) if β is an
ordinal with α ≤ β for all α ∈ A then lub(A) ≤ β.

Proof. Clearly α+ is an ordinal. The fact that there is no ordinal β with
α < β < α+ follows from (1) of the previous lemma.
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For the second part of the statement,
⋃
A is transitive since if α ∈ β ∈

⋃
A then

by the definition of
⋃

we have that α ∈
⋃
A. By (2) of the lemma it consists of

ordinals. Hence (b), (c), (d) follow either immediately or by (5) of the lemma. The
fact that it is well ordered it follows from the next lemma (Lemma 67).

Finally, since α ∈ A implies α ⊆ lub(A) by (4) of the previous lemma we have
that α ≤ lub(A). Moreover, if β is an ordinal with α ≤ β for all α ∈ A then α ⊆ β
for all α ∈ A. Hence

⋃
A ⊆ β, i.e., lub(A) ≤ β. �

Lemma 67. If COLL 6= ∅ is a collection of ordinals then COLL has a least
element.

Proof. Similar to Theorem 60. �

Unfortunately it does not follow from the axioms Z+(AC) that ORD are repre-
sentatives of every the 'ISO classes of WELLORD since in the Zermelo universe the
only ordinals are

0, 1, 2, . . . , ω, ω+, ω++, . . .

The axiom of replacement which we will now add will allow us to form the set

{0, 1, 2, . . . , ω, ω+, ω++, . . .},

and prove that ORD extends far enough to contain an isomorphic member to each
wellordering.

14. Class-functions and axiom of replacement

By a class we mean a collection COLL of sets which satisfy a fixed definable
property. Formally, COLL is a class if there is a formula ψ(x, x1, . . . , xn) in the
language of set theory and sets a1, . . . , an so that x ∈ COLL ⇐⇒ ψ(x, ā). Every
set a is a class since a = {x | x ∈ a} but there are classes which are not sets, e.g.:

V, WELLORD, and ORD.

We have already seen that V is not a set. Notice that if WELLORD was a set then
by the subset axiom ORD would also be a set. Hence it suffices to show that ORD
is not a set. But if ORD was a set then α :=

⋃
ORD = ORD is an ordinal by

Theorem 66. By the same theorem we then have that α+ is also an ordinal and
therefore α+ < α, a contradiction with (1) of the Lemma 65. If a class COLL is not
a set then we say that it is a proper class. Given classes A,B we define

A ∩ B, A ∪ B, A \ B, A× B

in the obvious way. A class relation is a subclass of some product class A× B.

Definition 68. A class function if any relation F with

(x, y), (x, z) ∈ F =⇒ y = z.
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Any function is a class function but we also have proper class functions such as

x 7→ P(x), x 7→ x+.

Given a class function F the classes

dom(F), rng(F), F′′C

for all C ⊆ dom(F). We write F: A→ B if dom(F) = A and rng(F) = B.

The axiom of replacement states that for F: A → B is a class function and
C ⊆ dom(F), happens to be a set then so is its image F′′C. Formally we have:

Axiom of Replacement. (Scheme: one axiom for every formula ϕ(x, y, x̄))

Replacement for ϕ(x, y, x̄):

∀x̄
((
∀x, y, zϕ(x, y, x̄) = ϕ(x, z, x̄) =⇒ y = z

)
=⇒ ∀w∃v∀t

(
t ∈ v ⇐⇒ ∃x(x ∈ w∧ϕ(x, t, x̄))

))
Recall Zermelo theory alone cannot show that sets such as the Zermelo universe

VZ exist. However, the following assignment is a class function on domain ω:

n 7→ F (n) =

n︷ ︸︸ ︷
P(· · · P(Vω) · · · ),

since F (n) = x if and only if “n ∈ ω, and v is a function on domain n + 1, and
v(0) = Vω, and v(n) = x, and for all m < n we have that v(m+ 1) = P(v(m))”.

By axiom of replacement we have that

Tω+ω := {Vω,P(Vω),P(P(Vω)), · · · }
is a set, and so is

VZ :=
⋃

Tω+ω

Similarly we may formally define ω + ω as the union of the set

{ω, ω+, ω++, . . .}

which also exists by replacement.

15. Ordinals II

From now on, we will always view an ordinal α as a wellordering (α,<) := (α,∈)
In Section 13 we developed some properties of ordinals. In particular,

ω + ω := lub({ω, ω+, . . .})

which exists by axiom of replacement, is an ordinal. In fact we can now show that
ORD contains an element in every isomorphism class of WELLORD.

Theorem 69. Every wellordered set is isomorphic to a unique ordinal.
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Proof. Uniqueness follows from the properties we developed in section 13, since
if α 6= β then α < β or β < α, and no ordinal is isomorphic to an initial segment of
it.

Let W = (W,<) be a wellordering. Let (x, α) ∈ F if and only if

x ∈ W and (Wx, <) 'iso (α,∈) and α ∈ ORD

Clearly F is a class function and dom(F) ⊆ W . Thus dom(F) ∩W is a set.
Claim. dom(F) = W .
This is proved by an induction on W : if Wx ⊆ dom(F) for some x ∈ W then

by axiom of replacement we have that Ax := F′′Wx is a set. Notice that αx is
wellordered by ∈ since it is a subset of the ordinal (

⋃
αx)

+. It is also transitive: if
α ∈ β ∈ αx then since αx 'iso (Wx, <) there is y < x with β 'iso (Wy, <), and
similarly α 'iso (Wz, <) for some z < y. Hence, α = F(z) for some z < x and
therefore α ∈ αx. It follows that αx ∈ ORD. It is easy to see that (Wx, <) 'iso αx
and therefore F(x) = αx, i.e., x ∈ dom(F).

Let now γ := F ′′W . As before we have: γ is an ordinal and (W,<) ' γ. �

As in the case of wellorderings we have the following scheme of theorems

Theorem 70 (scheme). Let A ⊆ ORD be a non-empty class of ordinals. Then:

∃α ∈ A ∀β ∈ A α ≤ β.

Proof. Exercise �

We also have the associated “definition by induction” schemes. Here is a simple
form of this that is analogous to Theorem 10.

Theorem 71. Let G : V ×ORD→ V be a class function. Then there is a unique
class function F: ORD→ V so that F(α) = G(F�α, α).

Proof. Similar to Theorem 10. �

Of course, for many constructions we may want to produce a class function
F: ORD × V → V . In that case there are theorem schemes analogous to Theorem
18 which let as perform these constructions.

16. Ordinal Arithmetic

A sequence of ordinals (αξ) is either a function f : λ → ORD where λ is an
ordinal or class function F: ORD→ ORD, e.g. defined by Theorem 71. We denote
the sequence by (αξ)ξ<λ or by (αξ)ξ∈ORD respectively, if we want to specify its length.
The sequence (αξ) is increasing if for every ξ < η in the domain of (αξ) we have
that αξ < αη. If λ is some limit ordinal with αξ defined for all ξ < λ then the limit
of (αξ) is simply the ordinal:

lim
ξ<λ

αξ := lub{αξ | ξ < λ}.

For example, limn<ω n
n = ω and limn<ω ω+n = ω+ω, where ω+n := (ω+n−1)+.
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Definition 72. A sequence (αξ) is normal if it is increasing and continuous,
i.e., for every limit ordinal λ in the domain of (αξ) we have that:

lim
ξ<λ

αξ = αλ.

Using Theorem 71 we may define arithmetic operations on ORD.
Addition on ORD. Using induction on β we define α + β for every fixed α:

α + 0 := α, α + β+ := (α + β)+, α + λ := lim
ξ<λ

α + ξ,

where λ above is a limit ordinal. The operation α + β simply takes α and “glues”
at the end of it a copy of β

Notice that β 7→ α+β is a normal sequence but α 7→ α+β is neither increasing
nor continuous since

1 + ω = 2 + ω, lim
n<ω

n+ ω = lim
n<ω

ω + ω = ω 6= ω + ω.

Exercise. Show that every ordinal α can be uniquely written in form λ + n
where λ is a limit ordinal (or 0) and n ∈ ω.

Multiplication on ORD. Using induction on β we define α · β for every fixed
α:

α · 0 := 0, α · β+ := (α · β) + α, α · λ := lim
ξ<λ

α · ξ,

where λ above is a limit ordinal. The operation α · β may be read α β-many times,
for the obvious reasons. Similarly, β 7→ α · β is a normal sequence but α 7→ α · β is
neither increasing nor continuous.

Exponentiation on ORD. Using induction on β we define αβ for every fixed
α:

α0 := 1, αβ
+

:= (αβ) · α, αλ := lim
ξ<λ

αξ,

where λ above is a limit ordinal. Similarly, β 7→ αβ is a normal sequence (when
α 6= 0) but α 7→ αβ is neither increasing nor continuous.

A mental picture to have in mind when it comes to exponentiation is the fol-
lowing: let Fin(αβ) be the collection of all functions from β to α which have the
property that they are pointwise equal to 0 except in finitely many elements of β.
We may order Fin(αβ) with the anti-lexicographic order: f ≺ g iff f 6= g and if
ξ < β is the largest ordinal with f(ξ) 6= g(ξ) then f(ξ) < g(ξ). Then we claim that

(Fin(αβ),≺) 'iso (αβ,∈)

This can be show easily by induction.
We have he following picture at the very beginning of the ORD:

0, 1, 2, . . . , ω, ω+ 1, . . . , ω+ω, ω ·3, ω ·4, . . . , ω ·ω, ω3, . . . , ωω, · · · , ωωω , · · · , ε0, · · · · · ·

where ε0 is simply the limit of {ω, ωω, ωωω , . . .}. Notice that all these ordinals are
countable and we are far from reaching the first uncountable ordinal denoted by ω1.
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To define ω1 consider the set {A ⊆ Q | (A,<Q �A) is a wellordering}. Let αA
be the unique ordinal associated to A. Then ω1 := {αA | A as above } is a set
by axiom of replacement. Since Q embeds every countable linear order (it is the
Fräıssé limit of linear orderings) we have that ω1 is the set of all countable ordinals.
It is not difficult to see that it is itself an ordinal. Moreover it is not countable
because otherwise it would embed in (Q, <) and this would imply that ω1 ∈ ω1, a
contradiction.

Not only has ω1 different order type than all previous ordinals but also different
cardinality. Is there an ordinal which has strictly larger cardinality than ω1? The
answer is yes as we will see in the next section.

17. Cardinals

By axiom of choice we have that every set x is wellorderable. By axiom of
reflection (see Theorem 69) we then have x ≈ α for some ordinal α. The ordinal

(3) |x| := min{α ∈ ORD | x ≈ α}

is called the cardinality of x. It is clear that x ≈ y if and only if |x| = |y| and that

(x / y) ∧ (x 6≈ y) if and only if |x| < |y|.

Not every ordinal is of the form |x| for some x. A cardinal or an initial ordinal
is any ordinal of the form |x|, or equivalently, any α ∈ ORD so that for all β < α
we have |β| < |α|. For example every n ∈ ω is a cardinal. Similarly ω and ω1 are
cardinals and, when viewed as such, they are denoted by

ℵ0 and ℵ1.

We usually denote cardinals by the letters κ, µ, ν, · · ·

Theorem 73 (Hartogs). For any ordinal α there is a least cardinal κ with α < κ.

Proof. We may assume that α is infinite. LetWO(α) be the set of all relations
≺ which are wellorderings with dom(≺) ⊆ α. For each ≺ as above let α≺ be the
unique ordinal isomorphic to ≺ and let

κ := lub{α≺ |≺∈ WO(α)}.

It is clear that α < κ since α + 1 is easily shown to be the order type of some
element of WO(α). To see that κ is an initial ordinal notice that if κ ≈ β for some
β < κ then by minimality of κ we have that β 'iso≺ for some ≺∈ WO(α). But then
composing the implicit bijections we can realize (κ,∈) as an element ofWO(α) and
by modifying this element a bit we can similarly realize κ + 1. By the choice of κ
we then have κ ∈ κ, a contradiction.

Notice finally that κ is the least such cardinal since by minimality of the least
upper bound, for every β < κ is isomorphic (as an ordering) to some ≺ in WO(α).

�
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Warning. In the context of cardinals we use the notation κ+ for a different
operation than κ 7→ κ+ 1. Namely, if κ is a cardinal then let

κ+ := lub{α≺ |≺∈ WO(κ)} = the least cardinal µ with µ > κ.

Theorem 74. If X is a set of cardinals then lub(X) is also a cardinal.

Proof. Let α := lub(X). We may assume without loss of generality that X
has no max element, otherwise α ∈ X and we are done. If α is not a cardinal then
let κ < α with κ ≈ α. Let now µ ∈ X with κ < µ < α. By CSB we have κ = µ, a
contradiction. �

We define now inductively the ORD-length sequence (ℵα) of infinite cardinals
by:

ℵ0 := ω, ℵα+1 = (ℵα)+, ℵλ := lim
ξ<λ
ℵξ,

where λ is a limit ordinal. By the results above, every ℵα is a cardinal. Moreover it
is easy to see that CARD = ω ∪ {ℵα | α ∈ ORD}. It is clear from the last Theorem
that (ℵα) is a normal sequence. We will later see that α 7→ ℵα has a lot of fixed
points. The first one being:

ℵℵℵ··· = lub{ℵ0,ℵℵ0 , ,ℵℵℵ0 · · · }
where the last set is the obvious countable set.

We define the operations of cardinal arithmetic as follows and we warn again
the reader that these differ from the operations in ordinal arithmetic. If κ, µ are
ordinals fix X, Y two disjoint sets with κ ≈ X and µ ≈ Y and define:

κ+ µ := |X ∪ Y |, κ · µ := |X × Y |, κµ := |XY |.
It is clear that 2κ = |P(κ)| and therefore Cantor’s theorem says that for all κ:

κ < 2κ.

This implies that κ+ ≤ 2κ. The generalized continuum hypothesis conjectures that
this is actually an equality. We will see in the next quarter that this cannot be
decided from the axioms of ZFC.

There are many identities one can prove about cardinal arithmetic. Many of
them however rely on the axiom of choice. The following theorem shows that infinite
cardinal arithmetic for +, · is much simpler than finite cardinal arithmetic.

Theorem 75 (The fundamental theorem of cardinal arithmetic.). Let κ, µ be
infinite cardinals then κ+ µ = κ · µ = max{κ, µ}.

Proof. Notice that it is enough to show that κ2 = κ since then, if κ ≤ µ, we
have:

µ ≤ κ+ µ ≤ κ · µ ≤ µ · µ = µ.

So κ + µ = κ · µ = µ = max{κ, µ}. Hence the theorem follows from the next
lemma. �

Theorem 76. For every α we have that ℵα × ℵα ≈ ℵα.
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Proof. Consider the following (class) ordering ≺ on ORD×ORD:

(α, β) ≺ (γ, δ) ⇐⇒ (max{α, β} < max{γ, δ}) or

(max{α, β} = max{γ, δ} and α < γ) or

(max{α, β} = max{γ, δ} and α = γ and β < γ).

We will show that,for each α, the restriction of ≺ on ℵα×ℵα is a well ordering that
is isomorphic to (ℵα,∈). It is easy to see that ≺ is a wellordering by computing the
minimum of any given set X ⊆ ORD×ORD coordinate-wise. Hence, (ℵα × ℵα,≺)
is a wellordering, as a subset of a wellordering. Let now λα be the unique ordinal
which is isomorphic to (ℵα × ℵα,≺).

Claim. For all α we have that λα = ℵα.

Proof. We do this by induction. For α = 0 it is easy to see this. Assume that
it holds for all β < α and we show it for α. It is clear that λα ≥ |ℵα × ℵα| ≥ ℵα. It
therefore suffices to prove that λα ≤ ℵα. It suffices to show that for all ξ < λα we
have that ξ < ℵα. Equivalently, if f : ℵα×ℵα → λα is the unique order isomorphism,
it suffices to show that for any fixed (γ, δ) we have f(γ, δ) < ℵα. In fact it suffices
to show that |f(γ, δ)| < ℵα since ℵα is initial. But

|f(γ, δ)| = |{(γ′, δ′) | (γ′, δ′) ≺ (γ, δ)}| ≤ |(ε+ 1)× (ε+ 1)|,

where ε = max{γ, δ}. But ε+ 1 < ℵα, so ε+ 1 = ℵβ for some β < α. By induction
hypothesis we have that

|(ε+ 1)× (ε+ 1)| = |(ε+ 1)| × |(ε+ 1)| = |ℵβ| × |ℵβ| = |ℵβ × ℵβ| = ℵβ < ℵα.

�

�

Corollary 77. If κ, µ are infinite cardinals with 2 ≤ κ ≤ µ, then κµ = 2µ.

Proof. 2µ ≤ κµ ≤ (2κ)µ = 2κ·µ = 2µ. We leave to the reader to confirm the
second equality from the end. �

We point out at this point that one may define a notion of cardinality for each
set without the use of axiom of choice (see next section). In that case not every
set of the form |x| is an ordinal and what we call here the ”fundamental theorem
of arithmetic” fails in general. Even more, without axiom of choice cardinals are
not linearly ordered since there may be sets which are /-incomparable. One may
consult Tarski’s theory of cardinal algebras and books in choiceless set theory for
more on this.
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18. Axiom of regularity and wellfounded class relations

Mow that we can use ORD as a formal notion of “stages” we can define by
induction the cumulative hierarchy (Vα)α∈ORD as follows:

V0 := ∅, Vα+1 := P(Vα), Vλ :=
⋃
ξ<λ

Vξ,

where λ is a limit ordinal. It is clear that Vα ⊆ Vβ if an α ≤ β and if additionally
α 6= β then Vα ∈ Vβ. We would like to be able to deduce that

(4) V :=
⋃

α<ORD

Vα,

however this statement is not provable from the axioms. Indeed, using the current
axioms in can be shown to be consistent that there are sets u with the property
u = {u} and such a set is clearly not in the above union: if it was, pick α the
smallest ordinal with u ∈ Vα to get a contradiction with u ∈ u. We may now
complete the collection of axioms which constitute ZFC by adding the following
axiom that is equivalent to the above.

Axiom of Regularity (also know as Axiom of Foundation)

∀X if X 6= ∅ ∃x ∈ X ∀y ∈ x (y 6∈ X).

It is clear that V :=
⋃
α<ORD Vα implies the axiom of regularity: if X ∈ V then

pick the least α so that X ∩ Vα 6= ∅. Clearly α is not a limit ordinal and if X 6= ∅
then α = β + 1 is a successor. Pick any x ∈ X ∩ Vα and notice that if y ∈ x then
y ∈ Vβ which, by minimality of α, implies y 6∈ X. In order to prove the converse we
need to introduce the concept of induction on certain wellfounded class relations.

A class relation E is wellfounded if every set X ⊆ dom(E) has a minimal
element. That is, there is x ∈ X so that for all y with yEx we have x 6∈ X. By AC
this is equivalent with saying that there is no infinite sequence x0, x1, . . . ∈ dom(E)
with

· · ·Ex2Ex1Ex0

We say that E is set-like if for all x ∈ dom(E) we have that Ex := {y | yEx} is a set.
It is clear that ∈ is a set-like class relation. The axiom of regularity is equivalent to
saying that ∈ is also wellfounded. As usual we have the associated induction results

Theorem 78. If E is wellfounded and set-like class relation then for every sub-
class X ⊆ E we have that(

∀x ∈ dom(E)(Ex ⊆ X =⇒ x ∈ X)
)

=⇒ (X = dom(E)).

Proof. We leave this as an exercise to the reader. Hint: use next lemma. �

Lemma 79. If E is wellfounded and set-like class relation then every subclass X
of dom(E) has a least element.
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Proof. Pick any x ∈ dom(E). If Ex = ∅ then x is minimal. If not, use the
fact that Ex is a set to find a minimal y for Ex. Then y is minimal for dom(E) as
well. �

We may now see why axiom of regularity implies V :=
⋃
α<ORD Vα. Indeed

it is enough to prove that for all x, if ∈x:= {y | y ∈ x} ⊆
⋃
α<ORD Vα, then

x ∈
⋃
α<ORD Vα. For each y ∈∈x let f(y) be the least ordinal with y ∈ Vα. But

then, rng(f) ⊆ ORD is a set (by replacement) and we therefore may find an ordinal
β with ∈x⊆ Vβ. This implies that x ∈∈ Vβ+1, and we are done.

Exercise. We leave it to the reader to define and prove a “definition by induc-
tion” theorem for wellfounded set-like class relations.

Definition 80. For every set x we define the rank of x, denoted by rank(x),
to be the least ordinal α so that x ⊆ Vα. Equivalently, the least α so that x ∈ Vα+1.
Under the axiom of regularity this is well defined for all x.

ZF and ZFC. From now on we write ZF for the collection of all axioms in Z
together with axiom of replacement and axiom of regularity. When we add to this
collection AC then we write ZFC.

We close this section by discussing the, so called, Scott’s trick which allows as to
define in ZF an notion of cardinality for sets. By a cardinal assignment we mean
any class function x 7→ |x|∗ from V to V with the property that

x ≈ y ⇐⇒ |x|∗ = |y|∗.
Given such a cardinal assignment we say that a set y is a cardinal if y = |x|∗ for
some x. Under AC we showed how one may define a cardinal assignment, namely
the one we denote above by x 7→ |x|. The obvious but naive attempt to define a
cardinal assignment without any use of AC would be to let

|x|∗ := {y | y ≈ x}
This “assignment” is clearly invariant under ≈ but it fails to be a class function
from V to V since |x|∗ is not set if x 6= ∅. In the context of ZF where we have the
axiom of regularity we instead define

|x|Scott := {y ∈ Vα(x) | y ≈ x},
where α(x) is the least ordinal α for which there is a set y ∈ Vα so that y ≈ x.

Remark. If x is well-orderable, then |x| can be defined as is section 17 and
it is easy to see that |x| ∈ |x|Scott. Hence, under axiom of choice the assignments
x 7→ |x|Scott and x 7→ |x| are isomorphic. In the absence of AC there are cardinals
|x|Scott which cannot be identified to alephs and the cardinal arithmetic we defined
in Section 17 is much more complicated. In Section 1 we will see some examples.





CHAPTER 2

Selected topics

1. Descriptive ergodic theory and cardinality without AC

There is an interesting relationship between ergodic theory and the theory of
cardinals in ZF+¬AC which can be made precise within the framework of invariant
descriptive set theory. We will first describe the framework and use it to differentiate
between different orbit equivalence relations EΓ

X of continuous group actions Γ y X.
We will then connect this “complexity theory” of orbit equivalence relations with
the behavior of cardinals in a very important model of ZF where AC fails, known as

L(R).

A curious property of L(R) is that it does not contain any injection from ω1 to R. As
a consequence, within L(R) we have that the cardinals ℵ1 and 2ℵ0 are incomparable.

A Polish space X is any separable space which admits a complete metric d
inducing the same topology. In Section 8 we defined the continuum as any of the:

2ω ≈ nω ≈ ωω ≈ P(ω) ≈ R.
All these spaces are uncountable Polish spaces under a natural topology. The topol-
ogy in ωω is given by basic open sets of the form Us = {(an) ∈ ωω | (an)ω extends s}
where s : n → ω for some n and the topology in P(ω) is inherited from 2ω under
the natural identification. The above spaces are equinumerous via maps which are
definable in ZF and therefore, even in models such as L(R) we have that

|2ω| = |nω| = |ωω| = |P(ω)| = |R| = 2ℵ0 .

In fact it follows by Theorem 81 that any uncountable Polish space has cardinal-
ity 2ℵ0 in any model of ZF which satisfy countable choice such as in L(R). We
will employ methods from ergodic theory to construct sets which, in L(R), have
cardinalities different than any cardinality from {ℵα}

⋃
{2ℵ0}.

A Polish group is a topological group G, i.e., multiplication and inversion are
continuous, whose topology is Polish. We will consider continuous actions

Gy X

of Polish groups G on Polish spaces X. These are continuous maps G × X → X
with 1x = x and g(hx) = (g · h)x. We then say that X is a Polish G-space.
Such an action induces always an equivalence relation EG

X on X known as the orbit
equivalence relation associated with the Polish G-space:

xEG
Xy ⇐⇒ ∃g ∈ G gx = y.

45
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Examples. Here are some natural examples of Polish G-spaces:

(1) Let = be the orbit equivalence relation of the trivial group {1} acting on
any Polish space X;

(2) Consider the additive discrete group Z acting on the space X := {0, 1}Z by
translation: (k · f)(n) = f(n− k) for all f ∈ X and k ∈ Z. We call this the
Bernoulli shift of Z and let EZX be the associated equivalence relation;

(3) Similarly for the free group F2 in two generators acting on its Bernoulli
shift X := {0, 1}F2 by translation, (γ · f)(δ) = f(γ−1δ) for all f ∈ X and
γ ∈ F2, we let EF2

X be the associated equivalence relation;
(4) Let X = Graphs(ω) be the space of all symmetric and reflexive graph

structures on domain ω which is clearly a Polish space as a closed subset
of 2ω×ω. The Polish group Sω of all permutations of ω is a Polish group
if endowed with the pointwise convergence topology and it acts continu-
ously on X: every bijection g : ω → ω sends the graph (ω,R) to the new
graph (ω,Rg), where Rg(n,m) ⇐⇒ R(g−1(n), g−1(m)). Notice that the
associated equivalence relation is the isomorphism relation 'iso of graphs.

Assume now that your task is to classify all countable graphs up to isomorphism.
One usually does that by finding enough “complete invariants.” For example the as-
signments (ω,R) 7→ maxdeg((ω,R)) and (ω,R) 7→ conn((ω,R)) which map each
element of Graphs(ω) to its maximum degree and to its number of connected com-
ponents, are both definable maps which are invariant under 'iso. However, the
collection {maxdeg(·), conn(·)} is not a complete set of invariants since there are
non-isomorphic graphs with the same number of connected components and the
same maximum degree. The obvious question is whether there is a definable map

f : Graphs(ω)→ Y

where Y is any Polish space so that x 'iso y if and only if x = y. In the context
of ZF definable would mean definable without axiom of choice. Here are two more
notions of definable which are used in ergodic theory and descriptive set theory.

A subset N of a Polish space X is nowhere dense if the complement of its
closure (N)c is dense in X. It is meager if N =

⋃
kNk and each k is nowhere dense.

By the Baire category theorem (see real analysis textbook). A Polish space X is
never meager as a subset of itself, hence, meagerness can be thought of as a notion
of (topological) smallness (see Proposition 22 for the formal definition of smallness)
which is moreover closed under countable unions similar to the notion of measure
0 sets in measure theory. Let B(X) be the smallest family of subsets of X which
contains all opens sets and which is closed under countable unions and countable
intersections. A set is Borel if it is contained in B(X). Let BP(X) be the smallest
family of subsets of X which contains all opens sets, all meager sets, and which
is closed under countable unions and countable intersections. A set has the Baire
property if it is contained in BP(X). A function f : X → Y between Polish spaces
is Borel if f−1(U) ∈ B(X) for every open set U and it is Baire measurable if
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f−1(U) ∈ BP(X) for every open set U . We view Borel sets and Borel maps as
“definable from the topology via countable operations”.

Assume now that f : X → Y is a map between Polish spaces. It follows that if
f is Borel then f is in L(R) and if f is in L(R) then f is Baire-measurable1. Hence
Borel maps and Baire-measurable maps can be seen as upper and lower estimates of
the class of all maps in L(R) between Polish spaces. The following theorem which we
state without proof implies that the cardinality of every uncountable Polish space
in L(R) is 2ℵ0

Theorem 81. If X ≈ Y are Polish spaces then ≈ is witnessed by a Borel map.

Using the following anti-classification result regarding for the examples (2),(3),(4)
above and the fact that all maps in L(R) between Polish spaces are Baire-measurable,
one may produce new cardinalities which are not in {ℵα}

⋃
{2ℵ0} such as:

|{0, 1}Z/EZX |, |{0, 1}F2/EF2
X |, |Graphs(ω)/ 'iso |

Notice, for example that if {0, 1}Z/EZX ≈ 2ω was true in L(R) then this would
contradict the following theorem.

Theorem 82. Let X be either {0, 1}Z or {0, 1}F2 or Graphs(ω) and let E be
either EZX or EF2

X or 'iso respectively. Then there is no Baire-measurable map
f : X → 2ω so that xEy ⇐⇒ f(x) = f(y).

Before we prove the theorem lets point out that every two uncountable Polish
spaces X and Y are equinumerous by a Borel map f : X → Y . Hence we can replace
(2ω,=) with (Y,=) in the above theorem where Y is any Polish space. We will need
the following lemma which can be thought of as a 0-1 law.

Lemma 83. Let X be a Polish G-space which has some dense orbit. If A ⊆ X
is Baire-measurable and G-invariant, then either A or Ac is meager.

Proof. Notice first that for every non-empty open U,U ′ ⊆ X there is g ∈ G
with gU ∩ U ′ 6= ∅. To see this, if [x] is dense then gx ∈ U and g′x ∈ U ′ for some
g, g′ ∈ G. Hence g′g−1U ∩ U ′ contains g′x.

Assume that there is an invariant Baire measurable set A so that both A and
B = Ac are non-meager. By Baire-measurability we can find UA and UB so that A
is comeager in UA and B is comeager in UB. Let g ∈ G with gUA ∩ UB 6= ∅ and let
U be this non-empty and open common intersection. Since gA is comeager in gUA
it is comeager in U as well. But A = gA so A is comeager in U which contradicts
the assumption that its complement B is comeager in U . �

Lemma 84. If X is a Polish G-space with a dense orbit and f : X → 2ω is a
Baire measurable map with xEG

Xy =⇒ f(x) = f(y) then there is some α ∈ 2ω so
that f−1(α) is comeager.

1Here we assume, as it is often the case with L(R), axiom of determinacy (which follows by
assuming that certain large cardinals exist)
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Proof. Assume that f : X → 2ω be a Borel reduction. For every s ∈ 2<ω let
NS be the basic open set of 2ω consisting of all sequences extending s.

Notice that {f−1(N(0)), f
−1(N(1))} forms a partition of invariant Borel subsets

of X. By Lemma 84 one of them has to be comeager. Continuing inductively we
build a sequence α ∈ 2ω so that for all n > 0 we have that f−1(Nα|n) is comeager.
But then C = ∩nf−1(Nα|n) is a comeager subset of X that is mapped under f to
the singleton {α}. �

We may now finish the proof of Theorem 82 for the case Z y 2Z. For the other
cases see HW.

Proof of Theorem 82 case: Z y 2Z. It is easy to construct a dense orbit
of 2Z. Simply enumerate all possible finite sequences s : n→ ω and construct some
x ∈ 2Z which realizes every s somewhere, i.e., for every s as above there is k ∈ Z
so that s(i) = x(i + k) for all i ≤ n. By lemma 84 there is some comeager set C
of 2Z, on which the map f is constant. But since the orbits are countable they are
meager. Hence C has at least 2 distinct orbits which map to the same element of
2ω. �

2. Combinatorics on ω1

We show that ω satisfies two very important properties which are reflections of
some short of compactness. Namely:

• ω has the tree property (aka König’s lemma): if T is a finitely branching
tree of cardinality ℵ0 then there is a branch of length ω.
• ω has the Ramsey property (i.e., ω → (ω)2): if we color the set of all

two-sets [ω]2 :=
{
{a, b}a, b ∈ ω, a 6= b

}
with finitely many colors then there

is a set A ⊆ ω of size ℵ0 so that [A]2 is monchromatic.

The obvious question is if the analogous properties hold for ω1. We will see here
that both properties fail for ω1. This difference between ω and ω1 can be seen as a
lack of “compactness” for ω1. Many large cardinal axioms which are often added in
ZF or ZFC are used to reproduce this ω-like compactness behaviour in larger than
ω1 uncountable cardinalities.

We adopt the following definition of a tree which permits trees of arbitrary long
heights. A tree is a partial order (T,<) with the property that for each x ∈ T the
set {y ∈ T | y < x} is well ordered by <. The height ht(x, T ) of x in T is the
unique ordinal isomorphic to the above set. The α-th level Lvα(T ) of T is the set

{x ∈ T | ht(x, T ) = α}.

The height ht(T ) of T is the least α with Lvα(T ) = ∅. A subtree T ′ of T is any
subset of T that is <-downward closed. A chain of T is any subset C of T that is
linearly ordered by inclusion. The set {y ∈ T | y < x} is a chain for all x ∈ T . More
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generally if C is a chain then

C ⊆
⋃
x∈C

{y ∈ T | y ≤ x}

Definition 85. Let κ be a cardinal. A κ-Aronszajn tree is any tree T with

(1) ht(T ) = κ;
(2) Lvα(T ) < κ for all α;
(3) T has no chain of size κ.

We say that κ has the tree property if there exists no κ-Aronszajn tree, i.e., any
tree which satisfies (1), (2), fails (3).

It is clear that König’s lemma shows that ω has the tree property. However:

Theorem 86. There exists an ω1-Aronszajn tree.

Proof. Consider the set

Inj(ω<ω1) := {s : α→ ω | α < ω1, s is injective}.

Then (Inj(ω<ω1), <) is a tree, where < is just the subset relation ⊂. It clearly
satisfies (1) and (3) for κ = ω1: since every α < ω1 is countable there is s : αω
injective and it is clear that ht(s, Inj(ω<ω1)) = α; if there was a chain C of size ℵ1

then the union f :=
⋃
C would be an injection from ω1 to ω, contradicting that

ω1 is uncountable. However, T does not satisfy (2) even for α = ω < ω1. We will
remedy this by constructing some “sparse” subtree T of Inj(ω<ω1).

For s, t ∈ ωα ⊆ ω<ω1 we write s ∼fin t if {ξ < α | s(ξ) 6= t(ξ)} is finite. We will
construct a sequence (sα)α<ω1 in Inj(ω<ω1) with the following properties:

(i) dom(sα) = α;
(ii) if α < β then sα ∼fin sβ�α.
(iii) ω \ range(sα) is infinite.

Assuming that we have defined this sequence we may finish the proof by setting
T := {s ∈ Inj(ω<ω1) | s ∼fin sα} for some α. As above it is clear that T satisfies
(1) and (3). It also satisfies (2) since for every α the ∼fin-equivalence class of any
t ∈ ωα is countable. So we are left to construct (sα)α<ω1 . We do this by induction.

Assume that sα has been constructed so that it satisfies the above. Pick any
a ∈ ω \ range(sα), which exists by (iii) and set sα+1 := sα ∪ {(α, a)}. Suppose now
that λ < ω1 is a limit ordinal and assume that sα has been defined for all α < λ.
Pick some increasing sequence αn with αn → λ. We would like to define sλ as some
sort of a union of the (sαn)n∈ω. Of course, this sequence does not cohere so we first
define some injective tn ∼fin sαn so that tn+1�αn = tn first. This can be done by an
easy induction. Set t :=

⋃
n tn. Then t is injective and if we where to set sλ equal to

t then we would have (i),(ii) above. However this choice of sλ may not satisfy (iii).
To fix this, define sλ so that sλ(αn) = t(α2n) and sλ(α) = t(α) otherwise. It is easy
to check now that all (i),(ii),(iii) hold. �
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We point out that it is independent of ZFC whether ℵ2 has the tree property.
We will explore what happens at the “higher infinite” in the next section.

Theorem 87. There is a 2-coloring of [ω1]2 for which there is no uncountable
A ⊆ ω1 with [A]2 monochromatic. That is ω1 6→ (ω1)2.

Proof. It suffices to show that 2ℵ0 6→ (ω1)2, since 2ℵ0 ≥ ℵ1.
Let <R be the usual ordering of R and notice that there are no <R-increasing or

<R-decreasing sequences (aξ)ξ∈ω1 of reals of length ω1. To see this notice that if (aξ)
is strictly increasing then we can assign to each aξ so rational qξ with the property
that ξ 6= ξ′ =⇒ qξ 6= qξ′ : let qξ be any rational between aξ and aξ+1. Hence any
increasing sequence has countable length.

Since R ≈ 2ℵ0 we may transfer <R on 2ℵ0 via any bijection. So, on the ordinal
2ℵ0 we have two orderings: the usual < ordering and <R. Consider the coloring
f : [2ℵ0 ]2 → 2 with f({α, β}) = 0, if < and <R agree on {α, β}; and f({α, β}) = 1
otherwise. But then, there is no f -monochromatic subset of 2ℵ0 because this would
give either a decreasing or an increasing sequence (aξ)ξ∈ω1 of reals. �

Finally consider the following strengthening of the notion of an Aronszajn tree.

Definition 88. Let κ be a cardinal. A κ-Suslin tree is any Aronszajn tree T
with property (2) in Definition 88 replaced with:

(2′) |A| < κ for every antichain A ⊆ T .

By an antichain we mean any subset A of T with a, b ∈ A =⇒ (a 6< b and b 6< a)

The existence of some κ-Suslin tree indicates that κ very far from having com-
pactness properties. We point out that ZFC cannot decide if there are ω1-Suslin
trees. However, under the assumption V = L, that is, in the Gödel universe that we
are going to discuss later, there are κ-Suslin trees for many κ, including ω1. This
shows indicates that Gödel’s constructible universe significantly lacks compactness.

Suslin trees are related to the following problem. A linear ordering (L,<) is
separable if it has a countable dense subset (in the order topology). It has the
countable chain condition if every collection of disjoint open intervals is count-
able. The reals (R, <) with their ordering is the unique separable complete dense
linear ordering without endpoints. This can be checked easily by a back and forth
argument (using Cantor’s characterization of (Q, <)). Suslin asked if the same is
true after replacing “separable” above with “having the countable chain condition”.
It turns out that this question is equivalent to the existence of a ω1-Suslin tree, and
therefore, undecidable from ZFC.

3. Large cardinals

By large cardinals we mean some subclass C ⊆ CARD of cardinals which cannot
usually shown to be non-empty by ZFC and if it is assumed to be non-empty, this
has consequences for the set theoretic universe V , but frequently also (and more
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interestingly) for the reals. Let us list some usual large cardinal assumptions in
increasing order/strength (this list is far from complete):

weakly inaccessible < inaccessible < Mahlo < weakly compact < 0# exists <

< measurable < Woodin < strongly compact < supercompact < · · ·
We will focus only on the inaccessible and the weakly compact cardinals.

Let λ be a limit ordinal. The cofinality cof(λ) of λ is the least β for which
there is f : β → λ with supξ<βf(ξ) = λ. Any such map f is called cofinal in λ.

Examples.

(1) cof(ℵω) = ω;
(2) cof(α) = ω if α < ω1;
(3) cof(ω1) = ω1.

Lemma 89. Some properties of cofinality are

(1) for all λ we have that cof(λ) = ℵα for some α;
(2) if cof(λ) = κ then there is cofinal map f : κ→ λ which is also normal;
(3) cof(ℵλ) = cof(λ) for every limit ordinal λ.

Proof. (1) if f : κ→ λ is cofinal and g : κ→ |κ| is its cardinality then f ◦ g−1

is also cofinal.
(2) Let g : κ→ λ be cofinal and define by induction f : κ→ λ as follows:

f(0) = g(0)

f(ξ + 1) = min{α ∈ ORD | α > f(η), and α > g(η) where η ≤ ξ}
f(θ) = limξ<θf(ξ).

We leave the reader to confirm that this works.
(3) If f : κ → λ is cofinal then g : κ → ℵλ, with g(ξ) = ℵf(ξ) is also cofinal.

Conversely, If g′ : κ → ℵλ is cofinal then f ′ : κ → λ, with f ′(ξ) := min{α | g′(xi) <
ℵα} is cofinal. �

Examples. We compute using the above lemma:

(1) cof(ℵω) = ω
(2) cof(ℵℵℵ1 ) = cof(ℵℵ1) = cof(ℵ1)
(3) cof(ℵℵℵ··· ) = ω.

We are interested in cardinals that cannot be exhausted by smaller cardinals:

Definition 90. A cardinal κ is regular if it is infinite and cof(κ) = κ. Other-
wise, κ is singular.

Notice that both ℵ0 and ℵ1 are regular while ℵℵ0 is singular.

Lemma 91. Every “successor” cardinal ℵα+1 is regular.
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Proof. If f : κ→ ℵα+1 is cofinal with κ < ℵα+1 then we have that

ℵα+1 = |ℵα+1| ≤ |
⊔
ξ<κ

f(ξ)| ≤ |
⊔
ξ<κ

ℵα| = κ · ℵα = ℵα,

a contradiction. �

Are there any regular cardinals which are not successor cardinals except ℵ0?
These are precisely the weakly inaccessible cardinals below.

Definition 92. An uncountable cardinal κ is called

(1) weakly inaccessible if κ is regular and µ+ < κ for all µ < κ;
(2) strongly inaccessible if κ is regular and 2µ < κ for all µ < κ;
(3) weakly compact if it has the Ramsey property, i.e., κ→ (κ)2.

We may now justify the relative position of these cardinals in the ordering we
sketch at the beginning of this section.

Lemma 93. κ is weakly compact =⇒ κ is strongly inaccessible =⇒ κ is weakly
inaccessible.

Proof. Since µ+ ≤ 2µ we have that κ is strongly inaccessible =⇒ κ is weakly
inaccessible.

Let now κ be weakly compact. We will show that κ is strongly inaccessible.
First notice that κ is regular: if not, then κ is the disjoint union

⋃
ξ<λ{Aξ | ξ < λ}

with λ < κ and |Aξ| < κ. Define the coloring f : [κ]2 → 2 with f({α, β}) = 0 if and
only if α, β are in the same Aξ. Clearly there is no monochromatic set supported
on a set of size κ.

To see that λ < κ =⇒ 2λ < κ assume the contrary. Then by a similar argument
as in Theorem 87 one shows that 2λ 6→ (λ+)2. This implies that κ 6→ (λ+)2 by
assumption, and since κ ≤ λ+, we have κ 6→ (κ)2. The pertinent result needed for
generalizing the argument from Theorem 87) is the following claim:

Claim. The lexicographically ordered set {0, 1}λ has no increasing nor decreasing
sequence of length λ+.

Proof of Claim. Let (fα)α<λ+ be a sequence in {0, 1}λ with α < β =⇒
fα <lex fβ. Let also γ ≤ λ be the least γ so that {(fα�γ) | α < λ+} has size λ+. By
dropping some of the entries in (fα)α and reindexing if necessary we may assume
that

(
(fα�γ)

)
α<λ+

is (strictly) increasing.

For every α < λ+ let ξα be so that fα�ξα = fα+1�ξα but fα(ξα) = 0 < 1 =
fα+1(ξα). Clearly ξα < γ, hence there is some ξ < γ so that ξ = ξα for λ+-many α.
But then, the set {(fα�ξ) | α < λ+} has size λ+ since if ξ = ξα = ξβ and fα�ξ = fβ�ξ
we have that fβ < fα+1 and fα < fβ+1 which holds only for α = β. This contradicts
the minimality assumption on γ. �

�
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Going back to the tree property, if κ is singular then it is easy to see that there
are κ-Aronszajn trees: let κ\{0} be a disjoint union

⋃
α<λXα with and consider the

tree (κ,<T ) with ξ <T ζ if and only if ξ, ζ ∈ Xα

⋃
{0} for some α and ξ < ζ. The

situation with regular cardinals is a bit more complicated and cannot be decided
from ZFC even for ℵ2. However, it is known that under the assumption V = L
there is a κ-Aronszajn tree for each infinite successor cardinal κ = ℵα+1. In other
words, under the assumption V = L the only place we can look for “compactness
properties” above ℵ0 is inaccessible cardinals and above. With the next two theorems
we establish that the next place after ℵ0 where we have compactness “with certainty”
is from weakly compact cardinals and above.

Theorem 94. If κ is weakly compact then κ has the tree property.

Proof. Let (T,<T ) be a tree with κ-many levels, each of size < κ. Since
κ ≤ |T | ≤ κ · κ = κ we can assume without loss of generality that T = κ. So we
have on κ two orderings so far: the usual total ordering <, and the partial ordering
<T . We extend this partial ordering <T to a total ordering� as follows: if α, β are
<T -incomparable then set α� β if and only if αξ < βξ, where ξ is the first level on
which the predecessors αξ and βξ of α and β, respectively, differ.

Consider now the coloring f : [κ]2 → {0, 1} with f({α, β}) = 1 if and only if <
and � agree on {α, β}. Since κ is weakly compact there is A ⊆ κ of size κ so that
f is constant on [A]2. Consider the set

C := {x ∈ κ | there are κ-many α ∈ A with x <T α}
We claim that this is a <T -chain of size κ. To see that C has size κ notice that
every level of the tree T contains at least one x ∈ A (otherwise |T | < κ). To see
that C is a chain assume towards contradiction that there are x, y ∈ C which are
<T -incomparable. Assume without loss of generality that x� y. But then we pick

α < β < γ within A

so that x <T α, x <T γ, and y <T β. It follows that α � β and γ � β, and
therefore f({α, β}) 6= f({β, γ}), contradicting that f�[A]2 is constant. �

The following theorem shows this is the best we can provably do relative to ZFC.

Theorem 95. If κ is strongly inaccessible and has the tree property then it is
weakly compact. Moreover, if V = L (and weakly compact cardinals exist), then there
is no cardinal between ℵ0 and the first weakly compact which has the tree property.

Proof. Let f : [κ] → {0, 1}. We will find A ⊆ κ, with |A| = κ, so that f�[A]2

is constant.
We first construct a tree (T,⊂) whose elements are maps t : γ → {0, 1} where

γ < κ. We will do this by induction on κ. For each α < κ we will add precisely
one new element in (what eventually will become) T . Let t0 := ∅. Assume we have
constructed (tβ)β<α we construct tα by induction on ξ: assume that tα�ξ has been
constructed. If tα�ξ = tβ for some β then set tα(ξ) = f({α, β}). If tα�ξ was a new
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element to start with (6= tβ for any β < α) then consider the construction of tα
finished,tα := tα�ξ.

Notice that each level γ < κ of the tree has at most 2|γ| elements and since
κ is inaccessible each level has size < κ. This additionally implies that there are
κ-many levels (since we added κ-many tα). Since κ has the tree property there
is a chain C ⊆ T of size κ. Let A0 := {α | tα ∈ C, t_α 0 ∈ C} and A1 := {α |
tα ∈ C, t_α 1 ∈ C}. Since A0, A1 partitions {α | tα ∈ C}, one of the two, say Ai,
has size κ. Let then A := Ai and notice that for every α < β in A we have that
f({α, β}) = tβ(length(tα)) = i. �

One may intuitively argue that there ought to be inaccessible cardinals in V . For
example, in any modelM of set theory ORDM would be an inaccessible cardinal if
it was a set. One can then, presumably extendM to a new model by adding ORDM

as a set. Then ORDM in the new model would still be inaccessible but moreover
also a cardinal. However, ZFC cannot prove the existence of inaccessible cardinals
as we will now see.

Theorem 96. Let κ be a strongly inaccessible cardinal. Then Vκ |= ZFC.

Proof. The proof is similar to the one needed (in HW1) for showing that Vω+ω is
a model of Z. It is not difficult to see that all Vω, Vω+ω, Vκ satisfy AC and Foundation.
Inaccessibility is used for showing that Vκ satisfies the axiom of replacement.

Claim. If x ∈ Vκ then |x| < κ.

Proof of Claim. If x ∈ Vκ then x ⊆ Vα for some α. Hence |x| < |Vα|. So it
suffices to show that |Vα| < κ for all α < κ. This is done by induction. The 0-case is
trivial. If |Vα| = µ < κ then |Vα+1| = 2µ < κ since κ is strongly inaccessible. Finally,
if λ < κ is a limit ordinal then |Vλ| = |

⋃
ξ<λ Vξ| =

⋃
ξ<λ |Vξ|. Since by inductive

assumption |Vξ| < κ we have by inaccessibility (by cof(κ) = κ, in particular) that
|Vλ| < κ. �

To see that Vκ satisfies the axiom of replacement, let F be a class function (from
the perspective of Vκ) and x ∈ Vκ with the property that x ⊆ dom(F) (again from
the perspective of Vκ). We will show that F′′x ∈ Vκ. When we say “from the
perspective of Vκ” we mean that F∩ Vκ× Vκ is a function and for every a ∈ x there
is b in Vκ with F(a) = b.

It suffices to show that F′′x ⊆ Vα for some α < κ. But if this was to fail then the
map y 7→ rank(F(y)) with y ∈ x would be cofinal in κ. This gives a contradiction
by the previous claim and the fact that cof(κ) = κ. �

Corollary 97. If ZFC is consistent, so is ZFC+“there is no strongly inacces-
sible cardinal”.

Proof. Assume the contrary, that is ZFC`“inaccessible cardinals exist”. Let
κ0 be the least inaccessible cardinal. Then Vκ0 |=ZFC, hence there is κ ∈ Vκ0 that



4. RELATIVIZATION, ABSOLUTENESS AND REFLECTION 55

is inaccessible from the perspective of Vκ0 . It is not difficult to see however that κ
would also be inaccessible in V , contradicting the minimality assumption on κ0.

Indeed, for every cardinal λ in V with λ < κ we have that λ ∈ Vκ0 and λ < κ
from the perspective of Vκ0 . Since κ is inaccessible in Vκ0 we have that 2λ < κ from
the perspective of Vκ0 . But this implies 2λ < κ from the perspective of V since if
a, b ∈ Vκ0 then “a ∈ b from the perspective of Vκ0” if and only if “a ∈ b from the
perspective of V .” Similarly one argues that cof(κ) = κ from the perspective of Vκ0
implies cof(κ) = κ from the perspective of V .

�

Corollary 98. If ZFC is consistent, so is ZFC+“there is no weakly inaccessible
cardinal”.

Proof. We will see when we study L that if ZFC is consistent then so is
ZFC+“λ+ = 2λ for infinite λ”. But then, a weakly inaccessible cardinal is strongly
inaccessible and we may apply the previous argument. �

4. Relativization, absoluteness and reflection

We have seen already that Vω, Vω+ω satisfy fragments of ZFC and Vκ satisfies all
of ZFC, when κ is strongly inaccessible. More generally, let M be any subclass of V
(given by some formula π(x)). We may want to study the structure (M,∈M), where
∈M is just the restriction of ∈ to M×M. Any formula ϕ has an interpretation in M
which generally disagrees with the interpretation of ϕ in V . Often we are interested
in the interplay between the interpretations of ϕ in V and in M and we need to have
the appropriate notation to distinguish between the two, as well as conditions which
guarantee when the two interpretations agree.

Lets consider the example of M = Vκ in Theorem 96 and Corollary 97. When
we proved axiom of replacement holds in M we considered a class function F and
some x ∈ M with“ x ⊆ dom(F) from the perspective of M”. This just meant that
for every a ∈ x there is b within M so that F(a) = b. For example, any subset x of
Vκ is a subset of the domain of the class function

F := {(a, κ) | a ∈ V}

from the perspective of V but not from the perspective of M = Vκ, if x 6= ∅. We will
write x ⊆ dom(F) and x 6⊆ domM(F) to distinguish between the two statements.

Definition 99. Let M be a class and let ϕ be any formula. We define inductively
the relativization ϕM of ϕ on M to be:

(1) (x = y)M is x = y;
(2) (x ∈ y)M is x ∈ y;
(3) (ϕ ∧ ψ)M is ϕM ∧ ψM;
(4) (¬ϕ)M is ¬ϕM;
(5) (∃x ϕ)M is ∃x

(
(x ∈ M) ∧ ϕM

)
;
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Hence, if ϕ is a formula and ā is a tuple in M we have that ϕM(ā) holds if and
only if (M,∈M) |= ϕ(ā).

One has to be careful from now on when using abbreviations introduced above.
For example (x ⊆ y)M stands for ∀z ∈ M(z ∈ x =⇒ z ∈ y) and the powerset
PM(x) of x ∈ M, if it exists in M, is the unique set y with the property that
∀z ∈ M(z ∈ y ⇐⇒ z ⊆M x). Here however, we will only consider classes M for
which the relativization of many simple formulas takes a simple form. For example
we have the following lemma whose consequence is that we can often take PM(x) to
simply be P(x) ∩M.

Lemma 100. If M is transitive then the axiom of extensionality holds. The
powerset axiom also holds if additionally we have that ∀x ∈ M∃y ∈ M(y = P(x)∩M).

Proof. Left to the reader. �

In the context of the next definition, extensionality is absolute for transitive M.

Definition 101. Let M ⊆ N be two classes. Call ϕ absolute for M,N if

∀x̄ ∈ M(ϕM(x̄) ⇐⇒ ϕN(x̄)).

We say that ϕ is absolute for M if it is absolute for M,V.

Recall from model theory that a ∃-formula is “upward absolute” and a ∀-formula
is “downward absolute”. Hence a formula equivalent to both an existential and a
universal formula is absolute for model-theoretic reasons. In set theory we have the
a very convenient form of absoluteness for formulas with “bounded quantification”

Definition 102. The collection of ∆0-formulas is the build inductively by

(1) (x ∈ y) ∈ ∆0 and (x = y) ∈ ∆0;
(2) if ϕ, ψ ∈ ∆0 then ¬ϕ, ϕ ∧ ψ ∈ ∆0;
(3) if ϕ ∈ ∆0 then so is ∃x(x ∈ y ∧ ϕ)

The following theorem is very useful since many formulas are equivalent relative
to (fragments of) ZFC to ∆0-formulas. Some examples are

y = x ∪ {x}, z = {x, y}, y =
⋃

X, x is an ordinal

x is a limit ordinal, x is a successor ordinal, x = ω

Theorem 103. In M is transitive and ϕ ∈ ∆0 then ϕ is absolute for M.

Proof. Exercise. �

We are interested in classes M ⊆ V which model ZF. Ideally we would like M to
be a set, in which case we would like to argue, ideally, that ZF ` “M models ZF”.
However, because of Gödel’s second incompleteness theorem this is hopeless. In fact,
this gives another proof as to why ZFC cannot prove that there exists a strongly
inaccessible κ since, otherwise, M = Vκ is a set and ZFC ` “M models ZFC”. That
being said, the next theorem shows that we can approximate this goal from below...
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Theorem 104 (Reflection Theorem). If ϕ1, . . . , ϕn are finitely many formulas:

ZF ` ∀α ∃β > α (ϕ1, . . . , ϕn are absolute for Vβ)

In fact, one may prove the following more general version of this theorem which
is very useful for the study of L, as we will see in the next section.

Theorem 105 (General Reflection Theorem). Assume that ZF proves that for
some class M and some sequence (Mα)α∈ORD that:

(1) α < β =⇒ Mα ⊆ Mβ;
(2) Mλ =

⋃
ξ<λ Mξ;

(3) M =
⋃
α∈ORD Mα.

Then for any finitely many formulas ϕ1, . . . , ϕn we have that ZF proves

∀α ∃β > α (ϕ1, . . . , ϕn are absolute for Mβ,M)

Proof. A subformula of a formula ϕ is any formula ψ which appears as a node
in the syntactic tree of ϕ. By expanding the list ϕ1, . . . , ϕn to a larger finite list
we may assume without loss of generality that every subformula of each ϕi appears
somewhere in the list. Call such list subformula closed. By the same inductive
argument as the one in the Tarski-Vaught test (see model theory) it suffices to prove
the following claim (notice both superscripts are M in ϕj below).

Claim. For all α there is β > α so that if ϕi is of the form ∃xϕj(x, ȳ) then

∀ȳ ∈ Mβ

(
∃x ∈ M ϕM

j (x, ȳ) ⇐⇒ ∃x ∈ Mβ ϕ
M
j (x, ȳ)

)
Proof of Claim. For each formula ϕi of the form ∃xϕj(x, ȳ) consider the class

function Gi : M × · · · × M → ORD with Gi(ā) = 0, if ¬∃x ∈ Mϕj(x, ā); and
Gi(ā) =“least ξ so that ∃x ∈ Mξϕj(x, ā)”, otherwise. Consider the associated map

Fi : ORD→ ORD, with Fi(η) = sup{Gi(ā) | ā ∈ Mξ}.
Start with α and by induction define increasing (αk)k∈ω with

αk+1 := max{F1(αk), . . .Fn(αk), αk + 1}.
Set β = supk αk and notice that for all ξ < αk and all i we have that Fi(ξ) < β. �

�

5. Gödel’s constructible universe L

We will define here a class L of sets. Every universe of ZF contains within it its
own version of L. We will show that for every single axiom σ of ZF we have that
ZF proves that σ holds in L. We will then show that ZF proves that L satisfies the
Generalized Continuum Hypothesis as well as AC. This implies that ZF cannot prove
¬AC, as well as ZFC cannot prove ¬GCH. We will finally address the compatibility
of the axiom V=L with large cardinal axioms. For example V=L is compatible with
“weakly compact cardinals exist”. However, we will see that it is not compatible
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with “measurable cardinals exist.” Hence, it is consistent that the universe is “tall
and thin” but not consistent that the universe is “very tall and thin.”

Let Φ be the collection of all first order formulas in the language of set theory. If
A is any set then we write ΦA for the collection of all relativized formulas ϕA where
ϕ ∈ Φ. For any set A consider the collection:

D(A) :=
{
X ⊆ A | there is ϕA(x̄, y) ∈ ΦA and ā ∈ An s.t. X = {b ∈ A | ϕA(ā, b)}

}
=
{
X ⊆ A | X is a definable (with parameters) subset of A in the structure (A,∈)

}
.

Then D(A) is set since D(A) ⊆ P(A). We may now define Gödel’s constructible
universe L to be the union

⋃
α∈ORD Lα, where Lα is inductively as follows:

(1) L0 := ∅
(2) Lα+1 := D(Lα);
(3) Lλ :=

⋃
ξ<λ Lξ, if λ is a limit ordinal.

Notice that with the next lemma we establish that L and (Lα)α satisfy the
assumptions of the general reflection theorem (Theorem 105) above.

Lemma 106. Let α < β be ordinals. Then

(1) Lα ⊆ Lβ;
(2) Lα, as well as L, are a transitive sets.

Proof. First notice that if A is any transitive set then A ⊆ D(A). Indeed if
a ∈ A then the formula ϕ(x, y) ⇐⇒ y ∈ x with parameter x = a introduces some
element of D(A) which happens to be a by transitivity of A.

Assume now by induction that Lα is transitive. by the above we have that

Lα ⊆ Lα+1 ⊆ P(Lα)

If x ∈ X ∈ Lα+1 then x ∈ Lα by the second ⊆ above and then x ∈ Lα+1 by the first ⊆
above. We have therefore shown the successor case in the inductive argument which
proves both (1), (2). The rest follows by straightforward properties of unions. �

We now describe briefly the “geometry” of L.

Definition 107. For every x ∈ L we denote by rankL(x) the L-rank of x, i.e.,
least ordinal α so that x ∈ Lα+1.

Lemma 108. The universe L has the following properties:

(1) for all α ≤ ω we have that Lα = Vα;
(2) (assuming AC) for all α ≥ ω we have that |Lα| = |α|.
(3) ORD ∩ Lα = α, and hence, ORDL = ORD;

Proof. (1) is immediate. For (2), notice that |Lα+1| ≤ |Φ × (Lα)<ω| = |Lα|,
and since |α+ 1| = α we see by induction that |Lα| ≤ |α|. The converse, |α| ≤ |Lα|,
follows from property (3). For (3), we argue by induction. The only non-trivial case
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is the successor case, so assume that ORD ∩ Lα = α. Since Lα ⊆ Lα+1 ⊆ P(Lα) we
have that α ⊆

(
Lα+1 ∩ORD

)
⊆ α + 1. From HW there is a ∆0-formula ϕ so that

∀x(x ∈ ORD ⇐⇒ ϕ(x)).

But then, the set a := {x ∈ Lα | ϕLα(x)}, which is contained in Lα+1, is equal
to α by Lemma 103 and since Lα is transitive. It follows that α ∈ Lα+1 and so
(Lα+1 ∩ORD

)
= α + 1. �

Clearly, by (2) above, we have that Lω+1 6= P(Lω). In fact we moreover have:

Lω+1 6= PL(Lω).

The reason is that the bijection f : Lω+1 → ω witnessing that |Lω+1| = ℵ0 in the
previous lemma can be seen to be an element of Lω+2 and therefore of L. So L
is “aware” that Lω+1 is countable but since L satisfies ZFC it is also “aware” that
PL(Lω) is uncountable. Which means that not every element of PL(Lω) has L-rank
ω. For the same reasons PL(ω) ∩ Lω+1 6= PL(ω). One can say that the elements
PL(ω)∩Lω+1 are precisely the arithmetical subsets of ω, or equivalently, the subsets
of ω which are computable from the n-th Turing jump for some n ∈ ω. The question
remains: what is the smallest ordinal α so that PL(ω)∩Lα = PL(ω)? We will come
back to this question after we establish the following theorem.

Theorem 109 (ZF). L is a model of ZF.

Proof. Extensionality follows by Lemma 100, since L is transitive. Foundation
is clear since L ⊆

⋃
α Vα. Infinity axiom is also clear since Vω ∈ Lω+1

For the subset axiom, let ϕ(z, x̄) be a formula, we want to show that:

∀x, x1, . . . xn ∈ L ∃y ∈ L ∀z ∈ L
(
(z ∈ y)L ⇐⇒ ((z ∈ x)L ∧ ϕL(z, x1, . . . , xn))

)
.

Of course, the superscript L in (z ∈ y) and (z ∈ x) is redundant. Fix x, x̄ ∈ L and
let α be large enough so that x, x̄ ∈ Lα. Notice that in stage Lα+1 we added:

y′ := {z ∈ x | ϕLα(z, x1, . . . , xn))}
but this in not the same as the desired y since ϕL 6= ϕLα in general. However, by
Theorem 105 we may pick some β > α so that (z ∈ x)∧ϕ is absolute for Lα,L. But
then we can take y to simply be

y := {z ∈ Lβ | (z ∈ x) ∧ ϕLβ(z, x1, . . . , xn))} ∈ D(Lβ) ⊆ L

which was constructed by Theorem 105 to be equal to the desired:

{z ∈ x | ϕL(z, x1, . . . , xn)}
The pairing axiom, union axiom, powerset axiom, and replacement axiom all

follow by establishing existence in L of certain large enough sets. We just show
replacement. So let ϕ(x, y, w̄) be a formula and let X, ā ∈ L so that:(

ϕ(x, y, ā) is a class function F and X ⊆ dom(F)
)L
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This implies that “from the perspective of V ” we have

ϕL(x, y, ā)
⋂

(L× L) is a class function F′ and X ⊆ dom(F′
⋂

(L× L)),

So by replacement in V we have that {rankL(F′(x)) | x ∈ X} ⊆ ORD is a set. Pick
any β ordinal which bounds this set from above. The rest follows by the subset
axiom applied to the formula F′′X on the set Lβ.

�


