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1. Introduction and Outline
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Rate OpTIMALITY OF ADAPTIVE ALGORITHMS

The overwhelming practical success
JEA G| e efoemert. 1o
mputational

engineering has Tecently ovained a
mathematical  foundation

a theory on optimal convergence
rates. This article first explains an
abstract adaptive algorithm and its
marking  strategy. Secondly, it
elucidates the concept of optimality
in nonlinear approximation theory
for a general audience. It thirdly
outlines an abstract framework with

this state of the art overview.

All details and precise references are

D. Praetorius, Comput. Math. App.
67 (2014)] at
/dx.dol.org/10.1016;
camwa.2013.12.003,

B

THE ALGORITHM

The geometry of the domain 12 in
some boundary value problem (8VP)
is often specified in numerical

simulat s of
triangulation 7 (also called mesh or
partition) which is a set of a large
but finite number of cells (also called
element-domains) T, ..., Ty. Based
on this mesh T, some discrete model
(e:., finite element method (FEM))
leads to some discrete solution 7)
which approximates an unknown
exact solution u to the BV Usually,
a posteriori error estimates motivate
some computable error estimator

0T =Ly, ()

‘The local contributions 71,(T) serve
as  refinement-indicators in  the

Axioms of Adaptivity

adaptive mesh-refining _ algorithm,
where the marking s the essential
decision for refinement and written
asalistof M cells (Le. M S 7)with
some larger  refinement-indicator.
The refinement procedure then
computes the smallest admissible
refinement 7" of the mesh 7 (see
Section 3) such that at least the
marked cells are refine

‘The successive loops of those steps
lead to the following adaptive
algorithm, where the coarsest mesh
Ta is an input data.

Adaptive Algorithm
Input; initial mesh To

Loop:for €=0,1.2, ..do steps 1-4
1. Solve: Compute discrete
approximation U/(T).

2. Estimate: Compute refinement
indicators 7:(T) forall TeTr.

3. Mark: Choose set of cells to
refine M, S T (see Section 4 for
details),

s
i ?l\\\‘
“l D\VAx

s
mc
L

4. Refine: Generate new mesh T+
by refinement of at least all cells in
M (see Section 3 for details)
Output: Meshes 7', approximations
U(T), and estimators 7(T)

THE OPTIMALITY

Figure 1 ﬂlsnlavs a typical mesh for
some adapt mesh-refinement
of some Lshaned cylinder into
tetrahedra  with  some global
refinement as well as some local
mesh-refinement ards  the
Veriea adge along the ro.entrant
corner. The question whether this is
a good mesh or not is an important

approaches. We merely mention the
coarsening techniques as in [Binev et
al, 2004] when applied to the
adaptive hp-FEM wi
decision about h- or p-refinement.

For the optimality analysis of the
adaptive algorithm of Section 1, the

Koo

Figure 1:Strongly adaptively refined suface triangulation

»
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Short History

Advert Johnson-Eriksson/Babuska; early 1D results Babuska et al.

Dorfler marking [Dorfler, 1996]

Convergence [Morin-Nochetto-Siebert 2000]

Optimal rates for the Poisson problem [Binev-Dahmen-DeVore 2004]
Optimal rates without coarsening [Stevenson 2007]

Convergence for nonconforming/mixed FEM [Carstensen-Hoppe 2006]
NVB included [Cascon-Kreuzer-Nochetto-Siebert 2008]

Integral equations and BEMs [Feischl et al. 2013], [Gantumur 2013]
Poisson with general boundary conditions [Aurada et al. 2013]
Abstract framework [C-Feischl-Page-Praetorius 2014]

Instance optimality [Diening-Kreuzer-Stevenson 2015]
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Overview

Introduction

(A1) Stability

(A2) Reduction

(A12) and plain convergence
(A3) Reliability
Quasimonotonicity

(A4) Quasiorthogonality
R-linear convergence

Comparison lemma

Optimal convergence rates

Carsten Carstensen (Humboldt) Axioms of Adaptivity CENTRAL 2015 5/41



Admissible Triangulations

NVB refinement strategy and initial triangulation 7y specifies set T of
all admissible triangulations

AN A AN AN

T green(T') bluer(T) bluer, (T) bisec3(T')

NVB in any dimension [Stevensen (2008) Math.Comp.]
Overlay control |7y @ Tre| + |To| < |Te| + | Trefl
Closure Overhead Control |T;| — |To| < Cppv Z?;é | M|
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Adaptive Algorithm

Input: Initial triangulation 7y with NVB refinement edges and 0 < 6 < 1

V¢ =0,1,2,3,... until termination do

@ Given 7Ty, solve discrete problem and compute error estimators

ne(K) for all K € Ty

@ Determine (almost) minimal set of marked cells M, C 7Ty s.t.

Om; <np(Mg) == > (M)
MeM,

@ Design minimal refinement 7y11 of Ty with M, C Ty \ Tp4q

Output: Sequence of triangulations and estimators
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Optimal Convergence Rates
Axioms (A1)—(A4) involve

estimators 0 < 7(7; K) < oo forall K € T € T and
distances 0 < &(7,7) < oo for all refinements 7 of 7 in T

Axioms (A1)—(A4) imply rate-optimality for < 1 in the sense that

sup (1 4+ N)® min 75(T)

NeNp TET(N) [NJog () +10g(C,ep)
~ sup (1 + |[Te| — |To|)*ne oB(M)
—
et Ny [c SN
) 1
| .. -
2 | log(n(T(VY)) N o)
e =1 (7o) o :
2 . 2 L ! : =
n’(T) =n* (T, T) A )
? = 2 = 3
77(T7M) = Zn(T,K) o .
KeM
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Poisson Model Problem (PMP) f 4+ Au=0

CFEM seeks uc € Pi(T) N Ch(Q) s.t.
/ Vuc Voo dx = / fvedx  for all ve € P (T)NCo(Q)
Q= Q
28
CR-NCFEM seeks ucgr € CRY(T) s:t.

/ Viycucr -Vcvcrdr = / fvocrdx for all vogr € CR(l)(T
o Q
pT

)
RT-MFEM seeks prr € RTo(7) and ugr € Po(T) s.t. ;

/ DRT “qrT dx —I—/ urr div grrdz = 0 for all ggrr € RTo(T)
Q~ Q

pT

pf +divprr = 0
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Estimator in PMP f + Au =0
CFEM, CR-NCFEM, MFEM generate discrete flux

pr=P¢c P,(T;R?) fork=0,1andfor T €T
in PMP with jumps (with unspecified sign)
[Plg = (PIK)|E — (Plr)|e € L*(E;R?)

across an interior edge E = 0K NJK' € £() of two neighboring
triangles K, K’ € T and appropriate modifications on the exterior
boundary with tangent unit vector 75 along E € £(092)

[P]E ::P'TE

The (error) estimator for K € T reads

P (K) = (T, K) == K[| 7200, + 1K' D I[PlelZ2m)
EeE(K)

(K] HfHL2 ) possibly replaced by |K| || f — fK”LQ(K for RT-MFEM).

Carsten Carstensen (Humboldt) Axioms of Adaptivity CENTRAL 2015 10 / 41



(A1)—(A4) at a Glance

0 <A <oco YT €TVT €T(T)

(T, TNT) =0T, TNT)| < AT, T) (A1)

v

N<pp<lI<A<oo YT eTVT eT(T)
(T, T\T) < pon(T, T\T) + Aad(T, T) (A2)

v

V<A3<oo VT eTVT eT(T)

§(T,T) < Asp(T, T\ T) (A3)

0 <Ay <oo VleN; (exclusively for the AFEM output)

> 8 (T, Trar) < Aamj (A4)
k=t
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Outline of Optimality Analysis |

e (A12) Estimator reduction 7742+1 < plznf + Al?ézeH

@ Convergence from

0o -1
ST <An? andthen >y V<t
k=¢ k=0

@ Quasimonotonicity  7%(7) < A7n?(T)
@ Comparison Lemma: Given 7y, 0 < k < 1, and

M := sup (1+ N)® min n(7),
NeII\I)o( ) TET(N) \7)

() 0(Te) < wn(Te)
there exist 7; and 0 < 8 < 1s.t.  (b) wn|Te \ Te|* < M

(©) Bom < nF(Te\Te)
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Outline of Optimality Analysis I
o T\ 7T, satisfies the bulk criterion for 6 < 6 by (c). This implies
M| < [T\ Tel

with the optimal set M7 of marked cells in AFEM. The utilized set
M, of marked cells is almost minimal: 30 < Aqpy < 0oVl € Ny,

M| < Aopt M| < Aope| Te \ Til
@ Recall M := supyep, (1 + N)*minyerv)n(7) and from (b) deduce

) M 1/s 1
AT S (5) e

@ Recall closure overhead control and combine with aforementioned
estimates for

/-1 /-1
|ﬁ| N |76‘ < CBDVZ ‘M]’ SJ Ml/sznj_l/s S Ml/snz—l/s 0
=0 =0
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Conclusions

@ Theory without efficiency and so includes adaptive BEM

@ Abstract framework (A1)—(A4) almost covers existing literature (up
to instance optimality)

@ Rate optimality for AFEMs may be based on collective and separate
marking

@ Separate marking necessary for H(div) Least-Squares FEM but leads
to optimal convergence rates in [C-Park SINUM 2015].

@ Possible generalizations: Higher-order problems, more complex PDEs,
non-constant coefficients, more nonconforming FEMs, inhomogeneous
Dirichlet data etc.

@ Inexact solve possible for iterative solve. Proof of information-based
optimal complexity is missing — hopefully realistic assumptions on
the performance of the nonlinear solver guarantee optimal complexity

@ List of open cases for linear problems e.g. for Taylor-Hood, dG,
Kouhia-Stenberg and hard nonlinear problems e.g. in comp. calc. var.

Carsten Carstensen (Humboldt) Axioms of Adaptivity CENTRAL 2015 14 / 41



2. Plain Convergence
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(A1)-(A2) & Dorfler marking imply (A12)
This section concerns the output 7, and 7, of AFEM.
30§912<130<A12<OO \V/[ENO

Ns1 < 012M7 + A2 6%(Tot1, To)- (A12)

The following identity is frequently used throughout the proofs. Any
a,b > 0 satisfy

(a+b)?= (dnf ((1+ Na? 4 (1+1/0)b%).

(For a proof, observe that A = b/a leads to the minimum if a,b > 0.)

Theorem (estimator reduction in AFEM)

For any 1 — 0(1 — 03) < 012 < 1, there exists A12 < 0o so that (Al)-(A2)
& Dérfler marking with bulk parameter 0 < 6 < 1 imply (A12).
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Proof of (A12)
Let A > 0 satisfy 1 — 6(1 — 03) = p12/(1 + A). (Al) leads to

P (Tew1, Teer N T2) < (0(Te, Te 0 Texn) + Md(Tern, o)

< (L 0 (Te, Te NV Tega) + (1 1/ N)AT0% (Ter, To).
The same argument with (A2) leads to
1 (Tesrs Te\Te) < 631+ N1 (Te, T\ Tewr) + (1 + 1/A)A36% (Tevr, To).
Combine the previous estimates with the decomposition

771?+1 = 0% (Tos1, Tox1 N T2) + 0 (Tow1, Tex1\To)
< @+ XN (0 (Te, Te N Texr) + 030 (Te, Te\ Tes1)) +A126% (T, Te)

(%):=n2 —(1—03)n*(Te, Te\ Te1)

The Dorfler marking guarantees 077? < 772(72772\%“) and so
() < (1 =601 = 03)) nf = o12mi /(1 + ). O
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Convergence n;, — 0 as k£ — oo from AFEM

Theorem (plain convergence)
(A12) and (A4) imply that A := (1 + A12A3)/(1 — 012) < oo satisfies

o
> mi < Anj forall £ € Ny,
=/

Proof. Recall (A12) in the notation 7713+1 < g1277,3 + Algéi j+1 and deduce

{+m +m+ l+m l+m
Z g+Ql2Z”k+Al2zdkk+1
k=¢ k=¢ k={ k={

Utilize p12 < 1 and (A4) for the last sum to prove

~

+m
(1—012) Z M < (L+ApA3)n; O
—

~
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R-Linear Convergence on Each Level

(A12), (A4) and A < oo from above lead to ¢ :==1—1/A < 1 with

n§+m < qun% for all £, m € Np.

Proof. Rewrite plain convergence theorem as

(0.]
of =Y mp < Anp

k=¢
Then
o
12, 2 2 2 2
Aoy +ogp <mp + Z M = 0¢
k=041
This is 07, ; < qo and, successively, 0Fm <407 for all m € Ny

Consequently
2 2 2 2
No+m < Optm < qmo-é < qunﬁ‘ O
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3. Quasimonotonicity
and Comparison
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Estimator Quasimonotonicity

(A1)—(A3) imply that Amop := 14 /A2 + A2A3 and any refinement T
of any T in T satisfy

0(T) < Amort(T).

Proof. For any 0 < A < oo, utilize (A1)-(A2) in the decomposition
(1) = (T, T O T) +7*(T, T\T)
<A+ N (AT TNT) + (T T\T))

n*(T)
(1+1/)\)(A2+A2) (T, )
(A3) reads 62(T,T) < A3n*(T) and leads to
(T < (T+ A+ 1+ 1/N(A2+ ADA)2(T) O

A2

mon
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Comparison Lemma

Given 0 < > <1 and s > 0 with M := sup (N +1)® min 7(7) < oo,
NeNg TET(N)

there exists 0 < 6y < 1 such that for all 7; there exist T; € T(T¢) s.t.
(a) 77(72) < en(Te),  (b) 2me|Te \ 7Az|8 < AmonM, (c) 9077% < 77%(72 \ 72)

Proof. (1) W.l.o.g. n, = n(7T;) > 0. By quasimonotonicity, 0 < g < M
(2) Choose minimal Ny, € Ny s.t.

_ ) _
A W R

(Ng > 1 because nyA L /M < mng/M < 1)

(3) Set Ty := Tz @ T’ for T with T/ € T(Ny) s.t. (Ng+1)*n(T') < M
Quasimonotonicity and overlay control lead e.g. to (a),

N(T) < AmonM (Ng+ 1) < semy and  |To| < |Tal + Ny
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Proof of (b)-(c) in Comparison Lemma
(4) Proof of (b). Count triangles to verify

AT <I1Tel = 1Tl < Ne < sVon PadomYs O
from ® from (2)

(5) Any T; € T(7;) with (a) allows for (c). Given any 0 < p < 372 —1,
(A1) followed by (a) and (A3) imply

(TN T) < (L4 wn?(Te, Te N To) + (14 1/u) A3 (Te, To)
< (14 p)snf + (1+ 1/p) A3 A2 (T Te)

This and the decomposition
ng =07 (Te N 7o) + 7 (TI\Te)
lead to
(1= (L4 p)se)nf < (L4 (14 1/wATAS) 07 (T\Te) O
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4. (Al)-(A2) for Courant FEM

Recall trace inequality, inverse estimate, discrete trace inequality and
compute their constants in terms of a lower bound of the minimal angle in
the triangulation, recall the Euclid norm in ¢2.
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A1 Comes from Discrete Jump Control

Given g € Py(T) for T € T, set

s = (glr )z — (glr. )|z for E € E(Q) with E = 8T, N AT,
b 9|E for E € £(0Q)NE(K).

Lemma (discrete jump control)

For all k € Ny there exists 0 < Ay < oo s.t., for all g € Py(T) and T € T,

DOIER2 Y lglel3a gy < Adllgllzze)

KeT Ecé(K)

Proof with discrete trace inequality on E € £(K) for K € T

KM lgliel | 2y < Carrllgl]2 i
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Compute A; in Proof of Discrete Jump Control
The contributions to LHS of interior edge £ = 0T, N JT_ with
edge-patch wg = int(T4 UT_) read
(T 2 4 1712 g2
< (T2 4 1T 12) (llglr, |2y + gl Nlzege)®
< Gl (T2 1T 172) (IT ™ gl 2y + 1717 gl 2 )
< G (T2 + [T V2) (1T |72 41T 7V) I9l1 720

-~

<cz

< Cgtrcs% Hg’ ‘%2(0.1,9)

The same final result holds for boundary edge E = 0T N 0S) with
wpg :=int(Ty).  The sum of all those edges proves the discrete jump
control lemma with

A = V3C4,Cs. [
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Proof of (A1) with (7, 7) = ||P — Pl 20

Recall thatA7' is an admissible refinement of 7 with respective discrete
solutions P := ps € Pi(T; R?) and P := py € Pi(T;R?). Given any
TeTnT, set

~ —
n(T) = \/m and  7(T) = W
for ap == |T|'/? [l L2z,

—~2 ~
7= T > Plellizw and Br=IT["? > |I[Plell7zm

E€&(T) EeE(T)

Then, n( TﬂT \/ZTETHTU (T') and 7( TﬂT \/ZTGTﬂTn (T)
are Euclid norms of vectors in R for J := 2|7 N T].
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Proof of (A1) with (7, 7) = ||P — P|| 20
The reversed triangle inequality in R/ bounds the LHS in (A1), namely
In(T, TOT)=n(T, TOT)|=0(TNT)—=n(TNT)| from above by

STAT -n@P= | S | Vai+Br /o + 82

TeTNT TeTNT

<|Br—B7| (triangle inequality in R2)
The reversed triangle inequality in R3 shows

1B = Brl =TI [ 3 IPlsllegm — [ D II[PE||L2 )|

E€E(T) E€&(T

<\t N P - Plg|32)  Altogether implies
Ec&(T)

(T TOT) =T, TODI< | Y (T2 > I[P = Plgla,

TeTNT Ee&(T)

The discrete jump control lemma for P — P € P(7;R?) yields (Al).
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Proof of (A2) with 0o = 1/4/2 and Ay = A\,
Recall thatA7' is an admi§sible refinement of T with respective discrete
solutions P := ps € Pi(T; R?) and P := py € Pi(T;R?). Given any
refined triangle T € T(K):={T €T :T C K} for K € T\ T, recall
ap = |TIY2 || fll 2¢r,

—~2 ~
2= T2 S PRy and B =TIV 37 [1PlelBage.

Fe&(T) FeE(T)

The left-hand side in (A2) reads

AT\T) = Z Z (a2 + BT (by a triangle inequality)
KeT\T TeT(K)
< > S @+ | DY DD (Br—Br)?
KeT\T TeT(K) KeT\T TeT(K)

(4) (i)
Observe [P]p = 0 for F € £(int(K)) and |T| < |K|/2 for T € T(K).

Carsten Carstensen (Humboldt) Axioms of Adaptivity CENTRAL 2015 29 / 41




Proof of (A2) with g, = 1/v/2 and Ay = A4
Since [P]r = 0 for F € E(int(K)) and |T| < |K|/2 for T € T(K),

K K12
Y S+ < Sl + 3 WPl

KeT\T TeT(K) EGE

Reversed triangle inequalities in the second term prove

’/BT _BT| = ‘T|1/4’ Z F||L2(F Z F||L2 F)|

Fe&(T) Fe&(T)
< TV Z FHLQ(F and so lead to
Fe&(T
=> D Br-BrP<)y Y |TW2§:||P Plel 220
KeT\T TeT(K) KeT\T TeT (K Fe&(T)

The combination of the above with the discrete jump control lemma
conclude the proof of (A2). O
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5. (A3)-(A4) for Courant FEM

Recall Poincare and Friedrichs inequalities and write ||| o |[| := ||V o || 12(q)
for the H' semi-norm which plays a dominant role as the energy norm in
HE(Q).
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Discrete Quasiinterpolation

Theorem (approximation and stability). 30 < C' = C'(min £T) < oo

VT e TVYT € T(T) VYV e SYT) IV e SHT)

V=VonTnT and |Ihr'(V—=V)llz@ +IIVII< CHIVIL

Proof. Define V € S}(T) by linear interpolation of nodal values

V(2) if z€ N(Q) NN (T) for some T € TNT
Vi(z):=1q .. Vdx/|w.| ifzeN(E®Q)and T(z)NT(z) =0
0 if 2z € N(09Q)

Since V and V are continuous at any vertex of any T' € T N T, the first
case applies in the definition of V(z) = V( ) for all = € N(T).
This proves V.=V on T € TNT. O
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Given any node z € N in the coarse triangulation, let w, = int(UT (2))
denotes its patch of all triangles 7(z) in 7 with vertex z.

Lemma A. There exists C'(z) ~ diam(w;) with
IV = V(@) < C@) VY2200

Proof4Case II: z € V() and T(2) N T (2) = 0 with V(2) = [, Vdx/|w.|.
Then, the assertion is a Poincare inequality with C'(z) = Cp(w;). O
Proof4Case llI: z € N(8Q) and V(z) = 0. Since V — V vanishes along the
two edges along J€) of the open boundary patch w, with vertex z. Hence
the assertion is indeed a Friedrichs inequality with C(z) = Cp(w;). O
Proof4Case |: 3T € T(2) N T (z) for z € N(Q) and V =V on T. This
leads to homogenous Dirichlet boundary conditions on the two edges of
the open patch w, \ T with vertex z and V — V allows for a Friedrichs
inequality (on the open patch as in Case Il for a patch on the boundary)

1V = VL2, < Crw: \T)IV(V = V)l r2(0)
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However, this is not the claim! The idea is to realize that LHS=|[w]|2(,,,)

for w := V — V/(z), which is affine on T" and vanishes at vertex z. Hence
(as an other inverse estimate or discrete Friedrichs inequality)

lwl|Z2iz) < Car(T)* [[VwllZar) < Car(T)? [[Vwl[Z2,)
E.g. the integral mean wr := [ wdz/|T| of w := V —V(z) on T satisfies

jwr|? |T| < Cap(T)?[|Vwl|[F2 (.

Compare with integral mean w := /wdx/|wz| and compute

@ — wrl?|T| =T /T(w —w)d|?* < [jw =2y
< w =135,y < Cr(w:)?[|Vwl[F2,.

Consequently, |w — wT]2 lwz| < |w|/|T] C’p(wz)2 ||Vw]|%2(wz)
——

<Csr
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The orthogonality of 1 and w — @ in L?(w,) is followed by Poincare’s and
geometric-arithmetic mean inequality to verify

|22,y = @ ws| + [lw = D72,

< 20 — wrl? | + 2Jwr[ws] + Cp(w)? [Vl 2.,
The above estimates for |wr|? |T'| and [w — wr|? |T| lead to

]2y < (2wsl/IT] (Car(T) + Cp(w:)?) + Cp(w.)?) [Vl 2a,y T

=:C(z)2

W.r.t. triangulation 7" and nodal basis functions @1, @2, @3 in SY(T), let
T = conv{Pyi, P, Ps} € T and Q7 := wi Uws Uws for w; := {¢; > 0}

Lemma B. There exists C'(1") ~ hr with

WV = Vllr2r) < CDIVVII2(0)-
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Proof of Lemma B. N.B. V =32, V(P;)pjand 1= 32 p;on T
Hence

||V—V||%2(T)=/|Zv V(P,)) o da

3 3
< / SOV V@RS B dr (CSinRY)
T =1 k=1

——
<1

IA
[M]
<>

IV = V(P2
1

<.
Il

NE

<Y C(P)’|IVV]I72(, (Lemma A)
j=1
3 ~
<O C®)?) IVV720p m
=1
J=t
C2(T)
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Lemma C. There exists C' > 0 (which solely depends on min ZT) with
IVV L2y < CHVV] L2009

Proof. ~ N.B.VV =2 V(P;)Vi; and 0= 33, Vip; on T
Hence

3
YVl :/ |Z (V = V(P)Ve,|* da
3. 3
S/T(Z\V—V(Pj)lz)( ST IVer? )dz o (CSin RY)
J=1 k=1

—_——
<C(min £T)?/hZ

< C(min £T)? 22/\1/ V(P;)? dx

< ...(as before) ...
< C(min ZT)? hz2C3(T) [|[VV 320, -

N~

=:0?
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Finish of proof of theorem: |[h(V — Vil IV < C V]I

Lemma B and C show for some generic constant C' > 0 and any T € T

that
1R (V= W2y + IVV T2y < CHVVZ2 (00

The sum over all those inequalities for T' € T concludes the proof because
the overlap of (Q27)re7 is bounded by generic constant C'(min ZT). [
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Proof of (A3)

Given discrete solution U (resp. U) of CFEM in PMP w.r.t. T (resp.
refinement 7), set é := U — U € S}(T) with quasiinterpolant e € S} (T)
as above. Then, v := é — e satisfies

(T, T) = lllelll* = a(é,v) = F(v) — a(U, v)
(-

Res(v)
A piecewise integration by parts with a careful algebra with the jump
terms for appropriate signs shows

- - > / [OU /0vg)p ds

E€E(Q)
Z B0l [ D |EIOU/0vE]s|[3,
EBeE(Q E€E(Q)

Recall trace inequality
B 0l g < Cor(h52110022(,,) + IV0] 22, )
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Finish of Proof of (A3)

to estimate
S IE Ml iam S DL (ho2llvllagg) + IVl2 ()
Ee&(Q) E€E(Q)

SR ol 2 + [0l S Hllellf?
with the approximation and stability of the quasiinterpolation.

A weighted Cauchy inequality followed by approximation property of quasi-
interpolation show

F(v) < ||h7fll 2@ |17 oll 2 ) < Cllhrfllc2o) |l1€]]
All this plus shape-regularity (e.g. |T'| ~ h% ~ h%) lead to reliability
(T, 7) = lllelll> < Asn(T)11€l]]

The extra fact v =0 on 7N 7T and a careful inspection on disappearing
integrals in the revisited analysis prove the asserted upper bound in (A3),

S(T,T) < Asn(T, T\T) O
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(A4) follows from (A3) for CFEM with Ay, = A2

The pairwise Galerkin orthogonality in the CFEM allows for the (modified)
LHS in (A4) the representation

l+m

> 8 (Tes Tarr) = 6*(Te, Tevma)
k=¢

for m € Ny. (A3) shows that this is bounded from above by A3n?. Since
m € Ny is arbitrary, this implies

l+m

Z 77€a77€+1 - hm Z(S 77€777€+1)<A377( O
k=4
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