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1. Introduction and Outline
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EUROPEAN COMMUNITY ON COMPUTATIONAL METHODS IN APPLIED SCIENCES 

RATE OPTIMALITY OF ADAPTIVE ALGORITHMS  

The overwhelming practical success 
of adaptive mesh-refinement in 
computational sciences and 
engineering has recently obtained a 
mathematical foundation with 
a theory on optimal convergence 
rates. This article first explains an 
abstract adaptive algorithm and its 
marking strategy. Secondly, it 
elucidates the concept of optimality 
in nonlinear approximation theory 
for a general audience.  It thirdly 
outlines an abstract framework with 
fairly general hypotheses (A1)—(A4), 
which imply such an optimality 
result. Various comments conclude 
this state of the art overview.  
 
All details and precise references are 
found in the open access article 
[C. Carstensen, M. Feischl, P. Page, 
D. Praetorius, Comput. Math. Appl. 
67 (2014)] at  
http://dx.doi.org/10.1016/
j.camwa.2013.12.003. 

THE ALGORITHM 
The geometry of the domain Ω in 
some boundary value problem (BVP) 
is often specified in numerical 
simulations in terms of a 
triangulation   (also called mesh or 
partition) which is a set of a large 
but finite number of cells (also called 
element-domains) Τ1, … , ΤΝ. Based 
on this mesh  , some discrete model 
(e.g., finite element method (FEM)) 
leads to some discrete solution  U( )   
which approximates an unknown 
exact solution u to the BVP. Usually, 
a posteriori error estimates motivate 
some computable error estimator  
 
 
The local contributions ηΤj ( ) serve 
as refinement-indicators in the 

adaptive mesh-refining algorithm, 
where the marking is the essential 
decision for refinement and written 
as a list of ℳ cells (i.e. ℳ ⊆  ) with 
some larger refinement-indicator. 
The refinement procedure then 
computes the smallest admissible 
refinement  ’ of the mesh   (see 
Section 3) such that at least the 
marked cells are refined. 
 
The successive loops of those steps 
lead to the following adaptive 
algorithm, where the coarsest mesh  
 0  is an input data. 
 
Adaptive Algorithm  
Input: initial mesh  0 
Loop: for   0, 1 ,2, … do steps 1-4: 
1. Solve: Compute discrete 
approximation U (  ).   
2. Estimate: Compute refinement 
indicators ηΤ(  )   for all  T ∊   . 
3. Mark: Choose set of cells to 
refine  ℳ  ⊆    (see Section 4 for 
details). 

4. Refine: Generate new mesh   +1 
by refinement of at least all cells in  
ℳ   (see Section 3 for details). 
Output: Meshes    , approximations 
U (  ), and estimators η(  ) . 

THE OPTIMALITY 
Figure 1 displays a typical mesh for 
some adaptive 3D mesh-refinement 
of some L-shaped cylinder into 
tetrahedra with some global 
refinement as well as some local 
mesh-refinement towards the 
vertical edge along the re-entrant 
corner. The question whether this is 
a good mesh or not is an important 
issue in the mesh-design with many 
partially heuristic answers and 
approaches. We merely mention the 
coarsening techniques as in [Binev et 
al., 2004] when applied to the 
adaptive hp-FEM with the crucial 
decision about h- or p-refinement.  
 
For the optimality analysis of the 
adaptive algorithm of Section 1, the 

Figure 1: Strongly adaptively refined surface triangulation 

COMMUNICATED BY CARSTEN CARSTENSEN, CHAIRMAN OF THE ECCOMAS TECHNICAL COMMITTEE "SCIENTIFIC 
COMPUTING"  
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Short History

Advert Johnson-Eriksson/Babuska; early 1D results Babuska et al.

Dörfler marking [Dörfler, 1996]

Convergence [Morin-Nochetto-Siebert 2000]

Optimal rates for the Poisson problem [Binev-Dahmen-DeVore 2004]

Optimal rates without coarsening [Stevenson 2007]

Convergence for nonconforming/mixed FEM [Carstensen-Hoppe 2006]

NVB included [Cascon-Kreuzer-Nochetto-Siebert 2008]

Integral equations and BEMs [Feischl et al. 2013], [Gantumur 2013]

Poisson with general boundary conditions [Aurada et al. 2013]

Abstract framework [C-Feischl-Page-Praetorius 2014]

Instance optimality [Diening-Kreuzer-Stevenson 2015]
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Overview

Introduction

(A1) Stability

(A2) Reduction

(A12) and plain convergence

(A3) Reliability

Quasimonotonicity

(A4) Quasiorthogonality

R-linear convergence

Comparison lemma

Optimal convergence rates
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Admissible Triangulations

NVB refinement strategy and initial triangulation T0 specifies set T of
all admissible triangulations

T green(T ) blueL(T )blueR(T ) bisec3(T ) bisec5(T )

NVB in any dimension [Stevensen (2008) Math.Comp.]

Overlay control |T` ⊕ Tref|+ |T0| ≤ |T`|+ |Tref|
Closure Overhead Control |T`| − |T0| ≤ CBDV

∑`−1
j=0 |Mj |

Carsten Carstensen (Humboldt) Axioms of Adaptivity CENTRAL 2015 6 / 41



Adaptive Algorithm

Input: Initial triangulation T0 with NVB refinement edges and 0 < θ � 1

∀` = 0, 1, 2, 3, . . . until termination do

Given T`, solve discrete problem and compute error estimators

η`(K) for all K ∈ T`

Determine (almost) minimal set of marked cells M` ⊂ T` s.t.

θ η2
` ≤ η2

` (M`) :=
∑

M∈M`

η2
` (M)

Design minimal refinement T`+1 of T` with M` ⊆ T` \ T`+1

Output: Sequence of triangulations and estimators
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Optimal Convergence Rates
Axioms (A1)–(A4) involve

estimators 0 ≤ η(T ;K) <∞ for all K ∈ T ∈ T and

distances 0 ≤ δ(T , T̂ ) <∞ for all refinements T̂ of T in T

Axioms (A1)–(A4) imply rate-optimality for θ � 1 in the sense that

sup
N∈N0

(1 +N)s min
T ∈T(N)

η(T )

≈ sup
`∈N0

(1 + |T`| − |T0|︸ ︷︷ ︸
N`

)sη`

η2
` := η2(T`)
η2(T ) := η2(T , T )

η2(T ,M) :=
∑
K∈M

η2(T , K)
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Poisson Model Problem (PMP) f + ∆u = 0

CFEM seeks uC ∈ P1(T ) ∩ C0(Ω) s.t.∫
Ω

∇uC︸ ︷︷ ︸
pT

·∇vC dx =

∫
Ω

fvC dx for all vC ∈ P1(T ) ∩ C0(Ω)

CR-NCFEM seeks uCR ∈ CR1
0(T ) s.t.∫

Ω

∇NCuCR︸ ︷︷ ︸
pT

·∇NCvCR dx =

∫
Ω

fvCR dx for all vCR ∈ CR1
0(T )

RT-MFEM seeks pRT ∈ RT0(T ) and uRT ∈ P0(T ) s.t.∫
Ω
pRT︸︷︷︸
pT

·qRT dx+

∫
Ω
uRT div qRTdx = 0 for all qRT ∈ RT0(T )

Π0f + div pRT = 0
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Estimator in PMP f + ∆u = 0
CFEM, CR-NCFEM, MFEM generate discrete flux

pT ≡ P ∈ Pk(T ;R2) for k = 0, 1 and for T ∈ T

in PMP with jumps (with unspecified sign)

[P ]E := (P |K)|E − (P |K′)|E ∈ L2(E;R2)

across an interior edge E = ∂K ∩ ∂K ′ ∈ E(Ω) of two neighboring
triangles K,K ′ ∈ T and appropriate modifications on the exterior
boundary with tangent unit vector τE along E ∈ E(∂Ω)

[P ]E := P · τE

The (error) estimator for K ∈ T reads

η2(K) ≡ η2(T ,K) := |K| ‖f‖2L2(K) + |K|1/2
∑

E∈E(K)

‖[P ]E‖2L2(E)

(|K| ‖f‖2L2(K) possibly replaced by |K| ‖f − fK‖2L2(K) for RT-MFEM).
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(A1)—(A4) at a Glance

∃0 < Λ1 <∞ ∀T ∈ T∀T̂ ∈ T (T )

|η(T̂ , T ∩ T̂ )− η(T , T ∩ T̂ )| ≤ Λ1δ(T , T̂ ) (A1)

∃0 < ρ2 < 1∃0 < Λ2 <∞ ∀T ∈ T∀T̂ ∈ T (T )

η(T̂ , T̂ \ T ) ≤ ρ2η(T , T \ T̂ ) + Λ2δ(T , T̂ ) (A2)

∃0 < Λ3 <∞ ∀T ∈ T ∀T̂ ∈ T (T )

δ(T , T̂ ) ≤ Λ3η(T , T \ T̂ ) (A3)

∃0 < Λ4 <∞ ∀` ∈ N0 (exclusively for the AFEM output)
∞∑
k=`

δ2(Tk, Tk+1) ≤ Λ4η
2
` (A4)
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Outline of Optimality Analysis I

(A12) Estimator reduction η2
`+1 ≤ ρ12η

2
` + Λ12δ

2
`,`+1

Convergence from

∞∑
k=`

η2
k ≤ Λη2

` and then
`−1∑
k=0

η
−1/s
k . η

−1/s
`

Quasimonotonicity η2(T̂ ) ≤ Λ7η
2(T )

Comparison Lemma: Given T`, 0 < κ < 1, and

M := sup
N∈N0

(1 +N)s min
T ∈T(N)

η(T ),

there exist T̂` and 0 < θ0 < 1 s.t.

(a) η(T̂`) ≤ κη(T`)

(b) κη`|T` \ T̂`|s .M

(c) θ0η
2
` ≤ η2

` (T` \ T̂`)
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Outline of Optimality Analysis II

T` \ T̂` satisfies the bulk criterion for θ ≤ θ0 by (c). This implies

|M?
` | ≤ |T` \ T̂`|

with the optimal set M?
` of marked cells in AFEM. The utilized set

M` of marked cells is almost minimal: ∃0 < Λopt <∞∀` ∈ N0,

|M`| ≤ Λopt |M?
` | ≤ Λopt|T` \ T̂`|

Recall M := supN∈N0
(1 +N)sminT ∈T(N) η(T ) and from (b) deduce

|T` \ T̂`| .
(
M

κη`

)1/s

≈M1/sη
−1/s
`

Recall closure overhead control and combine with aforementioned
estimates for

|T`| − |T0| ≤ CBDV
`−1∑
j=0

|Mj | .M1/s
`−1∑
j=0

η
−1/s
j .M1/sη

−1/s
`
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Conclusions

Theory without efficiency and so includes adaptive BEM

Abstract framework (A1)–(A4) almost covers existing literature (up
to instance optimality)

Rate optimality for AFEMs may be based on collective and separate
marking

Separate marking necessary for H(div) Least-Squares FEM but leads
to optimal convergence rates in [C-Park SINUM 2015].

Possible generalizations: Higher-order problems, more complex PDEs,
non-constant coefficients, more nonconforming FEMs, inhomogeneous
Dirichlet data etc.

Inexact solve possible for iterative solve. Proof of information-based
optimal complexity is missing — hopefully realistic assumptions on
the performance of the nonlinear solver guarantee optimal complexity

List of open cases for linear problems e.g. for Taylor-Hood, dG,
Kouhia-Stenberg and hard nonlinear problems e.g. in comp. calc. var.
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2. Plain Convergence
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(A1)-(A2) & Dörfler marking imply (A12)

This section concerns the output η` and T` of AFEM.

∃0 ≤ %12 < 1 ∃0 < Λ12 <∞ ∀` ∈ N0

η2
`+1 ≤ %12 η

2
` + Λ12 δ

2(T`+1, T`). (A12)

The following identity is frequently used throughout the proofs. Any
a, b ≥ 0 satisfy

(a+ b)2 = inf
0<λ<∞

((1 + λ)a2 + (1 + 1/λ)b2).

(For a proof, observe that λ = b/a leads to the minimum if a, b > 0.)

Theorem (estimator reduction in AFEM)

For any 1− θ(1− %2
2) < %12 < 1, there exists Λ12 <∞ so that (A1)-(A2)

& Dörfler marking with bulk parameter 0 < θ ≤ 1 imply (A12).
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Proof of (A12)
Let λ > 0 satisfy 1− θ(1− %2

2) = %12/(1 + λ). (A1) leads to

η2(T`+1, T`+1 ∩ T`) ≤
(
η(T`, T` ∩ T`+1) + Λ1δ(T`+1, T`)

)2
≤ (1 + λ)η2(T`, T` ∩ T`+1) + (1 + 1/λ)Λ2

1δ
2(T`+1, T`).

The same argument with (A2) leads to

η2(T`+1, T`+1\T`) ≤ %2
2(1 + λ)η2(T`, T`\T`+1) + (1 + 1/λ)Λ2

2δ
2(T`+1, T`).

Combine the previous estimates with the decomposition

η2
`+1 = η2(T`+1, T`+1 ∩ T`) + η2(T`+1, T`+1\T`)
≤ (1 + λ)

(
η2(T`, T` ∩ T`+1) + %2

2η
2(T`, T`\T`+1)

)︸ ︷︷ ︸
(∗):=η2`−(1−%22)η2(T`,T`\T`+1)

+Λ12δ
2(T`+1, T`)

The Dörfler marking guarantees θη2
` ≤ η2(T`, T`\T`+1) and so

(∗) ≤
(
1− θ(1− %2

2)
)
η2
` = %12η

2
` /(1 + λ).
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Convergence ηk → 0 as k →∞ from AFEM

Theorem (plain convergence)

(A12) and (A4) imply that Λ := (1 + Λ12Λ2
3)/(1− %12) <∞ satisfies

∞∑
k=`

η2
k ≤ Λη2

` for all ` ∈ N0.

Proof. Recall (A12) in the notation η2
k+1 ≤ %12η

2
k + Λ12δ

2
k,k+1 and deduce

`+m∑
k=`

η2
k ≤

`+m+1∑
k=`

η2
k ≤ η2

` + %12

`+m∑
k=`

η2
k + Λ12

`+m∑
k=`

δ2
k,k+1

Utilize %12 < 1 and (A4) for the last sum to prove

(1− %12)

`+m∑
k=`

η2
k ≤ (1 + Λ12Λ2

3) η2
`
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R-Linear Convergence on Each Level

Theorem

(A12), (A4) and Λ <∞ from above lead to q := 1− 1/Λ < 1 with

η2
`+m ≤ qmΛ η2

` for all `, m ∈ N0.

Proof. Rewrite plain convergence theorem as

σ2
` :=

∞∑
k=`

η2
k ≤ Λ η2

`

Then

Λ−1σ2
` + σ2

`+1 ≤ η2
` +

∞∑
k=`+1

η2
k = σ2

`

This is σ2
`+1 ≤ qσ2

` and, successively, σ2
`+m ≤ qmσ2

` for all m ∈ N0

Consequently
η2
`+m ≤ σ2

`+m ≤ qmσ2
` ≤ qmΛη2

` .
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3. Quasimonotonicity
and Comparison
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Estimator Quasimonotonicity

Theorem

(A1)—(A3) imply that Λmon := 1 +
√

Λ2
1 + Λ2

2Λ3 and any refinement T̂
of any T in T satisfy

η(T̂ ) ≤ Λmonη(T ).

Proof. For any 0 < λ <∞, utilize (A1)-(A2) in the decomposition

η2(T̂ ) = η2(T̂ , T̂ ∩ T ) + η2(T̂ , T̂ \T )

≤ (1 + λ)
(
η2(T , T̂ ∩ T ) + η2(T , T \T̂ )︸ ︷︷ ︸

η2(T )

)
+ (1 + 1/λ)(Λ2

1 + Λ2
2)δ2(T , T̂ )

(A3) reads δ2(T , T̂ ) ≤ Λ2
3η

2(T ) and leads to

η2(T̂ ) ≤ (1 + λ+ (1 + 1/λ)(Λ2
1 + Λ2

2)Λ2
3︸ ︷︷ ︸

Λ2
mon

)η2(T )
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Comparison Lemma
Given 0 < κ < 1 and s > 0 with M := sup

N∈N0

(N + 1)s min
T ∈T(N)

η(T ) <∞,

there exists 0 < θ0 < 1 such that for all T` there exist T̂` ∈ T(T`) s.t.

(a) η(T̂`) ≤ κη(T`), (b) κη`|T` \ T̂`|s ≤ ΛmonM , (c) θ0η
2
` ≤ η2

` (T` \ T̂`).

Proof. (1) W.l.o.g. η` ≡ η(T`) > 0. By quasimonotonicity, 0 < η0 ≤M

(2) Choose minimal N` ∈ N0 s.t.

(N` + 1)−s ≤ κη`
ΛmonM

< N−s` ≤ 1

(N` ≥ 1 because η`Λ
−1
mon/M ≤ η0/M ≤ 1)

(3) Set T̂` := T` ⊗ T ′ for T ′ with T ′ ∈ T(N`) s.t. (N` + 1)sη(T ′) ≤M
Quasimonotonicity and overlay control lead e.g. to (a),

η(T̂`) ≤ ΛmonM(N` + 1)−s ≤ κη` and |T̂`| ≤ |T`|+N`
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Proof of (b)-(c) in Comparison Lemma
(4) Proof of (b). Count triangles to verify

|T` \ T̂`| ≤ |T̂`| − |T`| ≤
from ⊗

N` <
from (2)

κ−1/sη
−1/s
` Λ

1/s
monM

1/s

(5) Any T̂` ∈ T(T`) with (a) allows for (c). Given any 0 < µ < κ−2 − 1,
(A1) followed by (a) and (A3) imply

η2
` (T` ∩ T̂`) ≤ (1 + µ)η2(T̂`, T` ∩ T̂`) + (1 + 1/µ)Λ2

1δ
2(T`, T̂`)

≤ (1 + µ)κ2η2
` + (1 + 1/µ)Λ2

1Λ2
3η

2
` (T`\T̂`)

This and the decomposition

η2
` = η2

` (T` ∩ T̂`) + η2
` (T`\T̂`)

lead to

(1− (1 + µ)κ2) η2
` ≤ (1 + (1 + 1/µ)Λ2

1Λ2
3) η2

` (T`\T̂`)
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4. (A1)-(A2) for Courant FEM

Recall trace inequality, inverse estimate, discrete trace inequality and
compute their constants in terms of a lower bound of the minimal angle in
the triangulation, recall the Euclid norm in `2.
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Λ1 Comes from Discrete Jump Control

Given g ∈ Pk(T ) for T ∈ T, set

[g]E =

{
(g|T+)|E − (g|T−)|E for E ∈ E(Ω) with E = ∂T+ ∩ ∂T−,
g|E for E ∈ E(∂Ω) ∩ E(K).

Lemma (discrete jump control)

For all k ∈ N0 there exists 0 < Λ1 <∞ s.t., for all g ∈ Pk(T ) and T ∈ T,√∑
K∈T

|K|1/2
∑

E∈E(K)

||[g]E ||2L2(E)
≤ Λ1||g||L2(Ω).

Proof with discrete trace inequality on E ∈ E(K) for K ∈ T

|K|1/4 ||g|K ||L2(E) ≤ Cdtr ||g||L2(K).
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Compute Λ1 in Proof of Discrete Jump Control

The contributions to LHS of interior edge E = ∂T+ ∩ ∂T− with
edge-patch ωE := int(T+ ∪ T−) read

(|T+|1/2 + |T−|1/2)||[g]E ||2L2(E)

≤ (|T+|1/2 + |T−|1/2)
(
||g|T+ ||L2(E) + ||g|T− ||L2(E)

)2
≤ C2

dtr (|T+|1/2 + |T−|1/2)
(
|T+|−1/4||g||L2(T+) + |T−|−1/4||g||L2(T−)

)2

≤ C2
dtr (|T+|1/2 + |T−|1/2)(|T+|−1/2 + |T−|−1/2)︸ ︷︷ ︸

≤C2
sr

||g||2L2(ωE)

≤ C2
dtrC

2
sr ||g||2L2(ωE).

The same final result holds for boundary edge E = ∂T+ ∩ ∂Ω with
ωE := int(T+). The sum of all those edges proves the discrete jump
control lemma with

Λ1 :=
√

3CdtrCsr.
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Proof of (A1) with δ(T , T̂ ) = ||P̂ − P ||L2(Ω)

Recall that T̂ is an admissible refinement of T with respective discrete
solutions P̂ := pT̂ ∈ P1(T̂ ;R2) and P := pT ∈ P1(T ;R2). Given any

T ∈ T ∩ T̂ , set

η(T ) :=
√
α2
T + β2

T and η̂(T ) :=

√
α2
T + β̂T

2

for αT := |T |1/2 ||f ||L2(T ),

β2
T := |T |1/2

∑
E∈E(T )

||[P ]E ||2L2(E) and β̂T
2

:= |T |1/2
∑

E∈E(T )

||[P̂ ]E ||2L2(E)

Then, η(T ∩ T̂ ) :=
√∑

T∈T ∩T̂ η
2(T ) and η̂(T ∩ T̂ ) :=

√∑
T∈T ∩T̂ η̂

2(T )

are Euclid norms of vectors in RJ for J := 2 |T ∩ T̂ |.
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Proof of (A1) with δ(T , T̂ ) = ||P̂ − P ||L2(Ω)

The reversed triangle inequality in RJ bounds the LHS in (A1), namely
|η(T̂ , T ∩ T̂ )− η(T , T ∩ T̂ )| = |η̂(T ∩ T̂ )− η(T ∩ T̂ )| from above by√ ∑

T∈T ∩T̂

|η̂(T )− η(T )|2 =

√√√√√ ∑
T∈T ∩T̂

|
√
α2
T + β̂T

2
−
√
α2
T + β2

T︸ ︷︷ ︸
≤|β̂T−βT | (triangle inequality in R2)

|2

The reversed triangle inequality in R3 shows

|β̂T − βT | = |T |1/4|
√ ∑
E∈E(T )

||[P̂ ]E ||2L2(E)
−
√ ∑
E∈E(T )

||[P ]E ||2L2(E)
|

≤ |T |1/4
√ ∑
E∈E(T )

||[P̂ − P ]E ||2L2(E)
. Altogether implies

|η(T̂ , T ∩ T̂ )− η(T , T ∩ T̂ )| ≤
√ ∑
T∈T ∩T̂

|T |1/2
∑

E∈E(T )

||[P̂ − P ]E ||2L2(E)

The discrete jump control lemma for P̂ − P ∈ P1(T̂ ;R2) yields (A1).
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Proof of (A2) with %2 = 1/
√

2 and Λ2 = Λ1

Recall that T̂ is an admissible refinement of T with respective discrete
solutions P̂ := pT̂ ∈ P1(T̂ ;R2) and P := pT ∈ P1(T ;R2). Given any

refined triangle T ∈ T̂ (K) := {T ∈ T̂ : T ⊂ K} for K ∈ T \ T̂ , recall
αT := |T |1/2 ||f ||L2(T ),

β2
T := |T |1/2

∑
F∈E(T )

||[P ]F ||2L2(F ) and β̂T
2

:= |T |1/2
∑

F∈E(T )

||[P̂ ]F ||2L2(F ).

The left-hand side in (A2) reads

η̂(T̂ \ T ) =
√ ∑
K∈T \T̂

∑
T∈T̂ (K)

(α2
T + β̂2

T ) (by a triangle inequality)

≤
√√√√√√

∑
K∈T \T̂

∑
T∈T̂ (K)

(α2
T + β2

T )

︸ ︷︷ ︸
(i)

+

√√√√√√
∑

K∈T \T̂

∑
T∈T̂ (K)

(β̂T − βT )2

︸ ︷︷ ︸
(ii)

.

Observe [P ]F = 0 for F ∈ Ê(int(K)) and |T | ≤ |K|/2 for T ∈ T̂ (K).
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Proof of (A2) with %2 = 1/
√

2 and Λ2 = Λ1

Since [P ]F = 0 for F ∈ Ê(int(K)) and |T | ≤ |K|/2 for T ∈ T̂ (K),

(i) :=
∑

K∈T \T̂

∑
T∈T̂ (K)

(α2
T + β2

T ) ≤ |K|
2
||f ||2L2(K) +

|K|1/2√
2

∑
E∈E(K)

||[P ]E ||2L2(E).

Reversed triangle inequalities in the second term prove

|β̂T − βT | = |T |1/4|
√ ∑
F∈E(T )

||[P̂ ]F ||2L2(F )
−
√ ∑
F∈E(T )

||[P ]F ||2L2(F )
|

≤ |T |1/4|
√ ∑
F∈E(T )

||[P̂ − P ]F ||2L2(F )
and so lead to

(ii) :=
∑

K∈T \T̂

∑
T∈T̂ (K)

(βT − β̂T )2 ≤
∑

K∈T \T̂

∑
T∈T̂ (K)

|T |1/2
∑

F∈E(T )

||[P̂ − P ]F ||2L2(F ).

The combination of the above with the discrete jump control lemma
conclude the proof of (A2).
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5. (A3)-(A4) for Courant FEM

Recall Poincare and Friedrichs inequalities and write ||| • ||| := ‖∇ • ‖L2(Ω)

for the H1 semi-norm which plays a dominant role as the energy norm in
H1

0 (Ω).

Carsten Carstensen (Humboldt) Axioms of Adaptivity CENTRAL 2015 31 / 41



Discrete Quasiinterpolation

Theorem (approximation and stability). ∃0 < C = C(min∠T) <∞
∀T ∈ T ∀T̂ ∈ T (T ) ∀V̂ ∈ S1

0(T̂ ) ∃V ∈ S1
0(T )

V = V̂ on T̂ ∩ T and ||h−1
T (V̂ − V )||L2(Ω) + |||V ||| ≤ C |||V̂ |||.

Proof. Define V ∈ S1
0(T ) by linear interpolation of nodal values

V (z) :=


V̂ (z) if z ∈ N (Ω) ∩N (T ) for some T ∈ T ∩ T̂∫
ωz
V̂ dx/|ωz| if z ∈ N (Ω) and T (z) ∩ T̂ (z) = ∅

0 if z ∈ N (∂Ω)

Since V and V̂ are continuous at any vertex of any T ∈ T ∩ T̂ , the first
case applies in the definition of V (z) = V̂ (z) for all z ∈ N (T ).

This proves V = V̂ on T ∈ T ∩ T̂ .
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Given any node z ∈ N in the coarse triangulation, let ωz = int(∪T (z))
denotes its patch of all triangles T (z) in T with vertex z.

Lemma A. There exists C(z) ≈ diam(ωz) with

||V̂ − V (z)||L2(ωz) ≤ C(z) ||∇V̂ ||L2(ωz).

Proof4Case II: z ∈ N (Ω) and T (z) ∩ T̂ (z) = ∅ with V (z) =
∫
ωz
V̂ dx/|ωz|.

Then, the assertion is a Poincare inequality with C(z) = CP (ωz).
Proof4Case III: z ∈ N (∂Ω) and V (z) = 0. Since V̂ −V vanishes along the
two edges along ∂Ω of the open boundary patch ωz with vertex z. Hence
the assertion is indeed a Friedrichs inequality with C(z) = CF (ωz).
Proof4Case I: ∃T ∈ T (z) ∩ T̂ (z) for z ∈ N (Ω) and V = V̂ on T . This
leads to homogenous Dirichlet boundary conditions on the two edges of
the open patch ωz \ T with vertex z and V̂ − V allows for a Friedrichs
inequality (on the open patch as in Case III for a patch on the boundary)

||V̂ − V ||L2(ωz) ≤ CF (ωz \ T ) ||∇(V̂ − V )||L2(ωz)
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However, this is not the claim! The idea is to realize that LHS=||w||L2(ωz)

for w := V̂ − V̂ (z), which is affine on T and vanishes at vertex z. Hence
(as an other inverse estimate or discrete Friedrichs inequality)

||w||2L2(T ) ≤ CdF (T )2 ||∇w||2L2(T ) ≤ CdF (T )2 ||∇w||2L2(ωz)

E.g. the integral mean wT :=
∫
T w dx/|T | of w := V̂ − V̂ (z) on T satisfies

|wT |2 |T | ≤ CdF (T )2 ||∇w||2L2(ωz)

Compare with integral mean w :=

∫
ωz

w dx/|ωz| and compute

|w − wT |2 |T | = |T |−1 |
∫
T

(w − w)dx|2 ≤ ||w − w||2L2(T )

≤ ||w − w||2L2(ωz) ≤ CP (ωz)
2 ||∇w||2L2(ωz)

Consequently, |w − wT |2 |ωz| ≤ |ωz|/|T |︸ ︷︷ ︸
≤Csr

CP (ωz)
2 ||∇w||2L2(ωz)
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The orthogonality of 1 and w − w in L2(ωz) is followed by Poincare’s and
geometric-arithmetic mean inequality to verify

||w||2L2(ωz) = |w|2 |ωz|+ ||w − w||2L2(ωz)

≤ 2|w − wT |2 |ωz|+ 2|wT |2 |ωz|+ CP (ωz)
2 ||∇w||2L2(ωz)

The above estimates for |wT |2 |T | and |w − wT |2 |T | lead to

||w||2L2(ωz) ≤
(
2|ωz|/|T | (CdF (T ) + CP (ωz)

2) + CP (ωz)
2
)︸ ︷︷ ︸

=:C(z)2

||∇w||2L2(ωz)

W.r.t. triangulation T and nodal basis functions ϕ1, ϕ2, ϕ3 in S1(T ), let
T = conv{P1, P2, P3} ∈ T and ΩT := ω1 ∪ ω2 ∪ ω3 for ωj := {ϕj > 0}

Lemma B. There exists C(T ) ≈ hT with

||V̂ − V ||L2(T ) ≤ C(T ) ||∇V̂ ||L2(ΩT ).
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Proof of Lemma B. N.B. V =
∑3

j=1 V (Pj)ϕj and 1 =
∑3

j=1 ϕj on T
Hence

||V̂ − V ||2L2(T ) =

∫
T
|

3∑
j=1

(V̂ − V (Pj))ϕj |2 dx

≤
∫
T

(

3∑
j=1

|V̂ − V (Pj)|2)(

3∑
k=1

ϕ2
k︸ ︷︷ ︸

≤1

) dx (CS in R3)

≤
3∑
j=1

||V̂ − V (Pj)||2L2(T )

≤
3∑
j=1

C(Pj)
2||∇V̂ ||2L2(ωj) (Lemma A)

≤ (

3∑
j=1

C(Pj)
2)︸ ︷︷ ︸

C2(T )

||∇V̂ ||2L2(ΩT )
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Lemma C. There exists C > 0 (which solely depends on min∠T) with

||∇V ||L2(T ) ≤ C ||∇V̂ ||L2(ΩT ).

Proof. N.B. ∇V =
∑3

j=1 V (Pj)∇ϕj and 0 =
∑3

j=1∇ϕj on T
Hence

||∇V ||2L2(T ) =

∫
T
|

3∑
j=1

(V̂ − V (Pj))∇ϕj |2 dx

≤
∫
T

(

3∑
j=1

|V̂ − V (Pj)|2)(

3∑
k=1

|∇ϕk|2︸ ︷︷ ︸
≤C(min∠T )2/h2T

) dx (CS in R6)

≤ C(min∠T )2 h−2
T

3∑
j=1

∫
T
|V̂ − V (Pj)|2 dx

≤ . . . (as before) . . .

≤ C(min∠T )2 h−2
T C2(T )︸ ︷︷ ︸

=:C2

||∇V̂ ||2L2(ΩT )
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Finish of proof of theorem: ||h−1
T (V̂ − V )||L2(Ω) + |||V ||| ≤ C |||V̂ |||.

Lemma B and C show for some generic constant C > 0 and any T ∈ T
that

||h−1
T (V̂ − V )||2L2(T ) + ||∇V ||2L2(T ) ≤ C ||∇V̂ ||

2
L2(ΩT )

The sum over all those inequalities for T ∈ T concludes the proof because
the overlap of (ΩT )T∈T is bounded by generic constant C(min∠T).
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Proof of (A3)
Given discrete solution U (resp. Û) of CFEM in PMP w.r.t. T (resp.
refinement T̂ ), set ê := Û − U ∈ S1

0(T̂ ) with quasiinterpolant e ∈ S1
0(T )

as above. Then, v := ê− e satisfies

δ2(T , T̂ ) = |||ê|||2 = a(ê, v) = F (v)− a(U, v)︸ ︷︷ ︸
Res(v)

A piecewise integration by parts with a careful algebra with the jump
terms for appropriate signs shows

−a(U, v) = −
∑

E∈E(Ω)

∫
E
v [∂U/∂νE ]E ds

≤
√ ∑
E∈E(Ω)

|E|−1||v||2
L2(E)

√ ∑
E∈E(Ω)

|E| ||[∂U/∂νE ]E ||2L2(E)

Recall trace inequality
|E|−1||v||2L2(E) ≤ Ctr(h

−2
ωE
||v||2L2(ωE) + ||∇v||2L2(ωE))
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Finish of Proof of (A3)
to estimate∑

E∈E(Ω)

|E|−1||v||2L2(E) .
∑

E∈E(Ω)

(h−2
ωE
||v||2L2(ωE) + ||∇v||2L2(ωE))

. ||h−1
T v||2L2(Ω) + |||v|||2 . |||ê|||2

with the approximation and stability of the quasiinterpolation.

A weighted Cauchy inequality followed by approximation property of quasi-
interpolation show

F (v) ≤ ||hT f ||L2(Ω) ||h−1
T v||L2(Ω) ≤ C||hT f ||L2(Ω) |||ê|||

All this plus shape-regularity (e.g. |T | ≈ h2
T ≈ h2

E) lead to reliability

δ2(T , T̂ ) = |||ê|||2 ≤ Λ3 η(T )|||ê|||

The extra fact v = 0 on T ∩ T̂ and a careful inspection on disappearing
integrals in the revisited analysis prove the asserted upper bound in (A3),

δ(T , T̂ ) ≤ Λ3 η(T , T \ T̂ )
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(A4) follows from (A3) for CFEM with Λ4 = Λ2
3

The pairwise Galerkin orthogonality in the CFEM allows for the (modified)
LHS in (A4) the representation

`+m∑
k=`

δ2(Tk, Tk+1) = δ2(T`, T`+m+1)

for m ∈ N0. (A3) shows that this is bounded from above by Λ2
3η

2
` . Since

m ∈ N0 is arbitrary, this implies

∞∑
k=`

δ2(Tk, Tk+1) = lim
m→∞

`+m∑
k=`

δ2(Tk, Tk+1) ≤ Λ2
3η

2
` .
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