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Abstract. Carbon nanotubes are modeled as point configurations and investigated by mini-

mizing configurational energies including two- and three-body interactions. Optimal configu-
rations are identified with local minima and their fine geometry is fully characterized in terms

of lower-dimensional problems. Under moderate tension, such local minimizers are proved to
be periodic, which indeed validates the so-called Cauchy-Born rule in this setting.
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1. Introduction

Nanostructured carbon has emerged over the last two decades as one of the most promising
materials available to mankind. The discovery of fullerenes [48, 49], followed by that of carbon
nanotubes [41] and graphene [37, 62], sparkled the interest for low-dimensional materials. The
fascinating electronic and mechanical properties of single-atom-thick surfaces and structures are
believed to offer unprecedented opportunities for innovative applications, ranging from next-
generation electronics to pharmacology, to batteries and solar cells [39, 58, 59]. New findings are
emerging at an always increasing pace, cutting across Materials Science, Physics, and Chemistry,
and extending from fundamental science to novel applications [23, 61].

Carbon nanotubes are long, hollow structures showing cylindrical symmetry [18]. Their walls
consist of a single (or multiple) one-atom-thick layer of carbon atoms forming sp2 covalent
bonds [12] arranged in a hexagonal pattern. This molecular structure is responsible for amazing
mechanical properties: Carbon nanotubes are presently among the strongest and stiffest known
materials with a nominal Young’s modulus [47, 71] of 1 TPa and ideal strength greater than
100 MPa [3]. In addition, they show electric and thermal conductivity, chemical sensitivity,
transparency, light weight and environmental friendliness [72]. Nanotubes can be visualized as
the result of rolling up a patch of a regular hexagonal lattice. Depending on the different possible
realizations of this rolling-up, different topologies may arise, giving rise to zigzag, armchair, and
chiral nanotubes. These topologies are believed to have a specific impact on the mechanical and
electronic properties of the nanotube, which can range from highly conducting to semiconducting
[9, 10].

In contrast to the ever-growing material knowledge, the rigorous mathematical description of
two-dimensional carbon systems is considerably less developed. Ab initio atomistic models are
believed to accurately describe some features of the carbon nanotube geometry and mechanics
[54, 65, 76]. These methods are nevertheless computational in nature and cannot handle a
very large number of atoms due to the rapid increase in computational complexity. On the
other hand, a number of continuum mechanics approaches have been proposed where carbon
nanotubes are modeled as rods [63], shells [3, 4, 28, 66], or solids [73]. These bring the advantage
of possibly dealing with long structures, at the price however of a less accurate description of
the detailed microscopic behavior.

The unique mechanical behavior of nanotubes under stretching is a crucial feature of these
structures. As such, it has attracted attention from the theoretical [4, 29, 66, 79], the compu-
tational [1, 9, 40, 44], and the experimental side [17, 47, 74, 77]. Still, a reliable description
of nanotubes under stretching requires to resolve correctly the atomic scale and, simultane-
ously, to rigorously deal with the whole structure. We hence resort to the classical frame of
Molecular Mechanics [2, 53, 64] which identifies carbon nanotubes with point configurations
{x1, . . . , xn} ∈ R3n corresponding to their atomic positions. The atoms are interacting via a
configurational energy E = E(x1, . . . , xn) given in terms of classical potentials and taking into
account both attractive-repulsive two-body interactions, minimized at a certain bond length,
and three-body terms favoring specific angles between bonds [6, 69, 70]. The sp2-type covalent
bonding implies that each atom has exactly three first neighbors and that bond angles of 2π/3
are energetically preferred [12]. The Reader is referred to [16, 20, 32, 57, 68] for a collection of
results on local and global minimizers in this setting and to [27, 51] for additional results on
carbon structures.

The focus of this paper is to show the local minimality of periodic configurations, both in
the unstreched case and under the effect of small stretching. More specifically, we prove that,
by applying a small stretching to a zigzag nanotube, the energy E is locally strictly minimized
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by a specific periodic configuration where all atoms see the same local configuration (Theorem
3.3). Local minimality is here checked with respect to all small perturbations in R3n, namely
not restricting a priori to periodic perturbations. On the contrary, periodicity is proved here to
emerge as effect of the global variational nature of the problem.

The novelty of this result is threefold. At first, given the mentioned periodicity of local
minimizers, the actual configuration in R3n can be determined by solving a simple minimization
problem in R2, which consists in identifying the length of two specific bond lengths between
neighboring atoms. This is indeed the standpoint of a number of contributions, see [1, 8,
30, 31, 43, 44, 46, 50] among many others, where nevertheless periodicity is a priori assumed.
In this regard, our result offers a justification for these lower-dimensional approaches. Our
assumptions on E are kept fairly general in order to possibly include the menagerie of different
possible choices for energy terms which have been implemented in Computational Chemistry
codes [7, 11, 38, 60, 75]. A by-product of our results is hence the cross-validation of these choices
in view of their capability of describing carbon nanotube geometries.

Secondly, we rigorously check that, also in presence of small stretching, the geometrical
model obtained via local minimization corresponds neither to the classical Rolled-Up model
[18, 19, 45], where two out of three bond angles at each atom are 2π/3, nor to the Polyhedral
model [14, 15, 52], where all bond angles are equal. The optimal configuration lies between
these two (Proposition 3.4), a fact which remarkably corresponds to measurements on very thin
carbon nanotubes [80]. Moreover, in accordance with the results in [44], local minimizers are
generically characterized by two different bond lengths.

Finally, our result proves the validity of the so-called Cauchy-Born rule for carbon nanotubes:
By imposing a small tension, the periodicity cell deforms correspondingly and global periodicity
is preserved. This fact rests at the basis of a possible elastic theory for carbon nanotubes. As
a matter of fact, such periodicity is invariantly assumed in a number of different contributions,
see [4, 29, 40, 79] among others, and then exploited in order to compute tensile strength as
well as stretched geometries. Here again our results provide a theoretical justification of such
approaches.

Albeit the Cauchy-Born rule plays a pivotal role in Mechanics [25, 26, 78], rigorous results
are just a few. Among these we mention [36, 13], which assess its validity within two- and
d-dimensional cubic mass-spring systems, respectively. More general interactions are considered
in [21, 22], where the Cauchy-Born rule is investigated under a specific ellipticity condition
applying to the triangular and hexagonal lattice, both in the static and the dynamic case. Our
result is, to the best of our knowledge, the first one dealing with a three-dimensional structure
which is not a subset of a Bravais lattice nor of a multilattice. Note though the Saint Venant
principle in [24], which corresponds to the validity of an approximate version of the Cauchy-Born
rule, up to a small error. However, the setting of [24] is quite different from the present one,
where long-range purely two-body interactions are considered.

This work is the culmination of a series on the geometry and mechanics of nanotubes [55, 56].
The theoretical outcomes of this paper have been computationally anticipated in [55], where
stability of periodic configurations have been investigated with Monte Carlo techniques, both
for zigzag and armchair topologies under moderate displacements. A first step toward a rigorous
analytical result has been obtained in [56] for both zigzag and armchair topologies under no
stretching. In [56], stability is checked against a number of non-periodic perturbations fulfilling
a specific structural constraint, which is related to the nonplanarity of the hexagonal cells
induced by the local geometry of the nanotube. Here, we remove such constraint and consider
all small perturbations, even in presence of stretching.
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Indeed, removing the structural assumption and extending the result of [56] to the present
fully general setting requires a remarkably deeper analysis. In a nutshell, one has to reduce to
a cell problem and solve it. The actual realization of this program poses however substantial
technical challenges and relies on a combination of perturbative and convexity techniques.

Whereas the proof in [56] was essentially based on the convexity of the energy given by
the three bond angles at one atom, in the present context we have to reduce to a cell which
includes eight atoms and is slightly nonplanar. The convexity of cell energies for various Bravais
lattices has already been investigated in the literature [13, 34, 36, 67], particularly for problems
related to the validation of the Cauchy-Born rule. In our setting, however, we need to deal with
an almost planar structure embedded in the three-dimensional space and therefore, to confirm
convexity of the cell energy, a careful analysis in terms of the nonplanarity is necessary, see
Section 7.2 and Theorem 7.6. In this context, an additional difficulty lies in the fact that the
reference configuration of the cell is not a stress-free state.

The convexity is then crucially exploited in order to obtain a quantitative control of the energy
defect in terms of the symmetry defect produced by symmetrizing a cell (Theorem 4.4). On the
other hand, a second quantitative estimate provides a bound on the defect in the nonplanarity
of the cell (called angle defect) with respect to the symmetry defect of the cell (Lemma 4.1).
The detailed combination of these two estimates and a convexity and monotonicity argument
(Proposition 4.3) proves that ground states necessarily have symmetric cells, from which our
stability result follows (Theorem 3.3).

The validation of the Cauchy Born rule essentially relies on the application of a slicing tech-
nique which has also been used in [34] in a more general setting: One reduces the problem to
a chain of cells along the diameter of the structure and shows that identical deformation of
each cell is energetically favorable. In the present context, however, additional slicing argu-
ments along the cross sections of the nanotube are necessary in order to identify correctly the
nonplanarity of each hexagonal cell.

The paper is organized as follows. In Section 2 we introduce the objects in study and the
mathematical setting. Section 3 collects our main results. In Section 4 we present the proof
strategy, the essential auxiliary statements (Lemma 4.1 - Theorem 4.4), and the proof of Theorem
3.3. The proofs of the various necessary ingredients are postponed to Sections 5-7.

2. Carbon-nanotube geometry

The aim of this section is that of presenting the objects in study, together with the relevant
notation. Let us start by introducing the mathematical setting as well as some preliminary
observations.

As mentioned above, carbon nanotubes (nanotubes, in the following) are modeled by con-
figurations of atoms, i.e. collections of points in R3 representing the atomic sites. Nanotubes
are very long structures, measuring up to 107 times their diameter. As such, we shall not be
concerned with describing the fine nanotube geometry close to their ends. We thus restrict to
periodic configurations, i.e. configurations that are invariant with respect to a translation of a
certain period in the direction of the nanotube axis. Without loss of generality we consider only
nanotubes with axis in the e1 := (1, 0, 0) direction. Therefore, a nanotube is identified with a
configuration

C := Cn + Le1Z
where L > 0 is the period of C and Cn := {x1, . . . , xn} is a collection of n points xi ∈ R3

such that xi · e1 ∈ [0, L). In the following, we will refer to Cn as the n-cell of C, and since C



CHARACTERIZATION OF OPTIMAL CARBON NANOTUBES 5

is characterized by its n-cell Cn and its period L, we will systematically identify the periodic
configuration C with the couple (Cn, L), i.e. C = (Cn, L).

2.1. Configurational energy. We now introduce the configurational energy E of a nanotube
C, and we detail the hypotheses which we assume on E throughout the paper. We aim here
at minimal assumptions in order to possibly include in the analysis most of the many different
possible choices for energy terms, which have been successfully implemented in Computational
Chemistry codes [7, 11, 38, 60, 75].

The energy E is given by the sum of two contributions, respectively accounting for two-body
and three-body interactions among particles that are respectively modulated by the potentials
v2 and v3, see (1).

We assume that the two-body potential v2 : R+ → [−1,∞) is smooth and attains its minimum
value only at 1 with v2(1) = −1 and v′′2 (1) > 0. Moreover, we ask v2 to be short-ranged, that
is to vanish shortly after 1. For the sake of definiteness, let us define v2(r) = 0 for r ≥ 1.1.
These assumptions reflect the nature of covalent atomic bonding in carbon favoring a specific
interatomic distance, here normalized to 1.

We say that two particles x, y ∈ C are bonded if |x − y| < 1.1, and we refer to the graph
formed by all the bonds as the bond graph of C. Taking into account periodicity, this amounts
to consider two particles xi and xj of the n-cell Cn of C as bonded if |xi − xj |L < 1.1, where
| · |L is the distance modulo L defined by

|xi − xj |L := min
t∈{−1,0,+1}

|xi − xj + Lte1|

for every xi, xj ∈ Cn. Let us denote by N the set of all couples of indices corresponding to
bonded particles, i.e.

N := {(i, j) : xi, xj ∈ Cn, i 6= j, and |xi − xj |L < 1.1}.

The three-body potential v3 : [0, 2π]→ [0,∞) is assumed to be smooth and symmetric around
π, namely v3(α) = v3(2π−α). Moreover, we suppose that the minimum value 0 is attained only
at 2π/3 and 4π/3 with v′′3 (2π/3) > 0. Let T be the index set to the triples corresponding to
first-neighboring particles, i.e.

T := {(i, j, k) : i 6= k, (i, j) ∈ N and (j, k) ∈ N}.

For all triples (i, j, k) ∈ T we denote by αijk ∈ [0, π] the bond angle formed by the vectors xi−xj
and xk−xj . The assumptions on v3 reflect the basic geometry of carbon bonding in a nanotube:
Each atom presents three sp2-hybridized orbitals, which tend to form 2π/3 angles.

The configurational energy E of a nanotube C = (Cn, L) is now defined by

E(C) = E(Cn, L) :=
1

2

∑
(i,j)∈N

v2(|xi−xj |L) +
1

2

∑
(i,j,k)∈T

v3(αijk). (1)

Let us mention that the smoothness assumptions on v2 and v3 are for the sake of maximizing
simplicity rather than generality and could be weakened. Observe that our assumptions are
generally satisfied by classical interaction potentials for carbon (see [69, 70]). Since the energy
E is clearly rotationally and translationally invariant, in the following we will tacitly assume
that all statements are to be considered up to isometries. We say that a nanotube C = (Cn, L)
is stable if (Cn, L) is a strict local minimizer of the interaction energy E.
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2.2. Geometry of zigzag nanotubes. We now introduce a specific two-parameter family of
nanotubes which will play a crucial role in the following. This is the family of so-called zigzag
nanotubes having the minimal period µ > 0. The term zigzag refers to a specific topology of
nanotubes, see Figure 1, which is here chosen for the sake of definiteness. Let us however note
that the other classical choice, to so-called armchair topology, could be considered as well. The
Reader is referred to [56] for some results on unstretched armchair geometries.

e1

Figure 1. Zigzag nanotube.

We let ` ∈ N, ` > 3, and define the family F (µ) as the collection of all configurations that,
up to isometries, coincide with{(

k(λ1 + σ) + j(2σ + 2λ1) + l(2σ + λ1), ρ cos

(
π(2i+ k)

`

)
, ρ sin

(
π(2i+ k)

`

)) ∣∣∣
i = 1, . . . , `, j ∈ Z, k, l ∈ {0, 1}

}
(2)

for some choice of

λ1 ∈ (0, µ/2), λ2 ∈ (0, µ/2), σ ∈ (0, µ/2), and ρ ∈
(

0,
µ

4 sin(π/(2`))

)
such that

2σ + 2λ1 = µ, σ2 + 4ρ2 sin2
( π

2`

)
= λ22. (3)

Of course, the configurations in F (µ) are periodic with minimal period µ. The parameter
ρ indicates the diameter of the tube and λ1, λ2 are the two possibly different lengths of the
covalent bonds in each hexagon of the tube, where the bonds of length λ1 are oriented in the e1
direction.

These configurations are objective [42]: They are obtained as orbits of two points under the
action of a prescribed isometry group. The latter group is generated by a translation combined
with a rotation along the axis and by a simple translation. Notice that our definition slightly
differs from the one adopted in [55, 56] in the sense that for fixed i, k the points individuated
by the quadruples (i, j, k, l) for j ∈ Z, l ∈ {0, 1} lie on a line parallel to e1 (see Figure 2).

For fixed µ > 0, F (µ) is a two-parameter smooth family of configurations since each config-
uration in F (µ) is uniquely determined by λ1 and λ2 by taking relation (3) into account. Later
we will consider different values for the minimal period µ in order to model nanotubes under
stretching.

We state the following basic geometric properties of configurations in F (µ). The analogous
properties in the case λ1 = λ2 = 1 have already been discussed in [55].
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Proposition 2.1 (Geometric structure of zigzag nanotubes). Let F ∈ F (µ). Then

(a) Atoms in F lie on the surface of a cylinder with radius ρ and axis e1.
(b) Atoms in F are arranged in planar sections, perpendicular to e1, obtained by fixing j,

k, and l in (2). Each of the sections exactly contains ` atoms, arranged at the vertices
of a regular `-gon. For each section, the two closest sections are at distance σ and λ1,
respectively.

(c) The configuration F is invariant under a rotation of 2π/` around e1, under the trans-
lation µe1, and under a rototranslation of angle π/` along the vector (λ1 + σ)e1.

(d) Let i ∈ {1, . . . , `}, j ∈ Z and k, l ∈ {0, 1}: the quadruple (i, j, k, l) individuates points of

F , denoted by xj,li,k, where (0, j, k, l) identifies with (`, j, k, l). Given xj,0i,0 ∈ F , the two

points xj−1,1i,1 , xj−1,1i−1,1 have distance λ2 and xj−1,1i,0 has distance λ1 from xj,0i,0 . For xj,1i,0 ,

the distance of xj,0i,1 and xj,0i−1,1 is λ2 and the distance from xj+1,0
i,0 is λ1. See Figure 2

for the analogous notation of xj,0i,1 and xj,1i,1 .

xj,0i,0 xj,1i,0xj−1,1
i,0 xj+1,0

i,0

xj−1,1
i,1 xj,0i,1

xj,0i+1,0 xj,1i+1,0xj−1,1
i+1,0 xj+1,0

i+1,0

xj−1,1
i−1,1 xj,0i−1,1

xj,0i−1,0 xj,1i−1,0xj−1,1
i−1,0 xj+1,0

i−1,0

Figure 2. Configuration points are individuated by quadruples (i, j, k, l) for
i = 1, . . . , `, j ∈ Z, and k, l ∈ {0, 1}.

Notice that for fixed λ1 and λ2 the other parameters range between two degenerate cases:
ρ = 0 (the cylinder is reduced to its axis) and σ = 0 (sections collide). We shall however
impose further restrictions, for each atom should have three bonds. In particular, the only three
bonds per atom should be the ones individuated by point (d) of Proposition 2.1. By recalling
that two particles are bonded if their distance is less than the reference value 1.1, since the
distance between two consecutive sections is either λ1 or σ, we require λ1 > 0.9 and σ > 0.2.
Additionally, we require λ1, λ2 < 1.1, which also implies σ < 1.1 by (3). On the other hand, on
each section, the edge of the regular `-gon should be greater than 1.1. Such length is given by
2ρ sin γ`, where γ` is the internal angle of a regular 2`-gon, i.e.

γ` := π

(
1− 1

`

)
. (4)
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Therefore, we need to impose ρ > ρ− := 0.55/ sin γ`. With these restrictions we have the
following

Proposition 2.2 (Parametrization of the family). Let F ∈ F (µ) with ρ > ρ−, σ > 0.2
and λ1, λ2 ∈ (0.9, 1.1). Then, all atoms in F have exactly three (first-nearest) neighbors, two
at distance λ2 and one at distance λ1, where the bond corresponding to the latter neighbor is
oriented in the e1 direction. Among the corresponding three smaller than π bond angles, two have
amplitude α (the ones involving atoms in three different sections), and the third has amplitude
β, where α ∈ (π/2, π) is obtained from

sinα =
√

1− (σ/λ2)2 = 2(ρ/λ2) sin
( π

2`

)
(5)

and β ∈ (π/2, π) is given by

β = β(α, γ`) := 2 arcsin
(

sinα sin
γ`
2

)
. (6)

The proof for the case λ1 = λ2 = 1 was detailed in [55]. The extension to our setting is a
straightforward adaption and is therefore omitted. As already mentioned, the collection F (µ) is
a two-parameter family where all its configurations are uniquely determined by the specification
of λ1 and λ2. The corresponding element will be denoted by Fλ1,λ2,µ. Restricting the minimal
period µ to the interval (2.6, 3.1) we observe by (3) and an elementary computation that the
constraints λ1, λ2 ∈ (0.9, 1.1) and ` > 3 automatically imply 0.2 < σ < 0.65 and ρ > ρ−.
Therefore, the assumptions of Proposition 2.2 hold.

3. Main results

In this section we collect our main results. The corresponding proofs will then be presented
in Sections 4-7.

For fixed integer ` > 3, let us consider a configuration F in the family F (µ). Of course it
is periodic, and then it identifies with the couple (Fn, L), where Fn is the corresponding n-cell
(n = 4m` for some m ∈ N), and

L = Lµm := mµ (7)

is the period parameter, corresponding to the cell length (notice that for m = 1 we get the
minimal period of the configuration). In view of (1) and the properties stated in Proposition
2.2, the energy can be written as

E(F) = E(Fn, L
µ
m) =

n

2

(
v2(λ1) + 2v2(λ2)

)
+ n

(
2v3(α) + v3(β(α, γ`))

)
. (8)

3.1. Unstrechted nanotubes. A first natural problem to be considered is the energy min-
imization restricted to the families F (µ), with the values of µ in the reference interval µ ∈
(2.6, 3.1). Let us denote by Fλ1,λ2,µ an element of F (µ) with bond lengths λ1, λ2. If we mini-
mize among nanotubes Fλ1,λ2,µ with respect to µ ∈ (2.6, 3.1) and λ1, λ2 in a neighborhood of
1, we reduce to the case λ1 = λ2 = 1. Indeed, we can replace λ1, λ2 by 1, leave α unchanged,
and choose µ according to (3) and (5) such that the energy (8) decreases.

We notice that {F1,1,µ| µ ∈ (2.6, 3.1)} is a one-parameter family. It follows from Proposition
2.2 and (3) that this family can also be parametrized in terms of the bond angle α introduced
in Proposition 2.2 using the relation µ = 2(1− cosα). We indicate these configurations by Gα.

As already discussed in [55], there are two specific angles αch
` < αru corresponding to the

Rolled-up [18, 19] and Polyhedral [14, 15] configuration, respectively, with αru = 2π/3 and
αch
` being the unique solution of the equation β(αch

` , γ`) = αch
` in (arccos(−0.4), arccos(−0.6)).
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The one variable minimization problem for the map α 7→ E(Gα) has been investigated in [55,
Theorem 4.3]:

Proposition 3.1 (Existence and uniqueness of minimizer: Unstretched case). There exist an
open interval A and `0 ∈ N only depending on v3 such the the following holds for all ` ≥ `0:
There is a unique angle αus

` ∈ A such that Gαus
`

minimizes the energy E in the class {Gα| α ∈ A}.
Moreover, one has αus

` ∈ (αch
` , α

ru) ⊂ A.

Let us report the idea of the proof. Exploiting the monotonicity properties of v3 and β (the
latter being decreasing as a function of α), one derives that the minimum is attained for α in a
small left neighborhood I of 2π/3. Using in addition the convexity of v3 and the concavity of
β, it follows that α 7→ E(F) = −3n/2 + n

(
2v3(α) + v3(β(α, γ`))

)
is strictly convex in I, which

implies the assertion.

The result in particular shows that neither the Cox-Hill nor the Rolled-up configuration is a
local minimizer of the energy E. The corresponding minimal period of the nanotube is given by

µus
` := 2− 2 cosαus

` , (9)

cf. (3) and (5), and we notice Gαus
`

= F1,1,µus
`

. Nanotubes with µ = µus
` will be referred to as

unstretched nanotubes.

The aim of [55, 56] was to prove that Gαus
`

is a local minimizer. This has been illustrated
numerically in [55] and checked analytically in [56], for a restricted class of perturbations. Our
stability result Theorem 3.3 below delivers an analytical proof of stability with respect to all
small perturbations. As such, it generalizes and improves known results, even in the unstreched
case.

3.2. Nanotubes under stretching. Let us now move forward to the case of stretched nan-
otubes. This corresponds to choosing µ 6= µus

` . Indeed, we impose a tensile or compressive
stress on the nanotube by simply modifying its minimal period. Given the role of periodicity
in the definition of the energy E, see (1), this has the net effect of stretching/compressing the
structure. Note that this action on the structure is very general. In particular, it includes,
without reducing to, imposed Dirichlet boundary conditions, where only the first coordinate of
the boundary atoms is prescribed. For fixed µ ∈ (2.6, 3.1) we consider the minimization problem

Emin(µ) = min
{
E(Fλ1,λ2,µ)| Fλ1,λ2,µ ∈ F (µ), λ1, λ2 ∈ (0.9, 1.1)

}
. (10)

We obtain the following existence result.

Theorem 3.2 (Existence and uniqueness of minimizer: General case). There exist `0 ∈ N and,
for each ` ≥ `0, an open interval M ` only depending on v2, v3, and `, with µus

` ∈M `, such that
for all µ ∈M ` there is a unique pair of bondlengths (λµ1 , λ

µ
2 ) such that Fλµ1 ,λµ2 ,µ is a solution of

the problem (10).

In the following the minimizer is denoted by F∗µ. Note that we have F∗µus
`

= Gαus
`

by Propo-

sition 3.1.

Our aim is to investigate the local stability of F∗µ. To this end, we consider general small

perturbations F̃ of F∗µ with the same bond graph, i.e. each atom keeps three and only three
bonds, and we can identify the three neighboring atoms of the perturbed configurations with
the ones for the configuration F∗µ. By Fµn = {xµ1 , . . . , xµn} denote the n-cell of F∗µ so that
F∗µ = (Fµn , L

µ
m) with Lµm as defined in (7) for m ∈ N with n = 4m`. We define small perturbations
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Pη(µ) of F∗µ by

Pη(µ) = {F̃ = (Fn, L
µ
m)| Fn := {x1, . . . , xn} with |xi − xµi | ≤ η}. (11)

The parameter η > 0 will always be chosen sufficiently small such that the topology of the
bond graph remains invariant. η will in general also depend on `. Moreover, we recall E(F̃) =
E(Fn, L

µ
m). We obtain our main result, concerning local stability under small stretching.

Theorem 3.3 (Local stability of minimizers). There exist `0 ∈ N and for each ` ≥ `0 some
µcrit
` > µus

` and η` > 0 only depending on v2, v3, and ` such that for all ` ≥ `0 and for all
µ ∈ [µus

` , µ
crit
` ] we have

E(F̃) > E(F∗µ)

for any nontrivial perturbation F̃ ∈Pη`(µ) of the configuration F∗µ.

The theorem asserts that, under prescribed and small stretchings, local minimizers are pe-
riodic. In particular, they belong to the family F (µ). This amounts to a validation of the
Cauchy-Born rule in this specific setting. Especially, the result justifies the reduction of the 3n-
dimensional minimization problem min{E(F)| F ∈ Pη`(µ)} to the two-dimensional problem
(10).

In the following statement we collect the main properties of the local minimizer.

Proposition 3.4 (Properties of minimizer). There exist `0 ∈ N and for each ` ≥ `0 an open
interval M ` only depending on v2, v3, and `, with µus

` ∈M `, such that:

1. The mapping µ 7→ E(F∗µ) = Emin(µ) is smooth, strictly convex on M ` and attains its

minimum in µus
` . Particularly, d2

dµ2Emin(µus
` ) ≥ cn for c > 0 only depending on v2, v3.

2. The lengths λµ1 , λ
µ
2 increase continuously for µ ∈M `. In particular, we have λµ1 , λ

µ
2 > 1

for µ > µus
` and λµ1 , λ

µ
2 < 1 for µ < µus

` .
3. The angle αµ corresponding to λµ1 , λ

µ
2 given by the relations (3) and (5) satisfies αµ ∈

(αch
` , α

ru) for all µ ∈M `.
4. Whenever v′′2 (1) 6= 6v′′3 (2π/3), the radius ρµ corresponding to λµ1 , λ

µ
2 given by relation (3)

is continuously increasing or decreasing for µ ∈M `, respectively, depending on whether
v′′2 (1) < 6v′′3 (2π/3) or v′′2 (1) > 6v′′3 (2π/3).

Properties 1 and 2 imply that that the nanotubes show elastic response for small extension and
compression. Property 3 reconfirms that neither the Polyhedral nor the Rolled-Up configuration
is a local minimizer of the energy, for all µ near µus

` . Finally, Property 4 implies that under
stretching or compressing the radius of the nanotube generically changes. In particular, if
v′′2 (1) > 6v′′3 (2π/3), the radius of the nanotube decreases as changing the angles is energetically
more convenient.

Notice that Theorem 3.3 provides a stability result only for the case of expansion µ ≥ µus
`

and for values µ near µus
` . The situation for compression is more subtle from an analytical

point of view and our proof techniques do not apply in this case. However, we expect stability
of nanotubes also for small compression and refer to [55] for some numerical results in this
direction. Let us complete the picture in the tension regime by discussing briefly the fact that
for larger stretching cleavage along a section is energetically favored. More precisely, we have
the following result.
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Theorem 3.5 (Fracture). Let Hµ be the configuration

xj,li,k =

{
x̄j,li,k j ∈ [0,m/2) +mZ,
x̄j,li,k +m(µ− µus

` ) else

for i = 1, . . . , ` and k, l ∈ {0, 1}, where x̄j,li,k denote the atomic positions of the configuration

F1,1,µus
`

(see Proposition 2.1(d)). Then there are an open interval M ` containing µus
` and a

constant c > 0 only depending on v2 and v3 such that for all µ ∈M `, µ ≥ µfrac
`,m := µus

` + c/
√
m,

one has E(Hµ) < E(F∗µ).

Notice that the configuration Hµ corresponds to a brittle nanotube cleaved along a cross-
section. The energy is given by E(Hµ) = E(F1,1,µus

`
) + 4` since in the configuration Hµ there

are 4` less active bonds per n-cell than in F1,1,µus
`

. Moreover, Hµ is a stable configuration in the
sense of Theorem 3.3 for all µ ≥ µus

` , which can be seen by applying Theorem 3.3 separately on

the two parts of Hµ, consisting of the points xj,li,k with j < m/2 and j ≥ m/2, respectively.

As mentioned, nanotubes are long structures. In particular, m should be expected to be
many orders of magnitude larger than `. The case of large m is hence a sensible one and for m
large enough we have µfrac

`,m < µcrit
` , with µcrit

` from Theorem 3.3. Hence, by combining Theorem
3.3 with Theorem 3.5, for all µ ≥ µus

` we obtain a stability result for an elastically stretched or
cleaved nanotube, respectively.

The proof of Theorem 3.5 is elementary and relies on the fact that the difference of the energy
associated to F∗µ and Hµ can be expressed by

E(Hµ)− E(F∗µ) = 4`+ E(F1,1,µus
`

)− E(F∗µ) = 4`+ Emin(µus
` )− Emin(µ)

= 4`− 1

2

d2

d2µ
Emin(µus

` )(µ− µus
` )2 + O((µ− µus

` )3)

≤ 4`− 1

4

d2

d2µ
Emin(µus

` )(µ− µus
` )2 ≤ 4`−m`c(µ− µus

` )2

for µ in a small neighborhood around µus
` , where we used Property 1 in Proposition 3.4 and

n = 4m`.

We close the section by noting that the scaling of µfrac
`,m − µus

` in m is typical for atomistic
systems with pair interaction of Lennard-Jones type and has also been obtained in related
models, cf. [5, 33, 34].

4. Existence and stability: Proof of Theorem 3.2 and Theorem 3.3

In this section we consider small perturbations F̃ of configurations in F (µ) with the same

bond graph, as defined in (11). The atomic positions of F̃ will be indicated by xj,li,k and are

labeled as for a configuration F (µ), cf. Proposition 2.1(d). We first introduce some further
notation needed for the proof of our main result. In particular, we introduce a cell energy
corresponding to the energy contribution of a specific basic cell.

Centers and dual centers. We introduce the cell centers

zi,j,k =
1

2

(
xj,0i,k + xj,1i,k

)
(12)

and the dual cell centers

zduali,j,k =
1

2

(
xj,1i,k + xj+1,0

i,k

)
.
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Note that for a configuration in F(µ) for fixed j the 2` points zi,j,0 and zduali,j−1,1 for i = 1, . . . , `

lie in a plane perpendicular to e1. Likewise, zi,j,1 and zduali,j,0 for i = 1, . . . , ` lie in a plane
perpendicular to e1.

Cell energy. The main strategy of our proof will be to reduce the investigation of (10) to a
cell problem. In order to correctly capture the contribution of all bond lengths and angles to
the energy, it is not enough to consider a hexagon as a basic cell, but two additional atoms
have to be taken into account.

x1 x2

x3 x4

x6 x5

x7 x8

zduali,j−1,k zduali,j,k

zi,j,k

Figure 3. Notation for the points and the centers in the basic cell.

Let be given a center zi,j,k and number the atoms of the corresponding hexagon by x1 = xj,0i,k,

x2 = xj,1i,k and the remaining clockwisely by x3, x4, x5, x6 as indicated in Figure 3, such that

x3 is consecutive to x1, see also (54) below. Additionally, the atoms bonded to x1 and x2,
respectively, which are not contained in the hexagon, are denoted by x7 and x8. Note that
zduali,j−1,k = (x7 + x1)/2 and zduali,j,k = (x2 + x8)/2. For i = 1, . . . , 6 we define the bondlengths bi as

indicated in Figure 4 and b7 = |x1 − x7|, b8 = |x2 − x8|, where

2|zduali,j−1,k − x1| = b7, 2|zduali,j,k − x2| = b8.

By ϕi we denote the interior angle of the hexagon at xi. By ϕ7, ϕ8 we denote the remaining two
angles at x1 and by ϕ9, ϕ10 we denote the remaining two angles at x2, see again Figure 4.

ϕ1 ϕ2

ϕ3 ϕ4

ϕ5 ϕ6

ϕ7 ϕ9

ϕ8 ϕ10

b3 b4

b6 b5

b7 b8

b1

b2

Figure 4. Notation for the bond lengths and angles in the basic cell.

We define the cell energy by

Ecell(zi,j,k) =
1

4

(
v2(b1) + v2(b2)

)
+

1

2

6∑
i=3

v2(bi) +
1

4

(
v2(b7) + v2(b8)

)
+ v3(ϕ1) + v3(ϕ2) +

1

2

6∑
i=3

v3(ϕi) +
1

2

10∑
i=7

v3(ϕi). (13)
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To derive convexity properties of Ecell it is convenient to take also the contribution of the angles
ϕ7, . . . , ϕ10 into account. Observe that

E(F̃) =
∑̀
i=1

m∑
j=1

∑
k=0,1

Ecell(zi,j,k). (14)

Indeed, each bond not (approximately) parallel to e1 is contained exactly in two cells. Each
bond (approximately) parallel to e1 is contained in four cells, twice in form of a bond in a
hexagon, once as a bond left of a hexagon and once as a bond right of a hexagon. Moreover,
angles with index {1, 2} are contained exactly in one cell and angles with index {3, . . . , 10} are
contained in exactly two cells.

Symmetrization of cells. A basic cell is a configuration of eight points of R3. By x`kink ∈
R3×8 we denote the unstretched kink configuration: a basic cell as found in the unstretched
configuration Gαus

`
from Section 3, see (54) below for the exact definition. Notice that the

coordinates given in (54) correspond to a convenient choice of a new reference orthonormal
system in R3, to be often tacitly considered when working with a basic cell. Indeed, let be given
a cell of the nanotube Gαus

`
, where the eight points are ordered from x1 to x8 according to the

convention of the previous subsection (see Figure 3), in particular the points x3, x4, x5, x6 are
numbered clockwisely with respect to an observer lying in the interior of the tube. We are fixing
a new reference coordinate system as follows: we let the center of the cell be the origin, e1 (axis
direction) be the direction of x2−x1, e2 the direction of x3−x6, and e3 = e1∧e2. Sometimes we
will write R2×{0} for the plane generated by e1, e2. If x ∈ R3×8 denotes a generic cell, possibly
after a rigid motion we may always assume that, with respect to the new reference system, the
second and third components of (x1 + x7)/2, (x2 + x8)/2 are zero and the points x4, x5 lie in a
plane parallel to R2 × {0}.

A key step in our analysis will be to show that the minimization of the cell energy (13) can be
reduced to a special situation with high symmetry. To this end, we introduce the symmetrization
of a cell. For y = (y1, y2, y3) ∈ R3 we let r1(y) := (−y1, y2, y3) and r2(y) := (y1,−y2, y3). For
the generic cell x = (x1, . . . , x8) ∈ R3×8 we define the reflections

S1(x) = (r2(x1) | r2(x2) | r2(x6) | r2(x5) | r2(x4) | r2(x3) | r2(x7) | r2(x8)),

S2(x) = (r1(x2) | r1(x1) | r1(x4) | r1(x3) | r1(x6) | r1(x5) | r1(x8) | r1(x7)).
(15)

S1 interchanges the pair of points (x3, x6) and (x4, x5), and changes the sign of the second
components of all points. On the other hand, S2 interchanges the pair of points (x1, x2), (x3, x4),
(x5, x6), and (x7, x8), and changes the sign of the first components of all points.

We let
xS1

:= x`kink + S1(x− x`kink), xS2
:= x`kink + S2(x− x`kink). (16)

If x is seen as a perturbation of x`kink, xS1
(resp. xS2

) is the symmetrized perturbation with
respect to the plane generated by e1, e3 (resp. e2, e3). The symmetry of the configurations
implies therefore Ecell(xS2) = Ecell(xS1) = Ecell(x).

We define

x′ := x`kink +
1

2

(
(x− x`kink) + S1(x− x`kink)

)
, (17a)

S(x) := x`kink +
1

2

(
(x′ − x`kink) + S2(x′ − x`kink)

)
. (17b)

We also introduce the symmetry defect

∆(zi,j,k) := |x− x′|2 + |x′ − S(x)|2. (18)
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A property that we remark is that for a basic cell x with center zi,j,k the quantity |zduali,j,k−zduali,j−1,k|
does not change when passing to S(x) since the second and third component of zduali,j,k , z

dual
i,j−1,k

are assumed to be zero. Below we will see that the difference of the cell energy of S(x) and x
can be controlled in terms of ∆(zi,j,k) due to strict convexity of the energy.

Angles between planes. For each x = xj,li,k we denote by x1, x2, x3 the three atoms that

are bonded with x, where the three points are numbered such that x3 − x is (approximately)
parallel to the axis direction e1. Let θ = θ(x) ≤ π denote the angle between the planes defined
by {x3xx1} and {x3xx2}. More precisely, let n13, n23 denote unit normal vectors to the planes
{x3xx1} and {x3xx2}, respectively. Then we have

θ(x) = max
{
π − arccos(n13 · n23), arccos(n13 · n23)

}
(19)

as represented in Figure 5. With these preparations we will now define angles corresponding to
centers and dual centers. Let be given a center zi,j,k = 1

2 (xj,0i,k +xj,1i,k) of a hexagon. As before we

denote the points of the hexagon by x1, . . . , x6. By θl(zi,j,k) we denote the angle between the
planes {x1x3x4} and {x1x6x5}. By θr(zi,j,k) we denote the angle between the planes {x3x4x2}
and {x2x5x6}. For a dual center zduali,j,k = (xj,1i,k + xj+1,0

i,k )/2 we introduce θl(z
dual
i,j,k) = θ(xj,1i,k) and

θr(z
dual
i,j,k) = θ(xj+1,0

i,k ).

θ(x)

x

x2

x1

x3

Figure 5. The angle between the planes {x3xx1} and {x3xx2} is denoted by θ(x).

In Section 5 we prove the following lemma which provides a linear control for the oscillation
of plane angles of a perturbed configuration F̃ with respect to those of a configuration in F (µ)
in terms of the symmetry defect from (18).
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Lemma 4.1 (Symmetry defect controls angle defect). There is a universal constant c > 0 such

that for η > 0 small enough for all F̃ with ∆(zi,j,k) ≤ η for all centers zi,j,k we have

m∑
j=1

∑̀
i=1

∑
k=0,1

(
θl(zi,j,k) + θl(z

dual
i,j,k) + θr(zi,j,k) + θr(z

dual
i,j,k)

)

≤ 4m(2`− 2)π + c

m∑
j=1

∑̀
i=1

∑
k=0,1

∆(zi,j,k).

Note that the sum on the left equals exactly 4m(2`− 2)π if F̃ ∈ F (µ).

Reduced energy. A key step in our analysis will be to show that the minimization of the cell
energy (13) can be reduced to a special situation with high symmetry. As represented in Figure
6, this corresponds to the conditions

b1 = b2 = λ1, b3 = b4 = b5 = b6 = λ2, b7 = b8 = λ3,

zduali,j,k − zduali,j−1,k = µ̃e1, x2 − x1 = λ4e1,

ϕ1 = ϕ2 = β, ϕ3 = ϕ4 = ϕ5 = ϕ6 = α1, ϕ7 = ϕ8 = ϕ9 = ϕ10 = α2,

θl(zi,j,k) = θr(zi,j,k) = γ1, θl(z
dual
i,j,k) = θr(z

dual
i,j−1,k) = γ2

(20)

with λ1, λ2, λ3 ∈ (0.9, 1.1), λ4 ∈ (0.9, 3.3), µ̃ ∈ (2.6, 3.1) α1, α2, β ∈ (arccos(−0.4), arccos(−0.6)),
γ1, γ2 ∈ [ 34π, π]. Note that θr(z

dual
i,j−1,k) = θ(x1) and θl(z

dual
i,j,k) = θ(x2) with the angles introduced

in (19). The notation µ̃ is reminiscent of the fact that we have indeed µ̃ = µ for a basic cell of
a nanotube in F (µ). Under (20), arguing along the lines of Proposition 2.2, we obtain

β = β(α1, γ1) = 2 arcsin
(

sinα1 sin
γ1
2

)
= β(α2, γ2) = 2 arcsin

(
sinα2 sin

γ2
2

)
. (21)

By elementary trigonometry, cf. Figure 6, we also get

λ4 = λ1 − 2λ2 cosα1. (22)

We now introduce the symmetric energy by

Esym
µ,γ1,γ2(λ, α1, α2) = 2v2(λ) +

1

2
v2
(
µ/2 + λ cosα1

)
+

1

2
v2
(
µ/2 + λ cosα2

)
+ 2v3(α1) + 2v3(α2) + v3(β(α1, γ1)) + v3(β(α2, γ2)).

(23)

Notice that Ecell(zi,j,k) = Esym
µ̃,γ1,γ2

(λ, α1, α2) if the conditions (20) hold with α1 = α2, γ1 = γ2,

λ1 = λ3 = µ/2 + λ cosα1, and λ2 = λ. In general, we show that, up to a small perturbation,
the symmetric energy Esym

µ̃,γ1,γ2
delivers a lower bound for Ecell for cells satysfying (20).

Lemma 4.2 (Cell energy and symmetric energy). There exist a constant c0 > 0 and `0 ∈ N
only depending on v2 and v3 such that for each F̃ and all centers zi,j,k satisfying conditions (20)
with |λ1 − 1|+ |λ3 − 1| ≤ `−4 and |γ1 − γ2| ≤ `−2 we have

Ecell(zi,j,k) ≥ Esym
µ̃,γ1,γ2

(λ2, α1, α2)− c0`−4(γ1 − γ2)2.

This lemma will be proved in Section 6. The idea in the proof is to express λ3 in terms
of the relations (20) and (22) to find λ3 = µ̃ − λ1 + 2λ cosα1 + O((γ1 − γ2)2), where we set
λ = λ2. Here the term O((γ1 − γ2)2) appears as the points x7, x1, x2, x8 in general do not
lie on a line. Likewise, we obtain λ1 = µ̃ − λ3 + 2λ cosα2 + O((γ1 − γ2)2). Finally, we use
v2(λ1) + v2(λ3) ≥ 2v2((λ1 + λ3)/2) by convexity of v2.
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α2 α2α1 α1

λ1
λ2λ2

λ3 λ3
λ4

π

Figure 6. Half of a cell configuration kinked at the plane π and satisfying
conditions (20). The other half of the cell configuration can be determined by
symmetry with respect to the plane π.

We also introduce the reduced energy

Ered(µ, γ1, γ2) = min{Esym
µ,γ1,γ2(λ, α1, α2)| λ ∈ (0.9, 1.1), α1, α2 ∈ (arccos(−0.4), arccos(−0.6))}.

(24)

Since Esym
µ,γ1,γ2 is symmetric in (α1, γ1) and (α2, γ2), we observe that Ered is symmetric in γ1

and γ2, i.e Ered(µ, γ1, γ2) = Ered(µ, γ2, γ1). The following result, which is proved in Section 6,
collects the fundamental properties of Ered.

Proposition 4.3 (Properties of Ered). There exists `0 ∈ N and for each ` ≥ `0 there are open
intervals M `, G` only depending on v2, v3 and ` with µus

` ∈M `, γ` ∈ G` such that the following
holds:

1. (Unique minimizer) For each (µ, γ1, γ2) ∈ M ` × G` × G` there exists a unique triple
(λµ, αµ1 , α

µ
2 ) solving the minimization problem (24). Moreover, αµ1 = αµ2 if γ1 = γ2.

(For simplicity, the dependence of the triple on γ1, γ2 is not included in the notation.)
2. (Strict convexity) Ered is strictly convex on M ` × G` × G`, in particular there is a

constant c′0 > 0 only depending on v2 and v3 such that

Ered(µ, γ1, γ2) ≥ Ered(µ, γ̄, γ̄) + c′0`
−2(γ1 − γ2)2

with γ̄ = (γ1 + γ2)/2 for all µ ∈M ` and γ1, γ2 ∈ G`.
3. (Monotonicity in γ) For each µ ∈ M `, the mapping g(γ) := Ered(µ, γ, γ) is decreasing

on G` with |g′(γ)| ≤ C`−3 for all γ ∈ G` for some C > 0 depending only on v3.
4. (Monotonicity in µ) The mapping h(µ) := Ered(µ, γ`, γ`) is strictly convex on M ` with

h′′(µus
` ) > 0 and strictly increasing on M ` ∩ {µ ≥ µus

` }.
5. (Minimization) For each µ ∈ M ` and γ1 = γ2 = γ`, letting λµ1 = µ/2 + λµ cosαµ1 and

λµ2 = λµ with λµ and αµ1 from 1., the configuration Fλµ1 ,λµ2 ,µ is the unique minimizer of

the problem (10) with

E(F∗µ) = E(Fλµ1 ,λµ2 ,µ) = 2m`Ered(µ, γ`, γ`).

Proof of Theorem 3.2 and Theorem 3.3. We postpone the proofs of the auxiliary results
Lemma 4.1, Lemma 4.2, and Proposition 4.3 to the next sections and now proceed with the
proof of Theorem 3.2 and Theorem 3.3. For the proof of Proposition 3.4 we refer to Section 6.
Moving from the properties of the reduced energy Ered, we directly obtain Theorem 3.2.

Proof of Theorem 3.2. Theorem 3.2 follows from Property 5 of Proposition 4.3. �
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We denote the unique minimzer again by F∗µ and recall the definition of small perturbations
Pη(µ) in (11). Based on the properties of the reduced energy Ered, we are able to show that,
up to a linear perturbation in terms of the symmetry defect ∆ defined in (18), Ered bounds the
cell energy Ecell from below. More precisely, we have the following.

Theorem 4.4 (Energy defect controls symmetry defect). There exist C > 0 and `0 ∈ N only
depending on v2 and v3, and for each ` ≥ `0 there are η` > 0 and an open interval M ` containing
µus
` such that for all µ ∈M `, F̃ ∈Pη`(µ), and centers zi,j,k we have

Ecell(zi,j,k) ≥ Ered

(
|zduali,j,k − zduali,j−1,k|, θ̄(zi,j,k), θ̄(zi,j,k)

)
+ C`−2∆(zi,j,k),

where θ̄(zi,j,k) :=
(
θl(zi,j,k) + θr(zi,j,k) + θl(z

dual
i,j,k) + θr(z

dual
i,j−1,k)

)
/4.

We postpone the proof of Theorem 4.4 to Section 7 and close this section with the proof of
our main stability result Theorem 3.3.

Proof of Theorem 3.3. Let M ` be an open interval containing µus
` such that Proposition 4.3 and

Theorem 4.4 hold for all µ ∈M ` and let G` be the interval from Proposition 4.3. Then choose
µcrit
` > µus

` such that [µus
` , µ

crit
` ] ⊂⊂ M `. Let ` ≥ `0 and µ ∈ [µus

` , µ
crit
` ] be given. Consider a

nontrivial perturbation F̃ ∈Pη`(µ) with η` as in Theorem 4.4. We denote the atomic positions

by xj,li,k and the centers by zi,j,k, zduali,j,k as introduced at the beginning of the section, see (12)
and Figure 3. Define

θ̄(zi,j,k) =
1

4

(
θl(zi,j,k) + θr(zi,j,k) + θl(z

dual
i,j,k) + θr(z

dual
i,j−1,k)

)
(25)

and also

µ̄ =
1

2m`

m∑
j=1

∑̀
i=1

∑
k=0,1

|zduali,j,k − zduali,j−1,k|, θ̄ =
1

2m`

m∑
j=1

∑̀
i=1

∑
k=0,1

θ̄(zi,j,k).

Possibly passing to a smaller η`, we get |zduali,j,k − zduali,j−1,k| ∈ M ` and θ̄(zi,j,k) ∈ G` for all i, j, k.
By Theorem 4.4 we have for each cell

Ecell(zi,j,k) ≥ Ered

(
|zduali,j,k − zduali,j−1,k|, θ̄(zi,j,k), θ̄(zi,j,k)

)
+ C`−2∆(zi,j,k) (26)

if `0 is chosen sufficiently large. Then, taking the sum over all cells and using Property 2. of
Proposition 4.3, we get by (14)

E(F̃) =
∑̀
i=1

m∑
j=1

∑
k=0,1

Ecell(zi,j,k) ≥ 2m`Ered(µ̄, θ̄, θ̄) + C`−2
∑̀
i=1

m∑
j=1

∑
k=0,1

∆(zi,j,k).

Possibly passing to a smaller η`, we can assume that ∆(zi,j,k) ≤ η for all centers with η from
Lemma 4.1. Then using Lemma 4.1 and recalling (25) we find

θ̄ ≤ 1

8m`

(
4m(2`− 2)π + C

m∑
j=1

∑̀
i=1

∑
k=0,1

∆(zi,j,k)
)
≤ γ` +

c

2m`

m∑
j=1

∑̀
i=1

∑
k=0,1

∆(zi,j,k),

where in the last step we have used the fact that γ` = π(1 − 1/`), see (4). This together with
Property 3 of Proposition 4.3 yields

E(F̃) ≥ 2m`Ered(µ̄, γ`, γ`) +
(
C`−2 − C ′`−3

) m∑
j=1

∑̀
i=1

∑
k=0,1

∆(zi,j,k)
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for some C ′ > 0 only depending on v3. Recalling the constraint in definition (11), we get for
fixed i and k that

mµ = Lµm =
∣∣∣ m∑
j=1

zduali,j,k − zduali,j−1,k

∣∣∣ ≤ m∑
j=1

|zduali,j,k − zduali,j−1,k|

and therefore, by taking the sum over all i and k, we get µ̄ ≥ µ ≥ µus
` . Then we derive by

Property 4 and 5 of Proposition 4.3

E(F̃) ≥ 2m`Ered(µ, γ`, γ`) + C ′′`−2
∑̀
i=1

m∑
j=1

∑
k=0,1

∆(zi,j,k)

= E(F∗µ) + C ′′`−2
∑̀
i=1

m∑
j=1

∑
k=0,1

∆(zi,j,k) (27)

for `0 sufficiently large and a possibly smaller constant C ′′ > 0. Note that in this step of
the proof we have fundamentally used that µ ≥ µus

` , i.e. the nanotube is stretched, so that a
monotonicity argument can be applied.

It remains to confirm the strict inequality E(F̃) > E(F∗µ). If ∆(zi,j,k) > 0 for some center

zi,j,k, this follows directly from the previous estimate. Otherwise, as F̃ is a nontrivial pertur-
bation, one of the angles in (25) or one of the lengths |zduali,j,k − zduali,j−1,k| does not coincide with

the corresponding mean value and then at least one of the inequalities (26)-(27) is strict due to
the strict convexity and monotonicity of the mappings considered in Proposition 4.3. �

5. Symmetry defect controls angle defect: Proof of Lemma 4.1

This short section is devoted to the proof of Lemma 4.1. Recall the definition of the centers
in (12), the angles (19), and the symmetry defect (18).

Proof of Lemma 4.1. Let be given F̃ , being a small perturbation of a configuration F ′ ∈ F (µ),
with ∆(zi,j,k) ≤ η for all centers zi,j,k. Due to the symmetry of the problem it suffices to show

m∑
j=1

∑̀
i=1

(
θl(zi,j,0) + θl(z

dual
i,j−1,1)

)
≤ m(2`− 2)π + c

m∑
j=1

∑̀
i=1

∑
k=0,1

∆(zi,j,k).

For brevity we write θ′i = θl(z i+1
2 ,j,0) for i = 1, 3, . . . , 2` − 1 and θ′i = θl(z

dual
i
2 ,j−1,1

) for i =

2, 4, . . . , 2`. (Note that for convenience we do not include the index j in the notation.)

Let ni, ni+1 be unit normal vectors as introduced before (19) such that ni ·ni+1 is near 1 and
^(ni, ni+1) = π − θ′i for i = 1, 3, . . . , 2`− 1. For a suitable ordering of ni and ni+1 we then also
obtain ^(ni, ni+1) = π − θ′i for i = 2, 4, . . . , 2`. Fix a center x0 ∈ R3 and let P be the 2`-gon
with vertices vi := x0 + ni, i = 1, . . . , 2`. Denote the interior angles accordingly by ϕi. Note
that each edge of P forms a triangle with x0 with angles π − θ′i, ψ1

i , and ψ2
i , where ψ1

i is the
angle at the vertex vi and ψ2

i is the angle at vi+1. The key ingredient in the proof is now the
observation that there exists a universal c > 0 such that

ψ1
i+1 + ψ2

i − ϕi+1 ≤ c∆(z i+1
2 ,j,0) + c∆(z i+3

2 ,j,0), (28a)

ψ1
i + ψ2

i−1 − ϕi ≤ c∆(z i−1
2 ,j,0) + c∆(z i+1

2 ,j,0) (28b)
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for i = 1, 3 . . . , 2` − 1, where it is understood that ψ2
0 = ψ2

2` and z0,j,0 = z`,j,0. We defer the
derivation of this property to the end of the proof. Notice that θ′i = ψ1

i + ψ2
i for i = 1, . . . , 2`

and that
∑2`
i=1 ϕi ≤ (2`− 2)π since P is a 2`-gon. We now obtain by (28)

2∑̀
i=1

θ′i =

2∑̀
i=1

(ψ1
i + ψ2

i ) ≤ (2`− 2)π + c
∑̀
i=1

∆(zi,j,0).

The assertion then follows by taking the sum over all j = 1, . . . ,m.

It remains to confirm (28). Fix i = 1, 3, . . . , 2` − 1 and let Ni+1 be the plane containing
the points vi, vi+1, and vi+2. By di+1 we denote the distance of x0 from Ni+1 and by n′i+1 the
orthogonal projection of the vector ni+1 onto Ni+1. Note that di+1 ≤ δ for δ small, depending
only on the choice of η, and that |n′i+1| = |ni+1|+ O(d2i+1). The segments vi+2 − vi+1, n

′
i+1 and

vi − vi+1, n
′
i+1 enclose two angles, denoted by ψ̂1

i+1 and ψ̂2
i , so that ϕi+1 = ψ̂1

i+1 + ψ̂2
i . Observe

that ψ̂1
i+1 and ψ̂2

i are the projections of ψ1
i+1, ψ2

i , respectively, onto Ni+1. For notational
convenience suppose (vi+2 − vi+1) · n′i+1 > 0 and (vi+2 − vi+1) · ni+1 > 0, which holds after
possibly changing the signs of the vectors. Using that (vi+2 − vi+1) · (ni+1 − n′i+1) = 0 and
recalling that di+1 is small, we calculate by a Taylor expansion

ψ̂1
i+1 = arccos

( (vi+2 − vi+1) · n′i+1

|vi+2 − vi+1||n′i+1|

)
= arccos

( (vi+2 − vi+1) · ni+1

|vi+2 − vi+1|(|ni+1|+ O(d2i+1))

)
= ψ1

i+1 + O(d2i+1),

where O(·) is universal. Likewise, we have ψ̂2
i = ψ2

i + O(d2i+1). Since ϕi+1 = ψ̂1
i+1 + ψ̂2

i , to
conclude (28a), it therefore remains to show

d2i+1 ≤ c
(
∆(z i+1

2 ,j,0) +∆(z i+3
2 ,j,0)

)
(29)

for a universal constant c > 0. To see this, we first note that we have di+1 = 0 whenever
∆(z i+1

2 ,j,0) + ∆(z i+3
2 ,j,0) = 0. Indeed, if ∆(z i+1

2 ,j,0) + ∆(z i+3
2 ,j,0) = 0, the high symmetry of

the atoms in the cells with centers z i+1
2 ,j,0 and z i+3

2 ,j,0 (cf. (18)) implies that the three normal

vectors ni, ni+1, and ni+2 are coplanar. Thus, x0 is contained in Ni+1 and therefore di+1 = 0.

Note that d2i+1, ∆(z i+1
2 ,j,0), and ∆(z i+3

2 ,j,0) are functions of the positions of the atoms con-

tained in the adjacent cells with center z i+1
2 ,j,0, z i+3

2 ,j,0, denoted by ỹ = (ỹ1, . . . , ỹ14) ∈ R3×14.

By (18) we find that ∆(z i+1
2 ,j,0)+∆(z i+3

2 ,j,0) = (ỹ−y0)TQ(ỹ−y0) is quadratic withQ ∈ R42×42,

where y0 denotes the atomic positions of F ′ ∈ F (µ). Moreover, the fact that d2i+1 is smooth as a

function in ỹ, a Taylor expansion, and di+1 ≤ δ yield d2i+1 ≤ C|ỹ−y0|2 for a universal constant
C > 0. Now (29) follows from the property that di+1 = 0 whenever ∆(z i+1

2 ,j,0)+∆(z i+3
2 ,j,0) = 0.

The second estimate (28b) can be shown along similar lines. This concludes the proof. �

6. Properties of the reduced energy: Proof of Lemma 4.2, Proposition 4.3, and
Proposition 3.4

In this section we investigate the properties of the symmetric energy and the reduced energy
as introduced in (23) and (24), respectively.
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6.1. Proof of Lemma 4.2. We start with the relation of the cell energy (13) and the symmetric
energy (23).

Proof of Lemma 4.2. In the proof we let λ = λ2. Given the cell energy, the symmetric energy,
and the constraints (20)-(21), we observe that it suffices to show

v2(λ1) + v2(λ3) ≥ 2v2
(
µ̃/2 + 2λ cosαi

)
− c0`−4(γ1 − γ2)2 for i = 1, 2 (30)

for a constant c0 only depending on v2 and v3. First, with the notation of (20), particularly
recalling λ3 = |x8 − x2| = |2(zduali,j,k − x2)|, we see

λ23 = (µ̃− λ4)2 + 4|(x2 − zduali,j,k) · e2|2 + 4|(x2 − zduali,j,k) · e3|2.

As in the special case γ1 = γ2 the points x1, x2, z
dual
i,j,k are contained in one line and thus the

latter two terms vanish, we obtain by a Taylor expansion λ3 = µ̃ − λ4 + O((γ1 − γ2)2), which
together with (22) gives

λ1 + λ3 = µ̃+ 2λ cosα1 + O((γ1 − γ2)2).

By a similar argument, interchanging the roles of λ1 and λ3, we also get

λ1 + λ3 = µ̃+ 2λ cosα2 + O((γ1 − γ2)2).

Recall that |λ1 − 1|+ |λ3 − 1| ≤ `−4 and |γ1 − γ2| ≤ `−2 by assumption. Then by the convexity
of v2 in a neighborhood of 1 and a Taylor expansion we derive

v2(λ1) + v2(λ3) ≥ 2v2(µ̃/2 + λ cosαi + O((γ1 − γ2)2))

≥ 2v2(µ̃/2 + λ cosαi)− C|v′2(µ̃/2 + λ cosαi)|(γ1 − γ2)2 − C(γ1 − γ2)4

for i = 1, 2. We recall that |v′2(µ̃/2+λ cosαi)| = O(`−4) since |λ1−1|+|λ3−1|+|γ1−γ2|2 ≤ 2`−4,
and v2 is smooth and attains its minimum in 1. Moreover, observe that by |γ1 − γ2| ≤ `−2 we
get |γ1 − γ2|4 ≤ `−4|γ1 − γ2|2. This concludes the proof of (30). �

6.2. Convexity of the reduced energy. Let us now concentrate on the symmetric energy
Esym
µ,γ1,γ2 introduced in (23). We recall the definition of the angle β = β(α, γ) = 2 arcsin

(
sinα sin γ

2

)
in (21) and for later use we note that the function β is smooth on [ 12π,

3
4π]× [ 34π, π] and satisfies

∂αβ(2π/3, π) = −2, ∂2ααβ(2π/3, π) = 0, ∂γβ(2π/3, π) = 0, (31a)

∂2γγβ(2π/3, π) = −
√

3/2, ∂2αγβ(2π/3, π) = 0. (31b)

More precisely, a Taylor expansion also shows

lim
`→∞

`∂γβ(2π/3, γ`) =

√
3

2
π, lim

`→∞
`2∂2ααβ(2π/3, γ`) = −2

√
3π2, (32)

where γ` as in (4). For the exact expressions of the derivatives of the function β we refer the
Reader to [56, Section 4]. Recall the definition of αus

` in Proposition 3.1.

Lemma 6.1 (Angles of unstretched nanotubes). There are 0 < c1 < c2 and `0 ∈ N only
depending on v3 such that for all ` ≥ `0

αus
` , β(αus

` , γ`) ∈ (2π/3− c2`−2, 2π/3− c1`−2).
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Proof. By Proposition 3.1 and the fact that α 7→ β(α, γ`) is decreasing, we obtain αus
` ≥ αch

`

and β(αus
` , γ`) ≤ αus

` ≤ 2π/3. By [55, (11)] we have 2π/3− αch
` = O(`−2). Moreover, in view of

(4), (6) and a Taylor expansion, we find αus
` − β(αus

` , γ`) ≥ C`−2. Summarizing, we get

2π/3− αus
` ≤ C`−2, 2π − 2αus

` − β(αus
` , γ`) ≥ C`−2 (33)

for some universal C > 0. As 2v3(α) + v3(β(α, γ`)) is minimized at α = αus
` (see Proposition

3.1), we get 2v′3(αus
` ) + v′3(β(αus

` , γ`))∂αβ(αus
` , γ`) = 0. Using (31a) and a Taylor expansion of

v′3 around 2π/3, we deduce that for `0 large enough and all ` ≥ `0
2π/3− αus

`

2π/3− β(αus
` , γ`)

∈ [C ′, 1]

for a constant 0 < C ′ < 1 only depending on v3. This together with (33) concludes the proof. �

Recall the minimization problem (24) for the symmetric energy introduced in (23). We
proceed with the identification of the minimizers of (24).

Proposition 6.2 (Existence and uniqueness of minimizers). There exists δ > 0 depending only
on v2, v3 such that, for any fixed µ ∈ [3−δ, 3+δ] and γ = (γ1, γ2) ∈ [π−δ, π]2, the minimization
problem (24) has a unique solution (λ∗(µ, γ), α∗1(µ, γ), α∗2(µ, γ)), which satisfies

∇Esym
µ,γ1,γ2(λ∗(µ, γ), α∗1(µ, γ), α∗2(µ, γ)) = 0, (34)

where ∇ denotes the derivative with respect to (λ, α1, α2).

Proof. We start the proof with a direct computation of the derivatives. Replace Esym
µ,γ1,γ2 by Ẽ

for notational convenience. We obtain

∂λẼ(λ, α1, α2) = 2v′2(λ) +
∑
i=1,2

(1

2
cosαi v

′
2(µ/2 + λ cosαi)

)
(35a)

∂αiẼ(λ, α1, α2) = −1

2
λ sinαi v

′
2(µ/2 + λ cosαi)

+ v′3(β(αi, γi))∂αβ(αi, γi) + 2v′3(αi), i = 1, 2. (35b)

Moreover, for i = 1, 2

∂2λλẼ(λ, α1, α2) = 2v′′2 (λ) +
∑
j=1,2

(1

2
cos2 αj v

′′
2 (µ/2 + λ cosαj)

)
,

∂2αiαiẼ(λ, α1, α2) =
1

2
λ2 sin2 αi v

′′
2 (µ/2 + λ cosαi)−

1

2
λ cosαi v

′
2(µ/2 + λ cosαi) + 2v′′3 (αi)

+ v′′3 (β(αi, γi)) (∂αβ(αi, γi))
2 + v′3(β(αi, γi))∂

2
ααβ(αi, γi),

∂2λαiẼ(λ, α1, α2) = −1

2
sinαi v

′
2(µ/2 + λ cosαi)−

1

2
λ sinαi cosαi v

′′
2 (µ/2 + λ cosαi),

∂2α1α2
Ẽ(λ, α1, α2) = 0.

For notational convenience we define sref := (1, 2π/3, 2π/3). Recall that ∂αβ(2π/3, π) = −2 by

(31a), β(2π/3, π) = 2π/3 by (21), v′3(2π/3) = 0, cos(2π/3) = −1/2, sin(2π/3) =
√

3/2. At the
planar reference configuration µ = 3, γ1 = γ2 = π, α1 = α2 = 2π/3, λ = 1 the derivative then
reads after some computation

∂2λλE
sym
3,π,π(sref) =

9

4
v′′2 (1), ∂2αiαiE

sym
3,π,π(sref) =

3

8
v′′2 (1) + 6v′′3 (2π/3), i = 1, 2,

∂2λαiE
sym
3,π,π(sref) =

√
3

8
v′′2 (1), i = 1, 2, ∂2α1α2

Esym
3,π,π(sref) = 0.
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We shall check the positivity of the Hessian matrix in a neighborhood of the reference configu-
ration. Since

det
(
D2
α1α2

Esym
3,π,π(sref)

)
=
(
∂2α1α1

Esym
3,π,π(sref)

)2
,

det
(
D2Esym

3,π,π(sref)
)

=
(
∂2α1α1

Esym
3,π,π(sref)

)2
∂2λλE

sym
3,π,π(sref)

− 2
(
∂2λα1

Esym
3,π,π(sref)

)2
∂2α1α1

Esym
3,π,π(sref)

are positive, the principal minors of the Hessian matrix D2Esym
3,π,π(1, 2π/3, 2π/3) are positive.

Due to the smoothness of the potentials v2, v3 and the mapping (α, γ) 7→ β(α, γ), we get that
for δ′ > 0 sufficiently small the principal minors of the Hessian matrix D2Esym

µ,γ1,γ2(λ, α1, α2) are

positive for all (λ, α1, α2) ∈ Dδ′ and for all µ ∈ [3− δ′, 3 + δ′], (γ1, γ2) ∈ [π − δ′, π]2, where

Dδ′ := [1− δ′, 1 + δ′]× [2π/3− δ′, 2π/3 + δ′]2.

Since we have shown that Esym
µ,γ1,γ2 is strictly convex on Dδ′ , it follows that it has a unique

minimizer (λ∗(µ, γ), α∗1(µ, γ), α∗2(µ, γ)) for all µ ∈ [3− δ′, 3 + δ′] and γ = (γ1, γ2) ∈ [π − δ′, π]2.
Moreover, a continuity argument shows that

(λ∗(µ, γ), α∗1(µ, γ), α∗2(µ, γ))→ (λ∗(3, π, π), α∗1(3, π, π), α∗2(3, π, π)) = (1, 2π/3, 2π/3) (36)

as γ → (π, π) and µ→ 3. Recalling (23) and the fact that v2 and v3 attain their minimum exactly
at 1 and 2π/3, respectively, we find inf(λ,α1,α2)/∈Dδ′ E

sym
µ,γ1,γ2(λ, α1, α2) > −3. On the other hand,

by (21), (23), and (36) we get Esym
µ,γ1,γ2(λ∗(µ, γ), α∗1(µ, γ), α∗2(µ, γ)) → −3 as γ → (π, π) and

µ→ 3. This shows that for all µ ∈ [3− δ′′, 3 + δ′′] and γ ∈ [π − δ′′, π]2, for some small δ′′ > 0,
the triple (λ∗(µ, γ), α∗1(µ, γ), α∗2(µ, γ)) is the unique solution of the minimization problem (24).
Moreover, if δ′′ > 0 is chosen small enough, the triple lies in the interior of Dδ′ and the first
order optimality conditions (34) follow. We conclude the proof by setting δ = min{δ′, δ′′}. �

We now study convexity properties of the reduced energy Ered defined in (24). Recall the
definition of γ` in (4) and the definition of µus

` in (9).

Proposition 6.3 (Convexity of reduced energy). There exists `0 ∈ N and for each ` ≥ `0 there
exits ε = ε(`) > 0 such that Ered is strictly convex on D`

ε := [µus
` − ε, µus

` + ε]× [γ` − ε, γ` + ε]2.
Moreover, there is c′0 > 0 depending only on v2 and v3 such that for all ` ≥ `0 and (µ, γ1, γ2) ∈ D`

ε

Ered(µ, γ1, γ2) = Ered(µ, γ2, γ1) ≥ Ered

(
µ,
γ1 + γ2

2
,
γ1 + γ2

2

)
+ c′0`

−2(γ1 − γ2)2. (37)

Proof. Choosing ` sufficiently large and ε > 0 small we can suppose that D`
ε ⊂ [3 − δ, 3 + δ] ×

[π− δ, π]2 with δ from Proposition 6.2 since µus
` = 2− 2 cosαus

` → 3 as `→∞. Then (34) holds
for (µ, γ1, γ2) ∈ D`

ε.

We drop the brackets (µ, γ1, γ2) and indicate the unique solution at (µ, γ1, γ2) by (λ∗, α∗1, α
∗
2)

for notational convenience. Taking the partial derivatives and making use of the first order
optimality conditions (34), we get

∂µEred(µ, γ1, γ2) =
d

dµ
Esym
µ,γ1,γ2(λ∗, α∗1, α

∗
2)

=
∂Esym

µ,γ1,γ2

∂µ
(λ∗, α∗1, α

∗
2) +∇Esym

µ,γ1,γ2(λ∗, α∗1, α
∗
2) · (∂µλ∗, ∂µα∗1, ∂µα∗2)

=
∂Esym

µ,γ1,γ2

∂µ
(λ∗, α∗1, α

∗
2) =

∑
j=1,2

1

4
v′2
(
µ/2 + λ∗ cosα∗j

)
, (38)
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where ∇ denotes the derivative with respect to (λ, α1, α2). Likewise, we get for i = 1, 2

∂γiEred(µ, γ1, γ2) =
∂Esym

µ,γ1,γ2

∂γi
(λ∗, α∗1, α

∗
2) = v′3(β(α∗i , γi)) ∂γβ(α∗i , γi). (39)

Next we compute the second derivatives and obtain

∂2µµEred(µ, γ1, γ2) =
∑
j=1,2

1

4
v′′2
(
µ/2 + λ∗ cosα∗j

)
wj,µ(µ, γ1, γ2), (40)

∂2γiγiEred(µ, γ1, γ2) = v′3(β(α∗i , γi))
(
∂2γγβ(α∗i , γi) + ∂2γαβ(α∗i , γi) ∂γiα

∗
i

)
+ v′′3 (β(α∗i , γi)) ∂γβ(α∗i , γi) ·

(
∂γβ(α∗i , γi) + ∂αβ(α∗i , γi) ∂γiα

∗
i

)
, i = 1, 2, (41)

∂2µγiEred(µ, γ1, γ2) =
∑
j=1,2

1

4
v′′2
(
µ/2 + λ∗ cosα∗j

)
wj,γi(µ, γ1, γ2), i = 1, 2, (42)

∂2γ1γ2Ered(µ, γ1, γ2) = v′3(β(α∗1, γ1)) ∂2γαβ(α∗1, γ1) ∂γ2α
∗
1

+ v′′3 (β(α∗1, γ1)) ∂γβ(α∗1, γ1) ∂αβ(α∗1, γ1) ∂γ2α
∗
1, (43)

where for brevity we have introduced

wj,µ(µ, γ1, γ2) = 1/2 + ∂µλ
∗ cosα∗j − λ∗ sinα∗j ∂µα

∗
j , j = 1, 2, (44a)

wj,γi(µ, γ1, γ2) = ∂γiλ
∗ cosα∗j − λ∗ sinα∗j ∂γiα

∗
j , i, j = 1, 2. (44b)

We now exploit the identity ∇Esym
µ,γ1,γ2(λ∗, α∗1, α

∗
2) = 0: differentiating (35) with respect to µ, γ1

or γ2, respectively, we obtain

0 = 2v′′2 (λ∗) ∂Xλ
∗ +

∑
j=1,2

(
− 1

2
sinα∗j ∂Xα

∗
j v
′
2(µ/2 + λ∗ cosα∗j )

)
+
∑
j=1,2

(1

2
cosα∗j v

′′
2 (µ/2 + λ∗ cosα∗j )wj,X(µ, γ1, γ2)

)
, (45)

0 = −1

2
v′2(µ/2 + λ∗ cosα∗j )

(
∂Xλ

∗ sinα∗j + λ∗ cosα∗j∂Xα
∗
j

)
− 1

2
λ∗ sinα∗j v

′′
2 (µ/2 + λ∗ cosα∗j )wj,X(µ, γ1, γ2) + v′3(β(α∗j , γj))∂

2
ααβ(α∗j , γj)∂X α

∗
j

+ v′′3 (β(α∗j , γj))
(
∂αβ(α∗j , γj)

)2
∂Xα

∗
j + 2v′′3 (α∗j ) ∂Xα

∗
j + zj,X(µ, γ1, γ2), j = 1, 2, (46)

where X ∈ {µ, γ1, γ2} and where we have defined for brevity

zj,γj (µ, γ1, γ2) = v′3(β(α∗j , γj))∂αγβ(α∗j , γj) + v′′3 (β(α∗j , γj))∂αβ(α∗j , γj)∂γβ(α∗j , γj),

zj,γi(µ, γ1, γ2) = zj,µ(µ, γ1, γ2) = 0, i 6= j.

For brevity let t`ref := (µus
` , γ`, γ`) and tref := (3, π, π). Observe that t`ref → tref as ` → ∞ by

(4), (9), and Lemma 6.1. Moreover, by (36) we get that the unique solution of the problem (24)
corresponding to t`ref converges to (1, 2π/3, 2π/3), in particular α∗j (t

`
ref) → 2π/3 for j = 1, 2.

We also recall β(α∗j (t
`
ref), γ`) → 2π/3 for j = 1, 2 (see (21)). Using v′2(1) = v′3(2π/3) = 0,

cos(2π/3) = −1/2, sin(2π/3) =
√

3/2 and (31) we then deduce from (45)-(46)

0 = 2v′′2 (1) ∂Xλ
∗(tref)−

1

4
v′′2 (1)

∑
j=1,2

wj,X(tref), (47a)

0 = −v′′2 (1)wj,X(tref) + 8
√

3v′′3 (2π/3) ∂Xα
∗
j (tref), j = 1, 2, (47b)
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as ` → ∞ , where X ∈ {µ, γ1, γ2}. Inserting the identities into (44), we obtain, after some
elementary but tedious calculations,

w1,µ(tref) = w2,µ(tref) = 4/K, w1,γi(tref) = w2,γi(tref) = 0, i = 1, 2, (48a)

∂µλ
∗(tref) = 1/K, ∂µα

∗
1(tref) = ∂µα

∗
2(tref) = v′′2 (1)/(2

√
3Kv′′3 (2π/3)), (48b)

where K := 9+v′′2 (1)/(2v′′3 (2π/3)). In particular, the last two equalities of the first line together
with (47) yield that ∂γiλ

∗, ∂γiα
∗
1, and ∂γiα

∗
2 vanish at tref . Thus, by a Taylor expansion in

terms of 1/` the limits w∞j,γi := lim`→∞ `wj,γi(t
`
ref), ∂γiλ

∞ := lim`→∞ `∂γiλ
∗(t`ref), and ∂γiα

∞
j :=

lim`→∞ `∂γiα
∗
j (t

`
ref) for i, j = 1, 2 exist and are finite.

By Lemma 6.1 and the fact that v3 is smooth with minimum at 2π/3 we note that one has
|v′3(β(αus

` , γ`))| ≤ C`−2 for a constant only depending on v3. Consequently, multiplying the
estimates in (45)-(46) by ` and letting `→∞ we get using (31) and (32)

0 = 2v′′2 (1)∂γi λ
∞ − 1

4
v′′2 (1)

∑
j=1,2

w∞j,γi , i = 1, 2,

0 = −1

4
v′′2 (1)w∞j,γi + 2

√
3v′′3 (2π/3) ∂γiα

∞
j − v′′3 (2π/3)π δij , i, j = 1, 2,

where δij denotes the Kronecker delta. As before, inserting the identities into (44b), we obtain
after some tedious calculations∑

j=1,2

w∞j,γi = −2π

K
,

∑
j=1,2

∂γiα
∞
j =

π

2
√

3
− πv′′2 (1)

4
√

3Kv′′3 (2π/3)
, (49a)

∂γiα
∞
i =

π

2
√

3
− πv′′2 (1)

4
√

3Kv′′3 (2π/3)
− π

KK∞
, ∂γiα

∞
j =

π

KK∞
, i 6= j, (49b)

for i = 1, 2 with K as defined after (48) and K∞ := 64
√

3v′′3 (2π/3)/v′′2 (1) + 4
√

3. Moreover, we
notice that by (31b) and Lemma 6.1 there holds

v′3(β(αus
` , γ`))∂

2
γγβ(αus

` , γ`) ≥ 0

for ` sufficiently large. With this at hand, we go back to (40)-(43) and derive as `→∞ by (31),
(32), (48), and (49)

∂2µµEred(t`ref) =
2v′′2 (1)

K
+ O(`−1), (50)

∂2γiγiEred(t`ref) ≥ `−2
(
v′′3 (2π/3)

3

4
π2 − v′′3 (2π/3)

√
3π∂γiα

∞
i

)
+ O(`−3)

= `−2v′′3 (2π/3)π2
(1

4
+

v′′2 (1)

4Kv′′3 (2π/3)
+

√
3

KK∞

)
+ O(`−3), i = 1, 2,

∂2µγiEred(t`ref) = −`−1πv
′′
2 (1)

2K
+ O(`−2), i = 1, 2,

∂2γ1γ2Ered(t`ref) = −`−2v′′3 (2π/3)
√

3π∂γ1α
∞
2 + O(`−3) = −`−2v′′3 (2π/3)

√
3π2

KK∞
+ O(`−3).

We now check the positivity of the Hessian D2Ered by considering the minors H1 = ∂2γ2γ2Ered,

H2 = det(D2
γ1γ2Ered) and H3 = det(D2Ered). First, we get for ` ∈ N sufficiently large

H1(t`ref) ≥ `−2v′′3 (2π/3)
π2

4
> 0, H2(t`ref) ≥ `−4(v3(2π/3)′′)2π4(1/4)2 > 0
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and finally for ` large enough

H3(t`ref) =
(
∂2γ2γ2Ered − ∂2γ1γ2Ered

)
·
(
∂2µµEred

(
∂2γ2γ2Ered + ∂2γ1γ2Ered

)
− 2
(
∂2µγ1Ered

)2)
≥ `−4v′′3 (2π/3)

π2

4

(π2v′′2 (1)v′′3 (2π/3)

2K
+
π2(v′′2 (1))2

2K2
− 2

π2(v′′2 (1))2

4K2

)
> 0.

Due to the smoothness of the potentials v2, v3, the mapping (α, γ) 7→ β(α, γ), and the solutions
(λ∗, α∗1, α

∗
2) as functions of (µ, γ1, γ2), we get that for `0 ∈ N sufficiently large and ε > 0 small

(depending on `) Hi(µ, γ1, γ2) > 0 for i = 1, 2, 3 for all (µ, γ1, γ2) ∈ [µus
` − ε, µus

` + ε] × [γ` −
ε, γ` + ε]2.

It remains to confirm (37). The first identity is a consequence of the fact that Esym
µ,γ1,γ2 is

symmetric in (α1, γ1) and (α2, γ2). Recalling (50) and the fact that D2Ered is positive definite,
we can control the eigenvalues of `2D2Ered from below and find `2D2Ered ≥ 8c′0I + O(`−1) for
some constant c′0 depending only on v′′2 (1) and v′′3 (2π/3), where I denotes the identity matrix.
This implies the second estimate of (37). �

6.3. Proof of Proposition 4.3 and Proposition 3.4. We are now in the position to show
the main properties of Ered.

Proof of Proposition 4.3. Property 2 follows directly from Proposition 6.3 if the intervals M `, G`

are chosen appropriately depending on ε, with ε from Proposition 6.3.

In Proposition 6.2 we have seen that for given (µ, γ1, γ2) ∈ M ` × G` × G` there is a unique
solution (λ∗, α∗1, α

∗
2) of the minimization problem (24). In particular, if γ1 = γ2 we obtain

α∗ := α∗1 = α∗2 as then (24) is completely symmetric in α1 and α2. This shows Property 1.

We now specifically consider the case γ1 = γ2 = γ` and denote the minimizer in (24) by
(λµ, αµ, αµ). We observe that λµ1 := µ/2 + λµ cosαµ, λµ2 := λµ, and σµ := −λµ cosαµ satisfy
the relations (3) and (5). Then by (8), (23), and the fact that n = 4m` we derive

Ered(µ, γ`, γ`) = 2v2(λµ) + v2
(
µ/2 + λµ cosαµ

)
+ 4v3(αµ) + 2v3(β(αµ, γ`))

= 2v2(λµ2 ) + v2(λµ1 ) + 4v3(αµ) + 2v3(β(αµ, γ`)) =
1

2m`
E(Fλµ1 ,λµ2 ,µ),

which concludes the proof of Property 5.

To see Property 3, we introduce g(γ) = Ered(µ, γ, γ) for µ ∈M `. By (39) we have

g′(γ) =
∑
i=1,2

∂γiEred(µ, γ, γ) = 2v′3(β(α∗, γ))∂γβ(α∗, γ),

where α∗ = α∗(µ, γ, γ). Using (32) and the fact that v′3(β(α∗, γ)) < 0 since β(α∗, γ) < 2π/3,
we get g′(γ) < 0. Moreover, taking again (32) and Lemma 6.1 into account, a Taylor expansion
shows |g′(γ)| ≤ C`−3 for some C > 0 only depending on v3. This shows Property 3.

Finally, we show Property 4. The strict convexity of µ 7→ Ered(µ, γ`, γ`) follows from (50) and
a continuity argument, exactly as in the proof of Proposition 6.3. To show that the mapping is
strictly increasing for µ > µus

` , we have to show that for µ > µus
`

µ/2 + λµ cosαµ > 1 (51)

as then the property follows from (38). Using the monotonicity properties of v2 we see that the
first-order optimality conditions (34) and (35a) imply

µ/2 + λµ cosαµ > 1 ⇔ λµ > 1. (52)
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We prove (51) by contradiction. Suppose λµ ≤ 1. This together with the fact µ > µus
` =

2− 2 cosαus
` (see (9)) and cosαµ < 0 would imply by (52)

2 cosαµ − 2 cosαus
` + 1 = µus

` − 1 + 2 cosαµ < µ− 1 + 2λµ cosαµ ≤ 1 (53)

and thus αµ > αus
` . By the optimality condition in the unstretched case (see (35b) and recall

that bond lengths are all equal to 1) we get

v′3(β(αus
` , γ`)) ∂αβ(αus

` , γ`) + 2v′3(αus
` ) = 0.

Consider the mapping α 7→ v′3(β(α, γ`)) ∂αβ(α, γ`) + 2v′3(α) and observe that the derivative
reads as

v′3(β(α, γ`)) ∂
2
ααβ(α, γ`) + v′′3 (β(α, γ`)) (∂αβ(α, γ`))

2 + 2v′′3 (α).

Thus, the mapping is strictly increasing in a left neighborhood of 2π/3 by (32) and the fact that
β(α, γ`) < 2π/3. Since αµ > αus

` , this gives

v′3(β(αµ, γ`)) ∂αβ(αµ, γ`) + 2v′3(αµ) > 0.

In view of (35b) and the first order optimality conditions (34), we get µ/2+λµ cosαµ > 1, which
contradicts the last inequality in (53). Consequently, (51) holds, which concludes the proof. �

We close this section with the proof of Proposition 3.4.

Proof of Proposition 3.4. Let M ` be the interval given by Proposition 4.3. The strict convexity

of the mapping µ 7→ Emin(µ) on M ` as well as d2

dµ2Emin(µus
` ) ≥ c2m` ≥ cn follow from Properties

4 and 5 of Proposition 4.3. The fact that the energy minimum is attained at µus
` follows from

the definition of µus
` , see Proposition 3.1 and (9). This shows Property 1.

Now consider Property 2. We define λµ1 = µ/2 + λµ cosαµ, λµ2 = λµ with λµ, αµ being
the solution of (24) for µ and γ1 = γ2 = γ` (cf. Proposition 4.3(v)) and use (48b) to obtain

∂µλ
µ
2 (tref) = ∂µλ

∗(tref) = 1/K and ∂µλ
µ
1 (tref) = 1/2 − ∂µλ∗(tref)/2 −

√
3∂µα

∗
1(tref)/2 = 4/K

with K = 9 + v′′2 (1)/(2v′′3 (2π/3)). (Recall the definition tref = (3, π, π).) Consequently, by a
standard continuity argument we see that λµ1 and λµ2 increase continuously for µ ∈M `, possibly
passing to a smaller (not relabeled) open interval M ` containing µus

` . The proof of the fact that
µ > µus

` implies λµ1 , λ
µ
2 > 1 is already contained in the proof of Proposition 4.3, see particularly

(51) and (52). The fact that µ < µus
` implies λµ1 , λ

µ
2 < 1 can be proved along similar lines.

To see Property 3, recall that by Proposition 3.1 we have αus
` = αµ

us
` ∈ (αch

` , α
ru) in the un-

stretched case. By a continuity argument we particularly obtain the convergence of minimizers,
i.e. αµ → αµ

us
` as µ → µus

` . Consequently, again possibly passing to a smaller interval M `,
Property 3 follows. We finally concern ourselves with Property 4. Recall by (5) that the radius
of the nanotube is given by

ρµ = λµ2 sinαµ/(2 sin(π/(2`))).

We compute the derivative and obtain

∂µρ
µ =

(
λµ2 cosαµ ∂µα

µ + ∂µλ
µ
2 sinαµ

)
/(2 sin(π/(2`))).

By (48b) the derivative at the unstrechted planar reference configuration reads as

lim
`→∞

∂µρ
µus
` · (2 sin(π/(2`))) = −1

2
∂µα

∗
1(tref) +

1

2

√
3∂µλ

∗(tref) =

√
3

2K

(
1− v′′2 (1)

6v′′3 (2π/3)

)
.

Consequently, whenever v′′2 (1) 6= 6v′′3 (2π/3)), by a continuity argument the sign of ∂µρ
µ for

` ∈ N large in a small neighborhood of µus
` only depends on the sign of v′′2 (1)− 6v′′3 (2π/3). �



CHARACTERIZATION OF OPTIMAL CARBON NANOTUBES 27

7. Energy defect controls symmetry defect: Proof of Theorem 4.4

This section is devoted to the proof of Theorem 4.4. The fact that the minimum of the cell
energy is attained for a special configuration with high symmetry (see (20)) essentially relies on
convexity properties of the cell energy Ecell defined in (13). Throughout the section we consider
a cell consisting of eight points x = (x1, . . . , x8) ∈ R3×8 as defined before (13), see Figure 3.
Likewise, the bond lengths are again denoted by b1, . . . , b8 and the angles by ϕ1, . . . , ϕ10, see
Figure 4. With a slight abuse of notation we denote the cell energy for a given configuration x
by Ecell(x).

7.1. Relation between atomic positions, bonds, and angles. We will investigate the
convexity properties of Ecell near the planar reference configuration x0 = (x01, . . . , x

0
8) ∈ R3×8

defined by

x01 = (−1, 0, 0), x02 = (1, 0, 0), x03 = (−1/2,
√

3/2, 0),

x04 = (1/2,
√

3/2, 0), x05 = (1/2,−
√

3/2, 0), x06 = (−1/2,−
√

3/2, 0),

x07 = (−2, 0, 0), x08 = (2, 0, 0).

Moreover, we introduce the unstretched kink configuration x`kink = (xkink1 , . . . , xkink8 ) ∈ R3×8 by

xkink1 = (−1/2− σus, 0, 0),

xkink2 = (1/2 + σus, 0, 0),

xkink3 = (−1/2, sinαus
` sin(γ`/2), sinαus

` cos(γ`/2)),

xkink4 = (1/2, sinαus
` sin(γ`/2), sinαus

` cos(γ`/2)),

xkink5 = (1/2,− sinαus
` sin(γ`/2), sinαus

` cos(γ`/2)),

xkink6 = (−1/2,− sinαus
` sin(γ`/2), sinαus

` cos(γ`/2)),

xkink7 = (−3/2− σus, 0, 0),

xkink8 = (3/2 + σus, 0, 0),

(54)

where γ` = π(1 − 1/`) and σus = − cosαus
` with αus

` as given by Proposition 3.1 (cf. also (5)).
Note that x`kink represents the mutual position of atoms in a cell for the unstretched nanotube
Gαus

`
found in Proposition 3.1. For later use we note that by Lemma 6.1 and a Taylor expansion

we find

|x0 − x`kink| ≤ C`−1 (55)

for some universal C > 0 large enough. In order to discuss the convexity properties of Ecell we
need to introduce a specific basis of R3×8, i.e. the space of cell configurations. This will consist
of three collections of vectors, denoted by Vdegen, Vgood, and Vbad, where the sets are defined as
follows: We introduce the translations and infinitesimal rotations

Vtrans =
{

(e1, . . . , e1), (e2, . . . , e2), (e3, . . . , e3)
}
⊂ R3×8

Vrot =

v1 :=

 0 1 0
−1 0 0
0 0 0

 x0, v2 :=

 0 0 1
0 0 0
−1 0 0

 x0, v3 :=

0 0 0
0 0 1
0 −1 0

 x0

 ⊂ R3×8
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and set Vdegen = Vtrans ∪ Vrot. The family Vgood contains the 13 vectors

u1 =(−1, 0, 0|1, 0, 0| − 1/2,
√

3/2, 0|1/2,
√

3/2, 0|1/2,−
√

3/2, 0| − 1/2,−
√

3/2, 0|0, 0, 0|0, 0, 0),

u2 =(0, 0, 0 | 0, 0, 0 | 1/2,
√

3/2, 0 | − 1/2,
√

3/2, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),

u3 =(0, 0, 0 | 1, 0, 0 | 0, 0, 0 | 1, 0, 0 | 1, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),

u4 =(0, 0, 0 | 1/2,−
√

3/2, 0 | 1/2,
√

3/2, 0 | − 1/2,
√

3/2, 0 | 1, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),

u5 =(0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | − 1, 0, 0 | 0, 0, 0),

u6 =(0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | − 1, 0, 0 | 1, 0, 0),

u7 =(
√

3, 0, 0 | 0, 0, 0 | 0, 1, 0 | 0, 0, 0 | 0, 0, 0 | 0,−1, 0 | 0, 0, 0 | 0, 0, 0),

u8 =(0, 0, 0 | 0, 0, 0 |
√

3/2,−1/2, 0 |
√

3/2, 1/2, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),

u9 =(
√

3/2, 1/2, 0 | −
√

3/2, 1/2, 0 | 0, 1, 0 | 0, 1, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),

u10 =(0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 1, 0 | 0, 0, 0),

u11 =(0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 1, 0 | 0, 1, 0),

u12 =(1, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),

u13 =(0, 1, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0).

The first 6 vectors keep the angles fixed and modify only the bonds, see Figure 7. The vectors
u8, . . . ,u11 keep the bond lengths fixed to first order and change the angles, see Figure 8.
Eventually, the remaining vectors u12 and u13 modify both angles and bonds as in Figure 9.

Figure 7. Vectors u1, . . . ,u6 in Vgood keep the angles fixed (ordered from left
to right both in the first and in the second line).
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Figure 8. Vectors u7, . . . ,u11 in Vgood keep the bond lengths fixed (ordered
from left to right both in the first and in the second line).

Figure 9. Vectors u12 and u13 in Vgood keep neither angles nor bond lengths
fixed (ordered from left to right).

By Vbad we denote the collection of the vectors

(0, 0, 1 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),

(0, 0, 1 | 0, 0, 0 | 0, 0, 1 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),

(0, 0, 1 | 0, 0, 0 | 0, 0, 0 | 0, 0, 1 | 0, 0, 1 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0),

(0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 1 | 0, 0, 0),

(0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 0 | 0, 0, 1 | 0, 0, 1).

It is elementary to check that the vectors Vdegen∪Vgood∪Vbad are linearly independent and thus
form a basis of R3×8. Note that the vectors in Vgood are perpendicular to the vectors in Vbad.

Clearly, the cell energy is strictly convex as a function of the bond lengths and angles by the
assumptions on the potentials v2 and v3. Our goal is to show that the same property holds if
the cell energy is given as a function of the atomic positions. To this end, we introduce the
mapping T = (T a, T b) : R3×8 → R18 defined by

T ai (x) = ϕi for i = 1, . . . , 10, T bi (x) = bi for i = 1, . . . , 8.

Then the cell energy reads as

Ecell(x) =

8∑
i=1

κbiv2(T bi (x)) +

10∑
i=1

κai v3(T ai (x)) (56)
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with the factors κb1 = κb2 = κb7 = κb8 = 1/4, κb3 = κb4 = κb5 = κb6 = 1/2, κa1 = κa2 = 1,
κa3 = . . . = κa10 = 1/2.

Before analyzing the mapping T , we need to introduce some more notation for the sum of
angles ϕi. From here on, we denote by e1, . . . , e10 the canonical basis of R10, and we let

a1 := e1 + . . .+ e6, a2 := e1 + e7 + e8, a3 := e2 + e9 + e10

be vectors in R10. Elementary geometry yields T a(x0) ·a1 = 4π and T a(x0) ·aj = 2π for j = 2, 3
as well as T a(x) · a1 ≤ 4π and T a(x) · aj ≤ 2π for j = 2, 3 for each x ∈ R3×8. Indeed, the
sum of the interior angles in a hexagon is always smaller or equal to 4π and exactly 4π if the
hexagon is planar. Likewise one argues for a triple junction.

Lemma 7.1 (Properties of T ). The mapping T is smooth in a neighborhood of x0. There is a
constant ckink > 0 such that

1. Ker(DT (x0)) = span(Vdegen ∪ Vbad), dim(Ker(DT (x0))) = 11,

2. dim(Ker(DT a(x0))) = 17,

3. (vTD2T a(x0)v) · aj ≤ 0 for j = 1, 2, 3, for all v ∈ R3×8,

4.

3∑
j=1

(vTD2T a(x0)v) · aj ≤ −ckink|v − vdegen|2 for all v ∈ span(Vdegen ∪ Vbad),

where vdegen is the orthogonal projection of v onto span(Vdegen).

Proof. First, to see Property 1, we note that span(Vdegen ∪ Vbad) is a subset of Ker(DT (x0))
since each vector in Vdegen∪Vbad does not change bond lengths and angles to first order. On the
other hand, each vector in Vgood changes bond lengths or angles to first order and is therefore
not contained in the kernel of DT (x0). Indeed, the first six vectors of Vgood are directions of
perturbations that do not change angles in first order, but bond lengths. Vectors u7, . . . ,u11

are perturbations that do not change bond lengths in first order, but angles. Vectors u12 and
u13 are in-plane displacements of a single atom and change both bond lengths and angles to
first order. More precisely, for the changes of bond lengths we get

DT b(x0)u1 ‖ (1, 1, 1, 1, 1, 1,−1,−1), DT b(x0)u2 ‖ (0,−1, 1, 1, 0, 0, 0, 0),

DT b(x0)u3 ‖ (1, 1, 0, 0, 0, 0, 0,−1), DT b(x0)u4 ‖ (2,−2, 2, 4,−2, 0, 0,−1),

DT b(x0)u5 ‖ (0, 0, 0, 0, 0, 0, 1, 0), DT b(x0)u6 ‖ (0, 0, 0, 0, 0, 0, 1, 1),

DT b(x0)u12 ‖ (0, 0,−1, 0, 0,−1, 2, 0), DT b(x0)u13 ‖ (0, 0,−1, 0, 0, 1, 0, 0),

where w1 ‖w2 indicates that w1 and w2 are linearly dependent. Likewise, for the changes of
angles we have

DT a(x0)u7 ‖ (4, 0,−3, 1, 1,−3,−2,−2, 0, 0), DT a(x0)u8 ‖ (−1, 1, 2,−2, 0, 0, 1, 0,−1, 0),

DT a(x0)u9 ‖ (−2,−2, 1, 1, 1, 1, 1, 1, 1, 1), DT a(x0)u10 ‖ (0, 0, 0, 0, 0, 0, 0, 0,−1, 1),

DT a(x0)u11 ‖ (0, 0, 0, 0, 0, 0,−1, 1,−1, 1), DT a(x0)u12 ‖ (2, 0,−1, 0, 0,−1,−1,−1, 0, 0),

DT a(x0)u13 ‖ (0, 0, 0, 0, 0, 0, 1,−1, 0, 0).

(We prefer not to give details of the computation, but rather refer the Reader to Figures 7-9
where the situation of the different directions is indicated.). It is elementary to check that the
vectors DT (x0)ui, i = 1, . . . , 13, are linearly independent which concludes the proof of Property
1 by a dimension counting.
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Since dim(Ker(DT (x0))) = 11 and in Vgood only the first six vectors do not change angles to
first order, Property 2 holds.

Property 3 follows from the fact that the mapping t 7→ T a(x0 + tv) ·aj has a local maximum
at t = 0 for j = 1, 2, 3 and for all v ∈ R3×8 as noticed before the statement of the lemma.

To see Property 4, we first consider the special case v ∈ Vbad. In this situation the property
follows from an elementary computation, which we detail only in the case v = (e3|0| . . . |0). In
this case, after some calculations, we obtain (T a(x0 + tv))i = arccos(−1/2 + 3t2/2) + O(t3) ≤
2π/3 − ct2 for some c > 0 for i = 1, 7, 8 (i.e. for the angles at the triple junction at point x1).
Using also Property 1, this indeed implies (vTD2T a(x0)v)·a2 ≤ −c, i.e. by a perturbation out of
the plane the sum of the angles is reduced to second order. For the other triple junction and the
interior angles of the hexagon we argue analogously. This shows the property for perturbations
in the directions Vbad. Likewise, we proceed for directions in span(Vbad).

Now consider the general case v = vtrans + vrot + vbad ∈ span(Vdegen ∪ Vbad) for vtrans ∈
span(Vtrans), vrot ∈ span(Vrot), and vbad ∈ span(Vbad).

First, since T (x + w) = T (x) for all x ∈ R3×8 and all w ∈ Vtrans, we get DT (x)w = 0 and
wTD2T (x)w′ = 0 for all w ∈ span(Vtrans), w′ ∈ R3×8, and x ∈ R3×8. Consequently, we deduce
vTD2T a(x0)v = (vrot + vbad)TD2T a(x0)(vrot + vbad).

Moreover, let A ∈ R3×3
skew such that vrot = Ax0 and observe that there is a rotation Rt ∈ SO(3)

such that x0
t := Rt(x

0 + tvrot) is contained in the plane R2×{0} and one has |Rt− (I− tA)| =
O(|tA|2), cf. [35, (3.20)]. (Here I ∈ R3×3 denotes the identity matrix.) Consequently, we get
|x0 − x0

t | = O(|tA|2). This implies

T a(x0 + t(vrot + vbad)) = T a
(
Rt(x

0 + t(vrot + vbad))
)

= T a(x0
t + tRtvbad)

= T a(x0 + tvbad + t2w + O(t3))

for some w ∈ R3×8 with |w| ≤ c|A|2 and the property that the third component of each vector
in w is zero. A Taylor expansion and Property 1 of the lemma then yield

T a(x0 + t(vrot + vbad)) = T a(x0) + t2DT a(x0)w +
t2

2
vTbadD

2T a(x0)vbad + O(t3).

As the sum of the angles in the hexagon and at the triple junctions remains invariant under
perturbation w, we then deduce

3∑
j=1

T a(x0 + t(vrot + vbad)) · aj = 8π +

3∑
j=1

t2

2
vTbadD

2T a(x0)vbad · aj + O(t3).

The desired result now follows from the fact that
∑3
j=1 v

T
badD

2T a(x0)vbad · aj ≤ −c|vbad|2
has already been established in the first part of the proof, where we also note that |vbad| ≥
c|v − vdegen| with vdegen being the orthogonal projection of v onto span(Vdegen). �

For later purpose we also introduce the mapping Ẽ : [0, 2π]10 × [0,+∞)8 → R defined by

Ẽ(y) =

10∑
i=1

κai v3(yi) +

8∑
i=1

κbiv2(yi+10)

for y ∈ [0, 2π]10 × [0,+∞)8. Note that Ecell(x) = Ẽ(T (x)) for all x ∈ R3×8.
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Lemma 7.2 (Properties of Ẽ). The mapping Ẽ is smooth and there are constants 0 < cE,1 <
cE,2 and `0 ∈ N depending only on v2 and v3 such that for ` ≥ `0
1. (DẼ(T (x`kink)))i = 0 for i = 11, . . . , 18,

2. − cE,2`−2 ≤ (DẼ(T (x`kink)))i ≤ −cE,1`−2 for i = 1, . . . , 10,

3. cE,1 ≤ (D2Ẽ(T (x`kink)))ii ≤ cE,2 for i = 1, . . . , 18, (D2Ẽ(T (x`kink)))ij = 0 for i 6= j.

Proof. Property 1 follows from the fact that T b(x`kink) = (1, . . . , 1) ∈ R8 and v′2(1) = 0. To
see Property 2, we apply Lemma 6.1 to find (T a(x`kink))i ∈ (2π/3 − c2`−2, 2π/3 − c1`−2) for
i = 1, . . . , 10 and the fact that v3 ∈ C2 with v′3(2π/3) = 0, v′′3 (2π/3) > 0. Likewise, Property 3
follows from v′′2 (1) > 0 and v′′3 (2π/3) > 0, respectively. �

7.2. Convexity of the cell energy. The following theorem gives a first property of the Hessian
of Ecell at the kink configuration x`kink.

Theorem 7.3 (Convexity of Ecell in good directions). Let 0 < r < 1. Then there exist `0 ∈ N
and a constant c > 0 depending only on v2, v3, and r such that for ` ≥ `0 and each v ∈ R3×8

with
|v ·w| ≤ r|w||v| for all w ∈ span(Vdegen ∪ Vbad)

one has
vTD2Ecell(x

`
kink)v ≥ c|v|2.

Proof. First, by the regularity of the mapping T , Property 1 in Lemma 7.1, and the fact that
x`kink → x0 for ` → ∞, we find `0 ∈ N sufficiently large such that for ` ≥ `0 the kernel of
DT (x`kink) has dimension at most 11. Then we find universal constants 0 < c1 < c2 such that
for all ` ≥ `0, possibly for a larger `0, we have

c1|v| ≤ |DT (x`kink)v| ≤ c2|v| for all v ∈ span(Vdegen ∪ Vbad)⊥,

|DT (x`kink)v| ≤ c2|v|`−1 for all v ∈ span(Vdegen ∪ Vbad).
(57)

For the second property we used (55). Let be given v ∈ R3×8 with |v ·w| ≤ r|w||v| for all w ∈
span(Vdegen ∪ Vbad). The vector can be written as v = vgood + v⊥good with two orthogonal

vectors vgood,v
⊥
good satisfying v⊥good ∈ span(Vdegen ∪ Vbad) and |vgood| ≥

√
1− r2|v|. Consider

the mapping fv : R→ R defined by fv(t) = Ẽ(T (x`kink + tv)). We compute

f ′v(t) = DẼ(T (x`kink + tv))
(
DT (x`kink + tv)v

)
,

f ′′v (t) =
(
DT (x`kink + tv)v

)T
D2Ẽ(T (x`kink + tv))

(
DT (x`kink + tv)v

)
+DẼ(T ((x`kink + tv))

(
vTD2T (x`kink + tv)v

)
. (58)

We further observe that by Lemma 7.2, Property 1 and 2, there is a constant c3 only depending
on cE,2 such that

|DẼ(T (x`kink))
(
vTD2T (x`kink)v

)
| ≤ c3|v|2`−2. (59)

Then collecting (57)-(59) and using Property 3 of Lemma 7.2 we derive

vTD2Ecell(x
`
kink)v = f ′′v (0)

≥ cE,1c21|vgood|2 − 2cE,2c
2
2|vgood||v⊥good|`−1 − c3|v|2`−2

≥ |v|2
(
cE,1c

2
1(1− r2)− 2cE,2c

2
2`
−1 − c3`−2

)
.

For `0 large enough (depending also on r) this implies the assertion of the lemma for ` ≥ `0. �
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To investigate the convexity properties in the directions Vbad, we need some further prepa-
rations. Recall the reflections introduced in (15). The following lemma is a consequence of
Theorem 7.3 and shows that variations in the directions Vgood decrease the energy only to
higher order.

Lemma 7.4 (Energy decrease in good directions). There exist `0 ∈ N and a constant C > 0
depending only on v2 and v3 such that for ` ≥ `0 and each v ∈ span(Vgood)

DẼ(T (x`kink))
(
DT (x`kink)v

)
≥ −C|v|`−3.

Proof. Let v ∈ span(Vgood) be given and define a perturbation of v by

v′ = v + s`−1|v|(0, 0, e3, e3, e3, e3, 0, 0) ∈ R3×8 (60)

for some universal s > 0 to be specified below. (Note that the direction v′ − v increases the
third components of the points x3, . . . , x6 of the basic cell). By Property 1 and 2 of Lemma 7.2
and the fact that |v − v′| ≤ 4s|v|`−1 it clearly suffices to show

DẼ(T (x`kink))
(
DT (x`kink)v′

)
≥ 0. (61)

To this end, we will show that

Ẽ(T (x`kink + tv′)) ≥ Ẽ(T (x`kink)) (62)

for all t > 0 small. Then (61) follows by taking the limit t→ 0.

Consider x = x`kink + tv′ for t > 0 small. Possibly after applying a rigid motion we can
assume that the second and third components of (x1 + x7)/2 and (x2 + x8)/2 are zero, the
points x1, x2, x7, x8 lie in the plane R2 × {0} and that the points x3, x4, x5, x6 lie in a plane
parallel to R2 × {0}. (Recall that v induces an in-plane perturbation, i.e. the third component
of each vector in v is zero.) We replace x by a symmetrized version as follows.

Define xS1
by (16) and note that Ecell(xS1

) = Ecell(x). Moreover, it is elementary to
see that the third component of each vector in w1 := xS1 − x is zero. Consequently, w1 is
perpendicular to Vbad, Vtrans, and the rotations v2,v3. Clearly, as the reflection S1 leaves the
points (x1 + x7)/2 and (x2 + x8)/2 unchanged, we also have that w1 is not parallel to the
rotation v1. Consequently, by Theorem 7.3 and a continuity argument with t small enough, the
mapping t′ 7→ Ecell(x + t′w1) is convex on [0, 1]. This implies for x′ = 1

2 (x + xS1
) (see (17a))

that Ecell(x
′) ≤ 1

2 (Ecell(x) + Ecell(xS1)) = Ecell(x).

Likewise, we consider x′S2
:= x`kink + S2(x′ − x`kink) and note that Ecell(x

′
S2

) = Ecell(x
′).

Similarly as before, the vector w2 := x′S2
−x′ is perpendicular to the vectors Vbad and not parallel

to Vdegen. Using Theorem 7.3 we get Ecell(S(x)) ≤ Ecell(x
′) ≤ Ecell(x) for S(x) = 1

2 (x′ + x′S2
)

(see (17b)).

By this symmetrization procedure we get that the eight points S(x) are contained in two
kinked planes (similarly as x`kink). We denote the incidence angle of the two planes by γ ≤ π
and note that γ ≤ γ` if the constant s > 0 in (60) is chosen sufficiently large. The bond lengths
satisfy b1 = b2, b3 = b4 = b5 = b6 and b7 = b8. For the angles ϕ1 = ϕ2 and ϕ3 = . . . = ϕ10

holds.

Recalling (6) and (56) we find α in a small neighborhood of αus
` such that

Ecell(S(x)) ≥ −3 + 4v3(α) + 2v3
(
2 arcsin(sinα sin(γ/2))

)
.
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Now taking γ ≤ γ` into account and recalling that αus
` is optimal angle from Proposition 3.1,

we find

Ecell(x) ≥ Ecell(S(x)) ≥ −3 + 4v3(α) + 2v3
(
2 arcsin(sinα sin(γ`/2))

)
≥ −3 + 4v3(αus

` ) + 2v3
(
2 arcsin(sinαus

` sin(γ`/2))
)

= Ecell(x
`
kink),

where the last step follows with (54). This shows (62) and concludes the proof. �

The next lemma shows that a perturbation of the angles, which does not change the sum of
the angles, essentially does not decrease the energy to first order.

Lemma 7.5. There exist `0 ∈ N and a constant C > 0 depending only on v2 and v3 such that
for ` ≥ `0 and each w = (w1, . . . ,w10) ∈ R10 with w · aj = 0 for j = 1, 2, 3 we have

10∑
i=1

(
DẼ(T (x`kink))

)
i
wi ≥ −C|w|`−3.

Proof. From Property 2 of Lemma 7.1 we have that the image of the affine mapping DT a(x0)
has dimension 7. Moreover, we have (DT a(x0)v) · aj = 0 for j = 1, 2, 3 and all v ∈ R3×8.
Indeed, write v = vgood + vbad with vgood ∈ span(Vgood) and vbad ∈ span(Vdegen ∪ Vbad). Note
that DT a(x0)v = DT a(x0)vgood by Property 1 of Lemma 7.1. For each t ∈ R the eight points
x0 + tvgood are contained in the plane R2 × {0}. This implies T a(x0 + tvgood) · aj ∈ {2π, 4π}
for all t ∈ R and j = 1, 2, 3, which gives (DT a(x0)vgood) · aj = 0 for j = 1, 2, 3, as desired.

The dimension of the image of DT a(x0) together with the fact that w · aj = 0 for j = 1, 2, 3
show that there exists a vector v′ ∈ span(Vgood) such that DT a(x0)v′ = w. Applying Lemma
7.4 we get

DẼ(T (x`kink))
(
DT (x`kink)v′

)
≥ −C ′|v′|`−3,

where C ′ is the constant from Lemma 7.4. By a continuity argument and (55) we get |DT (x`kink)−
DT (x0)| ≤ c`−1. This together with Property 2 of Lemma 7.2 shows

DẼ(T (x`kink))
(
DT (x0)v′

)
≥ −C|v′|`−3

for C = C(C ′, cE,2, c). The fact that DT a(x0)v′ = w, |v′| ≤ c|w| for a constant c > 0
(depending on DT a(x0)) and Property 1 of Lemma 7.2 conclude the proof. �

We now improve Theorem 7.3 and prove convexity of Ecell at the kink configuration x`kink.

Theorem 7.6 (Convexity of Ecell). Let 0 < r < 1. Then there exist `0 ∈ N and a constant
c > 0 depending only on v2, v3, and r such that for ` ≥ `0 and each v ∈ R3×8 with

|v ·w| ≤ r|w||v| for all w ∈ span(Vdegen)

one has

vTD2Ecell(x
`
kink)v ≥ c|v|2`−2.

Proof. As in the proof of Theorem 7.3 we consider the mapping fv as defined before (58). The
goal is to show f ′′v (0) ≥ c|v|2`−2. We write v = vdegen + vbad + vgood with three orthogonal
vectors, where vdegen +vbad ∈ span(Vdegen∪Vbad), vdegen ∈ span(Vdegen), vbad ∈ span(Vdegen)⊥,
and vgood ∈ span(Vdegen ∪ Vbad)⊥. By assumption we obtain after a short calculation

|vgood|2 + |vbad|2 ≥ (1− r2)|v|2. (63)
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Set c∗ := max{2c2/c1, (8c3/(cE,1c21))1/2} with c1, c2 from (57), c3 from (59), and cE,1 from
Lemma 7.2. First, we suppose |vgood| ≥ c∗|v|`−1. We use (57) and vgood ∈ span(Vdegen∪Vbad)⊥

to find

|DT (x`kink)v| ≥ c1|vgood| − c2|v|`−1 ≥
c1
2
|vgood|.

Then by Property 3 of Lemma 7.2, (58), and (59) we get

f ′′v (0) = vTD2Ecell(xkink)v ≥
(
DT (x`kink)v

)T
D2Ẽ(T (x`kink))

(
DT (x`kink)v

)
− c3|v|2`−2

≥ cE,1|DT (x`kink)v|2 − c3|v|2`−2 ≥
cE,1c

2
1

4
|vgood|2 − c3|v|2`−2 ≥

cE,1c
2
1c

2
∗

8`2
|v|2.

Now suppose |vgood| < c∗|v|`−1. Since the first term of f ′′v (0) given in (58) is nonnegative, it
suffices to consider the second term of f ′′v (0). First, using Property 1 of Lemma 7.2 we have

18∑
i=11

(
DẼ(T ((x`kink))

)
i

(
vTD2T (x`kink)v

)
i

= 0. (64)

Define for brevity w = (vdegen+vbad)TD2T a(x`kink)(vdegen+vbad) ∈ R10 and note that |vgood| <
c∗`−1|v| implies ∣∣∣(vTD2T a(x`kink)v)i −wi

∣∣∣ ≤ c4|v|2`−1, i = 1, . . . , 10, (65)

for c4 depending on c∗. By Properties 3 and 4 in Lemma 7.1, (55), and a continuity argument
we obtain constants 0 < c5 < c6 (depending on ckink) such that for ` sufficiently large

w · aj ≤ c6|v|2`−1, j = 1, 2, 3,

3∑
j=1

w · aj ≤ −c5|vbad|2 + c6|v|2`−1.

Consequently, we can find a decomposition w = w′ + w′′ with the property

w′ · aj = 0, j = 1, 2, 3, |w′| ≤ c7|v|2,
10∑
i=1

w′′i ≤ −c5|vbad|2 + c6|v|2`−1, w′′i ≤ c6|v|2`−1, i = 1, . . . , 10

for a universal constant c7 > 0. (Choose, e.g., w′3 = w3−w·a1, w′7 = w7−w·a2, w′9 = w9−w·a3,

and w′i = wi else.) Let I = {i = 1, . . . , 10| w′′i ≤ 0} and note
∑
i∈I w

′′
i ≤

∑10
i=1 w

′′
i . Then using

Property 2 of Lemma 7.2 and Lemma 7.5 we derive

10∑
i=1

(
DẼ(T ((x`kink))

)
i
wi

=

10∑
i=1

(
DẼ(T ((x`kink))

)
i
w′i +

∑
i∈I

(
DẼ(T ((x`kink))

)
i
w′′i +

∑
i/∈I

(
DẼ(T ((x`kink))

)
i
w′′i

≥ −C|w′|`−3 + cE,1`
−2∑

i∈I
−w′′i − 10 · cE,2c6|v|2`−3

≥ −Cc7|v|2`−3 + cE,1`
−2(c5|vbad|2 − c6|v|2`−1

)
− 10 · cE,2c6|v|2`−3,

where C is the constant from Lemma 7.5. Moreover, again using Lemma 7.2 and (65) we get

10∑
i=1

∣∣∣(DẼ(T ((x`kink))
)
i

(
wi −

(
vTD2T (x`kink)v

)
i

)∣∣∣ ≤ 10 · cE,2c4|v|2`−3.
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We then use (58), (64), and the previous two estimates to find

f ′′v (0) = vTD2Ecell(xkink)v ≥ DẼ(T (x`kink))
(
vTD2T (x`kink)v

)
≥ cE,1c5|vbad|2`−2 − c′|v|2`−3,

where c′ = c′(C, cE,1, cE,2, c4, c5, c6, c7) large enough. Since |vgood| < c∗|v|`−1, we get |vbad|2 ≥
1
2 (1− r2)|v|2 for `0 large enough by (63). Then f ′′v (0) ≥ c`−2|v|2 follows when we choose `0 ∈ N
sufficiently large (depending also on r). �

7.3. Proof of Theorem 4.4. As a last preparation for the proof of Theorem 4.4, we need
to investigate how the angles between planes behave under reflection of a configuration (see
(15)-(17)). Let a center zi,j,k be given and, as before, denote by x ∈ R3×8 the atoms of the
corresponding cell. We introduce the angles between the planes as in Section 4. By θl(x)
we denote the angle between the planes {x1x3x4} and {x1x6x5}. By θr(x) we denote the
angle between the planes {x3x4x2} and {x2x5x6}. Moreover, we let θduall (x) = θ(x1) and
θdualr (x) = θ(x2) with θ(xi), i = 1, 2, as defined in (19). Recall also the definition of ∆(zi,j,k) in
(18).

Lemma 7.7 (Symmetry defect controls angle defect). There are a universal constant C > 0

and `0 ∈ N, and for each ` ≥ `0 there is η` > 0 such that for all F̃ ∈Pη`(µ), µ ∈ (2.6, 3.1), and
and all centers zi,j,k we have

θl(S(x)) + θr(S(x)) ≤ θl(x) + θr(x) + C∆(zi,j,k),

θduall (S(x)) + θdualr (S(x)) ≤ θduall (x) + θdualr (x) + C∆(zi,j,k),

where x ∈ R3×8 denote the position of the atoms in the cell with center zi,j,k and S(x) as in
(17b).

We postpone the proof of this lemma to the end of the section and now continue with the
proof of Theorem 4.4.

Proof of Theorem 4.4. Let a configuration F̃ ∈Pη`(µ) be given for η` to be specified below and
let x ∈ R3×8 be the points of one cell as introduced in Section 4. As usual, possibly after a rigid
motion we can assume that the second and third components of (x1 + x7)/2, (x2 + x8)/2 are
zero and the points x4, x5 lie in a plane parallel to R2×{0}. We now perform a symmetrization
argument as in the proof of Lemma 7.4.

We define xS1 by (16), and clearly the vector w1 := xS1 − x is perpendicular to Vtrans.
Moreover, we have |w1 · vi| ≤ r|w1||vi| for i = 1, 2, 3 for a universal 0 < r < 1, particularly
independent of the perturbation x. Indeed, for v1 and v2 this follows from the fact that the
points (x1 + x7)/2 and (x2 + x8)/2 are left unchanged. For v3 it follows from the assumption
that the points x4, x5 lie in a plane parallel to R2 × {0}.

Consequently, by Theorem 7.6, a continuity argument, and the definition of the the per-
turbations Pη`(µ), the mapping t 7→ Ecell(x + tw1) is strictly convex on [0, 1] if η` is cho-
sen small enough (independent of x). This implies for x′ = 1

2 (x + xS1) (see (17a)) that

Ecell(x
′)+c`−2|w1|2 ≤ 1

2 (Ecell(x)+Ecell(xS1
)) = Ecell(x), where c only depends on the constant

from Theorem 7.6.

Likewise, we consider x′S2
:= x`kink + S2(x′ − x`kink) and similarly as before, the vector

w2 := x′S2
− x′ is perpendicular to Vtrans and satisfies |w2 · vi| ≤ r|w2||vi| for i = 1, 2, 3 for

a universal 0 < r < 1. Indeed, for v1 and v2 this follows as before and for v3 it suffices to
note that also for the configuration x′ = (x′1, . . . , x

′
8) the points x′4, x′5 lie in a plane parallel to
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R2 × {0}. Using again Theorem 7.6 we get Ecell(S(x)) + c`−2|w2|2 ≤ Ecell(x
′) with S(x) from

(17b). Possibly passing to a smaller not relabeled constant c > 0 and using (18), we observe

Ecell(S(x)) + c`−2∆(zi,j,k) ≤ Ecell(x).

By this symmetrization procedure we get that the eight points S(x) satisfy the symmetry condi-
tions stated in (20). In particular, µ̃ from (20) is here equal to |zduali,j,k−zduali,j−1,k|, the latter quantity

being unchanged after symmetrization since the second and third component of zduali,j,k , z
dual
i,j−1,k

are assumed to be zero. Choose M ` and η` small enough such that |λ1−1|+ |λ3−1| ≤ `−4, and
|γ1 − γ2| ≤ `−2 with λ1, λ3, γ1, γ2 from (20). This choice of M ` is possible thanks to Property 2
in Proposition 3.4. Consequently, by Lemma 4.2 we obtain

Ecell(x) = Ecell(zi,j,k) ≥ Esym
µ̃,γ1,γ2

(λ2, α1, α2) + c`−2∆(zi,j,k)− c0`−4(γ1 − γ2)2.

Using Property 2 of Proposition 4.3 and (24) we get for `0 sufficiently large

Ecell(zi,j,k) ≥ Ered(µ̃, γ̄, γ̄) + c`−2∆(zi,j,k), (66)

where γ̄ = (γ1 + γ2)/2. By Lemma 7.7 we obtain γ̄ ≤ θ̄(zi,j,k) + C∆(zi,j,k), where θ̄(zi,j,k) =(
θl(zi,j,k)+θr(zi,j,k)+θl(z

dual
i,j,k)+θr(z

dual
i,j−1,k)

)
/4. Thus, by the monotonicity of the reduced energy

(see Property 3 of Proposition 4.3) and a Taylor expansion for the mapping γ 7→ Ered(µ̃, γ, γ)
we get

Ered(µ̃, γ̄, γ̄) ≥ Ered

(
µ̃, θ̄(zi,j,k), θ̄(zi,j,k)

)
− C`−3∆(zi,j,k) + O

(
(∆(zi,j,k))2

)
≥ Ered

(
µ̃, θ̄(zi,j,k), θ̄(zi,j,k)

)
− 2C`−3∆(zi,j,k) (67)

for C > 0 large enough depending on v3, where the last step follows for η` sufficiently small.
The assertion of the theorem now follows for `0 sufficiently large and ` ≥ `0 from (66), (67),
and the fact that µ̃ = |zduali,j,k − zduali,j−1,k|. �

Finally, we give the proof of Lemma 7.7.

Proof of Lemma 7.7. The proof is mainly based on a careful Taylor expansion for the angles
under the symmetrization of the atomic positions in the cell, which is induced by the reflections
(15). In particular, the argumentation for the angles θl, θr and the dual angles θduall , θdualr , re-
spectively, is very similar, up to some different notational realization. Therefore, we concentrate
on the first inequality in the following.

Let the configuration x be given for a center zi,j,k. Let nl1(x) and nl2(x) be unit normal
vectors of the planes {x1x3x4} and {x1x6x5}. Likewise, let nr1(x) and nr2(x) be normal vectors
of the planes {x2x4x3} and {x2x5x6}. Let nl(x) and nr(x) be unit vectors perpendicular to
nl1(x), nl2(x) and nr1(x), nr2(x), respectively.

Let sl1(x) be a unit vector perpendicular to nl(x), nl1(x) and let sl2(x) be a unit vector
perpendicular to nl(x), nl2(x) such that sl1(x) · sl2(x) is near −1. Likewise, we define sr1(x),
sr2(x). Note that these objects can be chosen smoothly with respect to x and that the angle in
(19) can be expressed as

θk(x) = arccos
(
sk1(x) · sk2(x)

)
for k = l, r.

We also introduce the mapping

g(x) = arccos
(
sl1(x) · sl2(x)

)
+ arccos

(
sr1(x) · sr2(x)

)
. (68)
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Step I. Recall from the the definition in (17), (18) that there are two vectors w1,w2 ∈ R3×8

such that the symmetrized configurations can be expressed as x′ = x+w1 and S(x) = x′+w2

with

|w1|2 + |w2|2 = ∆(zi,j,k) (69)

for a universal constant C > 0. The goal will be to investigate the Hessian of g and to show

wT
1D

2g(x′)w1 + wT
2D

2g(S(x))w2 ≥ −C(|w1|2 + |w2|2) (70)

for C > 0 universal. We defer the proof of (70) and first show that the assertion follows herefrom.
We consider the mappings

f1(t) = g(x′ + tw1), f2(t) = g(S(x) + tw2) for t ∈ [−1, 1] (71)

and observe that f1(−1) = g(x), f2(−1) = g(x′), f1(1) = g(xS1), f2(1) = g(x′S2
), where

xS1 = x`kink + S1(x− x`kink) and x′S2
= x`kink + S2(x′ − x`kink), see (15)-(16). Moreover, due to

the fact that the symmetrized configurations are obtained by applying the reflections S1, S2, see
(15), we get that f1, f2 are smooth, even functions, in particular, f ′1(0) = f ′2(0) = 0. Thus, by
a Taylor expansion we find ξ ∈ (−1, 0) such that

g(x) = f1(−1) = f1(0)− f ′1(0) +
1

2
f ′′1 (0)− 1

6
f ′′′1 (ξ) ≥ g(x′) +

1

2
wT

1D
2g(x′)w1 − C|w1|3,

where C > 0 is a universal constant. Indeed, the constant is independent of x as all admissible
x lie in a compact neighborhood of x`kink where g is smooth. Applying Taylor once more, we
get

g(x) ≥ g(S(x)) +
1

2
wT

1D
2g(x′)w1 +

1

2
wT

2D
2g(S(x))w2 − C|w1|3 − C|w2|3.

Then we conclude for η` sufficiently small (and thus |w1|, |w2| small) by (69)-(70)

g(x) ≥ g(S(x))− C(|w1|2 + |w2|2) = g(S(x))− C∆(zi,j,k).

Recalling (68) we obtain the assertion of the lemma.

Step II. It remains to confirm (70). We first concern ourselves with the Hessian of the mapping
f1 as defined in (71). For t ∈ [−1, 1] we let ukj (t) = skj (x′ + tw1) for j = 1, 2 and k = l, r. By a
Taylor expansion we obtain

ukj (t) = skj (x′) +
(
v1,kj + w1,k

j

)
t+
(
v2,kj + w2,k

j

)
t2 + O(|w1|3t3) with |ukj (t)| = 1, (72)

where v1,kj , v2,kj are perpendicular to nk(x′) and w1,k
j , w2,k

j are parallel to nk(x′) such that∑
j=1,2

∑
k=l,r(|v

1,k
j | + |w

1,k
j |) ≤ C|w1| and

∑
j=1,2

∑
k=l,r(|v

2,k
j | + |w

2,k
j |) ≤ C|w1|2. (The

constant C is again universal as all admissible x lie in a compact set and the mappings skj are

smooth.) For j = 1, 2 and k = l, r, the two vectors w1,k
j and w2,k

j are orthogonal to skj (x′), and

taking the first and the second derivative of the constraint |skj (x′ + tw1)|2 = |ukj (t)|2 = 1 with
respect to t yields by an elementary computation

(a) v1,kj · skj (x′) = 0, (b) |v1,kj |
2 + |w1,k

j |
2 + 2skj (x′) · v2,kj = 0. (73)

Then we compute by (71)

f1(t) =
∑
k=l,r

arccos
(
sk1(x′) · sk2(x′) +

(
v1,k1 · sk2(x′) + v1,k2 · sk1(x′)

)
t

+
(
v2,k1 · sk2(x′) + v2,k2 · sk1(x′) + v1,k1 · v1,k2 + w1,k

1 · w1,k
2

)
t2 + O(|w1|3t3)

)
.
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A Taylor expansion and the fact that f1 is even yield f1(t) − f1(0) = f ′′1 (0)t2/2 + O(|w1|3t3).
More, precisely, we get recalling sk1(x′) · sk2(x′) = cos(θk(x′)) for k = l, r

f1(t)− f1(0) =
∑
k=l,r

arccos′(cos(θk(x′)))
(
v2,k1 · sk2(x′) + v2,k2 · sk1(x′) + v1,k1 · v1,k2 + w1,k

1 · w1,k
2

)
t2

+
∑
k=l,r

1

2
arccos′′(cos(θk(x′)))

(
v1,k1 · sk2(x′) + v1,k2 · sk1(x′)

)2
t2 + O(|w1|3t3).

(74)

We get |v1,k1 · sk2(x′)| = |v1,k1 | sin(θk(x′)) by (73)(a). This together with (73)(b) and |v2,k1 | ≤
C|w1|2 yields for k = l, r

v2,k1 · sk2(x′) =
(

(v2,k1 · sk1(x′))sk1(x′) + |v1,k1 |−2(v2,k1 · v1,k1 )v1,k1

)
· sk2(x′)

= −1

2
(|v1,k1 |2 + |w1,k

1 |2) cos(θk(x′)) + |v1,k1 |−2(v2,k1 · v1,k1 )(v1,k1 · sk2(x′))

≤ −1

2
(|v1,k1 |2 + |w1,k

1 |2) cos(θk(x′)) + C sin(θk(x′))|w1|2,

and repeating the same calculation for v2,k2 , we derive for k = l, r

(
v2,k1 · sk2(x′) + v2,k2 · sk1(x′)

)
≤
∑
j=1,2

−1

2
(|v1,kj |

2 + |w1,k
j |

2) cos(θk(x′)) +C sin(θk(x′))|w1|2. (75)

Note that v1,k1 · v1,k2 = |v1,k1 ||v
1,k
2 |q cos(θk(x′)) for q ∈ {−1, 1} by (73)(a). An elementary com-

putation then yields(
v1,k1 · sk2(x′) + v1,k2 · sk1(x′)

)2
= sin2(θk(x′))(|v1,k1 | − q|v

1,k
2 |)2. (76)

Combining (74)-(75)-(76) and using that arccos′(x) = −(1 − x2)−1/2 and that arccos′′(x) =
−x(1− x2)−3/2, we find

f1(t)− f1(0)

≥
∑
k=l,r

− sin(θk(x′))−1
( ∑
j=1,2

−1

2
(|v1,kj |

2 + |w1,k
j |

2) cos(θk(x′)) + C sin(θk(x′))|w1|2

+ w1,k
1 · w1,k

2 + |v1,k1 ||v
1,k
2 |q cos(θk(x′))

)
t2

− 1

2
cos(θk(x′))(1− cos2(θk(x′)))−3/2 sin2(θk(x′))(|v1,k1 | − q|v

1,k
2 |)2t2 + O(|w1|3t3)

=
∑
k=l,r

− sin(θk(x′))−1
( ∑
j=1,2

−1

2
|w1,k
j |

2 cos(θk(x′)) + w1,k
1 · w1,k

2

)
t2 − C|w1|2t2 + O(|w1|3t3)

≥
∑
k=l,r

− sin(θk(x′))−1
( ∑
j=1,2

1

2
|w1,k
j |

2 + w1,k
1 · w1,k

2

)
t2 − C|w1|2t2 + O(|w1|3t3). (77)

In the last step we used that cos θ ≥ −1. Before we proceed let us note that the same computa-
tion can be repeated for the second mapping f2 defined in (71): considering an expansion as in

(72) with skj (S(x)) in place of skj (x′) and indicating the vectors by v̂i,kj and ŵi,kj (perpendicular



40 MANUEL FRIEDRICH, EDOARDO MAININI, PAOLO PIOVANO, AND ULISSE STEFANELLI

and parallel to nk(S(x)), respectively) we also obtain

f2(t)− f2(0)

≥
∑
k=l,r

− 1

sin(θk(S(x)))

( ∑
j=1,2

1

2
|ŵ1,k
j |

2 + ŵ1,k
1 · ŵ1,k

2

)
t2 − C|w2|2t2 + O(|w2|3t3). (78)

Step III. We now investigate (77)-(78) more in detail. Consider first f1. Due to the symmetry
of the setting induced by the reflection S1 (recall (15)) we find uk1(t) ·nk(x′) = uk2(−t) ·nk(x′) for

k = l, r. In particular, taking the derivative in t and using (73)(a), this implies w1,k
1 = −w1,k

2 .
Then by (77) we obtain

f1(t)− f1(0) ≥ −C|w1|2t2 + O(|w1|3t3)

and therefore taking t→ 0 we get wT
1D

2g(x′)w1 ≥ −C|w1|2, which establishes the first part of

(70). Now consider f2. Notice that one can show ŵ1,k
1 = ŵ1,k

2 for k = l, r by symmetry, i.e. we
cannot repeat the same argument as for f1. However, in this case we can show

|ŵ1,l
1 |+ |ŵ

1,r
1 |+ |ŵ

1,l
2 |+ |ŵ

1,r
2 | ≤ C|w2|`−1. (79)

Once this is proved, the assertion follows. Indeed, due to symmetry of S(x) we observe that
θl(S(x)) = θr(S(x)), denoted by ϕ in the following. Recalling (54) and the fact that S(x) is
near x`kink, we get ϕ ≤ π − c`−1 and sin(ϕ) ≥ c`−1 for some c > 0. Then by (78) we have

f2(t)− f2(0) ≥ −C|w2|2t2 − C` · |w2|2`−2t2 + O(|w2|3t3),

which shows the second part of (70).

Let us finally show (79). Recall the definition of the unit normal vectors nk1(x), nk2(x), and
nk(x) introduced before (68) for k = l, r. Observe that for symmetry reasons we have nk(S(x)) =
±e1 and |nkj (S(x)) · e2| = sin(π−ϕ2 ) for j = 1, 2, k = l, r. Then a continuity argument gives

|nk(x′) · e3| ≤ C|w2| and |nkj (x′) · e2| ≤ sin(π−ϕ2 ) + C|w2| for k = l, r and j = 1, 2. Moreover,
as x′ is invariant under the reflection S1 (recall (15)), we get nk(x′) · e2 = 0. By definition of
skj (x′) this implies

|skj (x′) · e1| =
∣∣(nk(x′)× nkj (x′)

)
· e1
∣∣= |nk(x′) · e3||nkj (x′) · e2| ≤ C sin(

π − ϕ
2

)|w2|+ C|w2|2.

For a small enough perturbation parameter η` we get |w2| ≤ `−1 and thus |skj (x′)·e1| ≤ C|w2|`−1

since sin(π−ϕ2 ) ≤ c`−1 by (54). As skj (x′)·e1 = skj (S(x))·e1−ŵ1,k
j +O(|w2|2) = −ŵ1,k

j +O(|w2|2)

(see (72) and use the fact that skj (S(x)) · e1 = 0), this shows (79) and concludes the proof. �
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