BGK MODEL OF THE MULTI-SPECIES UEHLING-UHLENBECK EQUATION

GI-CHAN BAE, CHRISTIAN KLINGENBERG, MARLIES PIRNER, AND SEOK-BAE YUN

ABSTRACT. We propose a BGK model of the quantum Boltzmann equation for gas mixtures. We
also provide a sufficient condition that guarantees the existence of equilibrium coefficients so that
the model shares the same conservation laws and H-theorem with the quantum Boltzmann equation.
Unlike the classical BGK for gas mixtures, the equilibrium coefficinets of the local equilibiriums for
quantum multi-species gases are defined through highly nonlinear relations that are not explicitly
solvable. We verify in a unified way that such nonlinear relations uniquely determine the equilibrium
coefficients under the condition, leading to the well-definedness of our model.
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1. INTRODUCTION

1.1. Quantum Boltzmann equation for gas mixture. The quantum modification of the cele-
brated Boltzmann equation was made in [61,62] to incorporate the quantum effect that cannot be
neglected for light molecules (such as Helium) at low temperature. Quantum Boltzmann equation is
now fruitfully employed not just for low temperature gases, but in various circumstances such as the
study of carrior mobility in various electronic devices. When the gas is composed of several different
types of molecules (gas mixture), the quantum Boltzmann equation takes the form (For simplicity, we
restrict ourselves to two species case):

O f1+ mil Vo fi = Qufi, f1) + Qu2(f1, f2),

(1.1) .
O fa + . Vafo = Qa2(f2, f2) + Q21(f2, f1)-

The momentum distribution function f;(z, p,t) denotes the number density at the phase point (z,p) €
Q. X Rg’, at time ¢. The collision operator Q;; (i,7 = 1,2) takes the following form:

Key words and phrases. BGK models, boltzmann equation, Uehling-Uhlenbeck equation, relaxation time approxi-
mation, gas mixture.
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e Fermion-Fermion (—), Boson-Boson (+).

= ff oo (5]

e Fermion (f1)-Boson (f2) interaction:

Qutnti = [ [ B ([~ 2| w) U504 7050 + 705
il (L T+ 7)) .

w) (FFL (U B f0) = fufy (L £)(1 £ £L)}dwdp,

where 7(1) = —1, 7(2) = 1. We assume Bjs (-,w) = B (+,w) for both cases, and we used the
abbreviated notation:

fi = fi(xapat)a fi,* = fi(l‘?p*at)? fz/ = fi($7p/>t)7 fz/,* = fi(fl),p;,t), 1= 172

The relation between the pre-collisonal momenta (p, p.), and the post-collisional momenta (p’, p’,) in
Qi (1,7 =1,2) can be derived from the local conservation laws:

P+, =p+p.,

mom_after_coll| (1.2) |p"2 |p*|2 ‘p|2 |p*‘2

2m; 2m; T omy 2m; ’

in the following explicit forms:

p=p—-———w||l——— ) wl,
m; +mj m; mj
2m;m;
p=pet+ —-> w[(p —p*>~w]
m; erj m; mj

The collision operator has 5 collision invariants: 1,p, |p|?> (k = 1,2):

QuelFes fr)dp = 0, / Qua(f, f2)dp — / Qor(for f1)dp = O,
R3 R3 R3

18) [ Qi fordr =0, [ 1Qu(i. £+ Qulfa. f)} pdp =0,
/ {Q12(f17f2) L +Q21(f2,f1) L }pZO,

p|?
[ Quthe fo)dn =
R3 m

which leads to the conservation of total mass, momentum and energy:

d d

= dedp =0, — dxdp = 0,
dt T3 xR3 fl v p dt /Tsst f2 v p

d
(1.4) 4 ( | pwdsdps [ f2pdwdp) ~o,
T3 xR3 T3 xRR3

d 2 2
47/ ﬁmldd+/ L Y
dt \ J1s xrs T3xR3 ~ 2M2

Upon defining the velocity distribution function f;(z,v,t) by the following relation with respect to

the momentum distribution f;(z,p,t):

Filw,v,t) = m? filw.p,1), ( _ p)
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we can recover the usual conservation laws as in [26,32,40]. (See Appendix). The collision operator
Qi; (i,j € {1,2}) also satisfies the following entropy dissipation property:

f1 P
/RS lanu(fl,fl)dPS 0, /RS lﬂszz(f%fQ)dpS 0,

(1.5) ; ;
| A — , fo)d / In—22 . f1)dp < 0.
/}R3 ng +T(1)le12(f1 f2)dp + 0T —|—T(2)f2Q21(f2 f1)dp <
where 7(i) = —1 when f; denotes distribution of fermion and 7(¢) = 4+1 when f; denotes distribution
of boson.

Such dissipation implies the celebrated H-theorem for quantum mixture:
e Fermion-Fermion (—), Boson-Boson (+):

d
%H(flva) = /]1%3 hthn(fl,fl)dPJr/RS In 112f2Q22(f2,f2)dP

1+ fi
fi f2
+/RS lnliflczu(fl,ﬁ)dw/m In Qs f)dp < 0

e Fermion (f1)-Boson (f3):
G ) = [ L eQuih o+ [ 0P Qu(a )

1-f 1+ fo
bil fo
4—/R3 In 1 _17016212(f1,J02)dJD+/R3 hlﬁfQQm(fmfﬁdp <0,

where H(f1, f2) denotes the H-functional:
e Fermion-Fermion interaction:

H(f1, f2) = /}R3 filnfi + (1 — f1)In(1 — f1)dp + /R3 folnfo+ (1= fo)In(1 — fo)dp.
e Boson-Boson interaction:
H(f1, f2) = /]RS filnfi — (1 + f1)In(1 + f1)dp + /]R3 faln fo — (1+ f2) In(1 + f2)dp.
e Fermion (f;)-Boson (f3) interaction:
Hep(fuf) = [ i fi+ (= )= fodp+ [ flnfa= (L+ ) In(1 + o)
The r.h.s of (1.1) vanishes if and only if f; and f5 are quantum equilibrium:
e Fermion-Fermion (+), Boson-Boson interaction (—):

1 1

Pl y fQ(xapv t) = 2 .
2 —ba,b)| e (a,t) 11 mzalat) —b(x0)| +eala,t) 1

my

fl(x7pat) =

P
mo

emla(z,t)

e Fermion (f1)-Boson (f2) interaction

1 1
N p) , fQ(xapv t) = N 3 .
2—b(@.b)| e (@) ‘1 emza(a;,t)\@—b(m,t){ +ea(et)

fl(mvpvt) =

emla(w,t)

1.2. Quantum BGK model for gas mixture. In this paper, we propose a BGK type relaxation
model of (1.1) :

Ocf1 + L -Vafi =Ri1 + Ria,
my

(1.6) g
Oifo+ — - Vaufo = Ro1 + Rao,
ma

where R;; denotes the relaxation operator for the interactions of ith and jth component. More
explicitly, they are defined as follows:
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e Fermion-Fermion interaction (i # j):
Rii = Fii — fiy Rij =Fij — [is (i=1,2)

where F;; denotes the Fermi-Dirac distribution for same-species interaction:

1 1
Fiui = . 2 , Ja= N 2 ’
Mo m*b1| +c1 +1 202 m*b2| +ec2 +1
and F;; denote Fermi-Dirac distribution for inter-species interactions:
1 1
Fia = — y o Ja = 3 .
emla’m—l—b| +cio +1 e7rL2a‘m—2—b| +co1 +1

e Boson-Boson interaction (i # j):
Rii = Bii — fi, Rij = Bij — fis (i=1,2)

where B;; denotes the Bose-Einstein distribution for same-species interaction :

1 1
311 = 3 5 622 = 2 ’
em1a1|milfb1| +e1 1 emzaz|mi2*b2| +e2 1
while B;; denote Bose-Einstein distribution for inter-species interactions:
1 1
612 = - 2 ) BQI = - 2 .
emla m*b| “+ci2 -1 emga W*b| “+c21 -1

e Fermion (f1)-Boson (f2) interaction:
Ruv=Fi1—fi Roa=DBa— fo,

and
Ri2=Fi2—fi Ra1 = Ba1 — fo.
For later convenience, and to unify the proof, we introduce the following notation for quantum equi-
libriums:
e The quantum equilibrium M,;

Next, we will make statements on the equilibrium distributions in the relaxation operators that cor-
respond to F;; in the fermion case and B;; in the boson case. In order not to list all different cases
separately, we denote the equilibrium distribution by M;; which is equal to a Fermi-Dirac or a Bose-
Einstein distribution depending on the case we consider:

(1) Fermion-Fermion interaction
Mi;=Fij. (i, =1,2)
(2) Boson-Boson interaction
Mi; =B, (4,7 =1,2)
(3) Fermion (f1) - Boson (f2) interaction
My; =Fij, Mgy =8By, (j=1,2)

The excessive computational cost has already been a very serious obstacle even for the classical
Boltzmann equation. Since the difficulty mostly lies in the computation of the collision operator,
various efforts to approximate the complicated collision process with a numerically more amenable
model have been made. The BGK model is introduced in [7] as a result of such efforts, and now
become the most popular approximate model of the Boltzmann equation because it provides a very
reliable results in a wide range of kinetic-fluid regime covering much of the practical problems at
relatively low computational costs.

As in the classical case, the quantum BGK models are widely used in place of the quantum Boltz-
mann equation. However, the quantum BGK model for mixture has not been rigorously studied
yet. More precisely, whether the relaxation operator can be soundly defined in a rigorous manner
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so that it satisfies the same conservation laws and the H-theorem as the quantum Boltzmann has
never been rigorously verified in the literature. The well-definedness of such equilibrium coefficients
for My, and Moy follows directly from the relevant results for the one-species quantum BGK model
in [3,4,21,42,47]. Thus, we focus on the determination of the equilibrium coefficients for the mixture
equilibrium M5 and Moy;.

1.3. Determination of M;; (i,j = 1,2). The quantum BGK model may be far more amenable
in terms of numerical computation, but the highly non-linear nature of the QBGK model gives rise
to various difficulties in the analysis of the model. As such, it turns out that the requirement that
the QBGK model must share the conservation laws and H-theorem with the quantum Boltzmann
equation, leads to a set of very complicated nonlinear relations for the equilibrium coefficients (See
Section 2.2). Moreover, they involve different conditions of solvability according to the nature of the
interactions: Fermion-Fermion interaction, Fermion-Boson interaction, Boson-Boson interaction.

In this paper, we explicitly derive the nonlinear relations among the equilibrium coefficients of M1,
Maa, Mig, Moy that arise from the physical requirement of the equation, and verify in a unified way
that those nonlinear relations uniquely determined the coefficients under certain conditions.

First, we note that we need to determine the mixture local equilibrium M;; in such way that the
relaxation operator in the r.h.s of (1.6) satisfies the same cancellation properties as (1.3) and the
entropy dissipation in (1.5) are determined by following conservation laws.

To be more specific, let N;, P; and E; (i = 1,2) denote

2
No= [ g pi= [ i Bi= [ 60
3 m;

Assuming that the r.h.s of (1.6) satisfies the same identities in (1.3), we arrive at the following iden-
tities:

2
(1.7) Midp = Ny, Miipdp = P, M g)' dp=E;, (i=1,2)
R3 R3 R3 m;
and
Miadp = Ny, Moaidp = Na,
R3 R3
(1.8) / Miapdp +/ Moarpdp = P + P,
R3 R3
2
Mig— |p\ ./\/l lpl* ——dp = E + Es.
R3 2m 2mey

Our goal is to show that, for each fixed Ni, P, E; (i = 1,2), the relations in (1.7) and (1.8)
completely and uniquely determine M;;, which is stated in Theorem 2.1.

1.4. Literature review: Quantum BGK models. The quantum modification of the celebrated
Boltzmann equation, which is often called Uehling-Uhlenbeck equation or Nordheim equation in the
literature, was made in [25, 37,61, 62] and soon recognized as a fundamental equation to describe
quantum particles at mesoscopic level. But due to the complexity of the collision operator, which
is a serious obstacle to practical application of the equation, and relaxation time approximations,
or quantum BGK models are widely used to understand the transport phenomena and compute
transport coefficients for semi-conductor device and crystal lattice [2,20,33-36,44,50,51] and various
flow problems involving quantum effects [15, 22,23, 33,45, 55, 56, 58,63, 64]. For the development of
numerical methods for quantum BGK model, we refer to [15,22,23,46,52,56,59,63-65]. We mention
that the prototype of relaxation type models in quantum theory can be traced back to the Drude
model [18,19] which successfully explained the fundamental transport property of electrons such as
the Ohm’s law or Hall effect.
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Mathematical study on the quantum BGK model is in its initial state. Nouri studied the existence
of weak solutions for a stationary quantum BGK model with a discretized condensation term in [47].
Braukhoff [11,12] established the existence of analytic solutions and studied its asymptotic behaviour
for a quantum BGK type model describing the dynamics of the ultra-cold atoms in an optical lattice.
Bae and Yun considered the existence and asymptotic stability of a fermionic quantum BGK model
near a global Fermi-Dirac distribution in [4].

BGK models for gas mixtures: There are many BGK models for gas mixtures proposed in the
literature. Examples include the model of Gross and Krook [29], the model of Hamel [31], the model
of Greene [27], the model of Garzo, Santos and Brey [26], the model of Sofonea and Sekerka [57],
the model by Andries, Aoki and Perthame [1], the model of Brull, Pavan and Schneider [13], the
model of Klingenberg, Pirner and Puppo [40], the model of Haack, Hauck, Murillo [30] and the model
of Bobylev, Bisi, Groppi, Spiga [10]. BGK models have also been extended to ES-BGK models,
polyatomic molecules or chemically reactive gas mixtures; see for example [8,9,14,28,38,39,41,49,60].
BGK models are often used in applications because they give rise to efficient numerical computations
as compared to models with Boltzmann collision terms [5,6,16,17,24,48, 53, 54].

In the following Section 2.1, we state our main result. In Section 2.2, we derive a set of nonlinear
functional relations and show that the equilibirum coefficients can be uniquely determined to satisfy
the conservation laws of mass, momentum and energy. In Section 2.3, the BGK model defined with
the equilibrium coefficients derived in Section 2.2, also satisfies the H-theorem.

2. DETERMINATION OF THE RELAXATION OPERATORS FOR QUANTUM MIXTURE

2.1. Main result for general quantum-quantum interaction. We now state our main result
stating that the equilibrium coefficients, under appropriate assumptions on N;, P; and F;, can be
uniquely determined. To simplify the presentation, we introduce h41, j+1, k by

1
1 . J g
h:tl(x) = /]R3 Mdp, ]:tl(x) = (f ]2 )3/5’

elpl?+z 41

and

3
5 1
mi fgs T

k‘rﬂ" (35, y) =

)

oo

3 3
bl lp|? b |p|?
(ml Jgs e|p|2+z+7dp+ m3 [gs el P2ty 7 dp
where the pair (7,7’) is chosen as follows:

(+1,+1) (fermion-fermion)
(r,7) =< (~1,—1) (boson-boson)
(+1,—1) (fermion-boson)

Using h and k, we define g, which is defined as a composite function of k and h~!, as follows:

3
2 1
mi f]R3 e\p\2+m+7—dp

)

(2'1> 9z, (33) = k‘r,r’ (xvy(x)) =

il

3 3
3 |p|? 3 |p|?
(ml Jrs e\m2+z+7dp+m2 Jrs em2+y(z)+7,dp

where y(z) denotes

y(x) = hi! (mN m(x)) .

m2§N1
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Note that hﬁ always exist since h4q is strictly decreasing. For simplicity of notation, we define
l:{+1,-1} — [—o0, 0] by

l“”‘{u—n:&
In the following theorem, j;i(—o0) is understood in the following sense:

jri(=o0) = lim jii(z).

We note from [3,4,43] that

o 4m)35%
main result QQ| Theorem 2.1. (1) Assume,
N1 . N2 .
< Jr(U(7)), < (U(1").

e

3
5

(leEl—Pf/Nl) (2m2E2—P22/N2)
Then, we can define ¢; (i =1,2) as the unique solution of
N1 . N2
3 ]T/(CQ) = 3
(2m1E1—|P1\2/N1)5 (2m2E2—|P2|2/N1)5
With ¢1, co obtained above, we then define a; (i =1,2) by

a1_m1</Rgepz+C1+po> Ny 7, a2_m2</Rge|P|2+C2+r’dp> Ny %,

£ W W
1_m1N1’ 2_m2N2'

Then, with such choice of a;, b; and ¢;, Mi1 and May satisfies (1.7).

j‘r(cl) =

and

(2) Assume further that

3
N ; IV
- 7 < Grr (max{l(T),h:l (Tn?dlh""(l(T/))> }) )
@Er+ﬂgfgﬁuﬂﬁf> mi No

m1N1+msoNo

e

Then ci12, co1 are defined as a unique solution of the following relations:

3

mEh C12 N1 N1

%() =N krri(c12,co1) = 7
2 ’ 2 2 5

With such c12 and co1, we define a and b by
%f 4 n %f bl 4 8
. My Jrs (P ters 1, P T M2 Jrs JoiZesr 1 WP b Py + Py
OB, + 20, — ikl ’ mi N1 + maNy’

m1N1+maN2

Then, with these choices of equilibrium coefficients, our quantum BGK model for gas mizture (1.6)

satisfies (1.8).

(3) With the choice of equilibrium coefficients as in (1), (2), the quantum BGK model for gas mixture
(1.6) satisfies the H-theorem. The equality in the H-Theorem is characterized by f1 and fa being two
Fermion distributions in the Fermion-Fermion case, two Bose distributions in the Boson- Boson case
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and a Fermion distribution and a Bose distribution in the Fermion-Boson case. In all the cases, these
equilibrium distributions have the same a and b.

2.2. Proof of Theorem 2.1 (1), (2). The proof for (1) can be found in [3]. Therefore, we start
with the proof of (2). An explicit computation from (1.8)s gives

Pl((E,t)+P2($,t):/ pz dp+/ pz dp
R3 emia b’ +Cl2_|_7_ R3 em2a b! +ca1 47

ml
_ p+mib P+ mgb
- /]R3 ealpl®+eiz 4 po + /]R3 ealpl®+ea1 o 7 dp
= b(m1Ni(z,t) + maNa(,1)).
This gives the explicit presentation of b:
Pl(xvt> + PQ(Ivt)
2.2 b(z,t) = .
( ) (x’ ) mlNl(x,t)+m2N2(x,t)
On the other hand, we have from (1.8); that:

/ d 3473 / 71 d
p=mia 74
mla b’ “+c1o + . R3 €|p|2+(312 _|_ T )

m 1

23) / ] o
m2a|—7b| +ca21 R

7n 2

— P -
o dp =mya ® 5 elpl?+ea1 + 7! dp7
and from (1.8)s:
1 2 1 §
Eq(z,t) + Eo(z,t) = / v 3 dp + / i dp
2m1 Jrs mia %—b‘ +ei2 +r 2ma Jgs pm2a ——b’ +ca1 47
2 2
(2.4) _ 1 ot.3 2 L A
- - le a ? RS €|p|2+(:12 _~_po+ 2m2a : R3 e‘p‘2+(~'21 _|_T/dp
1
+ §(m1N1 + maN2)b?(z,t),
Plugging (2.2) into (2.4), we get
P+ P> s s p? 3 [p|®
@5 2B 2 = N N, — M e b 1 TS L e P

We then deduce from (2.5) and (2.3), that
3
N M Jpo e dp
QQC]. (2.6) 1 _ = 1 JR3 e\i’\2+ 1247 )

3
_|PitPy2 )P 3 lp? 3 Ip2
(281 + 2B, - ) (e w3 [

m1Ni1+maNa
On the other hand, we can factor out a by dividing the two relations in (2.3):

S

3 3
N i e ™ mih
(2.7) ﬁl _ i RS cPPrerngr P mé +(c12)
2 m22 f]RS e‘p‘2+i21+7/dp m22 hT/(021)
and hence:
3
41 [ mi N
29 o= (% o)
m22N1

from the monotonicity of h,. Now, considering that a is obtained from (2.5) once c¢12 and cop are
chosen, it remains, under the assumption of Theorem 2.1, that (2.6) and (2.7) uniquely determine c19
and ¢a1. In turn, in view of (2.6) and (2.8), we see that cj2 and co; can be uniquely determined once
we prove the monotonicity of g, s, which is stated in the following lemma.
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Lemma 2.2. Recall the definition of g, given in (2.1)
% 1 dp

mq fR?’ elp?+a 1

Gz, 7 (z) = 5 A ) 3
(ml Jes e\p\‘Q-i‘—T+7—dp+m22 Jrs e\P\Q-l‘f/‘(-’ﬁ)J,-T’ p)
where
3
41 [ miN.
(2.9 y(@) = h7! ( L %m) ,
m22 N1
3
Then g, ,/(x) is strictly monotone decreasing function when x > max {l( ), ht (m?iNlhT,(l(T’))) }
mf NQ
Proof. Claim : We claim that the following identity holds:
1
3 fO er2+z Td’l"
m?D ($> + m12 m2 foo 1 u er‘r’ (y(l’))
S o
’ (.13) — 87'('2 0 erstyl@) 4 _
lpl? dp) ’

oo i -
3 p 3
2 2
(m1 ~/]R3 olpPta +7po+m2 \/]1%3 elpPty(@) 4 7/

where
9 o0 2 o0 2 [e'e] 4 o0 1
/ r d/ Tidr—/ 7d/ L a
0 0 o €T T  Jo et 4T

et er*te 47

e Proof of (2.10): By an explicit computation, we have
6
3

0g(x) 2 lp|® 5 Ipl® i
b= (! [ eyt md [ et
3
3 p? 3 p|? "3 1
3 A 5 N o B 2 _—
. {(ml /Rs elpP+z po+ 2 / elpP+y(@) 4 77 ) mi0: rs elPl*He + po
2
z

3 (m? b’ 2 [p|” -
5 (m /R e L B s e e
x 9 ( R3 elpl*+z 4 po s RS elpl*+y(@) 4+ 7 dp | mi R3 elplP+o po :

We then multiply 2/5 power of
3 [p|® g lpl®
2 2

/R3 po T my /R3 elplP+y(z) L dp

m pP+e 1
on numerator and denominator:
2 , 2 £
e - (m /. e /. ||+|p<|>+dp>
. 2 ) 2
8 Kml /R %d’”mé / e\p\2+‘yp<|z> +r ) mio /R ey 7P
2 2

— gé)x <m1g _/R3 ﬁd[)—kmg /]R3 elpl2+|?i|z) ) 1%/11@3 e‘p‘zﬂ g p].

ailoo

We then set the denominator to be I to write

Og(x) _ (3 Ipf? 3 [pf? )
3= ([ atm vt [ ) X0
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where

r=(md [ P b PP N [ L
a U Jps elpPre 4 7 P 2 Jgs elpPHu@@) 4 7/ P )i e s PPtz 4 7 P

*éa m? ﬁd +m% %d m2 éd
N R P 2 Jgs elpPHu@@) 4 7/ p)mi rs ePPTT 47 D-

We then carry out the following two integrations

a/ ! d—/ et
T Jos ePPre 47 T oo (ePPre 2P

o] 2 ri4x
2.11 — _re
(2.11) _ 4r / R
o (e +7)
o0
1
= —277/ ——dr
0 er “+x + T
’f“2 x
where we used the following integration by parts : v’ = %, v= %7‘, and

o (mi [ E i [ PP
x 1 R3 e|p|2+z_|_7- P 2 R3 6|P|2+y($)—|—7/ P

say(x)/ f\p|2e\p\2+y(m)
R (

PR — 2
R3 (e|P|2+z_|_ )de+m2 Oz €|p|2+y(z)_|_7_/)

00 4 r24x o 4 rit (2)

3 —rve §6y(m) / rde y
=4 2 7d 4 2 d
Ty /O (er +x + 7—)2 T+ TS Oz o (67‘2+y(w) T 7_/>2 T

3 [ r? 3 Qy(x) [ r?
= —6mm? ———dr — 6mm2 d
TM{ /0 R r—6mmi —_ /0 ey o T,

2
. P . . . ’ 2re” T _ 1,3
where we used similar integration by parts : v’ = e V=T for

e o] 7,4er2+c 3 [ee] 7,2
L T (S —
A (67‘2+c_|_7-)2 r 2/0 6r2+c+7- r

3 7|p|2e‘p‘2+$

2dp
(2.12)

Using (2.11) and (2.12), we rewrite I as
g rd 3 [ rd 3 [
I = —8xn2 < m{ 6T2+m+ dr+m2/0 r2+y($)+7 >mf/0 6T2+I+TT
i erhrz +7 2 or J, ety ! er’tr 4 1
We then recall
] 4 [e’e] [ee] [e’e]
Dr(a)=~ | erzfﬁdr/o ﬁdw%/o 6H“Tdr/() ﬂﬂ e —dr <,

and express (2.13) as follows: So subtracting D, (x) on each sides gives
I 3 3 [ r o 1
- _— 2 2
52 miD,(z) = —m2m3 /0 T T T/dT/O e 1 Tdr

9 s syl [T ? o2
+gm1m2 o 0 er2+y(w)+7/dr o 6T2+$+Tdr.

Now we compute 0y(z)/0x. Recall

(2.14)

y(z) = b3 (mN : m(x)) ,

m22N1

dr
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and compute

y (mfNthx)) AmiNey ).

3 X dl‘ 3
m22N1 m22N1

Then, since the differentiation rule for inverse function gives

(h;l)/ (mfNQ h,,_(il')> = m,

3
m22N1

we get

Finally, we use

, _€|P|2+I e8] _,,,2€r2+x oo 1
W () :/RS (€|p|2+1+7)2dp:47r/0 (e,2+x+7)2dr=—2ﬂ/o e,

to obtain the following expressions for dy/dx:

3 0o 1
Oy(z) miN, Jo smedr

= T3 o0 1
ox m2 Ny fo e dr
Inserting this into (2.14)
I s I Y ©_1
@ — mlDT(a:) = —m{msy o md’r o Wdr

2

o0
PREEAL Jo” gy dr /00 - d?‘/oo L
5 1 dr Jo er*tu(@) 47/ 0 ertT 7

177 o0
M Jy e

2 A Sy (0 By L
=-m ————dr|m ——dr
1 o eritr L 2 o ertty(x) 1

00 r2 e’} r?
fo er?+y(@) fr/ dr fo er?+e dr
foo ——Ldr

0 er?+y(e) g/

3
2
1

9 sz
5 1N,

Finally, we use

3 3 1 3 oo 2

3 2 2 r

Ny mihy(y(x)) M2 Js P L Jo e L
r2

N 3 3 1 3 oo
my h‘r(x) mq fR3 e\p|2+:c+7_dp my fo 67‘2+.7:+7-d/r

11
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to derive
I
3
8772 mlDT (x)
e’} r? [e%s) r2
3 8 > 1 > rd 9 fo 2ty (@) 117 dr fo o2 u(@) 11/ dr
=—m?m3 - TdT er?+y(@) 4 7/ dr — = foo i y
0 0 e?rum 4
00 1
.
_ 31 o omey
=mimy

0 er?+y(e) fq/

9 [ r? > r? e ré *° 1
<5/0 er2+y(x) + 7/ d?"/o eﬂ—i—y(m) +T/d’f‘ 7/0 eﬂ—i—y(z) +T/d7‘/0 er2+y(x) _|_7./dr>

fOOC er2+1m Tdr
fOO 1 + erT/ (y(x)))

0 er?tu(@ 117

X

=l
N ojw

=mqm

which complete the proof of the claim.

e Proof of the Lemma 2.2: Assume (2.10) holds. We first observe that h(z) is strictly decreasing
function on x € [0,00) for 7 = —1 and x € (—o0, 00) for 7 = +1 :

, e|p|2+w
W (x) = _/Rs T <O

3
Therefore, our restriction on z: x > h-! (méNlhTz(l(T’))) combined with the definition of y given
m12 N2

n (2.9), leads to

I I I
y(z) = h} (mg %(@) > ho! (mg 2h (h;l (mi 1@(1(#))))) = I(+).
m22N1 mé"Nl mng

Thus, we have

y(a) > U().
On the other hand, from the assumption, = satisfies
x > (7).
Therefore, we have
D.(z) <0 and D (y(z)) <0,
since we already know
Di1(z) <0on z € (—00,00), D_i(z) <0on z € [0,00).

(See [42] for boson case (+1) and [3,43] for fermion case (—1)). Inserting this into (2.10), we can
conclude the proof of the Lemma.
]

2.3. Proof of Theorem 2.1 (3). It remains to prove the H-theorem to conclude Theorem 2.1 (3).

Proposition 2.1. Let f; <1 only when f; is the distribution function for fermion components, then
we have

/R3 In 1 _flel {(Mll — fi) + (M2 — fl)} +ln1_f772_lh{(./\/122 — f2) + (Ma1 — f2)}dp <0.
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Proof. The proof for

fi I2
(215) /]R3 lnl—fl (Mllffl)dp+43 lnl—fg

can be found in [63]. So we only prove

(Mag — f2)dp <0,

S = In h (M12 - f1)dp—|—/ In ip

R3 1— Tf1 R3 1— T/fQ

First, we observe that

(le — fg)dp <0.

B Mz Moy B
I_/RSlnl_TMu(Mlg—fl)dp+/RBln1_T/M21(M21—fz)dp—(l

which follows from an explicit computation using the conservation laws (1.8):
— =0

2
I = —/ (am1 p + 012> (Mi2 — fl)dp—/ <am2
R3 mi R3

_ lel? o 1P PP P _ My, —

=a fl + f2 _/\/112 M21 dp 2ab - p(f1 + f2 M12 Mgl) dp
R3 mq mo mi mo R3

=0.

P,
ma

2
+ C21> (Ma1 — fo)dp

From this, we find

B f M B
S_I_/Rg<ln1—7f1 lnl_TM12>(M12 J1)dp

fo Moy
- - <
" /RS (ln L—7'f = 1- T’le) (Ma1 = f2)dp < 0,

since In f= is an increasing function for = € [0,00), and In ;%= is an increasing function when

0 < z < 1. Here, we have equality if and only if f; = Mjs and fo = Mbs;. This completes the
proof. O

Remark 2.3. The equality in the H-Theorem is characterized by two distributions with the same value
for @ and b. Due to the fact that b is equal to pressure over the density, this leads to P, = %PQ.

Therefore, to complete the proof of Theorem 2.1 (3), it remains to prove that f; < 1 in the case of
fermions.

Lemma 2.4. Let f; be a distribution function for fermions and f;(x,p,0) < 1. Then we have
filz,p,t) <1 fort>0.

Proof. Integrating (1.6) along the characteristic, we get the mild form :

t
fi(x7pa t) = e_Qtfi(x - ptap7 O) + / eQ(T_t)(]:ii + ./—"”)(3? + (T - t)p7p7 T)dT7
0

for j # 4. Since Fi; < 1 and F;; < 1 for all («,p,t) by definition, we have

t
filw,p,t) < e fi(x — pt,p,0) + / 2e*" 1 dr
0

=e 2 f;(x — pt,p, 0)+(1- e_zt)
< 1.
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3. APPENDIX

In this section, we present a proof for (1.3) for readers’ convenience. The proof is standard but we
couldn’t locate them in the literature. We also present the relation between the consevation laws w.r.t
the momentum distribution function f(z,p,t) and the conservation laws w.r.t the velocitiy distribution
function f(z,v,t). We start with the computation of Jacobian:

Lemma 3.1. The Jacobian of the change of variables (p,p«) < (p', D)) is

6 l, /
det J = det Q0P
A(p; p+)
Proof. A direct computation gives
2 i 2 P W4
J= a(p/7p;) _ 62] mTﬁl»T;Z wmul)J mquLTnzg wml;]J
- a( ) - 2mimeo WiW; L 2mimg WiWj
D, Px mi+ms mi 9 mi+ms mo

Adding the 4th-6th row of J to the 1st-3rd row of J, respectively, then subtracting the 1st-3rd column
of J from the 4th-6th column of J, respectively gives

04 0
— J
det J = det |: 2mime WiW; Sis — 2mime WiW;  2mimo WiWj .

mi+ms mi 13 mi+mso Mo mi+ms mq
Thus we have

2myime ww; _ 2mimy ww;

det J = det <5ij - > = det(6;; — 2w;w;) = —1.

mi -+ mo Mo mi +mo My

Lemma 3.2. Fori,j,k=1,2, and i # j, we have

W [ ow@uii o= [ [ [ 60+ 00 - 061 - o00)
X By (‘—p’ >{fkfk*(1ifk)(1ifk*) Fefex (1 £ fi) (1 £ fi ) Ydwdp.dp,

o favani=t | [, fon-sonm (22}
X Afifi (LA 7@ fi) A+ 7(5) fi0) = fifj -1+ 7(0) f) A+ 7(5) f5 ) dwdp.dp.

where 7(i) = —1 when f; denotes the distribution of fermion and 7(i) = +1 when f; denotes the
distribution of boson.

Proof. Taking the change of variables (p,ps) < (p«,p) and (p,p«) + (p',p.), together with Lemma
3.1, gives (1). To prove (2), we first observe that the collision kernel B;; is invariant under the change

of variables (p, p.) <> (p', p.) since

PP, K P Ps ) ] ‘ | D
—— —2w || — — cwl| | = — — .
m; mj m; mj m; mj
Therefore, applying the change of variables (p,p«) <> (p/,p.) together with Lemma 3.1 gives the
desiblack results. O

! !
R N
m; m;

Remark 3.3. We note that the exchange (p, p«) <> (p«,p) does not leads to (p/,p.,) + (pl,p’) in the
collision opeartors Q12 and Q21 unless m; = my. For example, if we change the notation (p,p.) <

(P, p) in Q12, we get

/ 2mime K D Ds > } 2mimea K D D ) }
p=p——w||— — - w = pt+——w||— — ~w|
mi + mo mi Mo my + mo mg My

which is not equal to p), of Q2. This is why @;; (¢ # j) do not have the full symmetry as in (1).
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e Proof of (1.3): We only consider the last identity in (1.3), since other identities can be treated
in a similar and simpler manner. In view of the fact that the post collisional variables (p’,p}) in Q12
and Q21 take different forms, we use the notation {p'}12, {p,}12 and {p'}21, {P)}21 to denote p’ and

pl in Q12 and Qo1, respectively. We substitute ¢(p) = |p|?/2m; in Q12 and use Lemma 3.2 (2) to get

*

Lontengo-t [ [ (105 02 -2
) x {f1({p" }12) f2({pi t12) (1 + 7(1) f1(p)) (1 + 7(2) f2(p+))
— fip) f2(p) (1L +7(1) f1({p }12)) (1 + 7(2) fo ({P }12)) Ydwdp.dp.

\p\2

|P|2 \p|2 \{p }‘21|2 _ Px
/ Qa(fo, /1) d B /RS /RS /82 (2m2 2mg B (‘ my
x {fa({p"}o1) fr({pi}or) (1 4 7(2) f2(p)) (1 + 7(1) f1(p+))
— f2(p) fr(pa) (14 7(2) fa({p"}21)) (1 4 7(1) fr({P, }21)) Ydwdp.dp.

)
We then note that the exchange of variables (p, p.) <> (p«,p) in (3.2) yields

{P'}mzp—mw [(p— b > w} - P*"FMW [(p— P ) w} = {Pi }2,

Similarly, substituting ¢(p) = in Qo1 gives

mo +my me My my1 + ms myp Mg
2mom;y p Dx 2mima p Dx
12 /
* == * Jr - . *> - T - ! = ’
{pidar=p mg + my v [(mz my v P my + mg v mp M2 v e

so that

|p\2 [ \{pi}12|2 p D+
/RS Q21(f27f1)27m2dp /RS /RB /S2 (2m2 ST )Bm <’m1 by ,w)
x {f2({pihr2) fil{p' }12) (1 + 7(2) f2(p)) (1 4+ 7(1) f1(p))
= fa(p) f1(P) (1 + 7(2) f2({Pl }12)) (1 + 7(1) fr ({p" }12)) Y dwdp..dp.

Now, we combine (3.1) and (3.2) and recall Bia = Ba; to obtain

/ Q12( f17f2 dp+/ Q21( f27f1)

lp|* |P*\2 {P'hel  [{Pi)ef p P«
/Rs /Rs éQ <2m1 2m2 h 2m1 B 2m2 ) 312 <‘TTL1 - mo
<A ) 2({pl ) (L + 7(1) f1(p)) (1 + 7(2) f2(p))
= [1i0) f2(p<) 1+ 7(1) f1({P"}12) (1 + 7(2) f2({pL }12)) bwdp..dp.

The r.h.s vanishes due to the microscopic energy conservation law (1.2) with (¢,7) = (1,2), which
gives desiblack result.

||2

)

3.1. Conservation laws: v vs p. Let f(z,v,t) denote the velocity distribution function and f(z, p, t)
denote the momentum distribution function. Then we can reconcile the conservation laws w.r.t the
velocity distribution f(x,v,t) and the conservation laws w.r.t f(x,p,t) upon imposing (i = 1, 2)

Filw,v,) = (i ooot) = mifiCe,p. 1)

This relation, together with the change of variable m;v = p gives

/flxvtdxdv/fl<,mz )da:dv/ 3f;( Z)dxdp /f,xp,)d:z:dp



MR1889599

hcroft1976solid
MR4064205

MR4096124

MR2403867

1l

MR3411286

hnagor1954model

MR3436242

bisi2010kinetic

MR3815148

MR3918275

khoff£2018global

MR2896732

MR0258399

MR3131732

MR3231759

MR3202241

ektronentheorie
ktronentheorie2

i

005introduction

MR2145021

et2010numerical

MR2855649

16 GI-CHAN BAE, CHRISTIAN KLINGENBERG, MARLIES PIRNER, AND SEOK-BAE YUN

Similarly, we have
7 m;v 7 p p
X, ,t dxdv = 7 aivt dzd
[ (g st = [ 5 (ot (alyp ) o
1 2 p p
= —3Ji a77t dxd
[ () (e )
2m1‘p|
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